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The following are derivations of the output loads available in FAST for a 2-bladed turbine configuration. The loads for a 3-bladed turbine are very
similar. Note that some of the loads are given multiple names in order to support variation among the user’s preferences.

Along with most of the loads are associated partial loads. These partial loads will be used at the end of this document to redevelop portions of the
equations of motion to speed up the computations. The definition of these partial loads is as follows:

X .
Let: FSource q q q t (Z Source q t qrj+FSource (q’q’t)
where F) source, are the partial forces and FJ source, 18 all components of F o . that are not of this form.

Similarly, let: Mg %% (G,q4,q.t) [ZMQ% j+M§fn§;§§ (¢.9.t)

MN i@X;

Source,

MN @X;

Source

where M )@ are the partial moments and is all components of that are not of this form.

Source,

To find the loads characterizing the constraint forces between two bodies, say A and B, all that is needed is to remove body B from the equations of
motion and determine what equivalent load applied on A would give the same effect that body B had on A originally.
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Blade 1 Root Loads:

There are 10 output loads at the root of blade 1. 5 of them are the 3 components of the root force F;, (0) (2 components are expressed in both the

coned and blade reference frames). The other 5 are the 3 components of the root bending moments, M, (0) (again, 2 components are expressed in

both the coned and blade reference frames). If blade 1 is to be removed from the turbine, loads F,/ (0) and M, (0) applied to the hub at the blade 1

root (» = 0) must give the equivalent effect of blade 1 in the resulting equations of motion. The new generalized active force for the equations of
motion resulting from these new loads is:

F

r

=V FS+ e MY (r=12,...,22)

B1
where the equivalent loads acting at the hub’s center of mass (point C) are related to F,, (0) and M} (0) because the hub is rigid as follows:
FS=F30) and  ME =M(0)+r(0)xF3(0)  or My =M, (0)+ [rQS’ (0)- rQC]x F;!(0)

But since Fye =Fp2 4+ Flf x p2¢ , this generalized active force can be expanded to:

F

r

B1

=2+ Fal xr%)-Fy (0)+ "l (M} (0)+[ r® (0)-r% |xFy (0)} (r=12...,22)
Now applying the cyclic permutation law of the scalar triple product:

El, = "¢ -Fy/ (0)+ "ol {r® < F}} (0)}+ "of (M}, (0)+[r® (0)-r® |xF3/ (0)} (r=12...,22)

rlpr — r
which simplifies to:

F

r

= 52 FS(0)+ Fool [ MU (0)+r® (0)x F3 (0)] (r=12....22)

B1

[This can also be simplified to F

r

=5v31(0)-Fy (0)+ "o -M},(0) (r=12...,22) , which will be used later in the ensuing analysis.]

B1 r

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1. Thus,
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F

r

B1_Fr +F

Bl r

(r=12...,22)

+F +F +F,
AeroB1 "1GravB1 " |ElasticB1 "1 DampB1

Since v and “w! (and “v? and “v¥'(0)) are equal to zero unless 7 = 1,2,...,14;Teet, the generalized active forces associated blade elasticity and

damping do not contribute to the root loads (since also, £,|, .= and E_|Damp8 , are equal to zero within this range of 7’s). So,
Fly =F | 4 F st Flus  (7=1.2...14;Teet)
Thus,
BldFlexL BldFlexL
Ely= | 500 () [ Fitos (r) =" (r) g2y =" (r) Fa™ (r) Jdr [ o (r)- Mg (r)dr
0 0 (r:1,2 ..... ]4;Teet)

+ "5 (BIAFIexL)-{ Fyypyyogy, ( BldFlexL)—m®™ | gz, + "a® (BldFlexL) |

Now noting that EySt(r=Eve +1vS (P ! x r2 (r) , this can be expanded as follows:

BidFlexL

B .f [Ev’Q + HvrSI (V)]-[F:me (V)_/UBI (F)gzz —/JB] (7’) Eq®! (V)]dr

0

+ [ Ep@ 4 HySt (BldFlexL)] . {FSI

TipDragBl1

(BldFlexL)—m""™ [gzz +Fa® (BldFlexL)]}
(r=12,...,14;Teet)

BldFlexL BldFlexL
b [ (Rl (1) [F s (r) - 1 (r) g2~ (r) Fa® (#)]dr s [ P (r)- MO, () dr
0 0

+[Ea)f’ x ! (BldFlexL)]-{FSI

TipDragB1

(BldFlexL)~m""™ [ gz, + “a® (BldFlexL) ]}

However, since 7 is constrained to be between 1,2,...,14;Teet and since "v*'(r) is equal to zero and “e"’ () equals “e;" with this constraint, this

can be simplified as follows:
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BldFlexL
El, = j Ey? -[Fjelmm (r)—p®(r) gz, —u® (r) “a™ (r)} dr+ Fv? '{Frf,fumgsz (BldFlexL)—m""™ [gzz +Fa® (BldFlexL)J}
IgldF lexL BldFlexL
+ I [Eer x @ (r):|.|:F/;SZmBI (r)—p" (r)gz,—u" (r) "a™ (r)}dr+ _[ Lol MY, (r)dr (r=12,...,14,; Teet)
0 0
+[ Feol" xr® (BIAFlexL) |-{ Fyypyypgn (BldFlexL) —m"™ [ gz, + "a® (BldFlexL) |}
Or by engaging the cyclic permutation law of the scalar triple product,
BldFlexL
Fr|31 = J- Ey? -[FASelmBI (r)—u® (r)gz,—u" (r)“a® (r)} dr+ *v? .{FTfIfDmgBl (BldFlexL)—m"'™ [gzz + Eq¥ (BldFlexL)J}
zldF lexL BldFlexL
+ I Fol’ -{rQs’ (r)x[F:ZmBI (r)—p" (r) gz, — 1" (r) Fa®™ (r)]} dr + j Lol MY, (r)dr (r=12,...,14,; Teet)

0 0
+ el -{rQSI (BldFlexL)x {FTprDragBI (BldFlexL)—m"'"™ [gzz +Fa® (BldFlexL)]}}

Thus it is seen that,

BldFlexL

Fy (0)= [ [Flp(r)-u" (r)ge,— " (r)"a® (r) | dr+ Fyypy (BldFlexL) —m""™ | gz, + "a* (BldFlexL)]

0

d
. BldFlexL BldFlexL
MU (0)+r® (0)xFl(0)= [ MU, (rydr+ | o8 ([ Fu (r) = () g2y — " (r) Fa® (r) ]dr
0 0
+r? (BldFlexL)x{FTf;Dmgm (BldFlexL)—m"'"™ [gzz +Fa® (BldFlexL)]}
or
BldFlexL BldFlexL
M (0)= j MY (r)dr+ I ro (r)x [FASeImBI (r)—yBl (r)gz, - u! (r) Fa® (r)] dr
0 0

+ 1 (BIAFIeXL) < | Fyypyogn (BldFlexL) - m""™ [ gz, + "a® (BldFlexL) ]}
BldFlexL

—r®! (O)X{ I [Fj:mm (r)—,uB[ (r)gz2 —,uB] (r) EqS! (r)] dr + FTf;DragBI (BldFlexL)—mBlTi” [gzz + £’ (BldFlexL)]}

0
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or
BldFlexL BldFlex.
M (0)= | M (r)drs [ [r® (r)=r® (0) [ Flhp ()" (r) gz, =" () a” () Jdr
0 0
+[r®" (BIdFlexL) = r®" (0) x| Fypopoga: (BldFlexL) —m”"™ [ gz, + “a* (BldFlexL) |}
Thus

E s1 E s1 E s1 E_ SI ..
BldFlexL 8%+ vl {Z } {Z ]" vTeet( )qTeet

Fal (0)= [ i (r) =" (7) -

o 5> jt(E o2 (0)i [ S ()i [+ (8 ()

i=4 i=16

dr

8z, + {z E S B[dFlexL } {z E s1 BldFlexL) }L Eypsl (BldFlexL)c'jTeet
FTprDragBl (BldFleXL)—mB]TiP = =

14 d ] 18 d . d .
+ {;E( Ev,.SI (BldFlexL))q,. } + [FZ,;E( Ev,.s’ (BldFlexL)) g } + E( Ev;;e, (BldFlexL))qTeet
and
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" _BldFlexL i
MBI (0)_ J. MAeroBI( )d?'
0
+ I I:rQSI(r)_rQSI(O):IX F/felroBI( )—,uB](r) i=16 ir

) {i%(Ev,.s'(r))q-iné(Ev;”(r))q,-}%(‘sv?;,( )1

i=4 i=16

14
gzﬁ[zE ;! (BldFlexL)g }{ZE > (BldFlexL)j }

i=1 i=16
+ Fvpr, (BldFlexL)
+[VQS1 (BldFlexL)—r o (0)}>< FTfZDragBI (BldFle)CL)_mB]Tip ‘1)4”2( - )qmt 8 7
+ {ZE( Eyst (BldFlexL))qi}+ [Zd—( Eyst (BzszexL))ql}

i=4 i=16

d .
+ & (vt (BdFlexL) )y,
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BldFlexL
Fyl(0)== [ "' (r)*f (r)dr—m"" "v® (BldFlexL) (r=12,...,14;16,17,18;Teet)
0
BldFlexL 14 d 18 d d
0= | {Fz'mm< )—mr){gzz{z;(ﬁvf'<r>)q',.Hz—(Evf'<r))q-,]+—(ﬁvi;,@))%}}dr
; = dt T dt dt
-mP" 3 gz, + ii(EvTW(BldFlexL))q + ii(‘gv.s’(BldFlexL))q +i(Evs' (BldFlexL))c}
2 Py dt i i i:16d i i dt Teet Teet
+ Fyiyues: (BldFlexL)
and
BldFlexL
My (0)== [ [r® (r)=r® (0)]x[ " (r) “v¥ (r)]dr—m"""" [ r®' (BldFlexL)—r®" (0) |x "v}' (BldFlexL) (r=1,2,...,14;16,17,18; Teet)
0
BldFlexL 14 d 18 d d
Mz ©0)= [ [r®(r)-r®(0)]x {F;;MA)—u“(r){gzz{25(%5'<r>)q~i}+[zz(Evf’<r>)qi}+E(Ev:;e,<r>)qm,}}dr
0 i=4 i=16

N i%(Evisz (B[dFlexL))q'i:|+|:idi(Evl§l (BldFlexL))q',]

82, |:
+ [rQs’ (BldFlexL)—r®" (0)] X3 Fpp pragsr ( BldFlexL) —m"'™ =4 =1
d :
+ E( Eydl (BldFlexL)) Groer
BldFlexL

b M (r)dr

AeroBl1
0
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The output loads are as follows:

RootFxcl = F,/ (0) i1/ 1,000 Blade 1 OoP shear force at the blade root (directed along the xc1-axis), (kN)

RootFycl = F}/ (0) 2"/ 1,000 Blade 1 IP shear force at the blade root (directed along the ycl-axis), (kN)

RootFxbl = Fy, (0)-j;' /1,000 Blade 1 flapwise shear force at the blade root (directed along the xb1-axis), (kN)

RootFybl = F}] (0) - jit /1,000 Blade 1 edgewise shear force at the blade root (directed along the yb1-axis), (kN)

RootFzcl = RootFzbl = F,)/ (0) -i%/1,000=F,] (0) -j3' /1,000 Blade 1 axial force at the blade root (directed along the zc1-/zb1-axis), (kN)
RootMxcl = RootMIP1 = M}, (0)~iIB 1/ 1,000 Blade 1 IP moment (i.e., the moment caused by IP forces) at the blade root (about the xc1-axis),
(KN-m)

RootMycl = RootMOoP1= Mg, (0)-i;' /1,000  Blade 1 OoP moment (i.e., the moment caused by OoP forces) at the blade root (about the ycl-
axis), (kN-m)

RootMxb1 = RootMEdg1 =M, (0)-j' /1,000  Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade root (about
the xb1-axis), (kN-m)

RootMyb1 = RootMFIpl = M, (0)- j;' /1,000 Blade 1 flapwise moment (i.e., the moment caused by flapwise forces)at the blade root (about the
ybl-axis), (kN-m)

RootMzcl = RootMzbl = M}, (0) 2/ 1,000= M}, (0) J& /1,000 Blade 1 pitching moment at the blade root (about the zcl-/zbl-axis),
(KN-m)
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Blade 1 Local Moment Qutputs:

There are 3 output loads at any of the selected span stations i (r= R¥*" ") of blade 1 (i=1,2,...,5). These are the 3 components of the bending moment
M) (RS”“" i) expressed in the /ocal blade coordinate system (principal structural axes). Examining the results for the blade 1 root loads, it follows
that:

BldFlexL BldFlexL
MZI (RSpan i) _ J' MﬁiioBl ( dr + J' |: Qs1 r)_rQSI (RSpan z)] I:F,felmm (r)gz2 _‘uBJ (r) EaSI (r)] J ( . 5)
RSpan i t1=1,2,...,

+ [rQS' (BldFlexL)— rQS’ (RS”“” ! )] x {Frf,fumgm (BldFlexL)—m"'"™ [gz2 Fa® (BldFlexL)J}
The output loads are as follows:

SpniMLxbl = M Y (RS””” i)-nfl (RS”“” i)/ 1,000  Blade 1 local edgewise moment at span station i (about the local xb1-structural axis), (kN-m)
SpniMLybl = M\ (RS”“” i)~nf’ (RS”“" i)/ 1,000  Blade 1 local flapwise moment at span station i (about the local yb1-structural axis), (kN-m)
SpniMLzbl = My (RS”‘"’ i)-nf ! (RS” “ i)/ 1,000 Blade 1 pitching moment at span station i (about the zc1-/zb1-/local zbl-axis), (kN-m)
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Blade 2 Root Loads:

The equations for Fy; (0), My, (0), Fy, (0), Fy, (0), My, (0), My, (0), and all 10 output loads are similar to blade 1.
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Hub and Rotor Loads:

There are 14 output loads at the hub end of the low-speed shaft. 5 of them are the 3 components of the thrust and shear force F,,

Rotor

(2 components

are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). 5 other loads are

the 3 components of the shaft bending moments, M ;" (again, 2 components are expressed in a nonrotating frame, 2 components are expressed in a

rotating frame, and 1 component is independent of rotation). The 11" and 12™ loads are the rotor power and rotor power coefficient, respectively.
The 13" and 14™ loads are the rotor thrust and rotor torque coefficients, respectively. For a 2-blader, all these loads are given relative to the teeter
pin (point P) as indicated. For the 3-blader, all of these loads are given relative to the apex of rotation (point Q, which is coincident with point P).
The new generalized active force for the equations of motion resulting from these new loads is:

_E_P P E_L L@wP _
Hroor = Ve Froor 0 - My, (r—I,Z,...,ZZ)

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, and
the teeter springs and dampers. Thus,

*

Rotor T Bl

+F

+F

r

GravB1 + F;" ElasticB1 + F;

+F
r AeroB1 r

DampB1

+F
B2 r

+F
H

r

(r=12...,22)

AeroB2 + F;’ GravB2 + F; ElasticB2 + F;’

DampB 2

+F

+F +F
GravH " |SpringTeet | DampTeet

Since “v! and “w! are equal to zero unless r = 1,2,...,14, the generalized active forces associated with blade and teeter elasticity and damping do

not contribute to the hub and rotor loads (since also, F, I DapB1? F s> B Damp2” F. SpringTeet? and F, pampreer. 4T€ equal to zero if r =
1,2,...,14). So,
7| Rotor =4 Bl +F;' AeroB1 +E GravB1 +F1r B2 +F; AeroB2 +F; GravB2 +F1r H " |GravH (7" - 1’2”14)

When using the results for the blade 1 and blade 2 root loads, this equation can be simplified as follows:

+F

H r

F| +F
Bl r

Rotor r

*
52 tE

, ooy (r=1.2,..,14)

Thus,
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e = VS (0)+ Pl M (0)+[ 1% (0) =9 + |5 FJ (0)} + *vE - F7 (0)+ "ol -{ M f, (0)+[ 1% (0)-r% |x F}3 (0)} rmt208)
r=1,z,...,
-m" EyC. (Eac+gz2)—Eer (IH Fa" + T xIH-EwH)
or when grouping like terms:
s = P L E OV EE O) " (a4 g2 (r=12....19
_ _ r=1,z,...,
+Eol! LM (0)+ ML (0)+ [ (0)=r® T Fg) (0)+[r®% (0)=r® < 2 (0)-T" - Fa ~ Fo xT" - Fo" |
Recognizing that Eye =5yl + Folf x(rP ¢4 rQC) , this generalized force can be expanded to:
F,Rowr=[Evf+Ewr" x(rPQ+rQC)]-[FIfII(0)+FBS;(0)—mH(EaC+gz2)} : )
— _ r=12...,14
+ ol M (0)+ ML (0)+ [ (0)= o T Fg) (0)+[ 19 (0)-r® Jx 2 (0)-T" - Fa ~ Fo xT" - Fo" |
Now applying the cyclic permutation law of the scalar triple product:
Fl, =% .[F;; (0)+ F2 (0)-m" (“a® + gzz)]+ £t .{(rPQ +rQC)x[F;' (0)+ F2 (0)-m" (“a +gz2)}} : \
— r=12...,14

+F ol My, (0)+ M7 (0)+[ 1% (0)=r% Jx Fji (0)+[r% (0)=r® |x F3 (0)-T" - *a” — Fo" xT" - *o" |
which simplifies to:
= Ey) | Fy (0)+ F3 (0)-m" (PaC +gz,)|
My, (0)+ My, (0)+[r"2 +r% (0) |x ) (0)+[ 1" + 127 (0) [ F5 (0)] (r=12....14)

e
_mH(rPQ+rQC)X(EaC+gz2) IH EgH _E HXIH E o H

However, “o! equals “w’ when r is not equal to Teet. Thus the generalized active force associated with the rotor can be expressed as follows:

| Rotor
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Flr = 500 | Fi (0)+ FS (0)=m" (PaC + gz,)|

r

_mH(rPQ+rQC)X(EaC+gz2)_I_H_EaH_EwaI_H_EwH
Thus it is seen that,

Fror = Fyi (0)+ Fg; (0)—m" (Eac +gz2)
and

e {M},’, (0)+ M3, (0)+[ " + 1% (0) | Fy/ (0)+[ r" +1%7 (0) |x F}; (0)} (r=12...,14)
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M2 =M, (0)+M,, (0)+[rPQ +rQS’(0)]><F;,’(0)+[rPQ +rQS2(0)]><F;j (0)-m" (rPQ +rQC)><(EaC +gz2)—7’{ EgH _EgH oy TH . EgH

Thus,

14

i .. .. d ) d )

Fror = Fii (0)+ Fg; (0)—m" {[Z E"f%]““ V eerliree + {ZE( vy )%} +E( Ve ) et + gzz}
i=1 i=4

and

MEE = M2 (0)+ M2 (0)+[r™ +r%(0) [x Fa (0)+[ "2 + 122 (0) |x Fi2 (0)

H (. PO , ,0C G Ecn | EC o SEATRY diec .
—-m (r tr )x{(z Vi qij+ vTeetheet+|:ZE( Vi )qi:|+_( vTeet)qTeet+gz2}

i=1 i=4 dt

1" {(i Ew,.”c'i,)+ Eop G +[i%< EwiH)q.i} +i( Ewrzet)qreet}— EyH o TH . EgH

i=4 i=7 dt
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Or,
FP

Rotor,

14 d . d .
= FE 0 5 0[5 (556)a [0 (5 Y .
i=4

=F3 (0)+ F32 (0)-m" ®vE (r=1.2,...,14,16,17,...,22)

and
ML = M2, (0)+ ML, (0)+[ 1" +r% (0)|x Fgl (0)+[ 1™ 412 (0)|x FZ (0)—m" (1™ 1% )x v ~T" ol (r=12,...,14;16,17....,22)

Mo =My, (0)+ My, (0)+[rPQ +r? (0)]><FBSIZ (0)+[rPQ N (O)JXFBSZZt (0)-m" (rPQ +rQC)x{[i d (Evf)qi:|+i<Evfbet)C}Teet +gz2}

i:4E dt
T[S ol )a | 4 (0t )i - o T o
dt i qi dt Teet qTeet

i=7

The output loads are as follows,

RotThrust = LSShfiFxs = LSShfiFxa = Fy,,, -,/ 1,000 =Fy,. _-c,/ 1,000 Low-speed shaft thrust force (directed along the xs-/xa-axis) (this
is constant along the shaft and is equivalent to the rotor thrust force), (kN)

LSShftFya = Fy,,. -e,/ 1,000 Rotating low-speed shaft shear force (directed along the ya-axis) (this is constant along the shaft), (kN)
LSShftFza=F,,  -e,/ 1,000 Rotating low-speed shaft shear force (directed along the za-axis) (this is constant along the shaft), (kN)
LSShftFys =—F,,,.-c, /1,000 Nonrotating low-speed shaft shear force (directed along the ys-axis) (this is constant along the shaft), (kN)
LSShftFzs = Fy,,.-c,/ 1,000 Nonrotating low-speed shaft shear force (directed along the zs-axis) (this is constant along the shaft), (kN)

RotTorq = LSShftTq = LSShftMxs = LSShftMxa = M 2" -e, /1,000 = M ;" -¢, /1,000 Low-speed shaft torque (about the xs-/xa-axis) (this is

Rotor Rotor
constant along the shaft and is equivalent to the rotor torque), (kN-m)
LSSTipMya =M ;" e, / 1,000 Rotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 blades]
(about the ya-axis), (kN-m)
LSSTipMza = M ;2" -e, / 1,000 Rotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 blades]

Rotor

(about the za-axis), (kN-m)
LSSTipMys =—-M 12" -¢, /1,000  Nonrotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3

Rotor

blades] (about the ys-axis), (kN-m)
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LSSTipMzs = M ;%" -¢, /1,000 Nonrotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3

blades] (about the zs-axis), (kN-m)

CThrstAzm = MOD {A TAN 2(—-CThrstzs,—CThrstys)- (@) + 360+ AzimBIUp + 90, 3 60} Azimuth location of the center of thrust (about the
/4

xs-/xa-axis), (deg)

CThrstys’ + CThrstzs’
CThrstRad = CThrstArm = \/ - Tt Dimensionless radial (arm) location of the center of thrust (always positive, directly

AvgNrmTpRd
radially outboard at azimuth angle CThrstAzm), (-)
_ LSSTipMzs _ LSSTipMys

and CThrstzs =
RotThrust RotThrust

RotPwr = LSShftPwr = (G p,7, + Gges. ) RotTorq = (G5, + Ggey. )- LSShftTq Low-speed shaft power (this is equivalent to the rotor power), (kW)
1,000 - RotPwr

where: CThrstys =

RotCp = LSShftCp = Low-speed shaft power coefficient (this is equivalent to the rotor power coefficient), (-)

ERho - ProjArea-V,;

1,000 RotTorq

RotCq = LSShftCq = Rotor torque coefficient, (-)

> Rho - ProjArea-V; -TipRad

1,000 RotThrust

RotCt = Rotor thrust coefficient, (-)

ERhO - Projdrea-V;

where V) is the hub-height wind speed and the projected area of the rotor, Projdrea, is found as follows:
cos [Pr eCone (1)] + cos [Pr eCone (2)] }2
2

ProjArea = nTipRad’ {

The rotor torque is equal to low-speed shaft torque as seen above. It is noted that this torque can be computed differently using the drivetrain
flexibility and damping, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows.
First of all, the equation above is equivalent to saying:

LSShfiTq = "o}, - M2 /1,000

Rotor
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However, since “v] _ is equal to zero, it is also equivalent to say:
LSShﬁTq = ( Evll;rTr : FR}:)mr + szrTr ' Mllilr()?(i ) /1’ 000
or,
LSShﬁTq = FD”T’” Rotor / I’ 000 or LSShﬁTq - (F;;-Tr Bl + FDrTr AeroB1 + FD”T” GravB1 +FD*rTr B2 + FDrTr AeroB2 + FD"T” GravB2 +FD*rT" H + FDrT” GravH ) / ]’ 000

From the equations of motion, it is easily seen that this is equivalent to saying:

LSShfiTq = (—FD,T, /1,000

ElasticDrive Dy DampDrive)

and thus,

LSShfiTq =(DTTorSpr-qp,;, + DTTorDmp -4, )/ 1,000 (= M g% -¢, /1,000 and is equivalent to the rotor torque)

Rotor

Thus, both the load summation method and the constraint method are equivalent. However, if the drivetrain DOF is disabled, then ¢q,, . will equal
zero and g, ,, will equal zero, which implies that, at least, DTTorSpr is equal to infinity (since the product of DTTorSpr and g, ,, is, in general,

nonzero). Thus, to avoid using 2 different methods to calculate LSShfiTq , it is best just to use M s -¢, /1,000 , which will always work, regardless
of the number of DOFs disabled.

Like the LSShftTq , it is noted that LSSTipMya can also be computed differently using the teeter springs and dampers, though the load summation

method and this other constraint method are equivalent. This also can be demonstrated as follows. First of all, the equation above is equivalent to
saying:

LSSTipMya = *w¥ -M" /1,000

Teet Rotor
Or,

M;(0)+M1§(0)+[rPQ+rQS’(0)}xFBSII (0)+[rPQ+rQsz (0)]xES (0)
_ ) )

LSSTipMya =* ., - /1,000
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Now applying the cyclic permutation law of the scalar triple product:
szd x[rPQ + 7! (O)J-FBSI’ (0)+ Ew;’ x[rPQ +r% (O)J-F:; (0)—mH Ewget x(rPQ +rQC)-(EaC +gz2)
LSSTipMya = — — /1,000
+Eoft, | MU (0)+ M (0)-T" Fa ~ o xT" o™ |
Recognizing also that “vy, (0)=“wp,, x [rPQ + % (0)] : Vet (0)=F oy, x[rPQ + 2 (0)] ,and  Fyvp =fo, x(rPQ +ro€ ) , this can
be simplified as follows:
Ve (0) Fyy (0)+ Feoey - M3 (0)+ "y, (0)- F (0)+ ooy - Mg (0)=m" g, -(Pa + g2,
LSSTipMya = - - /1,000
_Ewget'(IH_EaH+EwaIH‘EwH)
or
LSSTipMya =(Fruo |y, + Fraaly + Frea|, * Freal sy )/ 1,000
or,
LSSTlpMya - (F;eef H + F;eet BI + F;eet B2 + FTeet AeroB1 + FTeet AeroB?2 + FTeef GravH + FTQQ’ GravB1 + FTeet GravB2 ) / ]’ 000
From the equations of motion, it is easily seen that this is equivalent to saying:
LSSTlpMya - (_ FTeet SpringTeet - FTeet DampTeet ) / ]’ 000
and thus,
IF [ 1wt > TeetSStP, TeetSSSp - SIGN (g, )( Groer| — T eetSStP) , 0]
LSSTipMya =1 +IF||qy,,| > TeetHStP, TeetHSSp - SIGN (1,,, ) (||~ TeetHStP), 0| /1,000 (=M% .. /1,000)

+IF | gy, <> 0,TeetCDmp-SIGN (4, ),0 |+ IF |

Gro:| > TeetDmpP,TeetDmp - q..., 0]
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Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate LSSTipMya
LaP

Rotor

if various DOFs are disabled, it is best just to use M, . -e,/ 1,000, which will always work.
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Shaft Strain Gage Loads:
There are 4 output loads at point SG on the low-speed shaft [which is a point on the shaft a distance ShftGagL towards the nacelle from point P (or

point Q for a 3-blader since point P does not exist)]. These are 2 of the 3 components of the shaft bending moments, M :%* (2 components are

Rotor
expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and third component which is directed in the ¢; direction is not
used because it is the same as the rotor torque). Since the low-speed shaft is assumed to be rigid and massless between points P and SG, it is easily
seen that:

M2 = Mo —r™C x Fy

Rotor Rotor Rotor

since ¢ equals —rS¢P,
Thus,

LSSGagMya = M~ -e, /1,000 = LSSTipMya + ShfiGagL - LSShftFza  Rotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the ya-axis), (kN-m)
LSSGagMza = M %" -e, / 1,000 = LSSTipMza — ShftGagL - LSShftFya  Rotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the za-axis), (kN-m)
LSSGagMys =-M ;%" -¢, / 1,000 = LSSTipMys + ShfiGagL - LSShfiFzs ~ Nonrotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the ys-axis), (kN-m)
LSSGagMzs = M ;%" ¢, / 1,000 = LSSTipMzs — ShftGagL - LSShftFys Nonrotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the zs-axis), (kN-m)

Note that no shear or thrust forces need be output at point SG since these would be the same as the shear and thrust forces at point P. Note also that

¢, M =c, - M25¢

Rotor Rotor

and thus the low-speed shaft torque or rotor torque are constant along the shaft.
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Generator and High-Speed Shaft Loads:
There are 9 output loads on the high-speed shaft. The first and second are the high-speed shaft torque, HSShftTq , and high-speed shaft torque

coefficient, HSShftCq , whose convention is that it has a positive value when the LSSAfiTq is positive. The third and fourth are the high-speed shaft
power, HSShftPwr , and high-speed shaft power coefficient, HSShftCp . The fifth and sixth are the generator electrical torque, GenTg, and
generator electrical torque coefficient, GenCq . The seventh is the high-speed shaft braking torque, HSSBrTq . The eighth is the generator electrical
power, GenPwr . The ninth is the electrical generator power coefficient, GenCp .

From a simple free-body diagram of a black-box gearbox,

LSShftTq - GBoxEff S'®¥(-55T)

GBRatio
when the LSShftTq is positive), (kN-m)

HSShftTq = High-speed shaft torque (this is constant along the shaft and has the convention that it is positive

This can alternatively be written in terms of the high-speed shaft motions and torques through use of the equation for the GeAz DOF as follows.
From earlier work,

STy = O MAEL GBOxE 5
1,000- GBRatio

or,
* * * SIGN(LSShfiTq)
(FDrTr BI + FDrTr AeroB1 +FDrTr GravB1 +FDrTr B2 + FDrTr AeroB?2 + FDrTr GravB?2 +FDrTr H + FDrTr|GmVH )GBOXEff
HSShfiTq = .
1,000 -GBRatio
or,
* * * SIGN (LSShfiTq)
HSShﬁTq _ (FGeAz BI + FGeAz AeroB1 + FGeAz GravB1 +FGeAz B2 + FGeAz AeroB?2 + FGeAz GravB2 +FGeAz H + FGeAz vaH)GBO'XEff

1,000 - GBRatio

From the equations of motion for the GeAz DOF, it is seen that this is equivalent to saying:
_F F ) GBoxE ﬂSIGN(LSShﬁTq)

G GeAz GeAz

*

- F GeAz

- F _
Gen Gedz | Brake

1,000 - GBRatio

GBFric

HSShfiTq = (

and thus,
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12 12 d
Genlner - GBRatio’ - g, ,. + GenDir - Genlner - GBRatio (z Folg, J + {za’t( Fof ) q'l] g
i=4 i=7
+ GBRatio-T" (GBRatio-qg,,. ,t)+ GBRatio-T""“ (t) GBoxEf oM )
GBoxE ffSIGN(LSShfth)
HSShftTq =
1,000 -GBRatio
or,
12 12 d
Genlner - GBRatio - §,,. + GenDir - Genlner - (z ok, j + {za’t( Fof ) q'l] -¢, +T°"(GBRatio-q,,. ,t)+T"" (1)
HSShfiTq = = =
/i1 1,000
or,
HSShfiTq = | Genlner - GBRatio- . + GenDir - Genlner *a"* - ¢, + T*" (GBRatio-§,,..t)+T"" (t) ] /1,000
HSShftCq = P00 G0 High-speed shaft torque coefficient, (-)
> Rho - ProjArea-V; -TipRad
HSShftPwr = HSShftTq - GBRatio - q,,. High-speed shaft power, (kW)
HSShftCp = L e High-speed shaft power coefticient, (-)
E Rho - Projdrea-V;
HSSBrTq =T""(t)/ 1,000 High-speed shaft braking torque, (kN-m)
GenTq =T°" (GBRatio-qg,,.,t)/ 1,000 Electrical generator torque (positive reflects power extracted and negative represents a motoring-up

situation or power input), (kN-m)
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1,000-GenTg

GenCq = Electrical generator torque coefficient, (-)

> Rho - Projdrea-V; -TipRad

Though the HSShftTq is calculated the same regardless of the generator model employed, GenPwr is not. Similar to how power is transmitted
through the gearbox with a simple efficiency, for the simple generator or simple variable-speed generator control models, the electrical generator
power is as follows:

SIGN[ T%" (GBRatio-qg. 1)

GenPwr = GBRatio - q,,, -GenTq-GenEff
represents a motoring-up situation or power input), (kW)

/1,000 Electrical generator power (positive reflects power extracted and negative

And for the Thevenin-Equivalent induction generator model,

GenPwr = (PwrM

echanical

— Pwr, )/1,000 Electrical generator power (positive reflects power extracted and negative

ResistiveLoss

Pwr.

StatorLoss

represents a motoring-up situation or power input), (kW)

where,
PWry, s = GBRatio -G, . - T°" (GBRatio - q,,. 1) (the sign of this is governed by 79¢")
Pwr,,,...=TEC NPhall, ‘2 TEC _SRes (always positive)
and
PWreetons = TEC _NPha|L| TEC _RRes (always positive)
where,
.= TEC _RRes = _

(Rel —~ —.J +(X,,+TEC _RLR)j

Slip

and
71 = _2 + r

TEC _MRj
where the definition of V74, Re1, Xe1, and Slip are given elsewhere and j =+/—1 .
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Otherwise, the electrical generator power, GenPwr, is a user-defined function of the high-speed shaft speed, GBRatio-q,,. , and time ¢.

Finally,

GenCp = £,000-GenPwr Electrical generator power coefficient, (-)

= Rho - Projdrea-V;
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Rotor-Furl Axis Loads:
There is 1 output load on the rotor-furl axis. This is the rotor-furl moment about the rotor-furl axis. Of course, we could also output all 6

components of the force FGVen,Rm / moment M(’Xf;m acting on the rotor-furl axis at point V on the nacelle. Following the analysis for finding the

blade root loads, the new generalized active force for the equations of motion resulting from these new loads is:

= B FY e+ PO MY (r=1,2,...,22)

7 |Gen,Rot r Gen,Rot r Gen,Rot

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, the
drivetrain, and the structure that furls with the rotor. Thus,

£ *

"1Gen,Rot = E’ BI + F;’ AeroB1 T F;” GravB1 + E ElasticB1 T F; DampB1 +F;' B2 + F; AeroB2 T F; GravB2 + E ElasticB2 + F; DampB?2
* *
+ F; H + E GravH T E’ SpringTeet + E DampTeet T E ‘G + E Gen + E Brake + F; GBFric + E” ElasticDrive + | DampDrive (l" - ]’ 2" : ’22)
*
+ E’ R + F; GravR + F:’ SpringRF + F;’ DampRF
Since * v;/ and “@" are equal to zero unless » = 1,2,...,11, the generalized active forces associated with blade, drivetrain, rotor-furl, and teeter

elasticity and damping, as well as the generator torque, HSS braking torque, and gearbox friction do not contribute to the rotor-furl loads (since also,

7| ElasticB1° F:” DampB1° E’ ElasticB2’ F:” DampB?2° F'V SpringTeet ’ F; DampTeet ° F:’ SpringRF ° F;’ DampRF ’ F: ElasticDrive > = 7 |DampDrive > ~ 7 |Gen ’ F; Brake’ and F;” GBFric are equal to
zero if r=1,2,...,11). So,
* * *
r|Gen,Rot ~ F:’ Bl +F; AeroB1 +F" GravB1 +F; B2 +F:’ AeroB2 +F; GravB2 +F; H +F:’ GravH +E ‘R +F; GravR +F; G (}" - 1’2" ’11)

When using the results for hub and rotor loads, this equation can be simplified as follows:

Gen,Rot r

Thus,

+F

*
Rotor + E’ R GravR r ‘G

+F

r

(r=12...11)

r

) :EvrP-FR’;W+Eer-Mﬁf"fﬁ:—mREv,D-(EaD+gz2)—Eer-(IR-EaR+EwaIR~EwR)—EwrG-(IG-EaG+EwaIG-EwG) (r=12...11I)

Gen,Rot

E_L E_G E_R

However, ‘o’ , fof, "of, and "o are all equal when r is constrained to be between 1 and 11. Thus, when grouping like terms:
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r Gen,Rot - Rotor r Rotor

P P _ RED(a +gz2)+ w (MLO,P IR E R E R IR E R IG EaG E G IG EwG) (rz],2,...,11)

Recognizing also that v’ = #y” + o xr™ and  “v? =%y + Fo xr"™, when r=1,2,...,11, this generalized force can be expanded to:
_(EV+E N>< 44 FP _ REV E_N VD E _D
7 |Gen,Rot - Vr wr r ) Rotor vr + wr xXr )( a + gzZ)
(r=12...,11)
+E (MII;QtP IR E R _E R IR E R IG EaG E G IG EwG)
Now applying the cyclic permutation law of the scalar triple product:
F:’ Gen,Rot - |:F1§:”0r _mR (EaD + gzZ )j| + Ewt]‘v |: "’ X Flg)mr _mRrVD (Eab + gzz )i|
(r=12..,11)

+Ew'{V (M,?Sf, IR EgR _E RXIR E ()R IG E,G _E GXIG EwG)

which simpliﬁes to:
= [F,;W—mR(EaDJrgzz)]

+Eg (MLQP+FVPXFP mRrVDX(EaD_i_gzz)_TR.EaR ER o TR .EQR _ TG EyG _E G TG, EwG)

" 1Gen,Rot

(r=12...11)

Rotor Rotor

Thus it is seen that,

14 P E D
FGenRot _FRotor_ ( a +gz2)
and

N@V_L@P | 44 P __R_VD E _D _:R.ERER RER GEGEG GEG
My, =Myt + 1" xFy,, —m"r" x(*a® + gz,)-T" - *a x T —I°.%q xI¢ 2o
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Thus,
FV E_D- Z d E D
GenRat Rotor_ Z v ql Zdt< i )q +gz2
i=4
and

12 12 d
M = ML 'l (50005 4 ()4 o5

i=1 i=4

_712_ iEw-R(']' + ii(Ew-R)C] _E,R IR E R IG iquq + ii(Ewg)q- _EyC IG E )6
— i i — dt i i — i i - dt i i

Or,
Flonror, = Frr, —m" v} (r=12,..,14;16,17,...,22)
Vv P R & d E_D\ -
FGenRat _FRotor, - z_( vi )qz +gz2
i=7 dt
and
MY = MM T EL —m P X FyP TR PR —TCFaf  (r=12,...,14;16,17,...,22)

M3 = MEZ, 47 5 =m0 $ 8 (142) o3|

i=4
_713. ii(Ew-R)q' E R IR E R IG ii(EwG)q E )G IG E)C
dt l 4 dt l 4

i=7 i=7
The output loads is as follows,

RFrIBrM = Mge., - rfa/ 1,000 Rotor-furl bearing furl moment (about the rotor-furl axis), (kN-m)

Like the LSShftTq and LSSTipMza, it is noted that the rotor-furling furl moment can be computed differently using the rotor-furl springs and dampers,
though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows. First of all, the equation
above is equivalent to saying:

MY /1,000

RF rl Gen,Rot

RFvIBrM =
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Or,
RFHBrM = “ofy, | Mian + 1" x Fy = m"r' x(Pa” + g2,) - T* - Fa® ~ Fo" xI* - Fo ~T° - Fa® - Fo° xI° - *0° |/ 1,000
Now applying the cyclic permutation law of the scalar triple product:
Oy X1 Frpyyy =" "0y, 1" '(EaD + gzz)
RFriBrM = /1,000
_I_EwIR;Frl (M;S:/:: IR E R _E RXIR E R IG EaG E GXIG EwG)
Recognizing also that “vy,., = fog,, xr'" and  Fvp., = fof,, xr'”, and also that “wy,,,, “@ks,, and “wsy,, are equal, this can be expanded

as follows:

Rotor Rotor

RFrlBer[ Virs  Faey + Ok - ME2E — i Ey? ( aD+gz2)—EwII§Fr,-(7R-EaR+EwR><7R-EwR) Fwl,, - (IG-EaG+E GxI%.F G)}/] 000

or,

RFriBrM = (FRFr, v+ Faet| 4 Fagl o + Fa )/1 000

or,

RErIBrM = (F;Frl + FRFI[‘ + FRFrl T FRFrl , T FRF;[‘  Fpvt | gerons T LR gerons T ERE Gravk T LR Grantr  EREvt Granss T L ke vaBz)/I:OOO

From the equations of motion, it is easily seen that this is equivalent to saying:

RFYIBrM =(~Fy,

- F RFrl

/1,000

SpringRF DampRF )

and thus,
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REFISpr-q s, + IF [qu > RFriUSSP, REr1USSpr (qyy,, — RFrIUSSP), 0]

+[F|:qu < RFrlDSSP,RFrlDSSpr(qRF,., —RF’”IDSSP)’O:' /1,000 ( M Nev fa/1,000)
, = o rfa/ l,

Gen,Rot

RFriBrM =
+ REFIDMP - Gy + IF | sy <> 0, RFrICDmp - SIGN (Ggy )0 |

+IF |Gy > REFIUSDP, RErIUSDmp - 4y, 0]+ IF [,y < RFFIDSDP, RFrIDSDmp - Gy, 0]

Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate RFrIBrM if
various DOFs are disabled, it is best just to use Moy, -rfa/ 1,000, which will always work.
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Tail-Furl Axis Loads:
There is 1 output load on the tail-furl axis. This is the tail-furl moment about the tail-furl axis. Of course, we could also output all 6 components of

the force F}, / moment M, %" acting on the tail-furl axis at point W on the nacelle. Following the analysis for finding the rotor-furl loads, the new

generalized active force for the equations of motion resulting from these new loads is:

=B EY v FeY MY (r=1,2,...,22)

rlTail — Tail Tail

This generalized active force must produce the same effects as the generalized active and inertia forces associated with the tail and tail fin. Thus,

s

rlrail — F;’

r=12...,22)

+ + + (
A "1GravA "1 AderoA " \SpringTF "|DampTF

Since “v” and @) are equal to zero unless » = 1,2,...,11, the generalized active forces associated with tail-furl elasticity and damping do not

contribute to the tail-furl loads (since also, F, and F.| are equal to zero if r=1,2,...,11). So,
" \SpringTF "1 DampTF
F;’Taile; A+F;GravA+F;AeroA (7":],2,...,11)
Thus,
E| =-m"fv ( a +gz2) FEy! ( a +gz2)+ vE FE + (M‘Af‘mA—TA’EaAJrE AT " A) (r=1,2...11)
However, “o and " are all equal when r is constrained to be between 1 and 11. Recognizing also that Eyl =5y 4+ EY s ™ ,
Eyl = By 1+ Fl x ™ and v =5 + @ <" whenr=1,2,..,11, this generalized force can be expanded to:
Fl. . ( vt ol <™ ) Ff - B(Eer+Ew,N er’)-(Ea’+gz2)—mF(Ev:V+Ew,N><rW’)-(Ea’+gz2) ( )
r=12,..,11

E A T4 E_ A E_A_74 E_A
+Eo (MAmAI-a—wa-w)

Now applying the cyclic permutation law of the scalar triple product:
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_E_W K B(E I F(E_J
E’Tajl_ vr '|:FAer0A_m ( a +gz2)_m ( a +gz2):|

+Ea)jv-(MA +r" < F¥

B_WI E I F_WJ E _J T4 E_ A E_A_74 E_A
AeroA AeroA_m r X( a +gz2)_m r X( a +gz2)_1 e - o XI T )

Thus it is seen that,

Fpy=Fp, —m"("a +g2,)-m"("a’ +gz,)

and

M =pm;  +r""xFf —mBrW’x(Ea1+gz2)—mFrWJx(EaJ +gz2)—7" gt _Epi T4 Eg
Thus,

11 11

.. .. d . d .
Fry = F iy —m" {(Z Evi’qi]_'_ Ve +{ZE( Evil)q,]"'_( EVTI‘Frl)QTFrl +gzz}

i=1 i=4 dt
F e . E.J - Ld (g - d g ; .
—-m Z Vidq; | % Viea9rea T Zd_( v; )qi +_( vTFrI)qTFrl + 82,
i=1 i=4 t dt

and

11 11 d d
NaW _ ngA WK K B_WI E_ I E.T - E. T\ - E.T .-
My, =M, +r"" xF,, —mr X{(z v; Qij+ Ve ren +|:ZE( v; )%}4'5( vTFrl)qTFrl +gzz}

i=1 i=4

11 ) - L . d )
-m"r" X{(Z Evil%j+ Ev;FrquFrl 4{25( Evij)ql}—i_z( Ev;Frl)qTF” +gz2}
i

i=1

71 {(i Ew;‘éji}r e + {i%( Fo! )ql} +i( ol )q'ml}_ Eppd s T4 . Egp!

i=4 i=7 dl

r=12,..11
( )
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Or,

FT’:”, =-m® Evf—mF Eyt (r:],Z,...,]];]5)

r

B =F5 - S L (50 [+ L (Bt Y+ g2 b= 3| S (597 ), |+ (v Ve + 22
Tail, Aero dt i )4 dr rFr1 ) 9rrn T 832 ar i )4; dt i ) D T 822

i=4 i=4
and

NaWw _ B WI  E_I F Wl __E.J 7A E_A _ .
My, =-mr”x"y, —mr x v, =17 "o, (r—1,2,...,]],15)
11

L d . d . d . d .
MTZZ%,W =My + 17" X F i —m"r" X{{ZE(E"{)%} +E(Ev;Frt)qurl +gz2}_mFrWJ X{{ZE(EV{)%}*‘E(EV;M)QTM +gzz}
i=4 i=4

=, (&4 d _
A E_AY)\ - E_ A . E_A A E_A
—1 {{;E( e )%}4'5( wTFrl)QTFrl}_ o' xI"- "o
The output loads is as follows,
TFrIBrM = M ;%" -tfa / 1,000 Tail-furl bearing furl moment (about the tail-furl axis), (kN-m)

Like the LSShftTq, LSSTipMza, and RFriBrM, it is noted that the tail-furling furl moment can be computed differently using the tail-furl springs and

dampers, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows. First of all, the
equation above is equivalent to saying:

TFriBrM = Ewd. - MY /1,000

TFrl Tail
Or,
TFriBrM = * o}, -[Mij +r" < FE  —m®r" X(Eal +gz2)—mFrWJ x(EaJ +gz2)—TA ot - FotxI"- EwA}/J,OOO

Now applying the cyclic permutation law of the scalar triple product:

E_A WK K BE, A wi (E,_1 FE, A wi (E,J
Opp X1 F o =M Oppy XT ( a +gz2)—m Orpy < ¥ ( a +gzz)

TFriBrM = /1,000

E A A T4 E_A E_A_7A4 E_A
+ wTFr,-(MAmA—I et =" xI 7 w)
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L w1 wJ WK . .
Recognizing also that “v],, = fop., <", ®v]. = Fwp, xr"", and "y}, = o, <", this can be expanded as follows:

TFriBrM :|: Ve Faoron + " Ot - M oy =" "1, '(Eal +gz2)—mF Ve '(Eaj +gz2)_ O (IA Fat+ ot xT"-F A)}/I 000
or,
TFrIBrM =(Fry |,

+ FTFV/

+ F TFrl

AmA)/J,ooo

GravA

From the equations of motion, it is easily seen that this is equivalent to saying:

TFrl

TFrBrM = (—F )/1,000

SpringTF TR DampTF

and thus,

TFrISpr -y, +IF | Gy, > TFrIUSSP, TFrIUSSpr (s, — TFrIUSSP),0 |

+1IF [qm_, < TFrIDSSP, TFrIDSSpr (g, — TFrIDSSP), 0]

TFrIBrM = /1,000 (= MY tfa/1,000)

Tail

+ TFrIDmp - Gy + IF | G,y <> 0.TFrICDmp - SIGN (47, )0 |
+IF ., > TFrIUSDP, TFrlUSDmp - 1,0+ IF |G, < TFrIDSDP, TFrIDSDmp - §yy,,,0]

Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate TFriBrM if
various DOFs are disabled, it is best just to use Moo -tfa /1,000, which will always work.
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Tower Top / Yaw Bearing Loads:

There are 10 output loads at the tower top / yaw bearing location. 5 of them are the 3 components of tower top force Fgm ros (2 components are

expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). The 5 other loads are
the 3 components of the tower top bending moment, M f,%,’om (again, 2 components are expressed in a nonrotating frame, 2 components are expressed

in a rotating frame, and 1 component is independent of rotation). All these loads are given relative to point O as indicated. Note that none of these
loads include the effects of the yaw bearing mass (YawBrMass), which would affect the forces but not the moments. The new generalized active
force for the equations of motion resulting from these new loads is:

= BV FQ o+ 0P MO (r=12,...,22)

| Nac,Rot r Nac,Rot r Nac,Rot

This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the tower and
platform. Thus,

+F

G r

AeroB2 + F:’

F'| +F
R

N r

=F

+F
H

1 B2

"1 Nac,Rot B

+F

AeroA r

A

+F

+ F GravB1 r

+ F GravH r

+ F GravR r

+ F GravN r

I

AeroB1 + F; GravB2 T E’ GravA T F;’ Gen T " | Brake + r

GBFric (,,-:],2,..-:22)

A +F +F|  +F +F| +F +F|  +F
r\SpringYaw | DampYaw " | SpringRF | DampRF " |SpringTeet | DampTeet " |SpringTF "1 DampTF

+F

r

+F +F, +F +F
ElasticB1 "1 DampB1 " |ElasticB2 "\ DampB2 | ElasticDrive | DampDrive

Since © vro and * er are equal to zero unless » = 1,2,...,10, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl,
and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower

tOp loads (Slnce alSO, E’ ElasticB1° er DampB1° Fv’ ElasticB2 ° er DampB2° F: SpringTeet ° F; DampTeet ° F;’ SpringRF ° F:’ DampRF ’ F;’ SpringTF ° F:’ DampTF ’ F;’ SpringYaw ’ F;’ DampYaw °
" |ElasticDrive > = " | DampDrive > = 7 1Gen ® F; Brake’ and F; GBFric are equal to zero lfr - 1’2" ' ’10) SO’
* * * *
"I Nac,Rot - F; Bl + F; AeroB1 +F'V GravB1 +E’ B2 + F:’ AeroB2 + E’ GravB2 +E’ H + F;’ GravH +F; ‘R + F; GravR +F; G (
r=12,...10)
* *
+E A + F; GravA + F; AeroA +F: N + F; GravN

When using the results for the rotor-furl and tail-furl loads, this equation can be simplified as follows:
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+F

+F,
N

=1,2,...,10)

+F (r
| Nac,Rot "1Gen,Rot "Tail GravN

Thus,

I3

_EJV Vv E_N arNaV EW pW | E N agNaW _NE U (E_U _E,N (JN E,N  E,N_TJN E,k N _
Neeror = Vr FGen’Rm+ , MGen’Rot+ v, ‘Fp.,+ o -M., m" "y, ( a +gz2) , (I a’ + " xI w ) (r—],Z,...,]O)

However, “@! and “w? are all equal when r is constrained to be between 1 and 10. Thus, when grouping like terms:

r

_EV Vv E. W W N E_U E U E_ B NaV N@W:NEN E_N_JN E_N _
Nac,Rot_ vr .FGen,R0t+ vr .FTail_m vr ( a +gz2)+ wr ‘(MGen,Rat_i_MTail _I o - o XI o ) (I"—],Z,...,]())

L E E E_ B E E E_ B 4 E E E_ B :
Recognizing also that “v! = £v? + f@f xr%, vo=50 + Pl xr?, and v =yl 1 F@f xr® | when r = 12,...,10, this

generalized force can be expanded to:

- Tail ~—

_(E,O , E_B oV 4 E O ,  E_B ow w N(E O , E_B ou E_U
NGC’RO[—( v, + "o, xr )-FGM’RM+( v, + "o, xr )F m ( v, + "o, xr )( a +gz2)

(r=1,2,...10)

E_B NaV N@W_:N.E N_E N N.E N
ol (MY, + MY ~TY P — P xT" - Fa" )

Now applying the cyclic permutation law of the scalar triple product:

_E_O Vv w N(E_ U E_B oV Vv ow w N _,0U E_U
F;NQC‘RO[_ vr '|:FGen,R0t+FTail_m ( a +gz2)j|+ wr '|:l’ XFGen,Rot+r ><F‘Tail_n/l r X( a +gz2):|

_ _ r=1,2,...,10
o (M M T a0 T ) ( )
which simplifies to:
F;” Nac,Rot - Ev:) ’ |:FGI;n’R0t + FTZ/H _mN ( EaU + gz2 )i|
(r=1,2,...10)

E_ B NaV NaWw oV v ow w _ _N,0U_(E,U _JN E,N_E, N _ TN E_N
+ o, [MGen,Rot+MTa” 17 XFg gtV XFp,—m'r x( a +gz2) 1 a o' xI w }

Thus it is seen that,

L w N(E,U
Fucror = Fenpor + Fruig =1 ( a + gzz)

and
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M, = MY+ MY 417 Fl 0+ 1% < Flty —m"r® x(2a” +g2,)-T" - Fa® — F xT™ - 0"
Thus,
o 1% w E.U L d
FNatRot _FGenRot+FTall (Z v qu |:Z dt( i +gz2
i=4
and
B@O NaV Naw 1% oW w ” d g vy -
MN(%,Rot _MGegRot—'_MTag +rf XFGenRot X Fryy = v/ qz ZE( Vi )qi + 8%,
i=4
_ 11 g _
(S s [ S 0 i || o
i=4 i dt
Or,
F]f,)acm —FGVean +FTP‘Z, —m" vf] (r:1,2,...,22)

i=4

11 d .
F]\(/)acRot _F(;/enRot +FTP:tl N{[ZE(Evf)qi}_*_gzZ}

and
B@O  _ agNaV NaW v ow W NOU  EU TN E_N _
MNaLRot MGeant MTatl +r ><F‘GenRat r ><I:Tatl —-mr I wr (I"—],Z,...,22)

11 d - 11 d -
B@o Nay Naw ov Vv ow w N_,0U E_ U\ - N E_N)\ - E__N N E_N
MNacRot MGenRot MTatl +r ><I;‘GenRot +r ><F‘Tatl —-mr X{|:ZE( vi )qi:|+gz2}_l [ZE( wi )qi:|_ w xI - w

i=4 i=7
The output loads are as follows,

YawBrFxn = F ;’ac ro ~ @,/ 1,000 Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN)

YawBrFyn = Nm_, 2ot~ @3/ 1,000 Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN)
YawBrFxp = F A‘Zw ror *0; /1,000 Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN)

YawBrFyp = —F ;{w ror 03/ 1,000 Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN)

YawBrFzn = YawBrFzp = Nac zor @4,/ 1,000 =F 13“ ro -0,/ 1,000 Yaw bearing axial force (directed along the zn-/zp-axis), (kN)

YawBrMxn =M ]’\’,ﬁ‘}m d,/ 1,000 Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), (kN-m)
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YawBrMyn =-M ﬁa@c’ORm -d, /1,000 Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), (kN-m)
YawBrMxp = My, - b, / 1,000 Nonrotating yaw bearing roll moment (about the xp-axis), (kN-m)
YawBrMyp = -M ﬁ%m -b, /1,000 Nonrotating yaw bearing pitch moment (about the yp-axis), (kN-m)
YawBrMzn = YawBrMzp = M 3o, -d, / 1,000 = M 335 - b, / 1,000 Yaw bearing yaw moment (about the zn-/zp-axis), (kN-m)

Like the LSShfiTq, LSSTipMza, RFriBrM, and TFriBrM, it is noted that the yaw bearing yaw moment can be computed differently using the yaw
drive spring and damper, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows.

First of all, the equation above is equivalent to saying:

_E_N B@O
YawBrMzn = ~ @y, - My, g, / 1,000
Or,

_E_N NaV Naw ov v ow w N.OU_(E U TN E_N E_N_7JN E_N
YawBrMzn = wYaw-[MGen’Rm+MTa” +1 X Fg, p t1 X Fpy —m'r x( a +gz2)—l Fat -To" xIT - Tw }/1,000

Now applying the cyclic permutation law of the scalar triple product:

E_N ov vV
wYaw xr ’ FGen,Rat Yaw

E_'N ow w NE_'N ou E_U
+ "oy, xr " - Fp,—m” Ty, Xr ~(a +gz2)

YawBrMzn = . Ny Nor SN EN EN_FN BN /1,000
@ D
4o, (Moah, + M =T Fa™ — P xT" - Fo")
. E.U _ E_N ou E.V _ E_N ov E.W _ E_N ow . .
Recognizing also that “v, = "ey, xr° , “v, =", xr° , and Vyae = Oy, XF ", this can be expanded as follows:

| E.v 1% E_N NaV E. W W | E_N NaWw NE_ U E U E N (FN E_N  Z E _N_JN E_N
YawBern—[ Voaw " Foenror T Ovaw MGenror v Vyww " Frais + Oy - Mpgy —m vYaw-( a +gz2)— wYaw-(I o+ e xIT e )}/1,000

Yaw

or,
YawBrMzn = Frp |+ Bl + Fo], * By )/ 1000
or,
F | +F. | +F. | +F | +F, | +F. | +F. | +F +F +F
YawBrMzn = Yaw| Yaw|p Yaw|q Yaw | Yaw|p, Yaw|p, Yaw| , Yaw | geroB 1 Yaw| geroB 2 Yaw | gerod /1,000
+ FYaW GravN + FYaw GravR + FYaw GravH + FYHW GravB1 + FYHW GravB?2 + FYaw GravA
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From the equations of motion, it is easily seen that this is equivalent to saying:

YawBrMzn =(=Fy o o = Fy )/ 1,000
and thus,
YawBrMzn = [YawSpr (@ya, — YawNeut )+ YawDamp - q'YaW] /1,000 (= My, -d,/1,000)

Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate YawBrMzn if
various DOFs are disabled, it is best just to use M ﬁ%m -d, / 1,000, which will always work.
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Tower Base Loads:

There are 6 output loads at the base of the tower. 3 of them are the 3 components of the base force Fy,, (0). The other 3 are the 3 components of

the base bending moments, M,

Turb (0) Note that the tower base loads are all output at the point on the tower where it changes from being rigid to

being flexible (2 = 0). The new generalized active force for the equations of motion resulting from these new loads is:

= 7 (0)-FL, (0)+ “® -MZ,(0) (r=12....22)

" lrurd r

This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the platform.
Thus,

Ed £

F

Turb T

+F

r

F

B2 T

:
e

F| +F| +F
R G

N 4

AeroT + F‘r

+F
H

:
s

r B A

+F

GravT r + F

+ F GravN r

+ F AeroA r

AeroB2 r

AeroB1 +E’ GravR + I:’ GravH + F; GravB1 + F; GravB2 + F;

Gravd (r=12...22)

Gen t r

+F + +F +F +F +F +F +F +F
" |SpringYaw | DampYaw " |SpringRF "I DampRF " |SpringTeet | DampTeet " |SpringTF " DampTF r Brake " |GBFric

+F

r

+F +F| 4+ F +F|  +F +F| ‘
ElasticT "1\ DampT I\ ElasticB1 "1 DampB1 " |ElasticB2 "1 DampB2 | ElasticDrive | DampDrive

Since “v; (0) and “@;" are equal to zero unless » = 1,2,...,6, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl,

teeter, and tower elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to

the tower base loads (Slnce alSO, F; ElasticB1’ F; DampB1° F:” ElasticB2 ° F; DampB2’ E SpringTeet F; DampTeet > = 7 |SpringRF ° F; DampRF ’ E SpringTF ’ F; DampTF ° E SpringYaw’
"\DampYaw ®> ~ 7 |ElasticDrive > ~ " |DampDrive > = 7 |Gen > ~ T|Brake® ~ " |GBFric ’ F:’ ElasticT ° and E DampT are equal to zero lfl" B 1’2’. ’ ’6) SO’
* * * * E
"lrurd F:’ Bl +F" AeroB1 +F; GravB1 +F; B2 +E AeroB2 +F; GravB2 +F; H +E GravH +F; R +F; GravR +F; G ( 1 2 6)
r=1,z,...,
£ * £
+E’ A + F; GravA + F; AeroA +F;’ N + F; GravN + E’ T + E’ AeroT + F;’ GravT

When using the results for the tower-top loads, this equation can be simplified as follows:

Turb F:’ +F

T r

(r=12....6)

r

Nac,Rot +E’ AeroT + "GravT
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Thus,
TwrFlexL
P b By .Fl\(’)ac,Rot + ) -Mﬁa@ﬁm - ,[ u (h) Ey! (h)'[EaT (h)+gZ2]dh—YawBrMassEv,f) '(an +gz2)
' (r=12,....6)
TwrFlexL
+ I [EvrT (h)'FATeroT (h)—l_EwrF (h)'Mf:eroT (h)]dh
0
However, ‘@’ , @, (1), and "o are all equal when r is constrained to be between 1 and 6. Thus,
TwrFlexL
P Evro 'FA(/::c,Rot + Eer ‘le\;'%,oleat - .[ ﬂT (h) EvrT (h)'I:EaT (h)+gZz]dh—YawBrMassEvro '(an +gzz)
TwrFlexL ’ (7" = ],2 ,,,,, 6)
w5 () Flr () + P ()M () |
0
Recognizing also that “v? =y’ (0)+ “o) x[rlo —rr (0)] , and  "v (h)="v](0)+ "o x[rZT (h)—r"" (0)} , when » = 1,2,...,6, this

generalized force can be expanded to:

_{EVT(0)+EC!);,XX[I‘ZO—I‘ZT(O)}}'FO’ +EwX.MB@’0

b r

_f o ()BT (0)+ P <[ 7 ()= (0)]}-[ a” (h)+ gz, |
] (r=12...,6)
—YawBrMass{EvrT (0)+ fw) x[rzo —rr (0)}}-(‘%0 +gz2)

TwrFlexL

+ ! ({EvT (0)+ F X[,,zr(h)_rzr(o)]},FLmT(h)Jr EwX(h).MjeMT(h))dh

Now applying the cyclic permutation law of the scalar triple product and simplifying:



40

TwrFlexL

Fl = EvrT (0)-[F]3w’m —YawBrMass(an +gz2)+ I {F:mT (h)—,uT (h)[EaT (h)+gz2]} dh]

0

Mo, + [rlo -7 (0)} x [Fﬁac’m — YawBrMass ( Fa® + gz, )]

+ wr TwrFlexL TwrFlexL
4 J‘ [rzr (h) _ T (())] X {Fj;mT (h) —u’ (h)[EaT (h) + gzz]} dh+ ML (h)dh
0 0
Thus it is seen that,
TwrFlexL
Fry (0) = Fave o — YawBrMass( Fal + gz, ) - I {FATmT (h)—p" (h)[ “a’ (h)+ gz, J} dh
and 0
MY, (0)= Mz, +[r* —r7 (0)] X[F,@C,M ~ YawBrMass(“a’ + gz, )}
X Twrlj:lexL [rZT (h) e (0)} » {FATemT (h) o (h)[ E,T (h) N gzzj} e Twrj_lexL o (h)dh
0

0

Thus,

FT

i=1 0

and

10 10
M (0) = Mﬁ%ﬁm + [rzo - (0)]>< (F]&C,Rm - YawBrMass{ Z Ev,.o('jl.) +|:z%( Ev,.o)q',] + 8z, }]

i=4

TwrFlexL 10

0 i=1 = dt

10 10 T TwrFlexL 10
Turb (O)ZF]\?ac,Rot _YGWBVMCZSS{[Z Evioqij+|:z%(Evio)q.i +gz2}+ J- {FATemT (h)_luT (h){(z EviT (h
i=4 i=1

ST O P61 ] S 00 o[£ ) e
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(r:],2 ..... 6)

)ql.Hi‘,%(Evf(h))%}gzz}}dh

TwrFlexL

M:eroT (h) dh

0
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Or,

TwrFlexL
FTirb (0)= szm —YawBrMass “v? — J. ' (h)Ev] (h)dh (r=12,...,22)

0

10 TwrFlexL 10
Fro, (0)=Fyo o — YawBrMass{[zjt(Evf)q }gzz} j {FATemT(h)_uT(h){Z%(EviT(h))q'l.}tgzz}}dh

i=4 0 i=4
and
TwrFlexL

M;f”b (0)= Mﬁ%‘;m [rzo —rr (0)] (Flawm YawBrMassEvf)— I [rZT (h)—r*" (0)]x[uT (h)“v! (h)]dh (r=12,...22)

i=4

10
My, (0)= M35, +[r7 —r" (0)]x (F,gm YawBrMass{th +gz2}J

TwrFlexL TwrFlexL

N [rzr(h)_rn(0)]X(FATM(h)_ﬂr(h){[ii(gvir 4 gz, th M, (h)dh

0 i=4 dt
Thus,

TwrBsFxt = F, , (0) -a,/ 1,000 Tower base fore-aft shear force (directed along the xt-axis), (kN)
TwrBsFyt =—Fy,, (0)-a;/1,000  Tower base side-to-side shear force (directed along the yt-axis), (kN)
TwrBsFzt = Fy,, (0)-a, /1,000 Tower base axial force (directed along the zt-axis), (kN)

TwrBsMxt = M, . (0)-a1 /1,000  Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) (about the xt-axis),
(kN-m)

TwrBsMyt =-M, , (0) -a, /1,000 Tower base pitching (or fore-aft) moment (i.e., the moment caused by fore-aft forces) (about the yt-axis), (kN-m)
TwrBsMzt = M3\, (0) -a,/ 1,000  Tower base yaw (or torsional) moment (about the zt-axis), (kN-m)
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Tower Local Moment Qutputs:

There are 3 output loads at any of the selected tower node locations i (h = H"%*") (i=1,2,...,5). These are the 3 components of the bending moment

My (H Node [) expressed in the local tower element coordinate system (principal structural axes). Examining the results for the tower base loads, it
follows that:

My, (HY ") = Mget, + 17 =" (") |x| F gy~ YawBrMass(“a® + gz,) |

TwrFlexL TwrFlexL (l = ]’ 2’, . ’5)
o [ [T ()= () [} E L, () i ()] Pa” (h)+ g2, |Jdh+ [ M, (h)dh
0 g Node i

The output loads are as follows:

TwHtiMLxt = M}, , (H Node i ) ! (H Node i ) /1,000 Tower local roll moment of tower gage i (about the local xt-structural axis), (kN-m)

TwHtiMLyt = -M, , (H Node i ) ¥ (H Node i ) /1,000 Tower local pitching moment of tower gage i (about the local yt-structural axis), (kN-m)

TwHtiMLzt = M, . (H Node i ) ) (H Node i ) /1,000 Tower local yaw (or torsion) moment of tower gage i (about the local zt-structural axis), (kKN-m)
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Platform Loads:

There are 12 output loads at the platform reference point. 6 of them are the 3 components of the platform force F;ydm (3 components expressed in

the tower base / platform coordinate system and 3 components expressed in the inertia frame). The remaining 6 are the 3 components of the platform

moment M },‘ffo (3 components expressed in the tower base / platform coordinate system and 3 components expressed in the inertia frame). These

are the loads transmitted from the water/mooring lines or foundation to the platform.

The output loads are as follows:

PtfmFxt = F ,fydm -a,/ 1,000 Platform horizontal surge force (directed along the xt-axis), (kN)
PtfmFyt =—F, ,fydm -a, /1,000 Platform horizontal sway force (directed along the yt-axis), (kN)
PtfmFzt = F :ydm -a,/ 1,000 Platform vertical heave force (directed along the zt-axis), (kN)
PtfmFxi = F Ifydm -z, /1,000 Platform horizontal surge force (directed along the xi-axis), (kN)
PtfmFyi =—F, }fydm -z, /1,000 Platform horizontal sway force (directed along the yi-axis), (kN)
PtfmFzi = F ;ym -2,/ 1,000 Platform vertical heave force (directed along the zi-axis), (kN)
PtfmMxt =M ,fy@dzm -a,/ 1,000 Platform roll tilt moment (about the xt-axis), (kN-m)

PtfmMyt =-M gj?,zm -a, /1,000 Platform pitch tilt moment (about the yt-axis), (kN-m)

PtfmMzt = M gy@fm -a,/ 1,000 Platform yaw moment (about the zt-axis), (kN-m)

PtfmMxi = M g% -z, /1,000 Platform roll tilt moment (about the xi-axis), (kN-m)

PtfmMyi =-M gy@di, -z, /1,000 Platform pitch tilt moment (about the yi-axis), (kN-m)

PtfmMzi =M ,’fy%zm -2,/ 1,000 Platform yaw moment (about the zi-axis), (kN-m)

However, there are two loads, F7, and M}¢* , that are useful to use when assembling the equations of motion. Both of these loads are always equal

zero, defining the balance between all inertia loads and all applied forces. It makes the most sense to discuss these loads in this section. The new
generalized active force for the equations of motion resulting from these new loads is:

F

r

=52 FL+ P MY (r=12,...,22)

Al All r All
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This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything. Since “v” and
Fw?™ are equal to zero unless » = 1,2,...,6, nothing but inertia, gravity, acrodynamics, and hydrodynamics contribute to these loads. So,
rlAll - F" Bl +F'r AeroB1 +E’ GravB1 +F1’ B2 +F; AeroB2 +F” GravB2 +F: ‘H +F" GravH +F” R +F:’ GravR +F:’ G (]/' _ ] 2 6)
+E’ A + F; GravA + F;’ AeroA +F;’ N + F;’ GravN + E’ T + E’ AeroT + F:’ GravT +E’ X + F;’ GravX + F;'|HydroX
When using the results for the tower base loads, this equation can be simplified as follows:
rlall = F; Turb +F;’ X + F; GravX + F:’ HydroX (V = 1’2" : ’6)
Thus,
L= 57 (0)-Fy (0)+ F00 - M (0)+ 57 -l + "0 - M~ ) (Pa” 4 g2,)= P (T¥-Pa¥ + P xT* - F0*) (r=1,2....6)
Recognizing also that “v] (0)=*v? + f xr*" (0) and v =y’ + FoX¥xr? | when r = 12,...,6, this generalized force can be

expanded to:

F

r

T[E.z , E_Xx_ _zT T
All_I: v, t 0, Xr (0):|'FTurb

(0)+ o - M.

E_Z z E_X X@Z
s (O)+ 5V Fo o+ 0 M

Hydro r Hydro

_mX<EvZ+EwXXI’ZY)-(EaY+gz )_EwX'(TX'EaX—FEa)XXI:X-EwX) (7”21,2,...,6)
r r 5

Now applying the cyclic permutation law of the scalar triple product and simplifying:

_E.Z T
F:’ All v, '|:FTurb

(0)+F,fydm -m” (EaY + gz, )]

- _ r=12,...,6
+Ewrx'[M;Zrb(o)”LMg%+”ZT(0)XFT{,rb(0)—erZYX(an+gz2)—TX-EaX—EwX><TX-EwXJ ( )
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Thus it is seen that,

:FTTl;rb(O)-i-FIfydro _mX(EaY"‘gzz)

and
M =My, (0)+Myel +r? (0)x Fy,, (0)—m*r? x(EaY +gz2)—7x g —EpX xTX FaX
Thus,
VA T d VA zZ X L E_Y . d E_Y
FAII :FTurb (0)+[ZFHydrojqjj_‘_FHydm, -m {(Z vi qz]+|:25( vi )q‘[:|+gz2}
=1 i=1 i=4
and

6 6 6 — 6 —
s 0 S, o o 0L 0)-n | S0 [ B () [ T (S et
j=1 ; :

i=1

Or,
th, = Frirb, (0)+F;ydm, —m* Fv) (7” =12,..., 22)

r

S d
iy = oy (0)+ B =" | 32400 | 52|

i=4
Mj%‘fz = M;f",,r (0)+r”" (0)><FT§,,,r (0)+M,§y@fmr —m*r? x Fy! _TY EpX (r=12,...,22)

6 —
M =Mz, (0)+r™ (0)x Fyp,, (0)+ M —m*r? x{{zi(‘gvi’/)ql}+gz2}— EoX xI* - Fo*
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Equations of Motion In Terms of Loads:
The reason for finding the partial loads is that many portions of the equations of motion can be expressed in terms of the partial loads instead of in the
form given in “FASTKinetics.doc”. Incorporating the partial loads into the development of the equations of motion is beneficial since it requires less
computation time to compute the loads if members of the loads were already found when compiling the equations of motion. For example, many
integrations must be made to develop the portions of the equations of motion associated with the blades. Several more integrations must be made in
order to find the loads once the accelerations are found. When using partial loads associated with the blades to develop the equations of motion, the
additional integrals to find the loads once the accelerations are found will be unnecessary. The main point is that the equations of motion and the
output loads are inherently coupled, and the entire simulation can be done with fewer computations if the system of equations is developed with the
load outputs in mind.

Examining the results from the previous sections of this document, it is easy to see that many portions of the equations of motion can be written in
terms of the partial loads as follows:

} Teet,r),(r,Teet)=—"wp, Mo (r=12,...,14,16,17,...,22)

Rotor,

DrTr Rotor,

( It
], +[c(a0)], +[c q,t)]‘Bj(DrTr,r),(r,DrTr):—Ea)L MU (r=12,...,14;16,17,...,22)
]

a.1)],, +[C(a0)],, |(RErLr).(r RF) =~F ok, - MO, (r=1.2....,14:16,17....,22)

. +[C(q,t)]

o +[C(q,t)]

| |awr).(r.Yaw) =~ op, - MG, (r=12....,22)

[c(
\G +[c(g0)] +[C(a.1)]
[c(

H}(a,r),(r,a)zEvf~FA‘,fw,Rmrwa-Mﬁa@c";mr (a=7.8,...,10,r=12,...,22)

I +[C(q t)] . +[C(q t)] o +[C(q,t)]A
(g @], +[c@n] +[c(an], +[ca], ] o
(a.r).(r.a)=="0; -M* (a=456r=12,.,22)
+[C(a.1)], +[C(q,t)]‘ﬁ +[Cc(gn)] +[can)], +[c(q,t)]\A

[C(q,t)] P [C(q,t)] - +[C(q,t)] ot [C(q,t)] . +[C(q,t)] .
i +[C(q,t):”H +[C(q,t)]31 +[C(q,t)]32 +[c(q,z)]\A

[C(q,t)]‘A (TFrl,r),(r,TFrl) = —Ea);‘m -Mﬁl@,’W (r =12,..., II;]5)

}(a,r),(r,a) == vI.Fy (a=123r=12..,22)
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& This last expression is not needed; instead, just add [C (q,t)]‘A (15.15).

Also, since DOFs DrTr and GeAz are so similar,

[c(an)], +[c(an], +[C(a.1)],, |(Gedz.r).(r Gedz)

-[[c(an)], +[c(an)],, +[C ()], |(DrTrr).(r.DrTr)

< This last expression is only used for (r =13,14,16,1 7,...,22) however. This is because if this expression was used for all of the »’s then the

(r=12,...,14;16,17,...,22)

[C (q,t)]G effects for the generator azimuth DOF row and column would be removed for (r =4,5,...,1 2), which is undesirable.

The only additional terms that need to be added to the overall mass matrix are as follows:

[C(q,t)]‘Bl(Row,Col:16,17,18), [C(q,t)]‘BZ(Row,Col =19,20,21), [C(q,r)]\T(Row,Col =7.8,...,10), [C(q,t)]\6(15,15), and [ C (q”)}‘ggm'
Also,
{_f q’ ’t)}H+{_f(q’q’t)}‘vaH { qqt}‘m-i_ f }‘GaB] { f(qq )}‘A roB1

-
Bz+{_f(q’q’t)}c VB2 { t)HA 0B2

t GravH { C] G t }‘Bl—'—{ f }‘Gav31+{_f(q.’q’t)}
HoS (a0, + 1S (200))

AeroB1 _E_ L L@P
(DrTr)— Oy M -

AeroB2

(~r(@an), +{-/(@a.0))|,  + -/ (@.q. )\G+{ fgall, = (@a)l,,,
H=r(@ar))|, +1-S (@)l +{=f(da0)) (RFrD)="ogpy - MG,
+ _f(q’q’t)} B2 +{_f(q’q’t)}cav32 { f(q 7 t)} AeroB2
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(-r(@anl], +{-r@an,, +H-r@an),
H{=f(@anl], +{-f(@a0)),,, +{-/(@a0),
=S (@an)f, + =S (@@, - @anl|, +H=r (@an),.,
Hor(@an))|, +Hor(@an)], +H-r@an), (Row) ="V Fly - (Row=1.2,3)
H{=r(@qn)f,, +H-r (@, +H-r@ay, .,
=@, =@l s (e,
+{=r(@an),+{-f(@an)|,  +{-flaan)),
(~r(@an], «(-r(@an|,,, +{=r(@a), +{-r@an], , +H-F@a),. (Gedz) = ®at,, - M2
Hr@an), +{-r@anl, ., +-r@aan, .
( {

)
(-r@anl], +{=r @, {7 @anl], f@mm)="oh, misr

+

+{-f(d.0.1)]
+{=f(g.q.1))

BI {_f(q’q’t)}‘GravBI+{_f(q’q’t)}‘Ae,»oBJ}(ROW:]6’]7’]8)’ {_f(q’q’t)}

Hof (@), .| (Row=19.20.21), (-7 (d.4.1)}

ElasticB1 DampB1 ’

ElasticB2 DampB2 ’

+{=1(@.q.1)}
+H{=f(@.q.1)}

DampRF {_f(q’q’l)}‘Spl‘ingTF +{_f(q" q’t)}
H-f(gan)f, N (Row=7.8.....10), {~f (¢.9.0)}

DampTF’ {_f(q’q’t)}‘springYaw * {_f(q’q’t)}‘
H-r (a0, -
+{-f(4.9.1)}

DampYaw ’

AeroT ElasticT

ElasticDrive DampDrive ’



