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ABSTRACT

The aeroelastic code BHawC for calculation of the dynamic response of a wind turbine uses a non-linear finite element
formulation. Most wind turbine stability tools for calculation of the aeroelastic modes are, however, based on separate
linearized models. This paper presents an approach to modal analysis where the linear structural model is extracted directly
from BHawC using the tangent system matrices when the turbine is in a steady state. A purely structural modal analysis
of the periodic system for an isotropic rotor operating at a stationary steady state was performed by eigenvalue analysis
after describing the rotor degrees of freedom in the inertial frame with the Coleman transformation. For general anisotropic
systems, implicit Floquet analysis, which is less computationally intensive than classical Floquet analysis, was used to
extract the least damped modes. Both methods were applied to a model of a three-bladed 2.3 MW Siemens wind turbine
model. Frequencies matched individually and with a modal identification on time simulations with the non-linear model.
The implicit Floquet analysis performed for an anisotropic system in a periodic steady state showed that the response of
a single mode contains multiple harmonic components differing in frequency by the rotor speed. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Today, advanced non-linear finite element codes1–3 are routinely used for load calculations on wind turbines. Most wind
turbine stability tools for calculation of the aeroelastic modes are, however, based on separate linearized models. Stability
analysis can be divided into three steps: first, a calculation of the steady state; then, a linearization of the equations of
motion about the steady state and last, a modal analysis to extract modal frequencies, damping and mode shapes. This
paper presents an approach to structural modal analysis applicable to any periodic steady state where the linearization is
obtained directly from the non-linear wind turbine aeroelastic code BHawC.3

The equations of motion for a wind turbine operating at a constant mean rotor speed contain periodic coefficients,
preventing direct eigenvalue analysis of the system. Most recent wind turbine stability tools4–7 incorporate the Coleman
transformation, also known as the multiblade coordinate transformation, which describes the rotor degrees of freedom
in the inertial frame. This transformation eliminates the periodic coefficients if the system is isotropic, i.e. the rotor
consists of identical symmetrically mounted blades, and the environment conditions are symmetric. Floquet analysis
is, however, applicable to anisotropic systems and any periodic steady state. It requires integration of the equa-
tions of motion over a period of rotor rotation, as many times as there are state variables in the system. Because
of the computational burden of this approach, it has only been applied to reduce or simplify wind turbine models
with a limited number of degrees of freedom.8–10 One way to reduce the computation time is to use the Fast
Floquet Theory11 where only one third of the integrations are necessary for a three-bladed isotropic rotor. Another
way is to use implicit Floquet analysis12 where the least damped modes can be extracted after a limited number
of integrations.

Copyright © 2011 John Wiley & Sons, Ltd. 275
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Stol et al.13 compare the Floquet analysis with the Coleman transformation approach applied to a periodic steady state,
where the remaining periodic coefficients are eliminated by averaging and find small differences in modal frequencies and
damping, concluding that it is not necessary to use Floquet analysis.

Another approach to modal analysis is system identification,14–16 which operates on the response from numerical simu-
lations or measurements, and no knowledge of the system equations is needed to extract the modal properties. The accuracy
of the methods is, however, limited and depends on the chosen excitation.

In this paper, tangent matrices for mass, damping and stiffness are extracted from the aeroelastic code BHawC. If the
system is isotropic and the steady state is stationary, the Coleman transformation is applied before extracting the modal
parameters by eigenvalue analysis. For an anisotropic system, implicit Floquet analysis is used for the modal analysis.
When the system is isotropic, the response of a single mode contains a single harmonic component for tower degrees of
freedom and up to three components for the blades. The response of a single mode in the anisotropic system on both blades
and tower contains multiple harmonic components differing in frequency by the rotor speed.

Section 2 of this paper describes the BHawC model, and Section 3 explains the methods for modal analysis, the
Coleman transformation approach, the implicit Floquet analysis and also the partial Floquet analysis, a system identifi-
cation technique. In Section 4, the methods are applied to a model of a wind turbine. Section 5 discusses the approaches,
and Section 6 concludes the paper.

2. STRUCTURAL MODEL

The BHawC wind turbine aeroelastic code3 is based on a structural finite element model sketched in Figure 1, where the
main structural parts, tower, nacelle, shaft, hub and blades, are modelled as two-node 12-degrees of freedom Timoshenko
beam elements. The code uses a corotational formulation, where each element has its own coordinate system that rotates
with the element. The elastic deformation is described in the element frame, whereas the movement of the element coor-
dinate system accounts for rigid body motion. In this way, a geometrically non-linear model is obtained using linear finite
elements.

The configuration of the system, defined by nodal positions p and orientations q, nodal velocities u̇ (of both positions
and orientations) and nodal accelerations ü, must satisfy the equilibrium equation given in global coordinates as

f iner. p; q; Pu; Ru/C f damp.q; Pu/C f int. p; q/D f ext (1)

where f iner, f damp, f int and f ext are the inertial, damping, internal and external force vectors, respectively, and P./ D d=dt
denotes a time derivative. The inertial forces depend on the acceleration of the masses, the damping forces are given by vis-
cous damping, the internal forces are due to elastic forces and the external forces contain the aerodynamic forces.17 To find

Figure 1. Sketch of the BHawC model substructures.
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this equilibrium configuration, increments of the positions and the orientations ıu, the velocities ıu̇ and the accelerations
ıü are obtained using Newton–Raphson iteration with the tangent relation obtained from the variation of Equation (1) as

M.q/ı RuCC.q; Pu/ı PuCK. p; q; Pu; Ru/ıuD r (2)

where M, C and K are the tangent mass, damping/gyroscopic and stiffness matrices, respectively, and r D f ext C f iner C

f damp�f int is the residual. The stiffness matrix is composed of constitutive, geometric and inertial stiffness. The orientation

q of the nodes is described by quaternions, also known as the Euler parameters,18 a general four-parameter representation
equivalent to a triad, which for node number i is updated as

qi WD quat.ıui ;rot/ � qi (3)

where ıui ;rot contains three rotations that are assumed infinitesimal and thus commute and where this rotation pseudo-
vector is transformed by the function termed quat into a quaternion, which is used to update the nodal quaternion qi
employing the special quaternion product denoted by �, which maintains the unity of the quaternion. The nodal positions
p, the nodal velocities Pu and the accelerations Ru are updated by regular addition of the positional part of ıu, ı Pu and ı Ru,
respectively. All components in p, q and ıu are absolute and described in a global frame.

The present work considers small perturbations in position and orientation y, velocity Py and acceleration Ry to a steady
state with constant mean rotor speed˝ defined by . pss; qss; Puss; Russ/, the steady state positions, orientations, velocities and
accelerations, respectively, all periodic with the rotor period T D 2�=˝. The linearized equations of motion are obtained
from equation (2) at r� 0 as

M.qss/RyCC.qss; Puss/PyCK. pss; qss; Puss; Russ/yD 0 (4)

where the matrices M, C and K are the T -periodic tangent system matrices that are employed in the modal analysis
described in the next section.

3. METHODS

In this section, the four methods for modal analysis of structures with rotors are presented.

3.1. Coleman approach

The Coleman transformation requires identical degrees of freedom on each blade, and therefore, the equations of motion
(equation (4)) in global coordinates were first transformed into substructure coordinates yT. The transformation is

yD T yT

TD diag.INs ;Tr;Tb1;Tb2;Tb3/
(5)

where T is a block diagonal time-variant matrix composed of the identity matrix INs sized by the number of degrees of
freedom of the tower, the nacelle and the drivetrain, Tr transforms the degrees of freedom on the shaft and the hub into a
hub centre frame and Tbj transforms the degrees of freedom on blade number j D 1; 2; 3 into a local frame for blade j .
The triads were obtained in the periodic steady state, and thus, T is T -periodic.

The time-variant transformation into inertial frame coordinates z is

yT D B z

BD diag.INs ;Br;Bb/
(6)

where Br is a simple rotational transformation of the shaft and the hub and Bb is the Coleman transformation introducing
multiblade coordinates for a three-bladed rotor11,19 as

Bb D

2
4INb INb cos 1 INb sin 1

INb INb cos 2 INb sin 2
INb INb cos 3 INb sin 3

3
5 (7)

where  j D˝t C 2�.j � 1/=3 is the mean azimuth angle to blade number j and Nb is the number of degrees of freedom
on each blade. The inertial frame coordinate vector

zD f yT
s zT

r aT
0 aT

1 bT
1 g

T (8)
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contains the untransformed coordinates for tower, nacelle and drivetrain ys, the coordinates for shaft and hub zr measured
in a non-rotating frame aligned with the hub and the multiblade symmetric coordinates a0, cosine coordinates a1 and sine
coordinates b1. The details on how multiblade coordinates describe the motion of a wind turbine rotor in the inertial frame
are discussed by Hansen.20,21

The Coleman transformed equations were obtained by first inserting equation (5) into equation (4), then converting it
to first order form and lastly introducing the inertial frame transformation in equation (6) as yT2 D diag.B;B/z2 where
yT2 D f y

T PyTgT and z2 D fzT QzTgT are the state vectors in substructure and inertial frames, respectively, with Qz D PzC N̈ z
and the constant matrix N̈ D B�1B. The result is

Pz2 D ABz2

AB D

�
� N̈ I

�M�1B KB �M�1B CB � N̈

�
(9)

where AB is the Coleman transformed system matrix and

MB D B�1TTM T B

CB D B�1TT.C TC 2M PT/B

KB D B�1TT.K TCC PTCM RT/B

(10)

are the Coleman transformed mass, damping/gyroscopic and stiffness matrices, respectively. If the system is isotropic, then
AB is time-invariant, and a transient solution of equation (9) is

z2 D eABt z2.0/D Veƒtq.0/ (11)

whereƒ is a diagonal matrix containing the eigenvalues of AB, V contains the corresponding eigenvectors as columns and
q.0/D V�1z2.0/ are the initial conditions in modal coordinates. It is assumed that all eigenvectors are linearly independent.

The blade motion given in the inertial frame in equation (11) can be transformed back into the rotating frame using
equation (6) as21

y T;ik D e�k t
�
A0;ik cos.!k tC'0;ik/CABW;ik cos

�
.!kC˝/tC'j C'BW;ik

�
CAFW;ik cos

�
.!k�˝/t�'j C'FW;ik

��
(12)

where 'j D 2�.j � 1/=3 and �k and !k are the modal damping and frequency of mode number k, respectively, given by
the eigenvalue �k D �k C i!k with i D

p
�1. The amplitudes for degree of freedom number i were determined from the

components of the eigenvector vk given in multiblade coordinates of equation (8) as A0;ik D ja0;ik j and

ABW;ik D
1
2

�
.Re .a1;ik/C Im .b1;ik//

2C .Re .b1;ik/� Im .a1;ik//
2
�1=2 (13)

AFW;ik D
1
2

�
.Re .a1;ik/� Im .b1;ik//

2C .Re .b1;ik/C Im .a1;ik//
2
�1=2 (14)

where the subscripts 0, BW and FW denote symmetric, backward whirling and forward whirling motion, respectively.

3.2. Classical Floquet analysis

Floquet analysis enables the solution of the periodic equations of motion directly without an explicit transformation.
Equation (4) is written in first order form

Py2 D Ay2

AD
�

0 I
�M�1K �M�1C

�
(15)

where y2 D f y
T PyTgT is the state vector and A is the T -periodic system matrix.

Floquet theory22 states that the solution to equation (15) is of the form

y2 D UeƒtU�1.0/y2.0/ (16)

where U is a T -periodic matrix and ƒ is a diagonal matrix. One way to construct this solution is to form a fundamental
solution to equation (15) as

®D
�
'1 '2 : : : 'N

	
(17)
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over one period, t 2 Œ0IT �, where N is the number of state variables, such that P® D A®. The monodromy matrix
defined as

CD ®�1.0/®.T / (18)

contains all modal properties, which can be extracted from the eigenvalue decomposition

CD VJV�1 (19)

where V contains the column eigenvectors vk of C, which are all assumed to be linearly independent and J is a diagonal
matrix containing the eigenvalues �k of C, called the characteristic multipliers. The characteristic exponents �k D �kCi!k
contain the frequency !k and damping �k and are related to the characteristic multipliers as �k D exp.�kT /. Because the
complex logarithm is not unique, the frequency is not determined uniquely, and the principal frequency !p;k and the
damping �k are defined from the characteristic multipliers as

�k D
1

T
ln.j�k j/

!p;k D
1

T
arg.�k/

(20)

where arg.�k/ 2 � � � I�� is implied, resulting in !p;k 2 � �˝=2I˝=2�. Any integer multiple of the rotor speed can be

added to the principal frequency to obtain a more physically meaningful frequency23,24

!k D !p;k C jk˝ (21)

a choice that also affects the periodic modal matrix U in equation (16). This matrix U contains the periodic mode shapes
uk and is given as24

uk D ®vke��k t (22)

where the real part of �k is given by equation (20) and the imaginary part of �k is defined by equation (21) by selecting jk
such that uk is as constant as possible for degrees of freedom measured in the inertial frame.

Introducing the Fourier transform of the periodic mode shape

uk D
1X

jD�1

Ujkeij˝t (23)

the transient solution in equation (16) can be written as a sum of harmonic components

y2 D
NX
kD1

1X
jD�1

Ujke.�kCi.!kCj˝//tqk.0/ (24)

where q.0/D U�1.0/y2.0/. Note that equation (12) is a special case of this expression for j D�1; 0; 1.

3.3. Implicit Floquet analysis

The implicit Floquet method is here described based on the detailed description in Bauchau and Nikishkov,12 which focuses
on computation of the characteristic multipliers from the state transition matrix ˆ.T ; 0/. It can be defined in classical
Floquet theory as

®.T /Dˆ.T ; 0/®.0/ (25)

Using equation (18), the relationship between the state transition and monodromy matrices is derived as

ˆ.T ; 0/D ®.0/C®�1.0/ (26)

showing that ˆ.T ; 0/ and C have identical eigenvalues (characteristic multipliers), and their eigenvectors are related as
vk D ®

�1.0/wk , where wk represents the eigenvectors of ˆ.T ; 0/.
The key feature of the state transition matrix is that it defines the solution y2.T /D ˆ.T ; 0/y2.0/ for a time integration

of the system equations (equation (15)) over one period T with initial conditions y2.0/. Hence, without knowing the state
transition matrix, it is possible to obtain the product of it with an arbitrary vector (the initial state vector) by integration of
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equation (15) over one period. The Arnoldi algorithm25 is a method to approximate the eigenvalues and the eigenvectors
of a matrix, say ˆ.T ; 0/, using only the matrix multiplication with ˆ.T ; 0/ to construct an m-sized subspace

PD
�
p1 p2 : : : pm

	
(27)

that satisfies the orthonormality condition

PTPD I (28)

and where the eigenvalues Q�k of the subspace projected state transition matrix

HD PTˆ.T ; 0/P (29)

converge towards the eigenvalues �k of ˆ.T ; 0/ with the largest modulus as the size m of the subspace increases. The
subspace eigenvectors Qwk of H projected back to the full state space converge towards the eigenvectors wk of ˆ.T ; 0/, i.e.
wk � P Qwk . The Arnoldi algorithm proceeds as follows:

Choose an arbitrary vector p1 with jp1j D 1
for nD 1; 2; : : : ; m

a WDˆ.T ; 0/ pn
(integration of equation (15) over t 2 Œ0IT �)

b WD a
for j D 1; 2; : : : ; n
hj ;n WD pT

j a
b WD b� hj ;npj

end
if n < m
hnC1;n WD jbj
pnC1 WD b=hnC1;n

end
pnC1 WD pnC1 �

Pn
jD1. pT

j pnC1/pj
end

The last step in the n-loop is an explicit re-orthogonalization to eliminate an otherwise progressing skewness of the
subspace basis and thereby ensure convergence of the algorithm.12 Note that H with components hj ;n, n D 1; : : : ; m,
j D 1; : : : ; n, is an upper Hessenberg matrix for which there exist efficient eigenvalue solvers. In practice, the Arnoldi algo-
rithm is continued until a desired number of eigenvalues Q�k with the largest modulus and their corresponding eigenvectors
P Qwk of the state transition matrix ˆ.T ; 0/ are converged to within a specific tolerance.

To construct the approximations to the periodic mode shapes (equation (22)), the m�m fundamental solution matrix Q®
to the subspace projected system equations is written as

Q®D PT �'1 '2 : : : 'm
	

(30)

where ®j is the solution of the full system (equation (15)) integrated over t 2 Œ0IT � for each initial condition pj , whereby

Q®.0/ D I because of equation (28). The eigenvectors Qvk of the subspace projected monodromy matrix QC D Q®�1.0/ Q®.T /
are therefore identical to the eigenvectors Qwk of the subspace projected state transition matrix (equation (29)). The periodic
mode shapes in the subspace are therefore similar to equation (22) given by

Quk D Q® Qwke�
Q�k t (31)

which by projection back into the full state space using uk D P Quk yields the approximated periodic mode shapes of the
full system

uk �
�
'1 '2 : : : 'm

	
Qwke�

Q�k t (32)

where Qwk and Q�k are the eigenvectors and characteristic exponents of H, respectively.
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3.4. Partial Floquet analysis

Partial Floquet analysis23 is a system identification technique that operates on signals with the free response of the system,
thus no knowledge of the system equations is necessary. The signals can be obtained by numerical simulation or from
measurements.

Singular value decomposition is used to eliminate noise and extract the frequency and the damping of the most domi-
nant modes from a matrix similar to the monodromy matrix assembled from a limited number of signals spanning several
periods. The entries in this matrix can only be sampled once per period for periodic systems, which limits the accuracy
because the signal damps away, decreasing the signal to noise ratio. Time-invariant systems can, however, be sampled once
per time step. Therefore, partial Floquet analysis is combined with Coleman transformation of the signals,26 such that the
response resembles that of a time-invariant system. This approach increases the accuracy and the number of modes that can
be extracted from a given signal. However, a careful choice of forcing that excites all modes of interest to a sufficient level
is necessary to extract these modes accurately.

4. NUMERICAL RESULTS

The modal analysis methods described in the previous sections are applied to a BHawC model of a 2.3 MW wind turbine
with three 45 m blades, hub height 80 m and nominal speed 16 rpm. The model has 381 structural degrees of freedom.

4.1. Isotropic system

The turbine is mounted with identical blades and runs in a vacuum neglecting gravity forces, so the system is isotropic.
The deflection of the blades because of centrifugal forces is therefore constant in the blade frame. The constant steady state
is found at a given azimuth position by solving equation (1) statically, including centrifugal forces from the constant rotor
speed. In this way, a steady state with no transients is obtained, and the system matrices become exactly periodic.

4.1.1. Coleman transformation approach
Because the system is isotropic, a modal analysis can be performed on the Coleman transformed system matrix. The

system matrices M, C and K from equation (4) were extracted at a single azimuth angle and combined into the Coleman
transformed system matrix of equation (9) from which the modal frequencies, damping and eigenvectors given in the
inertial frame were extracted. The time-invariance of the system matrix was checked by calculation for several azimuth
angles.

Figure 2(a) shows the lowest modal frequencies as a function of rotor speed where the frequency is normalized with the
lowest modal frequency at 0 rpm. The modes were named according to their dominant motion determined from the eigen-
vector and the whirling amplitudes calculated from equations (13) and (14). The mode labels in Figure 2 first contain the
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Figure 2. Frequency (a) and damping (b) as a function of rotor speed. Standstill eigenvalue analysis (squares), Coleman approach
(lines), partial Floquet analysis (circles). Legend entries are ordered after the sequence at 0 rpm.
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index of that particular mode, then ‘T’ for tower, ‘F’ for blade flapwise, ‘E’ for blade edgewise or ‘DRV’ for drivetrain and
‘LO’ for longitudinal, ‘LA’ for lateral, ‘BW’ for backward whirling, ‘FW’ for forward whirling or ‘S’ for symmetric. For
comparison, the frequencies extracted from time simulations with the non-linear BHawC model using the partial Floquet
method26 are also shown. The agreement is within 0.4% except for modes coupling to the drivetrain, i.e. the drivetrain,
edgewise and lateral tower modes, where the discrepancy is up to 2% at the highest rotor speed, which is caused by a
difficulty with keeping the rotor speed exactly constant in the non-linear simulation because of the energy dissipated in the
oscillation.

Figure 2(b) shows the damping as a function of rotor speed where the logarithmic decrement is normalized with the
value for the first tower longitudinal mode at 0 rpm. The agreement in damping between the results from the linear model
and the partial Floquet analysis applied to the non-linear model is within 6%, except for a discrepancy of up to 20% for
modes coupling to the drivetrain. It must be noted that the purely structural damping of the modes is small, and thus, a
small absolute difference leads to a high relative difference. The results also show that damping is more difficult to estimate
than frequency using system identification.

4.1.2. Implicit Floquet analysis
For the implicit Floquet analysis, the system matrices in global coordinates in equation (4) were extracted from the

steady state at 16 azimuth angles equally spaced over a rotor rotation. For interpolation to other azimuth angles, a least
squares fit of a truncated Fourier series with eight terms was used. The fundamental solutions in equation (30) were inte-
grated with a Newmark-type solver from initial conditions determined by the Arnoldi algorithm. The principal frequencies
and damping were found from equation (20) where �k are taken as the eigenvalues of the approximated state transition
matrix. Figure 3 shows the real part �k of the characteristic exponents calculated at each Arnoldi step for a steady state at
12 rpm using a time step of�t D T =1024D 0:0049 s. The scattering of the highest damping values shows that the highest
damped modes are spurious and do not represent actual eigenmodes of the system because of the approximate nature of
the implicit Floquet analysis. To exclude these modes from the results, only modes satisfying a strict convergence criterion,
where the absolute change of both damping �k and principal frequency !p;k is less than 10�10 between three successive
steps, were retained. After 50 Arnoldi steps, 19 modes were converged. The modal frequencies were determined using
equation (21) by adding jk˝ to the principal frequency, where jk˝ is the single non-vanishing harmonic component in
a Fourier transform of the periodic mode shape for degrees of freedom on the tower calculated from equation (32) using
the principal frequency !p;k . The periodic mode shape components for degrees of freedom on the tower and the nacelle
calculated with the modal frequency !k are thus constant. A detailed description of the process of frequency identification
is given by Skjoldan and Hansen.24

Figure 4 shows the difference in frequency calculated with the Coleman transformation approach and the implicit Floquet
analysis with different integration time steps. The implicit Floquet results converge towards the Coleman transformation
results for decreasing time steps, the error being roughly proportional to �t2. Predominantly, the error increases with the
modal frequency. A similar trend is seen for the damping.
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Figure 3. Magnitude of implicit Floquet characteristic multipliers as function of steps in Arnoldi algorithm. � non-converged
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Figure 4. Relative difference in implicit Floquet frequency compared with Coleman approach frequency for selected modes as a
function of implicit Floquet integration time step.

Figure 5 shows the dominant harmonic components Ujk in equation (24) for the first flapwise forward whirling mode
shape. The blade mode shape was transformed into substructure coordinates using equation (5) and contains the rigid body
motion of the hub. The zoom factor in the lower right corner indicates how much each component has been enlarged. The
ground fixed components in the mode shape are constant, consistent with the solution from the Coleman transformation
approach. The mode shape for the blade has harmonic components at j D�1; 0; 1, corresponding to the forward, symmet-
ric and backward whirling components, respectively, in the Coleman transformation approach. Thus, in a pure excitation
of this mode at 12 rpm, according to equation (24), the tower vibrates with the normalized modal frequency !0 D 2:8, and
the blades dominantly vibrate with !0 �˝ 0 D 2:2 (FW) and to a lesser extent with !0 C˝ 0 D 3:3 (BW) and !0 D 2:8 (S)
(see Figure 2(a)).

4.2. Anisotropic system

To investigate the effects of an anisotropic rotor on the modal properties, a mass of 485 kg because of ice coverage defined
by DIN-1055-527 is added along the length of blade 1. Figure 6 shows the resulting steady state when running the turbine
at 16 rpm with a 10 m s�1 uniform wind field perpendicular to the rotor plane. Note that the wind is used only to drive
the rotor, and the modal analysis is still purely structural. The steady state varies periodically both for the tower and the
blades, and the blade motion for blade 1 is different from that of blades 2 and 3. The steady state was determined from a
time simulation until transients have damped away, and system matrices were then extracted at each time step of the steady
state simulation and interpolated onto integration time points using a truncated Fourier series with eight terms. The implicit
Floquet analysis was carried out with an integration time step of T =1024 D 0:0037 s as described for the isotropic case.
The frequencies were up to 4% lower than in the isotropic case because of the added mass on one blade. The change in
damping was slightly more pronounced, up to a 17% decrease for the second flapwise forward whirling mode.

Figure 7 shows the harmonic components Ujk with frequencies j˝ of the first flapwise forward whirling mode shape
for the tower and blade 1. The tower mode shape now has several harmonic components compared with only one in the
isotropic case. The component at j D 0 is similar in shape to the corresponding one for the isotropic case, but now the
dominant component is at j D�2, and there is also a significant component at j D�1.

For the mode shape of blade 1, the harmonic components at j D �1; 0; 1 are similar to the corresponding ones in the
isotropic case. However, now the amplitude of the dominant flapwise component at j D �1 for blade 1 is three times
as high as for blades 2 and 3, and blades 2 and 3 move close to in-phase and in counter-phase with blade 1, as shown
in Figure 8. Thus, in a pure excitation of this mode, the tower now vibrates dominantly with the normalized frequency
!0�2˝ 0 D 1:6 in addition to the component at !0 D 2:8. Blade 1 vibrates dominantly at !0�˝ 0 D 2:2 as for the isotropic
case and notably at !0� 2˝ 0 D 1:6, !0� 3˝ 0 D 1:0 and !0C 3˝ 0 D 4:5 in addition to !0C˝ 0 D 3:3 and !0 D 2:8 as for
the isotropic case.

The identification of the first flapwise forward whirling modal frequency was not done by making the tower mode shape
as constant as possible, as in the isotropic case. Rather, the modal frequency was chosen to be close to the one for the
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Figure 5. Amplitudes of harmonic components of the first flapwise forward whirling periodic mode shape for the isotropic rotor.
Blades (top) flapwise and edgewise, and tower (bottom) longitudinal and lateral.

similar mode in the isotropic case. A more suitable criterion to give this result is to require that the mode shape with the
rotor degrees of freedom in multiblade coordinates be as constant as possible.28

The rotor with one ice-covered blade is an example of how an isotropic rotor can change the modal dynamics of the
system. Other influences that could cause a similar behaviour is rotor stiffness unbalance, gravity loads, yaw error and wind
shear. A two-bladed rotor is inherently anisotropic and requires a general approach like Floquet analysis.

5. DISCUSSION

This paper has presented several different methods for structural modal analysis of wind turbines. The Coleman
approach is simple and fast, and its basis in a physical coordinate transformation means that the results are easily inter-
preted. Its speed makes it useful for doing parameter studies early in the design process. But it is only applicable to
isotropic systems. Floquet analysis can be applied to examine special cases where anisotropic effects are suspected
to change the modal parameters. The implicit Floquet analysis is an efficient implementation of Floquet analysis for
systems with many degrees of freedom. In the example given, the most important modes are extracted after 50 inte-
grations of the system over a rotor period, whereas 762 integrations would be needed for a classical Floquet anal-
ysis. Finally, the partial Floquet analysis, or another means of system identification, is useful to check the validity
of the linearization.
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Figure 6. Steady state over one rotor period for the anisotropic rotor at 16 rpm. Blade tips flapwise (top) 1, 2 and 3 and
edgewise (middle) 1, 2 and 3, and blade tips, tower top (bottom) longitudinal and lateral.
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Figure 8. Amplitudes and phases of the harmonic component at j D �1 of the first flapwise forward whirling periodic mode shape
for the isotropic rotor (a) and the anisotropic rotor (b). Blades 1, 2 and 3.

The work presented in this paper is part of an ongoing effort to obtain a full aeroelastic linear model of the non-linear
code BHawC. The approach presented in this paper is readily extendable to a linear aeroelastic model. The linear model
will aid in the understanding of the loads obtained from a non-linear response, of which many features can be explained
from the linear modes.

6. CONCLUSION

Tangent matrices for structural modal analysis are extracted directly from the non-linear model of a wind turbine in a
steady state. When the system is isotropic, the preferred approach is to use the Coleman transformation for describing the
equations of motion in the inertial frame allowing direct eigenvalue analysis to extract the modal frequencies, damping
and mode shapes. When the system is anisotropic, implicit Floquet analysis, reduces the computational burden associ-
ated with classical Floquet analysis, is applied to yield the lowest damped eigenmodes. The linearized model is validated
from numerical results for a three-bladed turbine, showing a reasonable agreement for the frequencies and the damping
between the Coleman approach and the partial Floquet analysis on the response of the non-linear model for modes not
related to the drivetrain. The implicit Floquet results converge to the results from the Coleman approach with the devi-
ation in frequency and damping roughly proportional to the square of the integration time step and increasing with the
modal frequency. This finding shows the importance of precise time integration in implicit Floquet analysis. An analysis
applied to an anisotropic system with one blade covered with ice shows a decrease in frequency up to 3% and changes
in damping within 17%. It also reveals multiple harmonic components in the response of a single mode that will show
up in measurements.
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