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Abstract: Three principal aspects of the dynamics of wind-turbine behaviour are discussed: forced response to
deterministic loads, forced response to stochastic loads and stability. In each case, an introduction to the
physics of the problem is presented and a means of analysis is described. A simple analytical model is derived to
help illustrate some of the analytical techniques commonly employed.

1 Introduction

The most noticeable change in wind-turbine design, during
the last ten years, is in the increased flexibility of the struc-
ture as a whole. This change is well illustrated by compari-
son of the NASA MOD-0 and the Boeing MOD-2
machines. The most apparent outward sign of this evolu-
tion is the change in tower structure, the stiff-truss tower
being replaced by a considerably softer cylinderical struc-
ture. The tower structure, although the most visible, is not
the only component to evolve in this way. The same pro-
cedure has taken place with rotors (in some cases, fibre
glass and wood are replacing steel) and with transmission
systems where stiff, rugged versions are being replaced by
flexible ones of various types, both mechanical and electri-
cal. Almost all large two-bladed machines now have tee-
tered hubs rather than rigid ones. There is, at present, no
concensus of opinion about the ideal combination of struc-
tural components. The solution adopted depends on the
size, duty and location of each machine. Opting for a flex-
ible tower, for instance, does not necessarily imply the use
of a flexible transmission system or rotor.

The increasing structural flexibility of wind turbines
means that their dynamic behaviour, and our ability to
predict it, becomes more important. Inherent with
increased flexibility are large displacements which may
give rise to large inertial loads and, in some cases, insta-
bilities.

This paper reviews some problems that arise in wind-
turbine dynamics and describes methods for their analysis.
Only horizontal-axis machines will be treated in any detail.
Vertical-axis machines have many similarities, but also
many important differences which put their treatment
outside the scope of this review.

2 Basic analysis

The dynamic problems that are encountered in wind-
turbine systems may be conveniently divided into three
separate sections, by means of identifying the different
types of forcing functions that are involved. These cate-
gories are:

(a) stability
(b) forced response to deterministic loads
(c) forced response to stochastic loads.

Stability is a property of the system and may be deter-
mined by analysis of the homogeneous equations of
motion. Stability analysis is, therefore, characterised by the
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absence of a forcing function. This is not strictly true, but
this definition serves as a means of categorising the nature
of the problem.

The rotor of a wind turbine operating in the atmosphere
will encounter wind velocities that are continuously chang-
ing. These changes come from a number of sources. The
wind turbine will be controlled to yaw itself into the wind,
but there will inevitably be some error giving yaw mis-
alignment, which results in one blade moving into the
wind while the others move out of it. A similar effect
results from shaft tilt and wind pitch. The presence of the
earth's boundary layer means that the air near the ground
has a lower velocity than that higher up, resulting in a
velocity gradient across the rotor disc. When the wind
flows round the tower, it is declerated so that, in the neigh-
bourhood of the tower, there is an area of retarded air. All
these sources combine together to give a fairly complicated
cyclic variation in wind speed and, hence, load, as the
blade rotates; although these loads may be complicated,
they are well defined and, hence, are termed 'deterministic'.
In addition to this cyclic variation, there will be changes in
wind speed resulting from wind turbulence which produces
stochastic loads. It is useful to make a distinction between
the cyclic, deterministic and the turbulent, stochastic varia-
tions.

The deterministic loads may be calculated relatively
easily. Detailed discussion of the process is, however,
outside the scope of this article. Most authors adopt a
pseudo-steady-state approach to the aerodynamic calcu-
lations, the basic principles of which are given in Wilson
and Lissaman [1]. This approach is not strictly applicable
to cyclic conditions and some consideration is given to
proper means of dealing with the periodic nature of the
loads by Miller et al. [2]. The cyclic nature of the loads
also suggests that unsteady effects such as stall hysteresis
may be important; so far this has received little attention
for HAWTs, although some work is presently under way;
see, for example, Reference 3. A recent review of
horizontal-axis wind-turbine aerodynamics may be found
in de Vries [4, 5].

Assuming that adequate means are available for the
determination of the cyclic aerodynamic loads, we may
consider the most basic type of dynamic analysis that is
available for any form of rotating machinery. The under-
lying principle involved in designing a turbine against the
deterministic loads is the avoidance of resonance. This
topic was the subject of a recent review paper by Sullivan
[6]. The basic, and indeed essential, means of avoiding the
coincidence of a frequency corresponding to the natural
mode of the structure and that of a forcing function is the
ability to perform reliable calculations of the natural fre-
quencies of the important modes of vibration of the struc-
ture. Nowadays, most designers have finite-element
packages available to them for such calculations, and no
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pioneering work is required for their application to sta-
tionary wind-turbine systems. The most convenient way of
presenting and interpreting these results is in at inter-
ference diagram, sometimes called a Campbell diagram, an
example of which is shown in Fig. 1. The finite-element
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calculations are usually performed for a stationary system,
although the frequencies of interest are those correspond-
ing to the natural modes of vibration of the rotating
system. Proper calculation of these is fairly complicated
and will be dealt with in the following text; however, a
reasonably accurate estimate may be obtained by simply
allowing for the centrifugal stiffening effects on the rotating
blades, which manifest themselves as a change in natural
frequency with rotational speed, as shown in Fig. 1. The
interference diagram shows the natural frequencies,
together with the rotational speed and its harmonics. It is
considered prudent to arrange these so that the harmonic
rays do not coincide or come near to coinciding with the
natural frequencies at the operating speed, thus avoiding
possible resonances.

In general, each blade will see the cyclic aerodynamic
loads at a frequency of once per revolution (or IP), and
may also be affected by the harmonics. The importance of
the harmonics depends on the particular load case con-
sidered. The support structure will experience the sum of
the blade loads at any particular instant, and, if all the
blades are identical, these loads will be modulated so that
an n-bladed rotor will give rise to loads at a frequency of
nP and its harmonics on the support structure. Small
amplitude loads, at frequencies other than these, will arise
because of slight imbalance between the blades. This may
be due to manufacturing imperfections or difference in
blade setting due to operation of the control system.

3 Dynamic modelling

Despite the fact that wind-turbine technology is relatively
new, there are, in fact, quite a few mathematical models
available which attempt to compute the aeroelastic behav-
iour of HAWTs. These vary from the very simple, such as
the closed-form solution described by Stoddard [7]
through limited degrees of freedom models, Garrad [8], to
very complex systems, of which there are now quite a
number; see, for example, Hoffmann [9], Friedmann and
Warmbrodt [10], Vollan [11], Fabian [12] and Thur-
good.f
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An excellent introduction to this subject may be found
in the substantial text [13] developed by the Massachu-
setts Institute of Technology, which considers aero-
dynamics and transmission systems as well as general
aeroelastic problems. A very good idea of the state of the
art may be obtained from Reference 14. An overview of the
subject is also presented by Thresher [15].

Any dynamic analysis of a wind turbine that addresses
the problems of stability or forced response will rapidly
encounter some common difficulties. Many engineers,
faced with problems in structural dynamics, will imme-
diately consider the use of one of the finite-element pack-
ages that are now very widely available. However, a
particularly interesting aspect of dynamic modelling of a
complete wind-turbine system is the fact that gross move-
ment of one part of the structure occurs relative to another
part. This precludes the use of standard finite-element
packages that normally consider structures in which
motion occurs about a mean undisplaced position. For
this reason, all dynamic analysis packages used for wind
turbines have had to be specially constructed. Some have
opted for finite-element approaches which are developed
from first principles [12], some for lumped parameter
methods,! but most have opted for a modal description.

Whatever approach is used, similar problems and
results are encountered. It is useful to consider a specific,
but highly idealised, model to demonstrate some fairly
general points. As an example, let us take the three degrees
of freedom system shown in Fig. 2. This model has been

Fig. 2 Simple three degrees of freedom model

used in various other papers, see for example Dugundji et
al. [13]; it is intended to represent a two-bladed rotor
mounted on a flexible tower. The blades are allowed to
exercise independent in-plane 'lead-lag' motion, and the
tower is permitted to move laterally in the plane of rota-
tion. If £,- represents the lead-lag angle of blade i, if/ the
azimuth and q the linear motion of the tower head, then
the kinetic energy of the system may be easily calculated to
give:

' ]+ 2q £ (fa + Q cos (fa + Q + Meq
2 I (1)
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"1
•r

Jor
Jo

S = \ mr dr
Jo
CR

M = m <ir

Me is the mass of the tower, R is the radius of the blades
and m is their mass per unit length.

Assuming further that the blade and tower flexibilities
may be expressed in terms of a simple spring, the potential
energy may also be formulated as:

U=±Kt£zf+\Ktq
2 (2)

i= 1

where K^ represents an equivalent spring for the blades
and Kt is a similar parameter for the tower.

Equations of motion for wind-turbine systems tend to
be very clumsy, as they involve rotating and nonrotating
components, and, hence, a well organised approach to
their derivation is essential. Virtually all authors adopt the
well known Lagrangian method that permits the deriva-
tion of equations of motion to be performed mechanically,
after expressions for the kinetic and potential energy have
been formed. The equation of motion for the generalised
co-ordinate q{ is given by:

d_(T£_(y£
dt dqt dq(

(3)

where Qt is the generalised force. In this particular
example, we intend to neglect all influences except the
mechanical coupling in the system, so the generalised
forces are zero and, hence, the equations of motion are:

(4)

where Mt = Me + 2M, the total linear mass moving at the
top of the tower.

4 Stability

These equations may be linearised, which allows the term
cos {\j/ + £i) to be reduced to cos \jj, but the periodic terms
cannot be removed. Thus, for a two-bladed rotor mounted
on a flexible tower, the equations of motion written in
matrix notation are always of the form:

= 0 t = (5)

For rotors with three or more blades, co-ordinate trans-
formations exist that allow periodicity to be removed.
However, as most large wind turbines have two blades,
and a two-bladed rotor is more difficult to analyse, the
discussion will be limited to that case.

There is, of course, no trouble in solving a linear differ-
ential equation of this sort, many numerical algorithms
exist for that purposes. Indeed, in principle, the problem of
solution would be no more complex for a realistic system
than for the trivial example described here. It is highly
desirable that the system is checked for stability. This can
be done in the time domain by simply supplying a set of
initial conditions and allowing the equations to be inte-

grated over a long period of time. The solution may then
be observed, to see if it is convergent or divergent. Such an
approach is, however, unreliable, and a more direct
method is desirable. Had the matrices in eqn. 5 been con-
stant with time, standard eigenvalue analysis could be con-
ducted to check for stability, and to determine the natural
frequencies of the rotating system. The presence of the
periodic coefficients do, however, preclude such an
approach.

The problem of predicting the stability of differential
equations with periodic coefficients is by no means new. A
great deal of work has been done on the problem, largely
inspired by the helicopter industry, where very similar
dynamic problems occur. The wind-turbine community is,
therefore, fortunate that it may apply the existing helicop-
ter technology to wind-turbine problems. To illustrate the
type of analysis that is required and to demonstrate the
existence of at least one type of mechanical instability, we
shall continue the analysis of the simple example described
here.

The most widely used method is known as Floquet-
Liapunov theory. Rather than describing the theory math-
ematically, it is perhaps useful to attempt to understand, in
a general way, how the theory works. The first step of the
approach is to transform the n equations of motion for an
n degrees of freedom model into 2n first-order equations.
Each state is individually perturbed by assigning it a unit
initial value while all the other states have zero initial
values. The system equations are then integrated around
one revolution of the rotor, and the final solution vector
vx{T) is stored. This process is repeated for each state until
2n solution vectors vx(T), v2(T), . . . , v2n(T) have been
obtained. These are assembled column by column into a
matrix, termed the transition matrix [(?]• It seems sensible
that, because such a matrix contains information about the
transient behaviour, it should also be useful in analysing
the stability of the system. It is outside the scope of this
paper to demonstrate this fact, but knowledge of [Q] is
indeed the key to ascertaining the stability information
about the system it describes.

XK are the eigenvalues of [(?], such that AK = ePKt and
pK{= <xK + icoK) are the stability exponents of the system
which may conveniently be determined by the relation:

1
<*K - T K\

and

1 _. f Im (XK)
(6)

The damping in the system aK is, therefore, uniquely deter-
mined. Unfortunately, coK is indeterminate by integer
multiples of 2n/T = fi. The actual frequency can either be
determined by inspection or by obtaining a solution using
the eigenvector corresponding to coK as an initial solution
vector. The resulting solution will be periodic with fre-
quency a>K.

It should be apparent that use of Floquet theory is very
cumbersome and expensive. It is necessary, when consider-
ing stability, to construct a root-locus plot, which means
calculating the stability parameters for a range of rotation-
al speeds. For the simple 3 dof system used here as an
example, six rotations of the rotor must be performed to
provide the transition matrix for a single eigenvalue calcu-
lation. For a more representative system with, say, twelve
modal degrees of freedom, 2 x 12 = 24 rotations are
required for each eigenvalue. Repeating this process for,
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say, ten rotational speeds, therefore, requires 240 revol-
utions. Some of the natural frequencies may be quite high
and, hence, place considerable demands on the integration
algorithm. It is, therefore, useful to consider more elegant
approaches.

Physically it seems fairly obvious that the equations of
motion themselves must contain the stability information,
and it ought not, therefore, be necessary to solve them to
deduce the system frequencies and damping. This
approach has been persued by Kaza and Hammond [16],
who have produced a considerably more economical
scheme. Further information about Floquet analysis, in
general, and wind-turbine stability analysis, in particular,
may be found in References 10, 11, 13, 17 and 18.

Floquet analysis has been used to determine the system
frequencies and damping of the model described by eqn. 4.
The results of this analysis are presented in Fig. 3, which is

region of
instability

Fig. 3 Typical stability plot
rotor collective mode

—•— rotor cyclic mode
—O— tower lateral mode

typical of a stability plot for a wind-turbine system. Nor-
mally, the machine would operate at the low-frequency
end of the plot. The frequencies here have been non-
dimensionalised with respect to y/(K4/I) = a>^. The impor-
tant characteristic demonstrated by this plot is the
coalescence of the tower mode and the blade lead-lag
cyclic mode. In helicopter parlance, this coalescence rep-
resents an instability known as 'ground resonance' that can
be very violent. Note also that, as the two modes coalesce,
the damping which had hitherto been identically zero
becomes finite, shown in the Figure as positive, for conve-
nience, but is in fact destabilising. A model that included
aerodynamics and structural damping would have had
some finite but stabilising damping at all stable rotational
speeds. It is customary to conduct stability analyses in the
absence of structural damping, as its influence is very
powerful, and it is reassuring to know that a system is
stable without it.

In conclusion to this discussion of stability analysis,
some comment should be made about the physical charac-
teristics of mechanical instabilities. It is important to
appreciate the difference between instabilities and reson-
ances. To excite a resonance, the system must be forced at
a certain frequency that coincides with a natural frequency
of the structure. The presence of an instability, on the
other hand, will result in some arbitary perturbation of a
linear system growing without limit in the absence of any
forcing. The above illustration of mechanical instability
used 'ground resonance' as an example. Ground resonance
involves the in-plane motion of the hub and blades. It
occurs when the in-plane motion of the blades generates
inertial loads which react with the tower, in such a way as

526

to produce hub motion that further excites the blade
lagging motion. For the present generation of wind turb-
ines, this particular instability cannot occur. At present,
wind-turbine instabilities are not categorised as rigorously
as helicopter instabilities; although they do not have parti-
cular names, they can occur and should be checked for
during the design process. Finally, it should be stressed
that the example used for illustrative purposes here is a
drastic oversimplification. Typical analyses of real systems
have many degrees of freedom, and may exhibit not only
pure mechanical instabilities such as described here, but
also true aeroelastic instabilities akin to the well known
'flutter' problems encountered in aircraft. To predict aero-
elastic instabilities, aerodynamic effects must of course be
included.

5 Forced response to deterministic loads

A true aeroelastic model of a wind turbine must contain a
structural dynamic model of the system including the
power train and control system, as well as the blades and
tower. All of these elements play their part in determining
the behaviour of the system as a whole when it is excited
by aerodynamic loads. There is, in principle, no difference
in deriving the mathematical description of such a model
from the simple derivation described in the preceding text;
precisely the same steps would be followed. However, the
analysis would now have to include the generalised forces,
which would be derived from considering the aerodynamic
loads.

The basis of the aerodynamic calculations is exactly
that used for performance and static load prediction. It is,
however, important to appreciate that the structural velo-
cities of the turbine are now superimposed onto the wind
speed and rotational velocities. The additional velocities
modify the angle of attack of the blade section and, hence,
change the blade loads as illustrated for flatwise motion in
Fig. 4. It is the change in angle of attack that results in so
called 'aerodynamic damping'. This effect is essential to the
aeroelastic behaviour of the system; it implies that the for-
mulation of the generalised forces is fairly complex alge-
braically, although, in principle, it is straightforward.
Unsteady effects may also be included at this stage.

It is easy to discuss such a task in a few words, but
experience of such a problem soon shows that the alge-
braic manipulation involved in the formulation of a good
structural model can be truly formidable and run to
hundreds of pages of calculations. The accuracy of such a
model is limited only by the analyst's stamina and care!
Short of providing a detailed derivation and presentation
of an aeroelastic model, little more need be said about
structural response predictions. Interested readers can
consult References 7 and 8, for relatively simple examples,
and References 10,11 and 12, for more complex analyses.
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^^^s' plane of
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Fig. 4 Impact of structural motion on angle of attack

9 = built-in twist, a = angle of attack
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Fig. 5 shows the blade root loads for the NASA
MOD-0, which has been a workhorse for much experi-
mental testing and validation of computer codes. Fig. 5a
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Fig. 5 Mod-0 rigid hub loads—comparison of predicted and measured
blade loads

predicted, 0 measured
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periodic hub loads are greatly reduced by the spatial
averaging of the three-bladed rotor. The addition of the
teeter hinge, see Fig. 6, which permits the rotor to move as

spanwise
axis

Fig. 6 Teeter hinge

shows the flatwise bending moment as a function of
azimuth. The dominant feature of this waveform is the
large peak that occurs about 50° after bottom dead centre,
which is a result of passing through the tower shadow. The
MOD-0 rotor is downwind of the tower and hence this
load is very large. For a HAWT, the dominant blade load
for the inner portion, at least, is the gravitational bending
moment which is shown clearly as a steady IP oscillation
in the edgewise loads of Fig. 5b. It is interesting to note the
higher frequency oscillation in both of these loads. These
are more prevalent in the edgewise than in the flatwise
direction. The flatwise motion is heavily damped by virtue
of the aerodynamics, whereas, even in a quite highly
twisted blade such as this, the edgewise direction must rely
mostly on structural damping, with a little help from the
drive train. Upwind rotors will have more sinusoidal wave-
forms than these, but, otherwise, the characteristics will be
similar. Any rotor which is subjected to an appreciable
tower shadow, which is present in upwind as well as down-
wind rotors, will exhibit some high harmonic loads which
result from the impulsive nature of the shadow. Fig. 5 also
shows curves predicted by the author and reported by
Garrad [8].

The example cited was an early version of the MOD-0
machine which had a rigid hub. Later versions, and indeed
most large two-bladed machines, have teetered rotors. For
a rigid-hub machine, the dominant cyclic load on the shaft,
nacelle and tower is the out-of-plane bending moment.
Removal or reduction of this load helps considerably in
the design of the components downwind of the rotor. This
is achieved in two distinct ways, either by the addition of a
third blade or by use of a teeter hinge. The addition of the
third blade increases the rotor's symmetry so that the large

a rigid body out of the plane of rotation, allows the reac-
tion to the out-of-plane moments to be derived from the
considerable inertia of the rotor. The introduction of the
teeter pin at the end of the shaft completely eliminates the
troublesome moment loads.

Many different methods are available for predicting the
types of loads described by Fig. 5; they differ quite rad-
ically in their complexity. In the USA and Europe, experi-
mental data from large machines has been collected for
about one year. Owing to the commercial nature of this
information, little has been published. In the UK we are
just entering the phase of comparing measurements with
predicted dynamic loads, a process that should allow more
reliable judgments about the efficiency of the various ana-
lytical procedures to be made.

6 Forced response to stochastic loads

To keep the analytical methods described in the preceding
text in perspective, it is important to be sure that the
various elements that make them up are of comparable
accuracy. There seems little point in developing the struc-
tural or aerodynamic models too far, in the absence of an
adequate representation of the behaviour of the wind itself;
whose fluctuation is, after all, responsible for a large pro-
portion of the load variation. Compared with the structur-
al models, this aspect of wind-turbine analysis is very
much in its infancy; although well established descriptions
of the wind are available.

We have so far dealt with steady-state loading of rotors
and their support structures. In addition to this cyclic
loading, there will be transient loads that result from wind
gusts, or, more accurately, from turbulent variations in the
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wind velocity. Wind turbines must be designed against
these as well as steady-state loads. A fast acting control
system may be able to alleviate these loads to some degree,
but, as they result from a continuously varying source,
such a course of action may result in considerable wear in
the control system itself, and possibly in large loads in the
rotor, if the control surfaces are made to move very fast.
Whether the turbulent loads are removed or accommo-
dated, it is necessary to be able to predict their nature.
Such a step is significantly more complicated than the pre-
diction of the deterministic loads.

The structural dynamic models used for prediction of
stochastic loads are similar to those required for determin-
istic work, although it will normally be necessary to make
some simplifications. The description of the wind does,
however, require some discussion. The idea of a gust of
wind is a familiar one. It is easy to understand and has the
advantage of being relatively easy to analyse. Given the
existence of a structural dynamic model of the system,
using a time-domain integration scheme and bearing in
mind the validity of any aerodynamic models used for
local calculations, it is a fairly trivial step to perturb the
wind input and, hence, model a gust. The transient behav-
iour of the system may be clearly observed with only
minimal changes to any mathematical models adopted.
There are plenty of data available on the modelling of
these discrete gusts from the meteorological point of view.
Frost [19] has compiled a fairly comprehensive set of data
intended specifically for wind modelling for wind-turbine
applications. The use of such a wind model has the advan-
tage of analytical simplicity, but does not provide a realis-
tic representation of the wind itself.

An important aspect of the natural wind is the distribu-
tion of turbulent energy at different frequencies, a charac-
teristic that is easily described in the frequency domain.
The modelling of the coherence, or rather incoherence, of
the wind turbulence is also vital in providing a realistic
input to load prediction procedures. The fact that, as the
wind velocity increases on one part of the rotor disc, a
corresponding increase does not necessarily occur else-
where will obviously play an important part in determin-
ing differential loads. Both of these characteristics are
difficult to model accurately using discrete gust methods.

It has long been recognised in the field of wind loading
of stationary structures that frequency-domain methods
are superior to discrete gust methods. There are well-
established spectral representations of the wind: again
these are conveniently collected by Frost [19] and a good
state-of-the-art review is to be found in the CIRIA pro-
ceedings [20]. Hitherto, these methods have found little
application in wind-turbine analysis. The reason for this is
the added complexity introduced into the structure by the
rotation of the blades. To understand the importance of
this difference, a short digression is required.

It is useful to consider a turbulent eddy being convected
past a structure. Consider, first, a stationary structure, as
in Fig. la; if the eddy has a length / and the mean wind
speed is u, a useful parameter is the time taken for this
eddy to pass the building, which may be derived as tx =
l/u. Now consider the same situation, except that the sta-
tionary structure is replaced by a rotating blade, Fig. 1b.
For a point on the blade moving at a speed rQ, the time
for the passage of the eddy is now the time taken for the
blade to cut through it t2 = 1/rQ. The time is therefore
considerably smaller for the turbine blade than for the sta-
tionary structure, the ratio being u/rQ, or the inverse of the
local speed ratio I/A. This process has the effect of moving
the turbulent energy to higher frequencies and, in particu-
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lar, to harmonics of the rotor speed; this is shown graphi-
cally in Fig. 8.

building

t =l/rO

windmill

Fig. 7 Turbulent loads
a Stationary structure b Rotating turbine blade

1

Fig. 8 Turbulent velocity spectra seen from stationary and rotating
frames of reference
a Rotating frame, b stationary frame

The 'slicing' process may be conveniently described
mathematically in terms of correlation functions. Many
such functions exist and only one, the von Karman, will be
used here. Assuming that the turbulence is homogeneous
and that Taylor's 'frozen turbulence' hypothesis which
relates spatial and temporal separation is valid, the cross-
correlation of the velocity, at two points separated by the
vector r, may be expressed using the standard expression

2 (Y^Y'3
Puu(r, T) = 7^77 < r K1/3O7)

- 2 / 3

a detailed description of which may be found in Reference
20. Kl/3 and K_2/3 are Bessel functions of the second kind,
F is the Gamma function, / is the turbulence length scale,

n = Jn ^ y (r2 + uV)1 / 2 (8)
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and u is the mean wind speed. Simple physical reasoning
shows that the wind that comes into contact with a point
on a rotating wind-turbine blade occupies a spiral shape
stretching upwind of the turbine, at any instant in time.
This is in contrast to the straight line that would charac-
terise the wind incident on a stationary building. By con-
sidering this spiral, eqn. 7 may be transformed to provide
an expression for the crosscorrelation of the wind velocity
fluctuations between two points on a wind-turbine rotor.
This is achieved by replacing eqn. 8 with

x {r\ r2
2- cos (0S (UT)2}1/2 (9)

where rt and r2 are the radii of the two points considered,
Q is the speed of rotation and 6S is an angle: 6S = n, if the
points are on different blades and 6S = 0, if they are on the
same blade. This particular transformation only applies for
two-bladed machines.

This approach was first suggested by Rosenbrock [21]
and has since been rediscovered by Kristensen and Frand-
sen [22] and Anderson [23]. It was validated experimen-
tally by Connell [24]. A similar study is presented for
helicopter rotors in Reference 25.

It is perhaps more familiar to consider turbulent fluc-
tuations in spectral terms, rather than as correlation func-
tions. Eqns. 7 and 9 lay the foundations for the use of a
proper description of the wind, together with a structural
model of the turbine. Such a calculation has been under-
taken by Garrad and Hassan [26] and Madsen [27]. To
do this in the frequency domain, the equations of motion
must be transformed and generalised forces calculated by
combining eqn. 7 with some suitable aerodynamic model
of the blades. A description of this process is given by
Garrad and Hassan [26]. In addition, some suitable
usually fairly simple structural model must be incorpo-
rated. Using this approach, a response spectrum may be
computed which has the rather clumsy form:

Sjj(p) = constant x

where

SU(XJO xlt p) dxK dxt

p is nondimensional frequency = o/Q, D} is a damping
parameter dependent on the blade aerodynamics and
mode shape, <£,- is the blade mode shape, xK, xt are non-
dimensional blade radii = r/R and Su(xK, xt, p) is the
Fourier transform of eqn. 7 with r\ taken from eqn. 9. Some
typical response spectra for blade teetering and two-blade
vibrational modes taken from Garrad and Hassan [26] are
shown in Fig. 9. This Figure clearly demonstrates both the
blade resonances and the peaks in the turbulent loads.

Use of a spectral model of the wind turbulence allows
the coherence of the wind to be included in a realistic way.
It also permits a proper description of frequency content of
the wind to be included in the aeroelastic model. Use of
such a model brings with it considerable analytical com-
plexity. As the turbine rotor is by its very nature sensitive
to changes in flow around it, coupling between the various
modes of vibration of the rotor may occur via the aero-
dynamic loads. Application of spectral methods to station-
ary structures such as buildings usually assumes that the
modes of vibration are uncoupled, because there is no

feedback between the applied loads and resulting displace-
ments. This will necessarily be the case, the modal inde-
pendence being a basic building block of modal analysis.

p=cu/n
2 A 6 8

Fig. 9 Structural response of a rotor to turbulent loads expressed as
modal response in teeter, symmetric and asymmetric flatwise modes

asymmetric, symmetric, — — teeter

The presence of coupling significantly complicates the
analysis. The main aim of an analysis that includes wind
turbulence will probably be the prediction of fatigue
damage. It is not valid to combine the stochastic and
deterministic loads by simple addition, and some further
work is required to provide a suitable analytical basis for
such a combination. The foundation for this work already
exists in the field of communication engineering, see for
example Bendat [28]. For rotors mounted on flexible
support structures, it is important to include tower models
in any dynamic analysis. For two-bladed rotors, the inclu-
sion of a tower model and the consequent presence of
periodic terms in the equations of motion, combined with
the use of spectral methods, presents further complications.

Reference to Fig. 8 demonstrates that proper analysis of
turbulent wind is required to estimate the stochastic loads.
The Figure clearly demonstrates that, under certain condi-
tions, the higher harmonic loads may assume considerable
importance. The spatial distribution of the loads which can
be accurately modelled by such a system is also of obvious
importance.

It is evident from the experience of design teams, who
have been operating large wind turbines, that the ability to
predict fatigue life may rely very heavily on the availability
of a dynamic model that contains a realistic wind descrip-
tion. No doubt in the near future the analytical effort in
this field will increase substantially. Only spectral methods
have been described here; there is also some research effort
underway that attempts to simulate realistic turbulence in
the time domain, using considerably more sophisticated
methods than those usually described by the term 'discrete
gust'.
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7 Conclusions

This paper has attempted to outline some of the problems
and means for their solution that occur in the dynamics of
wind-turbine design. It was not intended to make a critical
review of existing methods, but rather to enable an inter-
ested reader to obtain insight into the nature of the
problems and to lead him to more detailed works where
required.

The dynamics of rotating machines is a complex subject
and, in the case of a wind turbine where the main motive
force is so difficult to characterise, additional com-
plications arise. The absence of any concensus of opinion
about design choices, even over such a basic characteristic
as the number of blades, demonstrates that there is still
much to be learned about wind-turbine behaviour. This
review has demonstrated that the dynamics of the turbine
play a central role in design and, consequently, this aspect
of wind-turbine technology will no doubt evolve consider-
ably in the near future.
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