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The problem of deriving equations of motion that describe the coupled tower-rotor 
system of a wind turbine is discussed. The mathematical formulation of these equations 
is described first in a form suitable for manual derivation and then as a step by step 
process suitable for automation. Reasons for and experience in using a symbolic computing 
system to undertake this work for large models are described. The general approach is 
illustrated by means of a very simple model. Finally, some results of the stability analysis 
of the simple example and an eleven degree of freedom three-bladed model are presented 
together with a set of measured and predicted blade loads for a 250 kW wind turbine. 

1. INTRODUCTION 

We recently encountered a problem of  algebraic manipulation in wind turbine dynamics 
which was conceptually very straightforward but immensely tedious to perform. We 
required a solution to this problem and were interested in finding a means of  performing 
it automatically, first as a check on the manual calculation, and then as a method in its 
own fight. The power and possible application of  computers as "equation crunchers" 
ra ther than  "number  crunchers" was a revelation to us. In this paper we shall not seek 
to break any new ground, but rather describe the analysis which we conducted as an 
illustration of  the possible applications of  symbolic or algebraic computing as a tool in 
engineering analysis. Our  particular problem was concerned with formulating the 
equations of  motion of  a wind turbine system. This problem will be used here as an 
example, but it will become obvious that many problems in engineering dynamics are of  
a similar nature. 

Symbolic computing systems have been in existence for some 20 years. References were 
made to this application of  digital computers as early as 1953 [1, 2]. The systems seem 
to have been developed for high energy physics applications and, indeed, the system used 
by us (REDUCE)  bears definite signs of  its origins in this respect. Their application to 
engineering in general and engineering mechanics in particular seems to have been very 
limited. Some work on helicopter dynamics has been reported by Nagabhushanam et al. 
[3]; a review of various systems applied to structural dynamics has been given by Noor  
and Anderson [4]. A layman's guide to computer algebra and its applications was given 
by Pavelle et al. [5]. 

There are quite a n u m b e r  of  systems available, notably FORMAC, MACSYMA, 
REDUCE,  SCRATCHPAD and most recently SMP. Some of  these were reviewed by 
Jensen and Niordsen [6]. The present authors have first hand experience only of  REDUCE 
and our limited knowledge of  symbolic computing indicates that this system is the most 
widely used in engineering applications. Some recent papers have appeared in which 
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problems very similar to our own have been treated. Kiessling [7, 8] discussed REDUCE 
in the context of wind turbine problems, but unfortunately both papers appeared in rather 
obscure publications. Reference [8] is a very thorough description of the use of symbolic 
computing in this type of work. Koppens [9] has considered some rotorcraft problems, 
less complex than those considered by Kiessling or in the present paper, but he retained 
the non-linear terms which, of course, is no hardship when using the computer to perform 
the algebra. 

The growing interest in symbolic computing is aptly demonstrated by'the advent of 
a new technical journal: Journal of Symbolic Computation. In a paper published there 
Fitch [10] has summed up its position in the engineering field: " (We) . . .  undertook a 
programme for the education o f . . .  companies in both Sweden and Britain in computer 
algebra, and we discovered that once these techniques had been shown to them they 
immediately recognized that they would be able to ask questions that they had been 
suppressing as incapable of solution. Many of these companies are now acquiring algebra 
systems. At present it is unfortunately still the case that much algebra is being done by 
hand". That is the view of a computer scientist. We hope that the present paper will 
reinforce his view and encourage many other engineers to use this powerful aid to analysis. 

2. WIND TURBINE DYNAMICS 

The main problem in producing a mathematical model of a wind turbine is the fact 
that the rotor exercises gross angularmovements with respect to the support structure. 
In standard structural analysis techniques, such as finite element packages, it is assumed 
that the structure has a mean position about which deflections, albeit large deflections, 
occur. This is evidently not the case for a wind turbine. The analyst is therefore forced 
to develop the equations of motion from first principles. The goal of the analysis is to 
be able to predict the stability of the system and to be able to calculate the forced response. 

3. DERIVATION OF THE EQUATIONS OF MOTION 

3.1. D E F I N I T I O N  o F  THE CO-ORDINATE SYSTEMS 

It is common practice when faced with the derivation of the equations of motion of a 
complex dynamic system to use the well-known approach due to Lagrange. This requires 
the calculation of an expression for the various forms of energy in the system, the kinetic 
energy T, the strain energy U and the dissipation energy Uo. After having calculated 
these quantities the Lagrangian may be derived and equated with an expression for the 
generalized force Q. 

For a system such as we are considering the computation of the strain and dissipation 
energies is relatively straightforward compared with the kinetic energy and generalized 
force. 

For the wind turbine problems we considered standard methods were used to set up 
the description of an arbitrary point on one of the blades. A series of transformations 
(rotations and translations) were calculated that allowed the position vector of an arbitrary 
point on the blades to be expressed in inertially fixed axes. These transformations are 
listed below and sketched in Figure 1. 

The inertially fixed co-ordinate system is defined such that it is aligned along the 
unperturbed tower. The remaining co-ordinate systems are defined as follows: Fo(Xo, Yo, 
Zo) is the inertially fixed system; F~(x~, y~, z~) is obtained by translation of Fo by the 
tower head displacement vector, n~; F2(x2, Y2, z2) is obtained by torsional rotation, 0y, 
about y~; F3(x3, Y3, z3) is obtained by "nodding" rotation, Ox, about x2; F4(x4, Y4, z4) is 
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Figure I. (a) System degrees of freedom; at, tower head displacement; 0y, tower torsion; 0~, tower nodding; 
0,, tower lateral rotation; n2, nacelle overhang; $ +  ~b,, azimuthal rotation; y, rotor teeter; Wt, rotor flapwise 
bending; 14,'2, rotor edgewise bending; (b) co-ordinate systems. 
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obtained by lateral rotation, 0,, about z3; Fs(xs, )'5, zs) is obtained by translation of/ '4 
by the overhang vector n2; F6(x6, Y6, z6) is obtained by azimuthal rotation, (@ + if=), about 
zs; FT(xT, yT, z7) is obtained by teeter rotation, 3', about x6. 

The azimuthal rotation, (r is the sum of the steady state and power train 
perturbation components. 

The rotational matrices defining the co-ordinate transformations are standard and may 
be easily determined from the definition of the co-ordinate systems given above. 

Generalized co-ordinates were used that corresponded to the following physical degrees 
of freedom; rotor teeter; rotor azimuth and power train rotation; flapwise and edgewise 
displacement including arbitrarily large initial deflections; tower torsion; tower fore-aft 
and side-to-side displacement. 

3.2. D E R I V A T I O N  O F  K I N E T I C  E N E R G Y  

The kinetic energy of the wind turbine structure may be written as 

T=�89 fr otor V6a'MaV6 dr + �89 tower VL[MT]V0  dh, (,) 

where Vor and V6 are the absolute velocity vectors of a point on the tower and on the 
rotor, expressed in 1"o and /'6 co-ordinate systems respectively. The tower distributed 
mass and inertia properties are contained in the matrix Mr. 

After considerable manipulation the velocity of a point on the rotor can be expressed 
a s  

V6 = [ TOT]T[ To. ]T[ To. ]r[ To, ]rfi, + [ To. IT[ To~ ]T( 0y X ( [ T~. ] R7 + [ To~ ] [ To. ] n2)) 

+ [ T 6 ]T[ Toz]T( ox X ([ T~,]RT + [ To.]n2) ) + [ T ~]T[ Oz x ([ T~,]aT+n2)) 

+ & x [ T~,]R7 + [ T,] (117 + r aT), (2) 

where the rotational matrices [T] are standard and may easily be determined from the 
definition of the co-ordinate systems. 

After the rotor absolute velocity has been calculated in this way, the kinetic energy is 
derived by substitution of the generalized co-ordinates into equation (1). The resultant 
expression is not included in this text since it is extremely cumbersome and of no great 
physical significance. 

3.3. D E R I V A T I O N  O F  T H E  G E N E R A L I Z E D  F O R C E  

The gener.alized force corresponding to the arbitrary generalized co-ordinate q is given 
by, 

Q = f  Fo �9 c3R~ dr Oq ' (3) 

where Fo is the aerodynamic force vector acting at a point on the rotor defined by the 
displacement vector Ro. 

The rotor-fixed force vector F7 is more convenient to work with and is derived from 
consideration ofthe local aerodynamic lift and drag loads resolved into the blade edgewise 
and flapwise directions and is given by 

(�89 CL Up,- CoUr) dr~ 
dF7 = \�89 CL Ur, + CoUp,) dr] '  (4) 

where Ur7 and Up, are the edgewise and flapwise components of the relative wind velocity 
vector VRet, expressed in/ '7 rotor-fixed axes, and U =  (U~-,+ U~,) I/2. 
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The relative wind velocity vector defines the velocity of the wind with respect to the 
structural velocity of the rotor and is computed from 

VR,,, = [ T,][ T6][ To, ][ To.][ To,] (Vwo- Ro), (5) 

where Vwo is the absolute velocity of the wind expressed in inertial axes and the Ro is the 
structural velocity. 

The aerodynamic force vector Fo is derived by transforming FT. The generalized force 
may then be computed from equation (2) after having first substituted into it the generalized 
co-ordinates. 

3.4. EQUATIONS FOR THREE-BLADED MACHINES 

It is interesting to consider the slightly different but strongly related problem of a 
three-bladed rotor. The discussion above described the derivation of the equations of 
motion of a two-bladed rotor starting with an arbitrary point on the blade. The teeter 
freedom requires the two-bladed rotor to be treated as a single entity rather than as two 
independent blades. In the basic steps involved an arbitrary point was considered and it 
is only the specification of the mode shapes themselves that narrows the analysis to a 
two-bladed case. One may, therefore, take the kinetic energy derivation of a blade on a 
flexible tower as a starting point for the analysis of a three-bladed machine. It was 
mentioned above that two-bladed rotors pose considerable numerical problems in stability 
calculations. A three-bladed rotor is much simpler since the co-ordinates may be transfor- 
med to remove the periodic terms. Dugundji and Wendell [11] have given a good review 
of this aspect of wind turbine dynamics. In our case we were able to make use of the 
single-blade analysis that we had derived for the two-bladed work. Like the derivation 
of the equations of motion themselves, the transformation from physical co-ordinates 
into multi-blade co-ordinates can be very simply specified and was therefore suitable for 
symbolic computing. 

To illustrate this transformation consider a state vector that describes a three-bladed 
rotor supported by a flexible tower. The blades are modelled in terms of their first flapping 
and lead-lag modes, qta denotes the generalized co-ordinate of the first flapping mode 
of blade i and p~.~ the first lead-lag co-ordinate. 

~ is the power train angular deflection, n, s, 0y are the fore-aft, side-to-side and 
torsional generalized co-ordinates of the tower. The state vector of the system is x where 

xT-----[qt,I ql,2 ql.3 PI,! Pl,2 Pl.3 ~z n 5 0y]. 

The system can be transformed into multi-blade co-ordinates by making standard substitu- 
tions and defining a new state vector x~: 

xlT=[qo q, qc Po P, Pc 4, n s 0y]. 

If the untransformed equation of motion was 

[M]~+[C]R+[K]x=O, 

where [M], [C] and [K] are periodic, then the new equation of motion is 

where 

[M']R' + [C~]:~ ' + [Kl]xl = 0, 

I ra ' ]  = [P ]~ [m] [P] ,  [ c ' ]  = [P]~(2[m][P]+[c][P]), 
[K~] = [P]'r([M][/5] +[C][P] + [K]EP]), 
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which contain only constant terms due to the resulting trigonometric summations. Here 

[ I [ 1 
[Q] 0 0 1 sin 01 cos 01 

[ P ] =  0 [Q] 0 , [Q]=  1 sin 02 cos02 , 

0 0 [I] 1 sin03 cos 03J 

Where [I]  is the 4 x 4 identity matrix and the variable 0~ is the azimuth of the ith blade. 

3.5. SVSTEMATXC DERIVATION OF THE LAC~NCIAN AND GENE~LIZED FORCE 
Equation (1) appears fairly innocent, but reference to equation (2) which shows the 

algebraic form of V6 demonstrates that calculation of TR is formidable indeed2 The 
complexity and tedium of the algebra involved becomes still worse when the derivation 
of the equations of motion is considered and the evaluation of the Lagrangian is attempted. 
The approach adopted to derive the expression for TR is fairly standard and followsvery 
closely that described by Ottens and Zwaan [12]. One attempts to minimize the algebraic 
manipulation by avoiding the calculation of the position vector and then taking its time 
derivative to calculate the velocity which would be the most direct method. The complexity 
is reduced by calculating the inertial velocity in an intermediate set of axes, the result 
being V6. Nevertheless, the algebra involved is extremely tedious and, in the view of the 
present authors, approaches the limits of human endurance or at least reliability. This 
sort of manipulation can, of course, be performed, but examination of the resulting 
expressions, which must be checked, suggested that short of performing a wholly indepen- 
dent analysis and comparing the results there was no possible, reliable method of checking. 

The derivation of the kinetic energy and the steps involved in the derivation of the 
equations of motion are very well defined. It is possible to outline a general scheme for 
calculation of the Lagrangian in a step by step method: (1) specify the position vector 
(RT) ofan arbitrary point ofthe blade in blade axes; (2) specify the series of transformations 
that are required to express the position vector in inertial axes, Ro= [T]RT; (3) take the 
derivative of Ro with respect to time in order to calculate the inertial velocity, 1~o; (4) 
calculate the kinetic energy of the point mass and integrate over the rotor, S rni~ dr = TR; 
(5) form the Lagrangian for each of the generalized co-ordinates. 

By following the five steps specified above it is possible to calculate the equation of 
motion for each of the generalized co-ordinates. Thus, after having Completed step 4, 
step 5 may be repeated for each of the co-ordinates so that the complete system equations 
are produced. In the lis.t above a very inelegant method has been adopted to calculate 
the velocity--the position vector is simply differentiated with respect to time. This 
approach makes the algebra still more tedious but makes the specification of the steps 
considerably simpler. Faced with the problem of checking the derivation of the equations 
of motion, and realizing the mechanical way in which they were derived, suggested to 
us that our problem was ideally suited to solution by means of an algebraic computing 
system. 

As with the Lagrangian, the dedvation of the generalized force vector appears to be a 
straightforward mathematical procedure. However, the algebraic complexity ofthe deriva- 
tion is again a great obstacle to a manual solution. The problem is therefore well-suited 
to the application of symbolic computing techniques. It is possible to define a series of 
mathematical steps for calculation of the generalized force: (1) specify the wind velocity 
vector Vwo in inertial axes and subtract the inertial rotor velocity, 1~o; (2) compute the 
relative wind velocity in blade axes by means of the rotational transformations, Vae~, = [ T] T 
(Vwo-t~o) (see equation (5));(3) compute the aerodynamic force vector in blade axes by 
means of VRel, and the lift and drag coefficients; (4) express the aerodynamic force vector 
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in inertial axes, Fo=[T]F7; (5) take the partial derivative of Ro with respect to the 
generalized co-ordinate to give the vector, aRo/aq; (6) form the dot product of Fo with 
aRo/aq and integrate over the rotor to give the generalized force. 

The algebra involved in the derivation of the generalized force vector is clearly complex 
and yet the mathematical procedure remains relatively straightforward. It is true to say, 
however, that the procedure requires a greater degree of careful consideration at each 
step compared to the easily automated derivation of the Lagrangian. 

4. SOME EXAMPLES OF SYMBOLIC MANIPULATIONS 

Symbolic computing comes into its own when tackling complicated and tedious prob- 
lems. The type of problem for which we have found it useful is described in section 3. 
It will come as no surprise to workers in the field of dynamics that the matrices involved 
in these problems are very large and, although it is vital that they are correct, it is difficult, 
if not impossible, to glean any physical understanding of the system they describe by 
scrutinizing them term by term. 

The problems described above have been analyzed by using symbolic computing 
techniques but, rather than tackle a large problem in detail here, which will result in iarge 
and complex algebraic expressions, it is more illustrative to consider a very simple example 
which may be followed through from beginning to end. 

q 

Figure 2. Three degree of freedom model. ~ =/2t. 

Consider the wind turbine model shown in Figure 2. This is a simple three degree of 
freedom model first described by Kaza et al. [13]. It bears little physical resemblance to 
a real wind turbine, in fact its dynamic characteristics correspond rather more closely to 
a helicopter; however, it does do well as an illustrative model. The degrees of freedom 
contained in the model are tower head lateral motion and blade lead-lag motion. The 
derivation of the equations of motion of this system follows exactly the same steps as 
for the larger system described in section 3. The equivalent REDUCE steps, together 
with the inertial parts of the equations themselves, are given in Table 1. 
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TABLE 1 

A simple example of REDUCE 

% The following REDUCE program calculates the Lagrangians of 
% the simple 3 d.o.f, system described in Figure 2. 
% 
MATRIX MPSI(3,3),VTOW(3,1),VRI(3,1),VR2(3,1),VR3 (3,1),VR3 DOT(3,1)S 
% 
% Algebraic procedure for differentiation w.r.t, time: 
% 
PROCEDURE DIFFRT(A)$ 
BEGIN 
RETURN QDOT*DF(A,Q) 

+PSIDOT*DF(A,PSI)S 
ENDS 
% 
% Algebraic procedure for determination of a Lagrangian: 
% 
PROCEDURE LAG(B,C)$ 
BEGIN 

DD :-- DF('IT,B)S 
AA : =  DF(qT,C)$ 

RETURN OMEGA*DF(AA,PSIO) 
+QDOT*DF(AA,Q) 
+QDOTDOT*DF(AA,QDOT) 
+Z1DOT*DF(AA,Z1) 
+Z1 DOTDOT*DF(AA,Z1 DOT) 
+Z2DOT*DF(AA,Z2) 
+Z2DOTDOT* DF(AA,ZDOT) 
-DD$ 

ENDS 
% 
% MPSI is the azimuthal rotation matrix: 
% 
MPSI := MAT((COS(PSI),-SIN(PSI),0),(SIN(PSI),COS(PSI),0),(0,0,1))$ 
% 
% VTOW is the tower head displacement defined in inertial axes: 
% 
VTOW:= MAT((Q),(0),(0))S 
% 
% VR1 is the position vector of an arbitrary point on the blade in blade axes: 
% 
VR1 := MAT((0),(RR),(0))$ 
VR2 := MPSI*VR1$ 
VR3 := VR2+VTOW$ 
CLEAR MPSI,VTOW,VR1,VR2$ 
% 
% VR3DOT is the general blade velocity vector defined in inertial axes: 
% 
VR3DOT:= MAT((DIFFRT(VR3(1,1))),(DIFFRT(VR3(2,1))),(DIFFRT(VR3(3,1))))S 
CLEAR VR3$ 
% 
% VSQ is the velocity squared expression for an arbitrary blade station: 
% 
VSQ := VR3DOT(1,1)*VR3DOT(1,1)+VR3DOT(2,1)*VR3DOT(2,1)+ 

VR3 DOT(3,1)*VR3 DOT(3,1)$ 
LET SIN(PSI)=SINPSI$ 
LET COS(PSI)=COSPSI$ 
LET COSPSI**2= 1-SINPSI**2$ 
VSQ := VSQ$ 
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LET SINPSI**2 = 1-COSPSI**2$ 
VSQ := VSQ$ 
% z1 and Z2 are the perturbation co-ordinates for blades 1 and 2: 
% 
PSIDOT:= OMEGA+Z1DOT$ 
LET SIN(Z1) = ZI$ 
LET COS(Z1) = 1 -Z1" ' 2 /25  
SINPSI := SIN(PSI0)*COS(ZI)+COS(PSI0)*SIN(Z1)$ 
COSPSI := COS(PSI0)*COS(Z1)-SIN(PSI0)*SIN(ZI)$ 
% 
% VSQ1 and VSQ2 are the velocity squared expressions for blades 1 and 2: 
% 
VSQI := VSQ$ 
VSQ2 := SUB(Z1 =Z2,Z1DOT=Z2DOT, SIN(PSIO) =-SIN(PSI0,COS(PSI0) = 

-COS(PSI0),VSQI)$ 
VSQTOT:= VSQ 1 +VSQ2$ 
CLEAR VSQ,VSQ1,VSQ2$ 
% 
% "IT is the total kinetic energy of the rotor: 
% 
TI":= M*VSQTOT/2$ 
% 
% Definition of blade inertia IB and first mass moment integral SB: 
% 
LET M*RR*RR=IB$ 
TI':= TI~ 
LET M*RR=SB$ 
TF:= TP$ 
CLEAR Q,QDOT, Z1,Z1DOT, Z2,Z2DOT$ 
% 
% The Lagrangians are now computed: 
% 
LAGQ := LAG(Q,QDOT)$ 
LAGZ1 := LAG(Z1,Z1DOT)$ 
LAGZ2 := LAG(Z2,Z2DOT)$ 
% 
% A weight level is defined for linearization of the Lagrangians. 
% The linearized expressions are then output; 
% 
WTLEVEL 15 
WEIGHT Q = 1,QDOT= 1,QDOTDOT= 1,Zl = 1,Z1 DOT= 1,Z1DOTDOT= 

1,Z~ = 1,Z2DOT= 1,Z2DOTDOT= 15 
LAGQ := LAGQ; 
LAGZ1 := LAGZ1; 
LAGZ2 := LAGZ2; 
ENDS 
% Lagrangian for 'q '  generalized coordinate; 

LAGQ := COS(PSI0)*Z2DOTDOT*SB- COS(PSI0)*Z2*OMEG,~ *SB 
-COS(PSI0) 

*ZlDOTDOT*SB+ COS(PSI0)*ZI*OMEGA ~SB-2*SIN(PSI0)* 
Z2DOT*OMEGA*SB + 2*SIN(PSI0)*ZIDOT*OMEGA*SB + 2*M*QDOTDOT 

% Lagrangian fo r 'Z l '  generalized coordinate; 
LAGZ1 .'= -COS(PSI0)*QDOTDOT*SB + Z1DOTDOT*I B 
% Lagrangian for 'Z2'  generalized coordinate: 
LAGZ2 := COS(PSI0)*QDOTDOT*SB + Z2DOTDOT*IB 



74  A . D .  GARRAD AND D. C. QLIARTON 

The steps described in the table are fairly straightforward for any reader familiar with 
FORTRAN and dynamics. Some general comments may, however, be made. REDUCE 
has the capability of implementing "Procedures" that are very much akin to FORTRAN 
subroutines. In the example here we have used two procedures, one for differentiation 
with respect to time and one to form the Lagrangian as defined in equation (1). Note 
that REDUCE can only perform partial differentiation. The derivation of the equations 
of motion involves considerable manipulation of matrices. The simple example cited here 
shows laow REDUCE can perform these operations. It is often necessary, even when 
manipulation is being performed automatically, to linearize expressions. This may simply 
be done by REDUCE by using the "WEIGHT" statement. This statement is used at the 
end of the example to assign weights to the individual variables and, given a general 
weight level of 1, all quadratic and higher order terms are discarded. The resulting 
Lagrangians for each of the three degrees of freedom are then calculated and printed at 
the end of the example. 

The WEIGHT command may also be used to reduce the size of the kinetic energy 
expression. When considering a particular generalized co-ordinate many of the terms are 
redundant since they disappear when the expression is differentiated. Judicious use of 
the WEIGHT and WTLEVEL statements avoids the computation of the redundant terms 
which brings about significant reductions in the size of the expressions used. Failure to 
carry out this procedure does, in our experience, lead to unacceptably large expressions 
which brings the calculation to a halt when storage is exhausted. This problem of 
mid-calculation "expression swell" is very common and has been discussed by Nagab- 
hushanam et al. [3]. 

One further, and very useful, facility that REDUCE possesses is the ability to write 
expressions to files in FORTRAN format thus enabling the computer to both derive the 
equation of motion and transcribe them into a FORTRAN program for numerical solution. 
This final step helps to eliminate further possible sources of careless mistakes, since a 
manual transcription process is a very likely place for such problems to arise. 

5. SOME COMMENTS ABOUT THE USE OF REDUCE 

The automatic derivation of the equations of motion of large dynamical systems brings 
with it two main advantages: increased confidence in the results and increased scope in 
the scale of problems that may be tackled. Some limitations a(e still imposed either by 
financial constraints or limitations in computer storage capacity, but, in principle, the 
size and complexity of a mathematical model need not be limited by the size and complexity 
of the algebraic expressions which it produces. 

The analyses described here exercized only a small part of the REDUCE system. We 
have used matrix manipulation and differential calculus. The system contains a great 
many more analytical facilities particularly in the field of high energy physics. For the 
engineering user the integration and factorization facilities are probably the most relevant. 
It is interesting to note that the integrator does not simply run through a "look-up table" 
of known integrals but tackles each one on a rigorous and systematic basis. There is still 
some considerable work to be done on this aspect of the system; for example, integrals 
containing square roots present great difficulties and REDUCE often fails to produce an 
answer. In view of the indirect nature of integration this is not surprising. Much work is 
evidently underway on this subject at present. 

We have found REDUCE very useful. We have also found it to be difficult to imp!ement 
and sometimes very frustrating to use. It would be erroneous to give the impression that 
problems such as those described in this paper have been solved without difficulty. The 
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highly sophisticated nature of  REDUCE which gives it its wide applicability and power 
brings with it much scope for strange errors and obtuse messages. However the new 
release, R EDUC E 3-2 is evidently more robust and has overcome many of these problems. 

We approached symbolic computing in a cautious frame of  mind. We first attempted 
to do srhall problems with solutions that could also be obtained manually with reasonable 
ease. We then proceeded to use REDUCE to check a very long and complicated analysis 
as described above. Only when we had achieved term for term agreement with this 
calculation did we feel happy to use the technique alone. Although there are certain 
features of  our present system (REDUCE 3.0 implemented on an IBM 3033 operating 
CMS running under VM/SP release 2) that do not work, we have not discovered any 
way of  obtaining erroneous results. Discussions with other users have also failed to bring 
any such problems to light. Our careful approach was therefore unnecessary which is no 
surprise since R EDUCE has been in use in high energy physics for many years. 

6. RESULTS FROM THE WIND TURBINE CALCULATIONS 

It is hoped that readers of  this paper will be interested in both the application of  
symbolic computing to engineering problems and in the problems themselves. The original 
reason for embarking on the analyses described here was to ascertain the stability 
characteristics of  wind turbine designs. It is well known that helicopters, which have 
some similarity with wind turbines, are prone to severe mechanical and aeroelastic 
instabilities. Wind turbines seem less susceptible to these problems, but it is nevertheless 
prudent to check for possible unstable regions within the operational envelope. 

It was pointed out earlier that the simple three degree-of-freedom system used as an 
example above had dynamic characteristics which had more in common with helicopters 
than wind turbines. This comment is confirmed by consideration of  the results presented 
in Figure 3. These were computed by using standard Floquet techniques together with 
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some more economical methods; these calculations have been described by Quarton and 
Garrad [14]. They clearly show a region of  instability. Investigation of  the instability 
reveals it to be a "ground resonance" type. Such an instability requires the blades to be 
very soft in the lead-lag direction. The present generation of wind turbines tend to have 
blades that are very stiff in this direction and hence this type of  instability cannot occur. 
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Figure 5. Predicted and measured  WEG MS-I blade bending moments  at 16 m / s  windspeed. , Predicted; 
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A more typical set of stability results is shown in Figure 4. These were obtained for 
the WEG MS-2 wind turbine (a 25 m diameter, 3-bladed, 200 kW machine). This model 
contains the fundamental flapping and lagging modes of each blade, a rigid body drive 
train freedom, and the first fore-aft, side-to-side and torsional modes of the tower. The 
eigenvalues ofthe system were obtained from a constant coefficient set of equations which 
resulted from performing a Coleman multi-blade transformation on the set of periodic 
coefficient equations as described above in section 3.4. The equations of motion of the 
system were derived entirely by REDUCE which also wrote a considerable part of the 
FORTRAN program used to calculate the numerical results. 

In addition to using REDUCE for the stability analysis of wind turbine systems it has 
also been Used for the derivation of mathematical models for the calculation of forced 
response. The procedure for deriving the equations of motion for a forced response model 
is essentially the same as for stability analysis except it then becomes important to retain 
all steady forcing and deflection terms as well as those which are proportional to the 
system generalized co-ordinates. 

A forced response model for the WEG 20 m diameter, 2-bladed, 250 kW MS-1 wind 
turbine has been derived by using REDUCE and typical response predictions are presented 
in Figure 5. These predictions of blade bending moment have been compared with 
equivalent measured results and their satisfactory agreement provides validation of the 
mathematical model. 

7. CONCLUDING REMARKS 

The purpose of this paper was to describe one area ~f engineering analysis in which 
symbolic computing has played a useful role. It is hoped that the examples described 
here together with the specific comments on the use of the REDUCE system will enable 
other analysts to consider the possibility of using symbolic computing to help tackle 
complicated algebraic problems. 
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