A $$ {equation}{ A = \begin{bmatrix} A^{ED} & 0 & 0 \\ 0 & A^{BD} & 0 \\ 0 & 0 & A^{HD}\end{bmatrix} - \begin{bmatrix} 0 & 0 & B^{ED} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & B^{BD} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & B^{HD}\end{bmatrix} \, \begin{bmatrix} G \end{bmatrix}^{-1} \, \frac{\partial U}{\partial y} \, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ C^{ED} & 0 & 0 \\ 0 & C^{BD} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & C^{HD} \\ 0 & 0 & 0\end{bmatrix} } $$ C $$ {equation}{ C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ C^{ED} & 0 \\ 0 & C^{BD} \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} D^{IfW} & 0 & 0 & 0 & 0 \\ 0 & D^{SrvD} & 0 & 0 & 0 \\ 0 & 0 & D^{ED} & 0 & 0 \\ 0 & 0 & 0 & D^{BD} & 0\\ 0 & 0 & 0 & 0 & D^{AD}\end{bmatrix} \, \begin{bmatrix} G \end{bmatrix}^{-1} \, \frac{\partial U}{\partial y} \, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ C^{ED} & 0 \\ 0 & C^{BD} \\ 0 & 0 \end{bmatrix}} $$ B $$ {equation}{ B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ B^{ED} & 0 \\ 0 & B^{BD} \\ 0 & 0 \end{bmatrix} \, \begin{bmatrix} G \end{bmatrix}^{-1} \, \frac{\partial U}{\partial u} } $$ D $$ {equation}{ D = \begin{bmatrix} D^{IfW} & 0 & 0 & 0 & 0 \\ 0 & D^{SrvD} & 0 & 0 & 0 \\ 0 & 0 & D^{ED} & 0 & 0 \\ 0 & 0 & 0 & D^{BD} & 0\\ 0 & 0 & 0 & 0 & D^{AD}\end{bmatrix} \, \begin{bmatrix} G \end{bmatrix}^{-1} \, \frac{\partial U}{\partial u} } $$