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Effect of steady defl ections on the aeroelastic 
stability of a turbine blade
B. S. Kallesøe

Wind Energy Department, Risø-DTU, Technical University of Denmark, DK-4000 Roskilde, Denmark

ABSTRACT

This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. 
Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which 
affects the dynamic behaviour of the blade. The fl apwise blade defl ection causes the edgewise blade motion to couple 
to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the 
worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & 
Sons, Ltd.
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1. INTRODUCTION

A second-order non-linear beam model is used for aeroelastic stability analysis of a wind turbine blade. The importance 
of including the effects of non-linear geometric couplings in the stability analysis is considered and the aeroelastic 
mechanisms driving the aeroelastic response are described in detail.

The effect of non-linear geometric couplings in a curved rotating blade on the stability has been investigated in the 
helicopter society for decades1–4 and state-of-the-art comprehensive helicopter stability codes of today, like Hodges 
et al.,5 include both material and geometric non-linearities. However, most aeroelastic stability tools for wind turbines 
are based on linear beam theory and do not include the non-linear geometric coupling caused by, for instance, steady-state 
blade defl ection, pre-bend or swept blade.

In the late 1970s, the oil crisis stimulated many MW size turbine projects. In a review of research on aeroelastic stabil-
ity Friedmann6 concluded that ‘Reliable aeroelastic stability analyses should be based on non-linear formulations which 
account for both moderately large deformations (i.e. fi nite slopes) and non-linear aerodynamic effects, such as stall’. All 
these MW size turbine projects however ended without any commercial success. Later, the wind turbine followed a 
development starting at small 30 kW units gradually growing to today’s MW size commercial turbine. During this period, 
wind turbines have been relatively stiff constructions with only limited geometric couplings. Chaviaropoulos7 examines 
the infl uence of non-linear effects on the aeroelastic stability of a 19 m blade. It was found that the most important effect 
to include is the unsteady aerodynamics and that the structural defl ection is unimportant. Modern wind turbine blades are 
longer (up to 60 m) and more slender, thus increasing the blade defl ection under normal operation and thereby reintroduc-
ing stability issues concerning geometric couplings. Steady-state blade defl ection will result in geometrically non-linear 
couplings between the different blade modes. For instance, a large fl apwise blade defl ection will enhance the coupling 
between edgewise and torsional blade motion and consequently affect the aerodynamics through the angle of attack. 
Therefore, it can be important to include the non-linear geometric coupling between for example edgewise and torsional 
motion of a fl apwise defl ected blade.
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Research in utilizing sweep and pre-bend blades is ongoing. The European Union founded project UPWIND8–10 deals, 
among other issues, with non-linear modelling of blades and the effects of including such non-linearities. Some state-
of-the-art stability codes, such as TURBU,11 include the effect of geometric non-linearities. Riziotis et al.12 include these 
effects in a stability analysis of a turbine in closed-loop operation. There is also focus on utilizing the geometric couplings 
to reduce fatigue and/or ultimate loads, for instance Ashwill et al.,13 where a blade is swept to introduce a fl apwise—torsion 
coupling.

Wind turbine stability can be analysed by a variety of different model types. The most detailed description of the 
turbine response is given by numerical non-linear time simulation tools.14–18 These tools show instabilities as well as 
non-linear effects limiting the response to for instance limit cycle oscillations. They can also be used to analyse the effect 
of, for instance, turbulence and wind shear’s effects on turbine stability. The referenced tools use different models and 
different model complexity. For instance, FAST18 is a modal-based code which on the one hand does not include a tor-
sional degree of freedom of the blade and non-linear geometric couplings, but on the other hand is relatively computation-
ally inexpensive. A code like HAWC214,15 has a more complex model with a structural model based on a multi-body 
formulation where each body is a Timoshenko beam element including torsion. The drawback of these time-simulation 
tools is that they are computationally intensive and they can make it diffi cult to extract the important aeroelastic mecha-
nisms from the large volume of results. Another approach is to use eigenvalue analysis of a linear (or linearized) model 
of the turbine.11,12,19–21 The HAWCStab code19,21 offers a platform for linearization of the undefl ected turbine structure, 
while the code TURBU11 offers a platform for aeroservoelastic stability analysis based on linearization around the 
defl ected/curved blade state. The structural model in TURBU is based on a simple co-rotational beam element approach. 
Each beam element consists of a rigid body with springs and dampers in its entry point; average strains in the springs 
and torque-free rotation offsets between the beam elements embody the average defl ected/curved blade state. Riziotis 
et al.12 offers a multi-body platform which fi nds a reference state by time integration and linearizes the aeroservoelastic 
equations around this reference state to provide a stability tool including closed loop control. This type of tool can give 
both structural eigenfrequencies and eigenmodes that describe the basic structural dynamics of the turbine and aeroelas-
tic frequencies, damping and modes of the aeroelastic motion. The aeroelastic damping reveals any stability problems for 
the turbine. However, since it is linear tools, they do not give any information concerning non-linear mechanism that 
limit the amplitude of a linear negative damped mode. The knowledge of structural and aeroelastic frequencies and mode 
shapes is very useful in the analysis and in the interpretation of results from aeroelastic time simulations. However, the 
modes of the aeroelastic response of the whole turbine can still be complex to analyse. To reduce the complexity, and 
thus make the results more transparent, a blade-only analysis is used.22 This allows a clear physical interpretation and 
insight into the mechanisms that govern the dynamic response of the blade and many basic characteristic of turbine 
stability can be extract from a blade-only analysis.

This paper uses a non-linear blade model23 which includes the effect of large blade defl ections, pitch action and rotor 
speed variations. This blade model is strongly inspired by the work of Hodges and Dowell1 First, the structural model is 
combined with a steady-state aerodynamic model based on beam element momentum (BEM) theory and discritized by a 
fi nite difference scheme. The resulting algebraic non-linear aeroelastic model is employed to compute steady-state blade 
defl ections and induced velocities of a blade from the 5 MW Reference Wind Turbine (RWT) by National Renewable 
Energy Laboratory (NREL)24 at normal power production conditions. The steady-state defl ections are compared with the 
results from HAWC2 simulations, showing good agreement. Throughout this paper, the 5 MW RWT by NREL is used as 
an example blade. The reference turbine is an artifi cial turbine based on state-of-the-art turbines on the market. The blade 
is strongly inspired by the 61.5 m LM glasfi ber blade (LM Wind Power, Kolding, Denmark). This blade belongs to the 
mid-region of fl exible designs of state-of-the-art blades, and hence, the geometric couplings can be more pronounced for 
other blade designs. The big advantage of this blade however is that all data is publicly available and it has been widely 
used in other research work and therefore a good reference with realistic fl exibility compared with most state-of-the-art 
blades. A non-linear structural blade model23 and an unsteady aerodynamic model25 are then linearized about the steady-
state defl ected blade, preserving the main effects of the geometric non-linearities. The linear model is discritized by the 
fi nite difference scheme which along with boundary conditions form a differential eigenvalue problem. The solution to 
this eigenvalue problem gives the aeroelastic frequencies and damping, but also information concerning the fundamental 
aeroelastic behaviour of the blade. The analysis shows that the aeroelastic damping of the edgewise modes changes when 
the steady-state defl ection is included. The aeroelastic motion is analysed in detail for three different operation conditions 
in which there is large differences in the damping when including or excluding steady-state blade defl ections.

2. STRUCTURAL BLADE MODEL

The structural blade model described in Kallesøe23 is based on the work by Hodges and Dowell1 using second-
order Bernoulli–Euler beam theory to describe the blade motion by a non-linear partial integral-differential equation of 
motion
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 Mu F u u u u f f�� � �� � �� �+ ′′ ′( ) = ′ ′( ), , , , , , , , , , , ,β β β φ φ φ aero aeroM u v  (1)

where M̄ is the mass matrix, F̄ is a non-linear function that includes stiffness, damping, gyroscopic terms together with 
centrifugal force-based integral terms. The state vector ū = [u (t, s), v (t, s), θ (t, s)] holds edgewise, fl apwise and torsional 
deformations, respectively.

Flapwise is defi ned as the direction normal to the rotor plane (positive downwind) and edgewise as in the rotor plane 
(positive towards leading edge) for a blade at zero pitch. When the blade pitches, the (u, v) frame follows the blade. 
The position along the blades elastic axis is denoted s, t is the time, β = β(t) is the global pitch of the blade, φ = φ(t) 
is the azimuth angle of the rotor and the right hand side force function f̄ holds the effect of the aerodynamic forces 
faero and aerodynamic moment Maero on the blade. The dots denote time derivatives and the primes denote derivatives 
with respect to the longitudinal coordinate s. As an example, the equation of motion for edgewise blade bending is 
given by
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where the fi rst term is the inertia forces, the second term Fu,1 describes the infl uence of pitch action, which will not be 
used in this work. The third term Fu,2 describes centrifugal and Coriolis forces caused by the rotor speed. The fourth term 
Fu,3 describes the unsteady infl uence form gravity, which is neglected in this work. The fi fth term describes the restoring 
forces
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where the fi rst term is the bending stiffness in the x-direction, the second term is the coupling to the y-direction and the 
last term in equation (3) is the coupling to the twist. The sixth term in equation (2) describes the infl uence of rotor speed 
variations, which is assumed constant in this work, so the term is not active. The right hand side holds the external forces, 
which in this case will be aerodynamic forces. Longitudinal forces on and in the blade, for example the centrifugal force, 
lead to integral terms in the equations of motion. A detailed description of all terms are found in Kallesøe.23

The boundary conditions employed in this paper are for simplifi cation derived for blades without pre-curvature. The 
boundary conditions for the root of the blade are given by the geometric constraints

 u t u t v t v t t0 0 0 0 0 0, , , , ,( ) = ′( ) = ( ) = ′( ) = ( ) =θ  (4)

because the frame used to describe the blade follows the root of the blade.
The boundary conditions for the tip of the blade are23

 

′′( ) = ′′( ) = ′( ) =

′′′( ) = − ( )

u R t v R t R t

u R t
ml

EI I
w gcg

, , ,

, cos

θ

φ φ
ξ η

0

2�(( ) −( ) ( ) + −( ) ( )( )

′′′( ) =

I I

v R t
ml

EI
cg

η ξθ θ θ θ θ θsin sin cos cos

,

� � � �

ξξ η
η ξφ φ θ θ θ θ θ θ

I
w g I I� � � � �2 − ( )( ) −( ) ( ) + −( ) ( )( )cos cos sin sin cos

 (5)

where s = R is the tip of the blade, m = m(s) is the mass per length of the blade, lcg = lcg(s) is the offset of centre of gravity 
from the elastic axis, E = E(s) is the Young’s modulus, I = I (s) and Iη = Iη(s) is the principle moments of inertia, w = 
w(s, t) is the radius to the position s on the elastic axis, g denotes gravity, θ̃ = θ̃ (s) is the angle between chord and prin-
ciple axis of elasticity and θ̃ = θ̃ (s) is the angle between the chord and a line between elastic centre and centre of gravity 
along which lcg is measured. In the case that lcg(R) ≠ 0 the boundary conditions for the tip are functions of the rotor speed 
φ· and the azimuth angle of the rotor φ and therefore time varying. This is because an offset of the centre of gravity from 
the elastic axis at the blade tip leads to a bending moment at the tip caused by gravity and centrifugal force. Most modern 
wind turbine blades are tapered at the tip, whereby l scg s R

( ) ⎯ →⎯⎯→ 0 and EI I
s Rξ η →⎯ →⎯⎯ 0. Hence, it depends on the indi-

vidual blade design if this azimuth angle-dependent boundary conditions can be neglected or not. In this work, the blade 
is constructed such that lcg(R) = 0 and EIξIη|s=R ≠ 0, thus making the boundary conditions azimuth angel independent and 
hence all right hand sides of equation (5) become zero.
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3. STEADY–STATE AEROELASTIC MODEL

To determine the steady-state defl ection for the blade, a non-linear steady-state aeroelastic model is derived. Steady-state 
conditions are defi ned as uniform infl ow, zero gravity, constant rotor speed and pitch angle φ̈ = β

.
 = 0 whereby all time 

derivatives in the structural equations of motion (1) become zero ü = v̈ = θ̈ = u. = v. = θ
.
 = 0. These uniform conditions 

remove the periodicity of the system. The steady-state aerodynamic model is based on blade element momentum (BEM) 
theory including Prendtl’s tip loss correction.26 The BEM theory computes a balance between the forces on the blade and 
the momentum change in the wind. The aerodynamic model is coupled to the structural model through the local wind 
speed and angle of attack and the structural model is coupled to the aerodynamic model through the aerodynamic forces 
acting on the blade.

3.1. Discretization of structural model

The equations of motion (equation (1)) are discretized on an equidistant grid along the elastic axis with step size h and 
N computation points. The spatial derivatives of the partial differential equation of motion (1) are approximated by the 
fi nite difference scheme given in Table I. The derivatives of parameters (such as mass, stiffness, etc.) are approximated 
by the same fi nite difference scheme. The integral terms in the equation of motion are approximated by sums using the 
trapezoid rule.

The boundary conditions for the fi nite difference formulation are derived by inserting the fi nite difference approxima-
tions into the boundary conditions (equations (4) and (5)). It is assumed that the offset of the centre of gravity is zero at 
the blade tip, thus making the boundary condition independent of rotor position.

The discretized version of the partial differential equations of motion implemented on the N discretization points forms 
a set of non-linear algebraic equations:

 F u fst 0 0 0 0, ,�φ β( ) =  (6)

where Fst (u0, φ̇0, β0) holds the terms from the discretization of the structural equation and u0 = [u0,1, v0,1, θ0,1, ... , u0,N, 
v0,N, θ0,N]T holds the steady-state deformation at each discretization point. The fi rst subscript 0 denotes that it is the steady-
state solution (zero order) and the second subscript denotes the discretization point, counting from the root of the blade. 
The right hand side f0 holds the steady-state aerodynamic forces computed at each discretization point using BEM theory.

3.2. Solution scheme

The fi nite difference discretized steady-state equation (equation (6)) has 3N unknown blade defl ections (fl apwise, edge-
wise and torsional defl ections of the N discretization points) and 2N unknown induction factors (longitudinal and tangen-
tial induction factor at the N discretization points). This system of non-linear equations is solved using the following 
iterative scheme: i) Operational conditions are chosen: steady-state wind speed (U0), the corresponding rotor speed 
φ̇0 = φ̇0(U0)) and pitch setting (β0 = β0(U0)); ii) apparent wind speed and angle of attack based on infl ow conditions, 
blade defl ections and induction factors are computed; iii) the aerodynamic forces using BEM theory are computed; iv) 
equation (6) is solved for the deformations u0; v) new induction factors are computed; and vi) if no convergence return 
to step 2. This gives the steady-state deformations u0 = u0 (U0, φ̇0, β0) and the induction factors for the given operational 
condition.

Table I. Second-order fi nite difference formulation for uniform step size.
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3.3. Steady–state blade defl ection at power production conditions

The steady-state model (equation (6)) is used to compute steady-state blade defl ection and induction factors for the NREL 
5 MW RWT24 blade at normal power production operation. The results are compared with results from the non-linear 
aeroelastic time simulation code HAWC2.14,15 The HAWC2 code is a multi-body formulation where each body is a linear 
Timoshenko beam element with a torsional degree of freedom. The geometric non-linearities are captured by the multi-
body formulation, in which the blades for example are modelled by 10 bodies each. If only one body per blade is used 
the code will become as a linear code since the beam model in each body is linear, whereas a convergence study has 
shown that with 10 bodies the geometric non-linearities are captured. In the present model, only one blade is considered 
and modelled as a fl exible beam. For fi rst and second modes of blade motions, as considered in this paper, the rotary and 
shear effects are negligible, so the Bernoulli–Euler beam model in the present mode is comparable with the Timoshenko 
beam model in HAWC2. As for higher order modes of motion and other turbine components, the rotary and shear effects 
are of higher relevance. Figure 1 shows the blade fl apwise and edgewise defl ections and angle of attack at radius 55.5 m 
(88% blade length) at different wind speeds. The angle of attack indicates how well the torsional deformation from the 
two models agrees. It is seen that there is good agreement between the present second-order Bernoulli–Euler blade model 
and HAWC2 for all operational conditions. The kink at rated wind speed (≈11 m s−1) at the blade tip defl ection curve is 
caused by the shift from variable speed, constant pitch to constant speed, variable pitch operation.

4. AEROELASTIC MODES OF BLADE MOTION

In this section, the aeroelastic modes of blade motion are analysed with particular emphasis on effects of steady-state 
fl apwise blade defl ection. The stability of a specifi c blade at normal operation will be analysed in detail and differences 
including and excluding geometric couplings will be discussed. The effect of pre-bend is similar to the effects of steady-
state blade defl ection which is investigated in this analysis. The effect of sweep (edgewise curved blades) is different 
since it couples fl apwise and torsional motion instead of edgewise and torsion as characterized by the fl apwise defl ection.

4.1. Linear aeroelastic model

The non-linear partial differential equations of motion is linearized by inserting u(s, t) = u0(s) + εu1(s, t) into equation 
(1), where u0(s) is the steady-state defl ected blade position including any pre-bend and sweep, u1(s, t) is time-dependent 
variations around this position and ε is a bookkeeping parameter denoting smallness of terms. The external infl uences, 
such as wind speed, pitch setting, etc. are split into a steady part and a time-varying part (denoted by the subscript 0 and 
1, respectively) with the bookkeeping parameter ε. The equation of motion (equation (1)) is Taylor expanded assuming 
ε << 1. Balancing terms of order ε1 give the linear approximation around the defl ected blade position u0. By linearizing 
the equations of motion about the defl ected blade the main effects for the geometric non-linearities are preserved. For 
example, the non-linear stiffness term in the edgewise equation

 EI EI vξ η θ θ−( ) +( ) +( ) ′′( )′′cos sin� �θ θ  (7)
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Figure 1. Edgewise and fl apwise defl ection and angle of attack at 55.5 m radius (88%) vs. wind speed for the present second-order 
Bernoulli–Euler blade model (equation (6)) and the non-linear aeroelastic time simulation code HAWC2.
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becomes

 EI EI vξ η θ θ θ−( ) +( )( ) ′′( )′′ +cos . . .2 0 0 1
�  (8)

when linearized about the defl ected blade (using θ = θ0 + θ1 and v = v0 + v1), whereby the important coupling between 
edgewise and torsional blade motion of a fl apwise defl ected blade is preserved. The subscript 1 denotes the linear varia-
tion around the linearization point u0. Likewise the non-linear term in the torsional equation

 EI EI u vξ η θ θ−( ) +( )( ) ′′ ′′cos 2 �  (9)

becomes

 EI EI u uξ η θ θ−( ) +( )( ) ′′ ′′ +cos . . .2 0 0 1
�  (10)

when linearized about the defl ected blade. The major effect of the important geometric coupling in the stiffness terms 
(equations (7) and (9)) between edgewise and torsional motion of a fl apwise defl ected blade is preserved when linearized 
about the steady-state defl ected blade (equations (8) and (10)).

The linearized equations of motion are combined with a linearized Beddoes–Leishman27 type of unsteady aerodynamic 
model.25 The unsteady aerodynamic model is formulated in a state space formulation with four states; two states are 
second-order approximations to Thoedorsen’s function28 and two states describe the dynamics of the trailing edge separa-
tion point. Periodic effects, such as gravity, can be included in the linear model by considering sin(φ1 + tφ̇0) and 
cos(φ1 + tφ̇0) as independent variables, which subsequently can be obtained by a non-linear transformation, but are 
neglected in this work. The linear partial differential equation and the unsteady aerodynamic model are given by

 � �� � � � � � � � �

� � � ��
Mu Du K u K u Ku Cz F f

z Tz Gu
+ + + + + =

+ + +
ss s s′′( )′′ ′( )′

�� � � � �Hu Ju F f+ = a

 (11)

where u = u(s, t) = [u1(s, t), v1(s, t), θ1(s, t)] are the linear defl ections around the linearization point u0, M̃ = M̃ (u0, φ̇0, β0, 
Un,0), D̃ = D̃ (u0, φ̇0, β0, Un,0), K̃ss = K̃ss (u0, φ̇0, β0), K̃s = K̃s (φ̇0, β0), K̃ = K̃ (u0, φ̇0, β0, U0) are collections of the linear 
coeffi cients, where U0 is the mean wind speed, C̃ = C̃ (u0, φ̇0, β0) is the unsteady aerodynamic’s effect on the structure, 
where U1 is the variation of the wind speed. The coupling to external infl uences such as pitch action and wind speed 
variations is described on the right hand side, where F̃s = F̃s (u0, φ̇0, β0, Un,0) holds the linear gains on the external infl u-
ences given by f̃  = [β(t), β

.
(t), β̈(t), sin(φ1(t) + tφ̇0), cos(φ1(t) + tφ̇0), φ̇1(t), φ̈1(t), U1(s, t), U

.
1(s, t)]T. The four aerodynamic 

states in z are modelled by steady-state wind speed-dependent time constants T̃ and affected by the linear blade defl ec-
tion, speed and acceleration through time-varying angle of attack and local wind speed described by the matrices G̃, H̃ 
and J̃ .25 The linear gains on external infl uences are given by F̃a.

4.2. Aeroelastic modes of motion

The spatial derivatives in the linear equations of aeroelastic motion (equation (11)) are approximated by the fi nite differ-
ence scheme (Table I) with N discretization points. The fi nite difference implementation includes the spatial boundary 
conditions (equations (4) and (5)). The second-order differential equation is then rewritten into fi rst-order form by intro-
ducing the fi rst-order time derivatives as states and combining it with the unsteady aerodynamic model. The spatial 
discretized fi rst-order equation of aeroelastic motion becomes

 �x Ax Bf= +  (12)

where x. includes the linear deformation around the linearization point, speed and the aerodynamic states for each dis-
cretization point, giving 3N + 3N + 4N = 10N degrees of freedom, A is the linear coeffi cients, B is the linear gains on 
the external infl uences and f is the linear variation of the external infl uences. The unforced version of equation (12) forms 
a differential eigenvalue problem.29 The differential eigenvalue problem is casted into an algebraic eigenvalue problem 
by assuming a complex exponential solution. The eigenvalues and corresponding eigenvectors can be grouped into two 
sets: real valued and complex valued eigenvalues. Generally, the real valued eigenvalues are related to the aerodynamic 
states and correspond to the aerodynamic time lags. However, overdamped aeroelastic modes will also have real valued 
eigenvalues. The complex valued eigenvalues are related to the aeroelastic states and give the aeroelastic frequencies and 
damping. The corresponding eigenvectors give the aeroelastic mode shapes of the particular mode.

It is noted that since aerodynamic forces are included, the eigenvalue problem12 is not self-adjoint, and therefore, the 
eigenvectors are not orthogonal.
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4.3. Frequency and damping of a blade at normal power production conditions

The model described above is used to analyse the effect of geometric non-linearities caused by steady-state blade defl ec-
tions under normal operational conditions. The aeroelastic frequencies, damping and mode shapes of the NREL RWT 
blade are computed for different wind speeds in the power production region. The aeroelastic results are computed in two 
versions: one in which the model is linearized about the steady-state defl ected blade, and another in which it is linearized 
about the undefl ected blade, hereby including and excluding the effect of the geometric non-linearities, respectively.

The results from the present model are compared with the results from the non-linear aeroelastic time simulation code 
HAWC2. Since each body in this code is a linear beam model and the non-linearities are only included by the multi-body 
formulation, this model will produce linear results if only one body per blade is used and non-linear results if more bodies 
are used. Hence, a one body per blade model will correspond to the present model without geometric couplings and a 
model with more bodies will correspond to the present model with geometric couplings. Two versions of the HAWC2 
model are used in this work: one with one body in the blade and one with 10 bodies in the blade. In both models, only 
the blade is considered as a fl exible beam. The frequencies and damping from the time simulation code are estimated by 
fi tting the frequency, phase and damping of a number of exponentially decaying sinusoidal functions to the decay of the 
blade motion after an initial excitation at the expected aeroelastic frequency. In the simulations, the pitch angle is set to 
a prescribed value dependent on wind speed only.

Figure 2 shows the aeroelastic frequencies and damping of the two fi rst fl apwise blade-bending modes. In the variable 
speed operation range (5 to 12 m s−1), the aeroelastic frequency increases because of increased centrifugal stiffness. The 
disagreement between the undefl ected and defl ected blade case in aeroelastic frequency of the fi rst fl apwise mode around 
20 m s−1 is caused by the increased steady-state blade twist, which changes the angle of attack and thereby the aerodynamic 
stiffness. The damping of the fi rst fl apwise bending mode is almost the same for the undefl ected and defl ected blade case, 
there are only some minor differences at the same wind speeds that are also caused by the small change in steady angle 
of attack. For the second fl apwise bending mode, neither the frequency nor the damping are changed by the inclusion of 
the geometric non-linearities. The results for the second fl apwise mode from HAWC2 are seen to follow the same trend 
as the results from the present model. Because of the high damping of this mode, the decay of initial excited oscillations 
is very fast and the noise from other lower damped modes becomes relatively large, resulting in a large uncertainty on 
the fi tting of damping to this short decay time. The geometric non-linearities do not have a large effect on the fl apwise 
bending modes since the edgewise steady-state defl ection is relatively small, giving only a weak coupling from fl apwise 
motion to the other directions.

Figure 3(a) shows the aeroelastic frequencies and damping for the fi rst edgewise blade-bending mode. There is an offset 
of the frequency of the two different models (HAWC2 and the present model). The reason for this offset is that the present 
model only includes the blade whereas the HAWC2 model includes the whole turbine. The turbine’s effect on the blade 
dynamics is minimized by making all other turbine components very stiff in the HAWC2 computations, but nonetheless 
there will always be a small effect. This effect is more pronounced for the edgewise mode since the coupling is more 
direct through the drive train and the other blades than it is for the fl apwise mode. The change in frequency caused by the 
blade defl ection is also seen to have a minor difference in offset for the two models. This is due to the fact that in the 
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Figure 2. Aeroelastic frequency and damping for the (a) fi rst and (b) second fl apwise blade-bending modes. There are no HAWC2 
results for fi rst fl apwise mode because it is too highly damped for measuring the decay.
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HAWC2 model the aerodynamic forces are applied to the deformed blade position even if the blade is assumed linear 
whereas in the present model the forces are applied to the undefl ected blade position. Regardless of these differences, the 
damping of the two models is qualitatively similar, and since the focus of this work is the qualitative effect of geometric 
couplings on the blade stability, the present model is well suited for this purpose. The aeroelastic damping around 14 m s−1 
decreases when the geometric non-linear couplings are included (defl ected blade case). At the higher wind speeds, the 
damping of the model including the geometric non-linearities increase and becomes the highest. The reason for these 
differences will be analysed in the next section. Figure 3(b) shows the aeroelastic frequency and damping of the second 
edgewise bending mode. The frequency and damping from the present model differ from the results from HAWC2 at a 
wind speed around 11 m s−1, where the fl apwise defl ection is largest. This case will be analysed in the next section.

4.4. Aeroelastic analysis of specifi c cases

The aeroelastic damping of the edgewise mode is a caused by both fl apwise and edgewise aerodynamic force variations, 
which results from angle off attack variations due to edge-torsion coupling of the fl apwise defl ected blade and from fl ap 
and edgewise blade motion. On the one hand, modal aerodynamic force variation that occurs in counter phase with the 
blade speed enhances the damping. On the other, when it is in-phase with speed, the damping decreases or even becomes 
negative. When modal aerodynamic force variations are in counter phase with the blade defl ection, aerodynamic stiffen-
ing occurs and vice versa. The following discussion is clarifi ed through phase-space plots of fl apwise and edgewise 
defl ections; these phase-space plots also include distinct values of the belonging aerodynamic fl apping force variation 
through a scaled stem-like plot (vertical bars with an o-mark; sign from up/down orientation relative to trajectory). Fur-
thermore, the elastic twist of the blade is included in a distinct number of points of the trajectory in the phase-space plot 
through a straight, mainly horizontally directed bar. The torsion will increase the angle of attack when the bar is decreas-
ing from left to right and vice versa. The plots are included to clarify the aeroelastic damping mechanisms and to illustrate 
the difference for an undefl ected and a defl ected blade. The three cases where there are large differences between the 
defl ected and undefl ected blade cases are analysed in detail; the fi rst edgewise bending mode at 14 and 25 m s−1 and the 
second edgewise bending mode at 11 m s−1. Summary: In the fi rst cases (fi rst edgewise bending mode at 14 m s−1), 
the damping of the defl ected blade is lower than the damping of the undefl ected blade. The damping decreases because 
the inclusion of geometric non-linearities reduces the fl apwise motion and the phase between fl apwise motion and fl apwise 
forces is changed. In the second case (fi rst edgewise bending mode at 14 m s−1), the damping of the defl ected blade is 
highest. The increased damping is due to the fact that the geometric non-linearities increase the torsional motion, and 
thereby the changes in angle of attack and thus the aerodynamic forces. The change in phase and amplitude of the aero-
dynamic forces relative to the edgewise motion increase the negative aerodynamic work, increasing damping. In the last 
case (second edgewise bending mode at 11 m s−1) relative large increase in damping is seen when the defl ections are 
included. The increase is caused by an increased amount of torsional motion and negative aerodynamic work on the 
torsional motion.
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Figure 3. Aeroelastic frequency and damping ratio for (a) the fi rst and (b) the second edgewise blade-bending modes. Damping 
ratio refers to the exponential damping rate.
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The fi rst case to be analysed is the aeroelastic response of the fi rst edgewise blade-bending mode at 14 m s−1, where 
the defl ected blade cases are less damped than the undefl ected blade case (Figure 3(a)). First, looking at the case without 
steady-state blade defl ections, which for this blade without pre-bend and sweep will mean a straight blade removing 
geometric non-linearities: Figure 4 shows the normalized cross-sectional blade defl ection at 90% radius for the fi rst 
edgewise bending structural eigenmodes for the undefl ected blade and the steady-state defl ected blade at 14 m s−1. When 
the blade moves forward (left to right) in the structural eigenmode, the local wind speed increases, consequently increas-
ing the aerodynamic forces, and vice versa when the blade moves backwards. The extremes of this variation of aerody-
namic forces appear at the points with the largest blade speed, i.e. the midpoint of the edgewise blade motion. The 
fl apwise motion in the structural eigenmode also affects the aerodynamic force, increasing the angle of attack when the 
blade moves downwards and thereby increasing the aerodynamic force. Since the edgewise and fl apwise motion are in 
counter phase (blade moves forward and downwards) in this structural eigenmode, both effects described above give the 
highest aerodynamic forces when the blade moves forward and lowest when the blade moves backwards. In this case, 
without steady-state deformations, there is only a very limited and insignifi cant torsional motion. The variations in aero-
dynamic fl apwise forces affect the fl apwise motion in the aeroelastic mode of motion. The frequency of the fi rst edgewise 
mode (1.1 Hz) is higher than the resonance frequency of fi rst fl apwise bending mode (0.79 Hz). Hence, the fl apwise 
defl ection lags approximately 180 degrees after the fl apwise force according to basic dynamic considerations. The fl apwise 
force is highest at the midpoint of the forward edgewise motion, increasing the fl apwise defl ection around the midpoint 
of the backward edgewise motion. This increased fl apwise motion at the midpoint of the edgewise motion will increase 
the fl apwise speed at the edgewise turning points, affecting the angle of attack and thereby the aerodynamic force. The 
increased fl apwise forces will increase the fl apwise defl ection ≈180 degrees later, which is the other edgewise turning 
point. Summing up, the fl apwise motion in the fi rst edgewise aeroelastic bending mode is an equilibrium between the 
fl apwise motion caused by the structural coupling (eigenmode motion) and the variations in fl apwise aerodynamic force 
caused by the structural eigenmode and the fl apwise motion itself. Figure 5(b) shows the unsteady aerodynamic fl apwise 
force for the cross-sectional motion of fi rst edgewise aeroelastic bending mode. The resulting aerodynamic fl apwise force 
variation is seen to be largest around the edgewise turning points, indicating that it is dominated by the force variation 
caused by the fl apwise motion itself. The black dot denotes the point with the largest fl apwise force.

Figure 6(b) shows the change in cross-sectional motion caused by the aerodynamic forces. It is seen that the largest 
fl apwise defl ection caused by the aerodynamic forces is ≈180 degree offset from the largest fl apwise force.

When the steady-state defl ections are included in the model, the geometric non-linear couplings between edgewise and 
torsional motion of a fl apwise defl ected blade (equations (8) and (10)) become active and increase the torsional motion 
in the fi rst fl apwise structural eigenmode (Figure 4(a)). The torsional motion is seen to decrease the angle of attack, and 
thereby the aerodynamic force, at the forward position of the edgewise motion so this torsional motion counteracts the 
angle of attack changes caused by the fl apwise speed at the edgewise turning points. The reduced effect of the fl apwise 
motion on the aerodynamic forces changes the phase between fl apwise and edgewise motion. The fl apwise motion 
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Figure 4. Traces of cross-sectional blade motion at 90% radius in the fi rst structural edgewise eigenmode at 14 m s−1 for the blade 
with exaggeration of the torsional component. Arrows denote the direction of motion and the bars denote the torsional component. 
(a) Steady-state blade defl ection terms are excluded and (b) steady-state blade defl ection terms are included. Note that the relative 

wind comes from right to left in the displayed cross-sectional coordinate system.
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relative to the local wind becomes smaller but only looking at the change in fl apwise motion caused by aerodynamic 
forces (Figure 6) the defl ections are similar, so it is mainly the phase between fl apwise and edgewise motion that has 
changed.

Table II shows the aerodynamic sectional work for the two cases in Figure 5. Both the fl apwise and edgewise aerody-
namic works are seen to be negative, thus extracting energy from the motion (adding damping to the mode). For the 
undefl ected blade case, the total work is dominated by the fl apwise work. The relatively high fl apwise work is due to the 
fact that the fl apwise force is ≈90 degrees phase shifted from the fl apwise motion, so for this reason the largest forces 
counteract at the highest velocities. The fl apwise force is mainly caused by the fl apwise component of the lift force on 
the airfoil. This lift force will also have an edgewise component pointing forward (the component driving the wind turbine) 
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Figure 5. Traces of cross-sectional blade motion at 90% radius in the fi rst aeroelastic edgewise mode at 14 m s−1 for the blade 
with exaggeration of the torsional component. Arrows denote the direction of motion, the bars denote the torsional component 
and the vertical lines the unsteady fl apwise aerodynamic force with the black dot at the point with highest force. (a) Steady-state 
blade defl ection terms are excluded and (b) steady-state blade defl ection terms are included. Note that the relative wind comes 

from right to left in the displayed cross-sectional coordinate system.

Figure 6. Change in cross-sectional blade motion at 90% radius of the fi rst aeroelastic edgewise mode at 14 m s−1 caused by 
aerodynamic forces. The fi gure shows the difference between the structural eigenmode (Figure 4) and the aeroelastic mode (Figure 
5) showing that the maximum fl apwise defl ection caused by aerodynamic forces are 90 degrees phase shifted from the maximum 
force. Arrows denote the direction of motion and the vertical lines the unsteady fl apwise aerodynamic force with the black dot at 
the point with highest force. (a) Steady-state blade defl ection terms are excluded and (b) steady-state blade defl ection terms are 

included. Note that the relative wind comes from right to left in the displayed cross-sectional coordinate system.
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so the point with the highest fl apwise force also has a relatively large edgewise force component pointing forward. For 
the undefl ected blade case (Figure 5(b)), the blade moves forward at the point with the highest forces. Consequently at 
this point, the edgewise component of the lift will add energy to the system, reducing the damping. This is the reason for 
the low damping value for the edgewise motion of the undefl ected blade (Table II). In the defl ected blade case, two effects 
reduce the fl apwise damping: fi rst, the reduced fl apwise motion relative to the local wind, reduces the amount of work. 
Second, the fl apwise force and motion are almost in counter phase, so the maximum forces act at a low fl apwise velocity, 
extracting less energy from the system. The edgewise work is increased since the point of maximum force is moved 
towards the edgewise turning point compared with the undefl ected blade case, which reduces the amount of energy that 
the lift force component on the edgewise motion adds to the system, leading to a higher edgewise damping contribution 
(Table II).

The next case to be analysed is the fi rst edgewise blade-bending mode at 25 m s−1 where the damping of the defl ected 
blade is higher than the damping of the undefl ected blade case (Figure 3(a)). At this higher wind speed, the fl apwise tip 
defl ection shifts sign (Figure 1) changing the sign of the coupling between edgewise and torsional motion for the fl apwise 
defl ected blade (equations (8) and (10)). Figure 7 shows how the torsional defl ection in the fi rst edgewise structural 
eigenmode at 25 m s−1 has changed sign compared with the results for 14 m s−1 (Figure 4). Figure 8 shows the cross-
sectional defl ection of the fi rst edgewise aeroelastic mode and the unsteady aerodynamic fl apwise forces at 25 m s−1. At 
this wind speed, the average angle of attack at the shown cross-section is ≈−4 degrees. At this negative angle of attack, 
the lift force is negative, so the effect of edgewise vibration change, since the forward motion, which gives larger local 
wind speed, increases the absolute value of the negative lift force. Hence, the forward motion decreases the lift and the 
backward motion increases the lift, opposite the case at 14 m s−1. The effect of fl apwise motion is the same as before 
since this affects the angle of attack. So the two effects counteract each other, resulting in smaller unsteady aerodynamic 
forces in this mode at 25 m s−1 than at 14 m s−1 (Figure 8). The phase between the fl apwise and edgewise motion deter-
mines how well the forces from the two effects cancel each other out and thereby also where the highest force appears. 
Because of the reduced aerodynamic forces, the aeroelastic mode is less affected by the aerodynamic forces and the 
direction of motion is similar to the structural eigenmode when compared with the previous case at 14 m s−1. The edge-
wise force is mainly caused by the lift force on the blade, and since the angle of attack in this 25 m s−1 case is negative 

Table II. Aerodynamic sectional work for the sectional motion shown in Figure 5. The work 
is normalized with respect to the total work of the undefl ected blade, except for the sign.

Edgewise Flapwise Total

Undefl ected blade −0.03 −0.97 −1.00
Defl ected blade −0.25 −0.27 −0.52
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Figure 7. Traces of cross-sectional blade motion at 90% radius in the fi rst structural edgewise eigenmode at 25 m s−1 for the blade 
with exaggeration of the torsional component. Arrows denote the direction of motion and the bars denote the torsional component. 
(a) Steady-state blade defl ection terms are excluded and (b) steady-state blade defl ection terms are included. Note that the relative 

wind comes from right to left in the displayed cross-sectional coordinate system.



Wind Energ. 2011; 14:209–224 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Aeroelastic stability of a turbine blade B. S. Kallesøe

220

(≈−4 degrees), a lift force giving a positive fl apwise force will give a negative edgewise force. Thus, for the fi rst ≈2/3 
for the forward and backward edgewise motion, the aerodynamics will contribute with negative work (Figure 8(b)). For 
the fl apwise motion, the fl apwise force is almost constantly in the opposite direction than the fl apwise motion, extracting 
energy from the motion. Table III shows that the fl apwise and edgewise works contribute equally to the damping of the 
undefl ected blade case at 25 m s−1. The changes in blade twist, and thereby angle of attack, caused by the geometric non-
linearities increase the aerodynamic force at the forward edgewise position of the blade and decreases the forces at the 
backward position. Adding this extra effect to the effects of fl apwise and edgewise motion moves the point of highest 
fl apwise force towards the forward position and places it almost at the midpoint for both the fl apwise and edgewise motion. 
Having the highest fl apwise force (indicating high negative edgewise force at this negative angle of attack) close to the 
highest fl apwise and edgewise speed, results in high damping even though the force level is relatively low.

The last case to be analysed is the second edgewise blade-bending mode at 11 m s−1, where the damping of the defl ected 
blade case is much higher than the damping of the undefl ected blade case (Figure 3(b)). On a pitch-regulated wind turbine, 
as the present one, the fl apwise tip defl ection is largest around rated wind speed since the pitch regulation of the turbine 
relieves the aerodynamic loads at higher wind speeds. The large fl apwise steady-state defl ection (indicating large curva-
ture v0� ∝ v0) together with the relatively large edgewise curvature u1� gives a large torsional component in the second 
edgewise bending mode (equation (10)). Figure 9 shows the content of fl apwise, edgewise and torsional motion in the 
second edgewise bending mode and it is seen how the inclusion of the non-linearities increases the torsional motion. 
Figure 10 shows the distribution of aerodynamic work done by the edgewise, fl apwise and torsional aerodynamic forces 
along the blade. It is on the outer 10% of the blade, beyond the node of the second bending mode, that the majority of 
the aerodynamic work is done and the difference between the two blade defl ection cases arises. The main differences in 
aerodynamic work between undefl ected and defl ected blade cases are in the torsional motions, which increase when the 
geometric non-linearities are included. Figure 11 shows the cross-sectional motion for the second aeroelastic edgewise 
bending mode for the undefl ected and the defl ected blade at 95% blade radius. The modal aeroelastic cross-sectional 
motion of the undefl ected blade is very similar to the structural eigenmode: this is because the unsteady aerodynamic 
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Figure 8. Traces of cross-sectional blade motion at 90% radius in the fi rst aeroelastic edgewise mode at 25 m s−1 for the blade 
with exaggeration of the torsional component. Arrows denote the direction of motion, the bars denote the torsional component 
and the vertical lines the unsteady fl apwise aerodynamic force with the black dot at the point with highest force. (a) Steady-state 
blade defl ection terms are excluded and (b) steady-state blade defl ection terms are included. Note that the relative wind comes 

from right to left in the displayed cross-sectional coordinate system.

Table III. Aerodynamic sectional work for the sectional motion shown on Figure 8. The work 
is normalized with respect to the total work of the undefl ected blade, except for the sign.

Edgewise Flapwise Total

Undefl ected blade −0.56 −0.44 −1.00
Defl ected blade −1.13 −0.43 −1.57
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Figure 9. Edgewise, fl apwise and torsional components of the second edgewise aeroelastic bending mode at 11 m s−1 for the 
undefl ected and the defl ected blade.
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Figure 10. Edgewise, fl apwise and torsional cross-sectional work in the second edgewise aeroelastic vibration mode at 11 m s−1 
for the undefl ected and the defl ected blade. Negative aerodynamic work corresponds to positive aeroelastic damping.

forces are smaller relative to the higher inertia and structural restoring forces in this higher bending mode compared with 
the fi rst edgewise mode. Figure 10 shows that the edgewise motion is slightly negatively damped for the outer part of 
the blade. This is because the edgewise component of the unsteady lift force acts in the direction of edgewise motion 
adding energy to the system. This results in minor negative damping because the drag force on the edgewise motion 
always adds damping. The fl apwise motion is positively damped since the unsteady fl apwise force works against the 
direction of fl apwise motion.

When the steady-state defl ections are included, the large torsional component caused by the geometric non-linearities 
(equation (10)) has a large effect on the unsteady aerodynamic forces. Note that the direction of the loop has changed 
compared with the undefl ected blade case. The edgewise force adds energy to the system, since the force acts in the same 
direction and the motion for the fi rst ≈2/3 of the edgewise motion. The fl apwise forces in the defl ected blade case add 
energy to the system (Figure 10) since they act in the same direction as the fl apwise motion. The amount of work is 
relatively small because the fl apwise amplitude normal to the local wind direction is relatively small. The large increase 
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in aeroelastic damping of the defl ected blade case compared with the undefl ected blade case is caused by negative 
aerodynamic work of the torsional motion (Figure 10). The aerodynamic lift force acts at the aerodynamic centre, which 
is located in front of the elastic centre, where the blade twists. Thus, an increased lift results in an increased rotational 
moment on the cross-section. The cross-sectional motion of the undefl ected blade (Figure 11(b)) has almost no torsional 
motion, resulting in small aerodynamic work (Figure 10). The defl ected blade case, on the other hand, has much more 
torsional motion (Figure 11(b)). The cross-section has a nose down motion on its way forward to the lift force and thereby 
also the torsional moment is high and a nose up motion on its way back where the lift is low, resulting in negative aero-
dynamic work, increasing the damping.

5. CONCLUSION

In this paper, a second-order non-linear beam model is used for aeroelastic stability analysis of a turbine blade. The 
aeroelastic mechanisms of the different modes and the difference between including and excluding non-linear geometric 
couplings caused by steady-state defl ection at normal operation are discussed in detail. The methodology can also be used 
to analyse the effects of pre-bend or swept blades.

The analysis is based on the non-linear structural blade model from Kallesøe,23 which in this work is extended to 
include an aerodynamic model. The resulting non-linear aeroelastic blade model is linearized about a curved blade posi-
tion, caused by e.g. sweep, pre-bend or steady-state defl ections. The linearized model is used to perform stability analy-
sis of a steady-state defl ected blade and to examine the effects of the linearized geometric non-linearities.

First, the derived non-linear aeroelastic model is used to compute steady-state blade defl ections. The steady-state 
defl ections are validated against results from a non-linear aeroelastic time simulation code, showing good agreement. 
Next, the non-linear aeroelastic model is linearized about the steady-state defl ected blade. By linearizing about the 
defl ected blade, the main effects of geometric non-linearities are preserved and the results show how the relative large 
fl apwise blade defl ection introduces a coupling between edgewise and torsional blade motion.

Two versions of the linearized model are used to compute the aeroelastic stability of the blade: one linearized about 
the defl ected blade, preserving the non-linearities and one linearized about an undefl ected blade excluding the non-
linearities. The stability results from the two versions are compared and the differences discussed. It is found that the 
fl apwise modes are not as affected by the steady-state blade defl ection as the edgewise modes. The damping of fi rst 
edgewise bending mode of the steady-state defl ected blade decreases around 14 m s−1 but increases around 25 m s−1 
compared with the undefl ected blade. The reason for this change of the effect of the blade defl ection on the aeroelastic 
damping is caused by the steady-state fl apwise defl ection shifting sign around 20 m s−1. When the fl apwise defl ection 
shifts sign, the coupling between the edgewise and torsional motion also shifts, and thereby changing the non-linear 
geometric couplings effect on the aeroelastic damping contribution. The damping of second edgewise bending mode is 
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Figure 11. Traces of cross-sectional blade motion at 95% radius in the second aeroelastic edgewise mode at 11 m s−1 for the blade 
with exaggeration of the torsional component. Arrows denote the direction of motion, the bars denote the torsional component 
and the vertical lines the unsteady fl apwise aerodynamic force with the black dot at the point with highest force. The dotted line 
shows the structural eigenmode. (a) Steady-state blade defl ection is excluded and (b) steady-state blade defl ection is included. Note 

that the relative wind comes from right to left in the displayed cross-sectional coordinate system.
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high around 11 m s−1 for the steady-state defl ected blade compared with the undefl ected blade. This is because the fl apwise 
steady-state defl ection is largest around 11 m s−1 giving the largest effect of the geometric non-linear coupling between 
edgewise and torsional motion.

This work shows that the blade defl ection under normal operation conditions affects the aeroelastic stability properties 
of the blades. In the worst case for this particular blade, the edgewise damping can be decreased by half.
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