186 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

The following are derivations of the output motions available in FAST for a 2-bladed turbine configuration. The motions for a 3-bladed turbine are very similar. Note that some of the motions are given multiple names in order to support variation among the users preferences.
以下是针对双叶片风电机组中可获得的输出运动的推导结果。三叶片风电机组的运动非常相似。请注意,某些运动被赋予了多个名称,以适应用户的偏好差异。
Blade 1 Tip Motions:
OoPDefl1=TipDxc1=rQS1(BldFlexL)TipRadj3B1⋅i1B1 Blade 1 OoP tip deflection (relative to rotor) (directed along the xc1-axis), (m)
IPDefl1=TipDyc1=rQS1(BldFlexL)TipRadj3B1⋅i2B1 Blade 1 IP tip deflection (relative to rotor) (directed along the yc1-axis), (m)
TipDxb1=rQS1(BldFlexL)TipRadj3B1⋅j1B1 Blade 1 flapwise tip deflection (relative to rotor) (directed along the xb1-axis), (m)
TipDyb1=rQS1(BldFlexL)TipRadj3B1⋅j2B1 Blade 1 edgewise tip deflection (relative to rotor) (directed along the yb1-axis), (m)
$\begin{array}{r}{T i p D z c I=T i p D z b I=\Big[r^{\varrho s I}\left(B l d F l e x L\right)-T i p R a d j_{3}^{B I}}\end{array}$  $\cdot\dot{\pmb{i}}_{3}^{B I}=\left[r^{Q S I}\left(B l d F l e x L\right)\!-T i p R a d\pmb{j}_{3}^{B I}\right.$ ⋅j3B1 Blade 1 axial tip deflection (relative to rotor)
(directed along the zc1-/zb1-axis), (m)
$T i p A L x b I=\mathbf{\nabla}^{E}a^{S I}\left(B l d F l e x L\right)\cdot\mathbf{\boldsymbol{n}}_{I}^{B I}\left(B l d F l e x L\right)$ Blade 1 flapwise tip acceleration (absolute) (directed along the xb1-axis), (m/sec2)
$T i p A L y b I=\mathbf{\nabla}^{E}a^{S I}\left(B l d F l e x L\right)\cdot\mathbf{\mathbf{\cdot}}\mathbf{\mathbf{}}n_{2}^{B I}\left(B l d F l e x L\right)$ Blade 1 edgewise tip acceleration (absolute) (directed along the yb1-axis), (m/sec2)
$T i p A L z b I=\mathbf{\nabla}^{E}a^{S I}\left(B l d F l e x L\right)\cdot\mathbf{\boldsymbol{n}}_{3}^{B I}\left(B l d F l e x L\right)$ Blade 1 axial tip acceleration (absolute) (directed along the zc1-/zb1-axis), (m/sec2)
$R o l l D e j l I=T i p R D x b I=\left(\frac{I\delta\theta}{\pi}\right)^{H}\!\pmb{\theta}^{M I}\left(B l d F l e x L\right)\cdot\pmb{j}_{I}^{B I}$ Blade 1 roll tip deflection (relative to the undeflected position), (about the xb1-axis), (deg)
$P t c h D e j l-T i p R D y b I=\left(\frac{I\,\delta\theta}{\pi}\right)^{H}\!\theta^{M I}\left(B l d F l e x L\right)\cdot\dot{J}_{2}^{B I}$ Blade 1 pitch tip deflection (relative to the undeflected position), (about the yb1-axis),
(deg)
where: $^{H}\!\theta^{M I}\left(B l d F l e x L\right)=^{E}\!\omega_{B I F I}^{M I}\left(B l d F l e x L\right)q_{B I F I}+^{E}\!\omega_{B I E I}^{M I}\left(B l d F l e x L\right)q_{B I E I}+^{E}\!\omega_{I}^{I}\,,$ BΜ11F2(BldFlexL) qB1F 2 where: $r^{~o s t}\left(B l d F l e x L\right)\!=\!r^{~o V}+r^{~V P}+r^{P Q}+r^{Q S I}\left(B l d F l e x L\right)$
![](ff3b6c808f53eed30fb804e400aefda635080690456a987aad15c16d5a0b6883.jpg)
$$
{\begin{array}{l}{S p n i A L x b{I}{\,=\,}^{E}a^{S t}\left(R^{S p a n i}\right)\cdot{n}_{I}^{B I}\left(R^{S p a n i}\right)}\\ {1,2,...{\,,5)},\,(\mathrm{m/sec}^{2})}\\ {S p n i A L y b{I}{\,=\,}^{E}a^{S t}\left(R^{S p a n i}\right)\cdot{n}_{2}^{B I}\left(R^{S p a n i}\right)}\\ {1,2,...{\,,5)},\,(\mathrm{m/sec}^{2})}\\ {S p n i A L z b{I}{\,=\,}^{E}a^{S t}\left(R^{S p a n i}\right)\cdot{n}_{3}^{B I}\left(R^{S p a n i}\right)}\\ {1,2,...{\,,5)},\,(\mathrm{m/sec}^{2})}\end{array}}
$$
Blade 1 local flapwise acceleration (absolute) of span station $i$ (directed along the local xb1-axis) ${\bf\nabla}^{i}={\bf\nabla}$ Blade 1 local edgewise acceleration (absolute) of span station $i$ (directed along the local yb1-axis) ${\boldsymbol{\mathbf{\mathit{i}}}}=$
Blade 1 axial acceleration (absolute) of span station $i$ (directed along the zc1-/zb1-/local zb1-axis) $(i=$
Blade 2 Tip Motions: The output motions of blade 2 are similar to those of blade 1.
![](2057057aaac1479c30036b6175385a20823e1b62a204561d7dd450dc0ac8fb7a.jpg)
Blade 1 pitch angle (position) (positive towards feather / about the minus zc1-
/minus zb2-axis), (deg)
Blade 2 pitch angle (position) (positive towards feather / about the minus zc2-
Teeter Motions:
$$
T e e t D e f l=R o t T e e t P=T e e t P y a=\left(\frac{I\,\delta\theta}{\pi}\right)q_{T e e t}
$$
Rotor teeter angle (position) (about the ya-axis), (deg)
Rotor teeter angular velocity (about the ya-axis), (deg/sec)
Rotor teeter angular acceleration (about the ya-axis), (deg/sec)
![](5ae9ae923e89b7ee52899a62a43cb9af6327bdd5839b12f492c4132f898ce7f4.jpg)
![](e1db52774350e87a4ba12810c360d943d26c454ca95528c4ecf6eee0cda1fa87.jpg)
Rotor-Furl Motions:
180 RotFurl=RotFurlP RF
Nacelle IMU translational velocity (directed along the xs-axis), (m/sec) Nacelle IMU translational velocity (directed along the ys-axis), (m/sec) Nacelle IMU translational velocity (directed along the zs-axis), (m/sec) Nacelle IMU translational acceleration (directed along the xs-axis), $(\mathrm{m/sec}^{2})$ Nacelle IMU translational acceleration (directed along the ys-axis), $(\mathrm{m/sec}^{2})$ Nacelle IMU translational acceleration (directed along the zs-axis), $(\mathrm{m/sec}^{2})$
Nacelle IMU angular (rotational) velocity (about the xs-axis), (deg/sec)
Nacelle IMU angular (rotational) velocity (about the zs-axis), (deg/sec) Nacelle IMU angular (rotational) acceleration (about the xs-axis), (deg/sec2) Nacelle IMU angular (rotational) acceleration (about the ys-axis), (deg/sec2) Nacelle IMU angular (rotational) acceleration (about the zs-axis), (deg/sec2)
Rotor-furl angle (position) (about the rotor-furl axis), (deg)
Rotor-furl angular velocity (about the rotor-furl axis), (deg/sec)
Rotor-furl angular acceleration (about the rotor-furl axis), (deg/sec2)
![](c80ac1f42a7cf2cd3aa056fddb53af0ebc8b8cdb5e5d6fbd15630e314107e179.jpg)
Nacelle yaw angle (position) (about the zn-/zp-axis), (deg) Nacelle yaw angular velocity (about the zn-/zp-axis), (deg/sec) Nacelle yaw angular acceleration (about the zn-/zp-axis), (deg/sec2)
Tower-Top Motions:
Nacelle yaw error (about the zt-axis), (deg)
$$
\ Y a w B r T D x p=\Big[\pmb{r}^{z o}-\big(T o w e r H t+P t f m\,R e\,f\big)\pmb{a}_{2}\Big]\cdot\pmb{b}_{I}
$$
Tower-top / yaw bearing translational deflection (relative to undeflected position)
(directed along the xp-axis), (m)
$\ Y a w B r T D y p=-\Big[{r}^{Z O}-\big(T o w e r H t+P t f m\,R e\,f\big)\,{a}_{2}\Big]\cdot{b}_{3}$
(directed along the yp-axis), (m)
$\ Y a w B r T D z p=\Big[\pmb{r}^{z o}-\big(T o w e r H t+P t f m\,R e\,f\big)\pmb{a}_{2}\Big]\cdot\pmb{b}_{2}$
(directed along the zp-axis), (m)
$\begin{array}{r}{T T D s p F A=Y a w B r T D x t=\Big[\underline{{r}}^{Z O}-\big(T o w e r H t+P t f m\,R e\,f\big)a_{2}\Big]\cdot a_{I}}\end{array}$
position) (directed along the xt-axis), (m)
$T T D s p S S=Y a w B r T D y t=-\Big[r^{Z O}-\big(T o w e r H t+P t f m\,R e\,f\big)a_{2}\Big]\cdot a_{3}$
undeflected position) (directed along the yt-axis), (m)
$T T D s p A x=Y a w B r T D z t=\left[r^{z o}-\left(T o w e r H t+P t f m\,R e\,f\right)a_{2}\right]$ ⋅a2
position) (directed along the zt-axis), (m)
Tower-top / yaw bearing translational deflection (relative to undeflected position) Tower-top / yaw bearing translational deflection (relative to undeflected position) Tower-top / yaw bearing fore-aft (translational) deflection (relative to undeflected Tower-top / yaw bearing side-to-side (translational) deflection (relative to Tower-top / yaw bearing axial (translational) deflection (relative to undeflected
$Y a w B r T A x p={}^{E}a^{o}\cdot b_{_{I}}$ $Y a w B r T A y p=-\,^{E}a^{o}\cdot b_{s}$ $Y a w B r T A z p={}^{E}a^{o}\cdot b_{2}$
Tower-top / yaw bearing translational acceleration (directed along the xp-axis), (m/sec) Tower-top / yaw bearing translational acceleration (directed along the yp-axis), (m/sec) Tower-top / yaw bearing translational acceleration (directed along the zp-axis), (m/sec2)
$$
T T D s p R o l l=Y a w B r R D x t=\left(\frac{l\,\delta\boldsymbol{\theta}}{\pi}\right)^{\,x}\!\!\!\boldsymbol{\theta}^{B}\cdot\!\boldsymbol{a}_{l}
$$
Tower-top / yaw bearing roll deflection (relative to the undeflected position) (about the xt-axis),
(deg)
![](b38c4988ac1e5719ff698fcbf8f729662bca9a2a8b26838cf362115222c35539.jpg)
![](0c218afa5aa05229840608cb8327fe4452c4006430a61cd378e0c48bb48f3d00.jpg)
Tower Local Gage Motions:
Tower local fore-aft translational acceleration (absolute) of node $i$ (directed along the local xt-axis) $(i=$
Tower local side-to-side translational acceleration (absolute) of node $i$ (directed along the local yt-axis)
# Tail-Furl Motions:
TailFurl=TailFurlP
Tail-furl angle (position) (about the tail-furl axis), (deg)
$T a i l F u r l V=\left(\frac{I\,\!\delta O}{\pi}\right)\dot{q}_{\scriptscriptstyle T F r l}$ $T a i l F u r l A=\left(\frac{I\,\delta0}{\pi}\right)\ddot{q}_{\scriptscriptstyle T F r l}$
Tail-furl angular velocity (about the tail-furl axis), (deg/sec)
Tail-furl angular acceleration (about the tail-furl axis), (deg/sec2)
Platform Motions:
$P t f m T D x t=r^{Z}\cdot{\pmb a}_{I}$
$P t f m T D y t=-r^{Z}\cdot{\bf{\boldsymbol{a}}}_{3}$
$P t f m T D z t=r^{Z}\cdot{\bf{a}}_{2}$
PtfmSurge=PtfmTDxi=qS g
$P t f m S w a y=P t f m T D y i=q_{S w}$
$P t f m H e a\nu e=P t f m T D z i=q_{H\nu}$
$P t f m T V x t={}^{E}\nu^{Z}\cdot{\bf{a}}_{I}$
$P t f m T V y t=-\,^{E}\nu^{Z}\cdot{\bf{a}}_{3}$
$P t f m T V z t={}^{E}\nu^{Z}\cdot{\bf{a}}_{2}$
PtfmTVxi= qSg
$P t\/m T\o V\!y i=\dot{q}_{S w}$
PtfmTVzi= qHv
$P t f m T A x t={}^{E}{\pmb{a}}^{Z}\cdot{\pmb{a}}_{I}$
PtfmTAyt= EaZ
PtfmTAzt= a a
PtfmTAxi= qSg
PtfmTAyi= qSw
PtfmTAzi= qHv
Platform horizontal surge displacement (directed along the xt-axis), (m) Platform horizontal sway displacement (directed along the yt-axis), (m) Platform vertical heave displacement (directed along the zt-axis), (m) Platform horizontal surge displacement (directed along the xi-axis), (m) Platform horizontal sway displacement (directed along the yi-axis), (m) Platform vertical heave displacement (directed along the zi-axis), (m) Platform horizontal surge velocity (directed along the xt-axis), (m/sec) Platform horizontal sway velocity (directed along the yt-axis), (m/sec) Platform vertical heave velocity (directed along the zt-axis), (m/sec) Platform horizontal surge velocity (directed along the xi-axis), (m/sec) Platform horizontal sway velocity (directed along the yi-axis), (m/sec) Platform vertical heave velocity (directed along the zi-axis), (m/sec) Platform horizontal surge acceleration (directed along the xt-axis), $(\mathrm{m/sec}^{2})$ Platform horizontal sway acceleration (directed along the yt-axis), $(\mathrm{m/sec}^{2})$ Platform vertical heave acceleration (directed along the zt-axis), $(\mathrm{m/sec}^{2})$ Platform horizontal surge acceleration (directed along the xi-axis), $(\mathrm{m/sec}^{2})$ Platform horizontal sway acceleration (directed along the yi-axis), $(\mathrm{m/sec}^{2})$ Platform vertical heave acceleration (directed along the zi-axis), $(\mathrm{m/sec}^{2})$
<html><body><table><tr><td>180 PtfmRoll=PtfmRDxi= 4R π 180 PtfmPitch = PtfmRDyi qp π</td><td>Platform roll tilt displacement (about the xi-axis), (deg) Platform pitch tilt displacement (about the yi-axis), (deg)</td></tr><tr><td>180 PtfmYaw = PtfmRDzi = π</td><td>Platform yaw displacement (about the zi-axis), (deg) qy</td></tr><tr><td>180 E a</td><td></td></tr><tr><td>PtfmRVxt = π 180</td><td>Platform roll tilt velocity (about the xt-axis), (deg/sec)</td></tr><tr><td>PtfmRVyt = π 180 E</td><td>Platform pitch tilt velocity (about the yt-axis), (deg/sec)</td></tr><tr><td>PtfmRVzt = π 180</td><td>Platform yaw velocity (about the zt-axis), (deg/sec)</td></tr><tr><td>PtfmRVxi = π</td><td>Platform roll tilt velocity (about the xi-axis), (deg/sec)</td></tr><tr><td>180 PtfmRVyi = qp π</td><td>Platform pitch tilt velocity (about the yi-axis), (deg/sec)</td></tr><tr><td>180 PtfmRVzi = qy π</td><td>Platform yaw velocity (about the zi-axis), (deg/sec)</td></tr><tr><td>180 PtfmRAxt = π</td><td>Platform roll tilt acceleration (about the xt-axis), (deg/sec2)</td></tr><tr><td>180 PtfmRAyt = π</td><td>Platform pitch tilt acceleration (about the yt-axis), (deg/sec?)</td></tr><tr><td>180 PtfmRAzt = π</td><td>Platform yaw acceleration (about the zt-axis), (deg/sec²)</td></tr><tr><td>180 PtfmRAxi = YR π</td><td>Platform roll tilt acceleration (about the xi-axis), (deg/sec²)</td></tr><tr><td>180 PtfmRAyi = dip π</td><td>Platform pitch tilt acceleration (about the yi-axis), (deg/sec2)</td></tr></table></body></html>
$P t j m R A z i=\left(\frac{l\,{\delta}O}{\pi}\right)\ddot{q}_{_Y}$
Platform yaw acceleration (about the zi-axis), (deg/sec)
Tail-Furl Motions:
$T F i n A l p h a=\Bigg(\frac{I\,\!\!\delta\boldsymbol{\theta}}{\pi}\Bigg)T F i n A O A$ $T F i n C L i f t=T F i n C L$ $T F i n C D r a g=T F i n C D$ $T F i n D n\,P r\,s=T F i n Q$ $T F i n C P F x=T F i n K F x\,/\,l,000$ $T F i n C P F y=T F i n K F y\ /\ l,O O O$
Tail fin lift coefficient, (-) Tail fin drag coefficient, (-) Tail fin dynamic pressure, (Pa) Tail fin tangential force, (kN) Tail fin normal force, (kN)
# Wind Motions:
Wind $V x i=u$ Wind $W i n d V y i=\nu W i n d$ Wind $V z i=w$ Wind
Nominal hub-height wind velocity (directed along the xi-axis), $(\mathrm{m/s})$ Cross-wind hub-height velocity (directed along the yi-axis), $(\mathrm{m/s})$ Vertical hub-height wind velocity (directed along the zi-axis), $(\mathrm{m/s})$
$$
T o t W i n d V=\sqrt{W i n d V x i^{2}+W i n d V y i^{2}+W i n d V z i^{2}}
$$
Total hub-height wind velocity magnitude, $(\mathrm{m/s})$ )
$$
H o r W i n d V=\sqrt{W i n d V\!x i^{2}+W i n d V\!y i^{2}}
$$
Horizontal hub-height wind velocity magnitude (in the xi-/yi-plane), (m/s)
HorWndDir Horizontal hub-height wind direction (about the zi-axis), (deg) VerWndDir Vertical hub-height wind direction (about an axis orthogonal to the zi-axis and the horizontal wind vector), (deg)