obsidian_backup/线性化求解器/计算流程框架.canvas

40 lines
4.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"nodes":[
{"id":"c03f206d2e22c014","type":"text","text":"设置工况点","x":-200,"y":-280,"width":250,"height":60},
{"id":"9effe93fe812b3d5","type":"text","text":"风速范围 间隔点","x":160,"y":-280,"width":250,"height":60},
{"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-200,"y":-140,"width":250,"height":60},
{"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-200,"y":0,"width":250,"height":60},
{"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-200,"y":140,"width":250,"height":60},
{"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60},
{"id":"03f26deb8603c7c3","type":"text","text":"输出哪些量","x":-200,"y":280,"width":250,"height":60},
{"id":"226774e95f4236f0","type":"text","text":"问题2 非线性,如何线性化","x":160,"y":140,"width":250,"height":60},
{"id":"65a392a60c82cf13","type":"text","text":"问题1 动力学方程是二阶线性还是二阶非线性","x":135,"y":-15,"width":300,"height":90},
{"id":"8c2eadcabf51301e","type":"text","text":"非线性\n$$\n\\begin{array}{r}{\\dot{\\mathbf{x}}=f(t,\\mathbf{x},\\mathbf{u})}\\\\ {\\mathbf{y}=h(t,\\mathbf{x},\\mathbf{u})}\\end{array}\n$$","x":540,"y":-37,"width":250,"height":135},
{"id":"e3f81d5e91896a13","type":"text","text":"小扰动+回归","x":540,"y":140,"width":250,"height":60},
{"id":"ac9c6c302cce8f5e","type":"text","text":"求稳态解","x":-520,"y":520,"width":250,"height":60},
{"id":"f9683ac8abedafd4","type":"text","text":"输入气动F 忽略重力","x":-180,"y":520,"width":250,"height":60},
{"id":"c1f8f8766e00e222","type":"text","text":"转换为弹性+动力钢化后的势能","x":135,"y":520,"width":250,"height":60},
{"id":"b6db2e6a6899b6fd","type":"text","text":"Q1 能量是否守恒,气动功率","x":135,"y":640,"width":250,"height":60},
{"id":"4db463979deaeb83","type":"text","text":"Bladed 稳态解+ 扰动得到ABCD","x":-180,"y":1000,"width":250,"height":60},
{"id":"8e379654cc4b7edd","type":"text","text":"fast 平衡解 + 扰动得到ABCD","x":-180,"y":1120,"width":250,"height":60},
{"id":"e4704bad8fee4436","type":"text","text":"hansen 直接得到方程,不需要稳态解","x":-180,"y":1240,"width":250,"height":60},
{"id":"36415d4f4fda32bf","type":"text","text":"是否目前有三条技术路线","x":-520,"y":1120,"width":250,"height":60},
{"id":"1f06730bce08cac5","x":108,"y":760,"width":305,"height":80,"type":"text","text":"Q2 是否有现成的方案F = kx 回到Bladed的理论手册"},
{"id":"880995f3fc3217d6","x":135,"y":380,"width":250,"height":60,"type":"text","text":"对于叶片"},
{"id":"a570313f48441587","x":500,"y":380,"width":250,"height":60,"type":"text","text":"塔架"},
{"id":"6d7400c7d73cf8b4","x":840,"y":380,"width":250,"height":60,"type":"text","text":"浮体"}
],
"edges":[
{"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"},
{"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"},
{"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"},
{"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"},
{"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"},
{"id":"f392faae7605befa","fromNode":"65a392a60c82cf13","fromSide":"bottom","toNode":"226774e95f4236f0","toSide":"top"},
{"id":"fed5f90bd0d733e8","fromNode":"65a392a60c82cf13","fromSide":"right","toNode":"8c2eadcabf51301e","toSide":"left"},
{"id":"feec362470ce480f","fromNode":"f8e0af85235be889","fromSide":"bottom","toNode":"03f26deb8603c7c3","toSide":"top"},
{"id":"d8d1c9bccc6b3043","fromNode":"226774e95f4236f0","fromSide":"right","toNode":"e3f81d5e91896a13","toSide":"left"},
{"id":"0aa6626d44224250","fromNode":"ac9c6c302cce8f5e","fromSide":"right","toNode":"f9683ac8abedafd4","toSide":"left"},
{"id":"e6d9ecf3cbe5419c","fromNode":"f9683ac8abedafd4","fromSide":"right","toNode":"c1f8f8766e00e222","toSide":"left"}
]
}