obsidian_backup/线性化求解器/计算流程框架.canvas

88 lines
11 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"nodes":[
{"id":"9effe93fe812b3d5","type":"text","text":"风速范围 间隔点","x":160,"y":-280,"width":250,"height":60},
{"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60},
{"id":"226774e95f4236f0","type":"text","text":"问题2 非线性,如何线性化","x":160,"y":140,"width":250,"height":60},
{"id":"65a392a60c82cf13","type":"text","text":"问题1 动力学方程是二阶线性还是二阶非线性","x":135,"y":-15,"width":300,"height":90},
{"id":"8c2eadcabf51301e","type":"text","text":"非线性\n$$\n\\begin{array}{r}{\\dot{\\mathbf{x}}=f(t,\\mathbf{x},\\mathbf{u})}\\\\ {\\mathbf{y}=h(t,\\mathbf{x},\\mathbf{u})}\\end{array}\n$$","x":540,"y":-37,"width":250,"height":135},
{"id":"e3f81d5e91896a13","type":"text","text":"小扰动+回归","x":540,"y":140,"width":250,"height":60},
{"id":"4a884b5e3feb7e40","type":"text","text":"气动力 = (K结构 + K钢化q","x":540,"y":-220,"width":250,"height":60},
{"id":"498cc5a9e1e188ac","type":"text","text":"fast中两个K如何求","x":880,"y":-220,"width":250,"height":60},
{"id":"158be82aaa1bd0b4","type":"text","text":"气动力如何求","x":880,"y":-140,"width":250,"height":60},
{"id":"2a5628f97c424f0d","type":"text","text":"直接去掉$\\dot{q}、\\ddot{q}$项","x":1220,"y":-220,"width":250,"height":60},
{"id":"0fbf8b3541d79def","type":"text","text":"形成新的增广矩阵求解得到q","x":1540,"y":-220,"width":250,"height":60},
{"id":"799124dab8c18b5d","type":"text","text":"气动+多体耦合迭代至收敛","x":880,"y":-15,"width":250,"height":60},
{"id":"fad5bc614aaee083","type":"text","text":"q = 0 直叶片算气动力","x":1220,"y":-15,"width":250,"height":60},
{"id":"cc8c72de61dbdb4e","type":"text","text":"算出一个变形量","x":1220,"y":98,"width":250,"height":60},
{"id":"c88b095b542d6843","type":"text","text":"气动再计算","x":1220,"y":200,"width":250,"height":60},
{"id":"e0c849b33a39c56e","type":"text","text":"结构再算变形量","x":1220,"y":300,"width":250,"height":60},
{"id":"f1503269ba230604","type":"text","text":"直至变形量收敛/a a'收敛","x":1220,"y":420,"width":250,"height":60},
{"id":"e9c01c636e40c0b3","type":"text","text":"t=0时刻改进 成 稳态增广矩阵","x":1540,"y":-15,"width":250,"height":60},
{"id":"45421c5911e8d893","type":"text","text":"能不能算?应该可以","x":1540,"y":98,"width":250,"height":60},
{"id":"bbcf3043979eac49","type":"text","text":"平衡状态平衡值x---q","x":-720,"y":0,"width":250,"height":60},
{"id":"efcf091d8aaf324d","type":"text","text":"仅考虑求A矩阵","x":-720,"y":140,"width":250,"height":60},
{"id":"db651e5e09444ed4","type":"text","text":"Δq 求 $Δ \\dot{q}$ 再线性回归","x":-720,"y":280,"width":250,"height":60},
{"id":"c86002941101b4b0","type":"text","text":"自由度上其中一个做一组扰动求瞬态的其他自由度的加速度线性拟合Aij","x":160,"y":420,"width":380,"height":120},
{"id":"f264418318fe13a2","type":"text","text":"组装A矩阵","x":225,"y":620,"width":250,"height":60},
{"id":"84420c9c180de186","type":"text","text":"A矩阵求特征值和特征向量","x":225,"y":800,"width":250,"height":80},
{"id":"c03f206d2e22c014","type":"text","text":"设置工况点","x":-300,"y":-280,"width":250,"height":60},
{"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-300,"y":-140,"width":250,"height":60},
{"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-300,"y":0,"width":250,"height":60},
{"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-300,"y":140,"width":250,"height":60},
{"id":"03f26deb8603c7c3","type":"text","text":"输出哪些量","x":-300,"y":280,"width":250,"height":60},
{"id":"3ad569bafe12c1a6","x":-425,"y":1020,"width":650,"height":60,"type":"text","text":"Maximum mode frequency to perturb and measure derivatives in the analysis, When using a multi-part blade, the whole\nblade modes are perturbed, The user may decide it is not necessary to analyse the higher freguency whole blade modes"},
{"id":"8ca8904fa77d3fc0","x":-425,"y":1130,"width":650,"height":60,"type":"text","text":"Number of values that each state gets perturbed to either side of the equilibrium point, Larger numbers provide more\nrobustness, Smaller numbers provide faster analysis and lower memory usage."},
{"id":"530691ed6242d413","x":-425,"y":1220,"width":650,"height":60,"type":"text","text":"Zero value states have a perturbation magnitude of this value multiplied by the absolute tolerance of the state"},
{"id":"ef6765604030b0d2","x":-425,"y":1320,"width":650,"height":60,"type":"text","text":"The magnitude of the state perturbations relative to the absolute steady-state state values"},
{"id":"667596ff1268005b","type":"text","text":"Maximum frequency to analyse","x":-845,"y":1020,"width":340,"height":60},
{"id":"871eda913aa536f2","type":"text","text":"Number of perturbation points","x":-845,"y":1130,"width":340,"height":60},
{"id":"62cc86d57a340008","type":"text","text":"Absolute tolerance perturbation scale","x":-845,"y":1220,"width":340,"height":60},
{"id":"f0a4983cbe88dea0","type":"text","text":"State relative perturbation","x":-845,"y":1320,"width":340,"height":60},
{"id":"4487cb5e83fd2407","x":300,"y":1020,"width":820,"height":60,"type":"text","text":"分析中扰动和测量导数的最大模态频率。当使用多段叶片时,整个叶片的模态会受到扰动,用户可能会认为没有必要分析更高频率的整个叶片模态。"},
{"id":"66af2e27cd04234b","x":300,"y":1130,"width":820,"height":60,"type":"text","text":"每个状态在平衡点两侧扰动到的值数量,数量越大则鲁棒性越强,数量越小则分析速度越快且内存使用量越低。"},
{"id":"be4ee34e7361d0ea","x":300,"y":1220,"width":820,"height":60,"type":"text","text":"零值状态的扰动幅度是该值乘以状态的绝对容差。"},
{"id":"83ad7939febb40fb","x":300,"y":1320,"width":820,"height":60,"type":"text","text":"状态扰动相对于绝对稳态状态值的大小"},
{"id":"57a77fa21396c8f3","x":1397,"y":971,"width":250,"height":60,"type":"text","text":"仅支持叶片稳态"},
{"id":"45093d1a52b13379","x":1397,"y":1070,"width":250,"height":60,"type":"text","text":"增加其他自由度稳态计算方法"},
{"id":"3e1714739e73cd8f","x":1780,"y":971,"width":250,"height":60,"type":"text","text":"先完成叶片的扰动"}
],
"edges":[
{"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"},
{"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"},
{"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"},
{"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"},
{"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"},
{"id":"f392faae7605befa","fromNode":"65a392a60c82cf13","fromSide":"bottom","toNode":"226774e95f4236f0","toSide":"top"},
{"id":"fed5f90bd0d733e8","fromNode":"65a392a60c82cf13","fromSide":"right","toNode":"8c2eadcabf51301e","toSide":"left"},
{"id":"feec362470ce480f","fromNode":"f8e0af85235be889","fromSide":"bottom","toNode":"03f26deb8603c7c3","toSide":"top"},
{"id":"d8d1c9bccc6b3043","fromNode":"226774e95f4236f0","fromSide":"right","toNode":"e3f81d5e91896a13","toSide":"left"},
{"id":"2e525284ffa05bbb","fromNode":"5818e7212360b063","fromSide":"right","toNode":"4a884b5e3feb7e40","toSide":"left"},
{"id":"1500a739fbbd0146","fromNode":"4a884b5e3feb7e40","fromSide":"right","toNode":"498cc5a9e1e188ac","toSide":"left"},
{"id":"5964ddad07981add","fromNode":"4a884b5e3feb7e40","fromSide":"right","toNode":"158be82aaa1bd0b4","toSide":"left"},
{"id":"5f17efa68f163fe1","fromNode":"498cc5a9e1e188ac","fromSide":"right","toNode":"2a5628f97c424f0d","toSide":"left"},
{"id":"4749e3275ef066e7","fromNode":"2a5628f97c424f0d","fromSide":"right","toNode":"0fbf8b3541d79def","toSide":"left"},
{"id":"69ee9c8f8e54d303","fromNode":"5818e7212360b063","fromSide":"right","toNode":"799124dab8c18b5d","toSide":"left"},
{"id":"cf430f8df231b599","fromNode":"799124dab8c18b5d","fromSide":"right","toNode":"fad5bc614aaee083","toSide":"left"},
{"id":"b814690556cf669b","fromNode":"fad5bc614aaee083","fromSide":"bottom","toNode":"cc8c72de61dbdb4e","toSide":"top"},
{"id":"337c9d6ffc67ee01","fromNode":"cc8c72de61dbdb4e","fromSide":"bottom","toNode":"c88b095b542d6843","toSide":"top"},
{"id":"00a4b6afa023f5dc","fromNode":"c88b095b542d6843","fromSide":"bottom","toNode":"e0c849b33a39c56e","toSide":"top"},
{"id":"493a3d162b231eed","fromNode":"e0c849b33a39c56e","fromSide":"bottom","toNode":"f1503269ba230604","toSide":"top"},
{"id":"454272bed836d6b1","fromNode":"fad5bc614aaee083","fromSide":"right","toNode":"e9c01c636e40c0b3","toSide":"left"},
{"id":"83cd6a37db2f73c9","fromNode":"e9c01c636e40c0b3","fromSide":"bottom","toNode":"45421c5911e8d893","toSide":"top"},
{"id":"820254294add6d7b","fromNode":"bbcf3043979eac49","fromSide":"bottom","toNode":"efcf091d8aaf324d","toSide":"top"},
{"id":"382a228fe50bb9e2","fromNode":"efcf091d8aaf324d","fromSide":"bottom","toNode":"db651e5e09444ed4","toSide":"top"},
{"id":"e7df3158c1adbec6","fromNode":"d3aa69200118cea0","fromSide":"left","toNode":"bbcf3043979eac49","toSide":"right"},
{"id":"8ec58bd022f131da","fromNode":"d3aa69200118cea0","fromSide":"right","toNode":"c86002941101b4b0","toSide":"left"},
{"id":"8afc7d5b908382ee","fromNode":"c86002941101b4b0","fromSide":"bottom","toNode":"f264418318fe13a2","toSide":"top"},
{"id":"1b3efa1ca44739ca","fromNode":"f264418318fe13a2","fromSide":"bottom","toNode":"84420c9c180de186","toSide":"top"},
{"id":"63b3dc057c28002b","fromNode":"667596ff1268005b","fromSide":"right","toNode":"3ad569bafe12c1a6","toSide":"left"},
{"id":"813437230fa9ed2a","fromNode":"871eda913aa536f2","fromSide":"right","toNode":"8ca8904fa77d3fc0","toSide":"left"},
{"id":"b63874a3aff057a1","fromNode":"62cc86d57a340008","fromSide":"right","toNode":"530691ed6242d413","toSide":"left"},
{"id":"134ca6ce76699a45","fromNode":"f0a4983cbe88dea0","fromSide":"right","toNode":"ef6765604030b0d2","toSide":"left"},
{"id":"88d22b633ae15cdb","fromNode":"3ad569bafe12c1a6","fromSide":"right","toNode":"4487cb5e83fd2407","toSide":"left"},
{"id":"edecc5743f57cf1c","fromNode":"8ca8904fa77d3fc0","fromSide":"right","toNode":"66af2e27cd04234b","toSide":"left"},
{"id":"3895206eeb4b291b","fromNode":"530691ed6242d413","fromSide":"right","toNode":"be4ee34e7361d0ea","toSide":"left"},
{"id":"d5e7f3a08f51df81","fromNode":"ef6765604030b0d2","fromSide":"right","toNode":"83ad7939febb40fb","toSide":"left"},
{"id":"2ecd98548686f08a","fromNode":"57a77fa21396c8f3","fromSide":"right","toNode":"3e1714739e73cd8f","toSide":"left"}
]
}