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The following are derivations of the output loads available in FAST for a 2-bladed turbine configuration. The loads for a 3-bladed turbine are very 1
similar. Note that some of the loads are given multiple names in order to support variation among the user’s preferences.

Along with most of the loads are associated partial loads. These partial loads will be used at the end of this document to redevelop portions of the 2
equations of motion to speed up the computations. The definition of these partial loads is as follows:

3
Let: FSource q q q t (Z Source q t qrj+FS):urce (q’q’t)
where Fj source, are the partial forces and Fi source, 18 all components of FJ . that are not of this form. 4
5
Similarly, let: Mg (G.4.q.t) [Z Mg (g J+M§f,,§;§§ (4.9.1)

where M )@ are the partial moments and MY is all components of M s Y@ that are not of this form. 6

Source, Source, ource

To find the loads characterizing the constraint forces between two bodies, say A and B, all that is needed is to remove body B from the equations of 7
motion and determine what equivalent load applied on A would give the same effect that body B had on A originally.
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Blade 1 Root Loads: 1

There are 10 output loads at the root of blade 1. 5 of them are the 3 components of the root force F,r (0) (2 components are expressed in both the 2

coned and blade reference frames). The other 5 are the 3 components of the root bending moments, M, (0) (again, 2 components are expressed in

both the coned and blade reference frames). If blade 1 is to be removed from the turbine, loads F,5/(0) and M} (0) applied to the hub at the blade 1

root (» = 0) must give the equivalent effect of blade 1 in the resulting equations of motion. The new generalized active force for the equations of
motion resulting from these new loads is:

/7

I3

=5 Fo+ o My, (r=12..,22)3

B1

where the equivalent loads acting at the hub’s center of mass (point C) are related to Fj/ (0) and M} (0) because the hub is rigid as follows: 4

FS=F3(0) and M} =M} (0)+r®(0)xFy'(0)  or M} =M} (0)+[rQS’ (0)_ch]ng1 (0) >

But since FyC =Fy2 4 Flf x r2¢ , this generalized active force can be expanded to: 6

/7

I3

Bl

= (502 + Faf xr ) F5 (0)+ Pl (M2 (0)+[r% (0)~r® |x FE (0)) (r=1,2....22) 7
Now applying the cyclic permutation law of the scalar triple product: 8

El, = "¢ -Fy/ (0)+ ol {r® x 3} (0)}+ "o (M}, (0)+[r®" (0)-r% |xFy/ (0)}9 (r=12..,22)

rlpr = r

which simplifies to: 10

El, = ve F3 (0)+ “ol [ ML (0)+r% (0)x F/ (0)] (r=1.2..,22) !
[This can also be simplified to El, ="v(0) Fy! (0)+ "o - My (0) (r=12...,22) ,which will be used later in the ensuing analysis.] 2

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1. Thus, 13
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—F"

Bl 7

F
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r=12..22)1
( )

AeroB1 +F; GravB1 b F; ElasticB1 v E‘ DampB 1

+F
Bl r

*

F

r

=F

Bl 7

+F

AeroB1 7

(r =],2,...,]4,'Teet) 3

Bl . F; GravB1

Now noting that EyS(rEEve + v (r ol xr %! (r) 6 , this can be expanded as follows:
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BldFlexL 2
El, = j Ey? .[FASe’mBI (r)—p®(r) gz, —u® (r) “a™ (r)]dr+ Fy? '{Frf,fomgsz (BldFlexL)—m"'™ [gzz + Eaq® (Blc?FlexL)]}
;ldF lexL BldFlexL
+ I [wa’ ers’(r)J-[Fi’mBl (r)— " (r) gz, —u" (r) EaSI(r)]dr+ J Lol MY, (r)dr (r=12,....14;Teet) 3
0 0
+[ Feol" xr®" (BIAFlexL) |-{ Fyypyypgn (BldFlexL) —m"™ [ gz, + "a* (BldFlexL) ]}
Or by engaging the cyclic permutation law of the scalar triple product, 4
BidFlexL
El, = j Ey? -[Fjelmm (r)—u® (r)gz,—u" (r)“a® (r)]dr+ Fy? -{FTfIfDmgB, (BldFlexL)—mgTi” [gzz +Fa® (BldFlexL)]}
0
BldFlexL BldFlexL
+ I Fol’ -{rQs’ (r)x[F:ZmB, (r)—p" (r) gz, — 1" (r) “a®™ (r)]} dr + j Lo MY, (r)dr (r=12,...,14;Teet) ©
0 0
+fol -{rQSI (BldFlexL)x {FTprDragBl (BldFlexL)—mBlTi” [gzz + £’ (BldFlexL)J}}
Thus it is seen that, 7
BldFlexL 8
Fyl(0)= | [Firm(r)=u" (r) gz, = 1" (r) *a® (r) | dr + Fyyppypgp; (BldFlexL) —m"'™ [ gz, + “a® (BldFlexL)]
0
d
- BldFlexL BldFlexL
Mg, (0)+r® (0)x Fy/ (0)= j M s (r)dr+ I r% (r)x [FASe’mBI (r)—p" (r)gz,—u" (r) “a™ (r)] dr
0 0
+r%! (BldFlexL)x {Frf,fomgm (BldFlexL)—mBIT"p [gzz + EaS! (BldFlexL)]}
or
BldFlexL BldFlexL
M, (0) = _[ MY (r)dr < I r (r)x[FjeImBI (r)—yB] (r)gz2 —u (r) Fa® (r)] dr
0 0

+ 1% (BIAFIexL) x| Fyypyypgn; (BldFlexL) —m""™ [ gz, + “a® ( BldFlexL) |
BldFlexL

—rQS’(O)x{ [ [inog,(r)—y“(r)gzz-y“(r)EaS'(r)]dHFTf;,,mgB,(BzszexL)-mBmp[gzz+EaS’(BzszexL)]}

0



Jason Jonkman

FASTLoads.doc
1/13/2025
or 1
BldFlexL BldFlexL
My (0)= [ M (r)dr+ [ [ (r)=r® (0) X[ Ems (r) = "' (r) gz, = 4”' () *a® () ]dr®
0 0
+[r®" (BldFlexL) = r®" (0) |x{ Fyppoyugn ( BldFlexL) —m""™ [ gz, + "a® (BldFlexL) |
Thus

3

BldFlexL gz2 + Ev}g] |:Z . SI :| |:Z “ SI :|+ Ev:elet ( )qTeet
i=16

Fl(0)= [ {Edm(r)=u"(r)

a S (507 00)a [ (7 ()i |+ P02 e

i=4 i=16

gz, + {Z ¥y’ (BldFlexL): } {Z ¥y’ (BldFlexL) }L vyr (BldFlexL)gy,,,
BITip

= i=16

+ Fyyues: ( BldFlexL)—m

14 d ) 18 d . d .
+ {;E( Evf’ (BldFlexL))ql. } + [,;Z( EviSI (Bla’FlexL)) g } + E( Ev;elet (BldFlexL))qTeel
and
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BldFlexL 1
M;(0)= J. Mzg‘oBl( )dr
0
+ j I:rQSI(r)_rQSI(O):IX F/felroBl( )_’uBI(r) i=16 ir

7 {f%(fv;w(r))q-iné(Ev;”(r))q,}%(‘gv?;( )1

i=4 i=16

14
gzﬁ[zE ;! (BldFlexL)g }{Z v} (BldFlexL)g }

i=1 i=16
+ Fvpr, (BldFlexL)
+ [VQSI (BldFlexL ) - (0)} x< F, Tf;DragBl (BldF Z€XL) - mBITip ‘1)4T “;[( - )qmt 18 7
+ [ZE( Eys! (BldFlexL))qi}+ [Zd—( Ey! (BzszexL))ql}

i=4 i=16

d 0
+ (vt (BidFIexL) )y,

Or,
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. BldFlexL BldFlexL 3
My (R )= [ M (r)dr+ | [rQSI(r)_rQs'(RSw")]x[F;;,m(r)_ 1 (r) gz, - u” (r) Fa® (r) ]dr
RSpan i Rvan (i=],2,...,5)

N I:rQSI (BldFlexL) _ 08! (RSpan i ):I x {FTf;DragBl (BldFlexL) —m®r I:gzz +Eq (BldFlexL)]}

The output loads are as follows: 4
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Hub and Rotor Loads: 1

There are 14 output loads at the hub end of the low-speed shaft. 5 of them are the 3 components of the thrust and shear force F,

Rotor
are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). 5 other loads are

the 3 components of the shaft bending moments, M ;%" (again, 2 components are expressed in a nonrotating frame, 2 components are expressed in a

(2 components 2

rotating frame, and 1 component is independent of rotation). The 11" and 12% loads are the rotor power and rotor power coefficient, respectively.
The 13™ and 14™ loads are the rotor thrust and rotor torque coefficients, respectively. For a 2-blader, all these loads are given relative to the teeter
pin (point P) as indicated. For the 3-blader, all of these loads are given relative to the apex of rotation (point Q, which is coincident with point P).
The new generalized active force for the equations of motion resulting from these new loads is:

r Rotor r Rotor

=5 Fg. + 0 Mo (r=12..22)3

Rotor

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, and 4
the teeter springs and dampers. Thus,

*

Rotor T Bl

+F

+F

r

GravB1 0 F;" ElasticB1 v F;

5
7 AeroB1 7

DampB 1

+F
B2 r

+F
H

’

(r=12...,22)

+F, +F, +F,
AeroB2 "1GravB2 | ElasticB2 "1 DampB 2

+F

S S
GravH " |SpringTeet | DampTeet

Since “v! and “w! are equal to zero unless r = 1,2,...,14, the generalized active forces associated with blade and teeter elasticity and damping do ©

not contribute to the hub and rotor loads (since also, F, e DampB1? F s> B> Damp2® F SpringTeet? and F, pampreet 2X€ equal to zero if r =
1,2,...,14). So,
. * * * _7
"|Rotor — T 7 Bl +F;' AeroB1 +E GravB1 +F; B2 +F;’ AeroB2 +F; GravB2 +F1r H F" GravH (l" B 1’ 2”14)

When using the results for the blade 1 and blade 2 root loads, this equation can be simplified as follows: 8

+F

H r

(r=12...,14) °

F| +F
Bl r

Rotor 7

*
s tE

7 GravH

Thus, 10
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= EyC - F(0)+ Pl [ M2 (0)+[ 1% (0) e + |x B (0)) + P - FZ (0)+ Pl [ M (0)+[ 12 (0)-r% |x FZ (0))
r | Rotor r BI r BI r B2 r B2 B2 (r _ 1 2 ]4)
—m EyC (EaC+gz2)_E :-I(IH E " L Eg XIH_EwH)
or when grouping like terms: 2
low =8 0)+ 20 () 3 ——
_ _ r=1,z,...,
+ ool M (0)+ ML (0)+[ 127 (0)r® < B0 (0)+[ 2% (0)=r®€ |x FZ (0)-T" - P - Fo" xT" - £
Recognizing that Eye =Eyl + Fol x(rP 2 rQC) , this generalized force can be expanded to: 4
_[E. P, E_H PO oc SI $2 H(E C S)
El. —[ v+ ! x(r +r )]-[FBI (0)+ Fy; (0)-m ( a +gz2)J (r=i2 10
| — r=12,...,
+ ol M (0)+ ML (0) +[ 1 (0)r® < E51 (0)+[ 2% (0)~r® |x FZ (0)~T" - P ~ Fo" xT" - £
Now applying the cyclic permutation law of the scalar triple product: 6
F|. =% .[F;; (0)+ F2 (0)-m" (“a® + gzz)}r E o .{(rPQ +rQC)><[F;' (0)+F3 (o)_TnH(EaC +gz2)}} : )
— r=12...,14

+Fof My, (0)+ M7 (0)+[ 1% (0)=r% Jx Fj (0)+[r%7(0)=r® |x F3 (0)-T" - a” — “o" xI" - *o" |
which simplifies to: 8
= 5v) | Fy (0)+ Fj3 (0)-m" (PaC +gz,) |
My, (0)+ My, (0)+[ "+ (0) |x 5 (0)+[ 1" +r2 (0) [ F5 (0)] (r=12....14)

N
_mH(rPQ+rQC)X(EaC+gz2) IH Eg H _E HXIH E ot

However, “o! equals “w’ when r is not equal to Teet. Thus the generalized active force associated with the rotor can be expressed as follows: 10

| Rotor
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El, = 50 [F8(0)+ S (0)-m" (*a€ +23,) :
o .{M{; (0)+ My, (0)+[rPQ +r! (O)JxFlf,’ (0)+[rPQ +r%? (0)]x Fy; (0)} (r=12...,14)

-m" (rPQ+rQC)x(EaC+gz2)—TH-EaH—EwaTH-EwH

Thus it is seen that, 2

Fp = F3(0)+ F5 (0)-m" ("a€ + gz,)*
and

_4

Ll . . 4 d ] 4 S
L.~ FS(0)+ F2(0)-m" {[zEqu,]+Ev;e,qw[z—(%f)qi} (5 )qg}
i=1

= dt dt
and

M5 =My, (0)+ My, (0)+[rPQ +r% (0)]><F;,’ (0)+[rPQ +r% (O)JxFlfj (0) °

14

—m" (rPQ+rQC)X{(Z Evicqz)'i' Vreerliree [i ( [ ) :| c?t( vTeet)q.Teet+gz2}
=4

i=1

LA
dt
_ 14 i
_IH {(Z Ethqtj"i‘ Ewgetheet |: dt :| wTeet qTeet} EwH XIH . EwH
i= i=7
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and
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LSSTipMzs = M 22" ¢, / 1,000 Nonrotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 2

blades] (about the zs-axis), (kN-m)

CThrstAzm = MOD {A TAN 2(—-CThrstzs,—~CThrstys)- (@) + 360+ AzimBIUp + 90, 3 60} Azimuth location of the center of thrust (about the
/4

xs-/xa-axis), (deg)

CThrstys’ + CThrstzs’
CThrstRad = CThrstArm = \/ e IO Dimensionless radial (arm) location of the center of thrust (always positive, directly

AvgNrmTpRd
radially outboard at azimuth angle CThrstAzm), (-)
_ LSSTipMzs _ LSSTipMys

and CThrstzs =
RotThrust RotThrust

RotPwr = LSShftPwr =(Gp,7, + Ges. ) RotTorqg = (G5, + Ggey. )- LSShfiTq Low-speed shaft power (this is equivalent to the rotor power), (kW)
1,000 - RotPwr

where: CThrstys =

RotCp = LSShftCp = Low-speed shaft power coefficient (this is equivalent to the rotor power coefficient), (-)

ERho - ProjArea-V;

1,000 RotTorg

RotCq = LSShftCq = Rotor torque coefficient, (-)

> Rho - ProjArea -V, -TipRad

1,000 RotThrust

RotCt = Rotor thrust coefficient, (-)

ERhO - Projdrea-V;

where V) is the hub-height wind speed and the projected area of the rotor, Projdrea, is found as follows:
cos [Pr eCone (1)] + cos [Pr eCone (2)] }2
2

ProjArea = nTipRad’ {

The rotor torque is equal to low-speed shaft torque as seen above. It is noted that this torque can be computed differently using the drivetrain 4
flexibility and damping, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows.
First of all, the equation above is equivalent to saying:

LSShfiTqg = “wt . - M 2" /1,000 °

DrTr Rotor



16 Jason Jonkman

FASTLoads.doc
1/13/2025
However, since “v] . is equal to zero, it is also equivalent to say: 1
2
LSShﬁTq = ( Evll;rTr : FR}:)mr + szrTr ’ MI?{E?S ) /1’ 000
or,
LSShﬁTq = FDrTr Rotor /I, 000 or LSShﬁTq = (FD*rTr BI +FDrTr AeroB1 + FDrTr GravB1 +FD*rTr B2 +FDrTr AeroB?2 + FDrTr GravB2 +Fngr H + FDrTr vaH)/]’ 000

From the equations of motion, it is easily seen that this is equivalent to saying: 4

LSSHfiTg = (= Fpy, /1,000 >

ElasticDrive = DTy DampDrive)

and thus, 6

LSShfiTq =(DTTorSpr-q,,,, + DTTorDmp-§,,,, )/ 1,000 (= Mger -¢, /1,000 and is equivalent to the rotor torque) /

Rotor

Thus, both the load summation method and the constraint method are equivalent. However, if the drivetrain DOF is disabled, then ¢, . will equal 8
zero and g, ,, will equal zero, which implies that, at least, DTTorSpr is equal to infinity (since the product of DTTorSpr and q,, .. 1s, in general,

nonzero). Thus, to avoid using 2 different methods to calculate LSShfiTq , it is best just to use Mz -¢, /1,000 , which will always work, regardless
of the number of DOFs disabled.

Like the LSShfiTq , it is noted that LSSTipMya can also be computed differently using the teeter springs and dampers, though the load summation 9

method and this other constraint method are equivalent. This also can be demonstrated as follows. First of all, the equation above is equivalent to
saying:

LSSTipMya =y, - M /1,000 10
Or, 11

xFIfZZ](%)

1

M;’, (0)+Ml’;2 (0)+|:rPQ Jr,,QSI(O)}<FBSI1 (0)+[rpg L 082 (0)
_ , )

LSSTipMya = * ., - /1,000
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Now applying the cyclic permutation law of the scalar triple product: 1

E_H PO 0s1 SI E_H PO 052 s2 HE _ H Po 2 oc E_C

a)me[r +r (0)]-FB, (0)+ ‘o5 x[r +r (O)J-FBZ (0)—m w,eetx(r Fr )( a +gz2)
LSSTipMya = _ _ /1,000
+ o, [ MU (0)+ MU (0)-T" - Fa” - o xT" 0" |

Recognizing also that “vy., (0) = “ey,, x [rPQ +r%! (0)] , Evpe, (0) = Foop,, ¥ [rPQ +ro% (0)] ;and  Fvp, = Fop, x(r"+r%), this can :
be simplified as follows:

Evit, (0)-Ft (0)+ “oft, - M (0)+ v, (0): F3Z (0)+ Fooft, - M35 (0)=m" v, -(Fa€ + gz,
LSSTipMya = _ _ /1,000

_Ewget'(IH_EaH+EwHXIH'EwH)
or
LSSTipMya =(Fruo |y, + Fraal s + Freal, * Freal s )/ 1,000
or,
LSSTlpMya = (Fthet H + F;eet BI + F;eet B2 + FTeet AeroB1 + FTeet AeroB2 + FTeet GravH + FTeet GravB1 + FTeet GravB?2 )/1’000
From the equations of motion, it is easily seen that this is equivalent to saying: 5
. 6

LSSTlpMya - (_ FTeef SpringTeet - FTe‘-’f DampTeet ) / ]’ 000
and thus, 7

IF [ reer| > TeetSStP, TeetSSSp - SIGN (g, )( Groer| — T eetSStP) , 0] °
LSSTipMya =1 +IF||qy,,| > TeetHStP, TeetHSSp - SIGN (1., ) (||~ TeetHStP), 0| /1,000 (=M% .. /1,000)

+IF | gy, <> 0,TeetCDmp-SIGN (4, )0 |+ IF |

Q1o | > TeetDmpP,TeetDmp - q.,.., 0]
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Shaft Strain Gage Loads: 1
There are 4 output loads at point SG on the low-speed shaft [which is a point on the shaft a distance ShftGagL towards the nacelle from point P (or 2

point Q for a 3-blader since point P does not exist)]. These are 2 of the 3 components of the shaft bending moments, M z2>¢ (2 components are

expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and third component which is directed in the ¢; direction is not
used because it is the same as the rotor torque). Since the low-speed shaft is assumed to be rigid and massless between points P and SG, it is easily
seen that:

ML@SG _ ppl@p PG pP 3

Rotor Rotor Rotor

since r5¢ equals —r5¢P. 4
Thus, 5

LSSGagMya = M ;% -e, /1,000 = LSSTipMya + ShfiGagL - LSShftFza 6 Rotating low-speed shaft bending moment at the shaft’s strain gages ’

Rotor
(about the ya-axis), (kN-m)
LSSGagMza = M %" -e, / 1,000 = LSSTipMza — ShftGagL - LSShftFya Rotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the za-axis), (kN-m)
LSSGagMys =-M %" -¢, /1,000 = LSSTipMys + ShfiGagL - LSShfiFzs ~ Nonrotating low-speed shaft bending moment at the shaft’s strain gages

Rotor
(about the ys-axis), (kN-m)
LSSGagMzs = M ;%" -¢, / 1,000 = LSSTipMzs — ShftGagL - LSShftFys Nonrotating low-speed shaft bending moment at the shaft’s strain gages

Rotor

(about the zs-axis), (kN-m)

Note that no shear or thrust forces need be output at point SG since these would be the same as the shear and thrust forces at point P. Note also that 8

Lap _ L@sG 9
oMy, =c,-M

Rotor Rotor

and thus the low-speed shaft torque or rotor torque are constant along the shaft. 10
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Generator and High-Speed Shaft Loads: 1
There are 9 output loads on the high-speed shaft. The first and second are the high-speed shaft torque, HSShftTq , and high-speed shaft torque 2

coefficient, HSShftCq , whose convention is that it has a positive value when the LSSAfiTq is positive. The third and fourth are the high-speed shaft
power, HSShftPwr , and high-speed shaft power coefficient, HSShftCp . The fifth and sixth are the generator electrical torque, GenTqg, and
generator electrical torque coefficient, GenCq . The seventh is the high-speed shaft braking torque, HSSBrTq . The eighth is the generator electrical
power, GenPwr . The ninth is the electrical generator power coefficient, GenCp .

From a simple free-body diagram of a black-box gearbox, 3

LSShﬁTq . GBOxEﬁ'SIGN(LSShﬁTq) 4

GBRatio
when the LSShftTq is positive), (KN-m) 6

HSShfiTq =

High-speed shaft torque (this is constant along the shaft and has the convention that it is positive 5

This can alternatively be written in terms of the high-speed shaft motions and torques through use of the equation for the GeAz DOF as follows. 7
From earlier work,
Egl . ppler GBoxEﬁSIGN(LSShﬁTq) 8

HS S h ﬁ Tq = DrTr Rotor
1,000 - GBRatio

or,

* * * SIGN(LSShfiTq)

(FDrTr BI + FDrTr AeroB1 +FDI‘TF GravB1 +FDrTr B2 + FDrTr AeroB?2 + FDrTr GravB?2 +FDrTr H + FDrTr GravH )GBOXEff
HSShfiTq = .
1,000 -GBRatio

or,

* * * SIGN (LSShfiTq)
HSShﬁTq _ (FGeAz BI + FGeAz AeroB1 +FGeAz GravB1 +FGeAz B2 + FGeAz AeroB?2 + FGeAz GravB?2 +FGeAz H + FGeAz vaH)GBOXEff

1,000 - GBRatio

From the equations of motion for the GeAz DOF, it is seen that this is equivalent to saying:9
_F F ) GBox EﬂSIGN(LSShﬁTq) 10

G GeAz GeAz

*

~ L Gedz

- F _
Gen Gedz | Brake GBFric

1,000 - GBRatio

HSShfiTq = (

and thus,



21
12 2 g 1
Genlner - GBRatio’ -, ,. + GenDir - Genlner - GBRatio (z Fwlj, J + {za’t( Fof ) c]l] -c,
i=4 i=7
+ GBRatio - TGen (GBRath . q.GeAz , t) 4L GBRaZ:[gN ]L'::a‘k; (t) GBofoJpSIGN( LSShfiTq)
GBoxEff SN H5514)
HSShftTq =
1,000 - GBRatio
or, 2

12 12
Genlner - GBRatio - §,,. + GenDir - Genlner - {(z ok, j + {th( Fof ) g }} -¢, +T°"(GBRatio-q,,. ,t)+T"" (1)

HSShfTq =3 = =
iTq 1,000

or, 4
HSShftTq = [Genlner -GBRatio- g, + GenDir - Genlner “a" - ¢, + T°" (GBRatio - §,,, .t )+ T (t)] /1,000

1,000 - HSShfiTq
= Rho - ProjArea-V; -TipRad

HSShftCq = i High-speed shaft torque coefficient, (-)

HSShftPwr = HSShftTq - GBRatio-q,,,. © High-speed shaft power, (kW) 7
1,000 - HSShftPwr

E Rho - Projdrea-V;

High-speed shaft power coefficient, (-) 8

HSShftCp =

HSSBrTq=T""(t)/1,0009 High-speed shaft braking torque, (kN-m)

GenTq =TGe"(GBRati0-q'Ge Az,t)/ 1,000 10 Electrical generator torque (positive reflects power extracted and negative represents a motoring-up 11

situation or power input), (kN-m)
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22

and 12
P =TEC_ NPhal [ TEC_RRes Glvays positive) 11
where,

7 = Via 13

2
(Rd —TEC—RR”}(XE, +TEC_RLR)j

Slip

and

-14

where the definition of 1, Rer, X1, and Slip are given elsewhere and j =/~1.18
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Rotor-Furl Axis Loads: 1
There is 1 output load on the rotor-furl axis. This is the rotor-furl moment about the rotor-furl axis. Of course, we could also output all 6 2

components of the force Fy,, ., / moment M, —acting on the rotor-furl axis at point V on the nacelle. Following the analysis for finding the

blade root loads, the new generalized active force for the equations of motion resulting from these new loads is:

= F et F0) MY (r=12,...,22)3

Gen,Rot r Gen,Rot r Gen,Rot

I3

This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, the 4
drivetrain, and the structure that furls with the rotor. Thus,

* * 5
|Gen,Rot — E’ Bl T F;’ AeroB1 + F; GravB1 + F:’ ElasticB1 * F; DampB 1 +F;' B2 + F:” AeroB2 + F; GravB2 + | ElasticB2 + "I DampB2
* *
+F | +F +F| _ +F +F,‘ +F| +F| +F| +F| 4 - (r=12...,22)
H GravH " |SpringTeet | DampTeet 7 e "1Gen | Brake " |\GBFric | ElasticDrive | DampDrive
*
T E’ R u F; GravR - F:’ SpringRF - F;’ DampRF

Since * v:/ and * wfv are equal to zero unless » = 1,2,...,11, the generalized active forces associated with blade, drivetrain, rotor-furl, and teeter 6
elasticity and damping, as well as the generator torque, HSS braking torque, and gearbox friction do not contribute to the rotor-furl loads (since also,

7| ElasticB1° er DampB1° E’ ElasticB2’ er DampB2° E’ SpringTeet ° er DampTeet ° E SpringRF ° F;’ DampRF ° F; ElasticDrive > ~ 7 |DampDrive > = T |Gen > F; Brake’ and F; GBFric e equal to
zero if r=1,2,...,11). So,
* * * * 7
" 1Gen,Rot - E’ Bl + F;’ AeroB1 +F" GravB1 +F; B2 +F:' AeroB2 + F; GravB2 +F" H +E’ GravH +F; R + F;’ GravR +E’ G (7" — 1’2’. : ’11)

When using the results for hub and rotor loads, this equation can be simplified as follows: 8

_ * * _ 9
" |Gen,Rot = rlRotor +E’ R +F;’ GravR +F; ‘G (V B ]’ 2”11)
Thus, 10

_E.P P E_ L L@P RE.D (E_D E R (FR E_R ,E_R_TJR E_R E G (76 E G, E_G_7G E,_G _ 11
Hoonror = Ve Froor + 7O - Mpyy, —m™ v, ( a +gz2)— w, -(I et + e <17 "o )— w, -(I a0 <17 - a)) (r=12...11I)

E_L E_G E_R

However, ‘o’ , fof, "of, and "o are all equal when r is constrained to be between 1 and 11. Thus, when grouping like terms:
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_ E_P P R E_ D E _D E_G _E G G E_ G 2_

— E P R(E_D E P R_VD E_D
F; GellR a |:FRatar —m ( a +gz2 ):|+ w |:r xFRatar i X( & +gz2 ):|
+Ew (Mjlg‘%- IR E R E RXIR E R IG EaG E GXIG Ew(;)
8

— E P R(E,_D
E Gen,Rot |:FRator —-m ( a +gz2 ):|

+ ol (ML@P+r xF} - mRrVDx(Ea”+gz2)_TR.Ea

r=1,2...11
( )

(r=12...11)
Rotor &_ B R IR E R IG EaG E G IG E(!)G)

10
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[

FV

12 2 g 2
Gen,Rot = FI::m)r - mR {(Z Evthz) + [ZE( Evip)q'i:|+ gzz}
i=1

i=4

10

RFrIBrM = F gy, - Mooy, /1,000 1
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E_R P
Oppy X1 - F,

RFrIBrM = — = = ,

+Ew11§Fﬂ_(ML@P _IR.EaR_EwaIR-EwR_IG.EaG_EwaIG-EwG)

Rotor

or,
RFEvIBrM =

(o]
(o]

or,
10

o
[N

RFrIBrM = (—FRF,,

and thus, 12

)/1,000 12

—
SpringRF RFrl| pampRF
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RE¥ISpr - qp,,, + IF [qu > RFriUSSP, REr1USSpr (qyy,, — RFrIUSSP), 0]

+[F|:qu < RFrlDSSP,RFrlDSSpr(qRF,., —RF’”IDSSP)’O:' /1,000 ( M Nev fa/1,000)
, = o rfa/ l,

Gen,Rot

RFrIBrM =
+ REFIDMP - Gy + IF | sy <> 0, RFrICDmp - SIGN (Ggy )0 |

+IF [y > REFIUSDP, RErIUSDmp - 4y, 0]+ IF [,y < RFFIDSDP, RFFrIDSDmp - Gy, 0]

Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate RFrIBrM if 2
various DOFs are disabled, it is best just to use M, éve%';m -rfa/ 1,000, which will always work.
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Tail-Furl Axis Loads: 1
There is 1 output load on the tail-furl axis. This is the tail-furl moment about the tail-furl axis. Of course, we could also output all 6 components of 2

the force F,,, / moment M,%" acting on the tail-furl axis at point W on the nacelle. Following the analysis for finding the rotor-furl loads, the new

generalized active force for the equations of motion resulting from these new loads is:

=5 Fp+fol -Mye" (r=12,...,22)3

rlTair Tail

This generalized active force must produce the same effects as the generalized active and inertia forces associated with the tail and tail fin. Thus, 4

s

rlrail — F;’

r=12..,22)°

+ + + (
A "1GravA "1 AderoA " \SpringTF "|DampTF

Since “v” and @ are equal to zero unless » = 1,2,...,11, the generalized active forces associated with tail-furl elasticity and damping do not 6

contribute to the tail-furl loads (since also, F, are equal to zero if r=1,2,...,11). So,

"\ SpringTF DampTF
_ _ 7
F:’Tail_F;’ A+F;’GravA+F;’ AeroA (r—],Z,...,]])
Thus, 8
= 11

ETail_ mBEv, ( = +gz2) nr J ( a +gz2)+ v FAI;'()A (M::eroA_IA‘EgaA—'_E XIA £ A) (V ]:2) )
However, £ er and e are all equal when r is constrained to be between 1 and 11. Recognizing also that Eyl = EyP 1 B x p" 10 ,
Eyl =By 1+ F x and v =5 + @ <" whenr=1,2,..,11, this generalized force can be expanded to:
El ( v+ ol <™ ) Ff - B(Eer+EwrN><rW’).(EaI+gz2)—mF( v +Ew&2><rW’)( aJ+gz2) ( )

r=12,...,11

E A T4 E_ A E_A_74 E_A
+ Eg (MAmAI-a—wa-w)

Now applying the cyclic permutation law of the scalar triple product: 13
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EV,W'[F/ﬁm—mB(EaI+gz2)—mF(EaJ+gz2)] 1

E_N A WK K B_WI E I F_WJ E _J T4 E A E_A_74 E_A
+ ", -(MAemA+r XF o —mF x( a +gz2)—m r x( a +gz2)—l ot =" <1 - )

rlrail —

r=12,..11
( )

Thus it is seen that, 2

3
w K B(E_I F(EJ
FTail:FAemA_m ( a +gz2)_m ( a +gz2)
and
M =M +rWK><FAIZmA—mBrWI><(EaI+gz2)—mFrWJ><(EaJ+gz2)—TA Ea' —Fo'xIT* - Fot
Thus,
w K B S E_1I-- E_ 1 oo S d E_T)\ - d E_ 1 .
Fris = Fperoa =M Z Vid; |* Vrea9ren T Z_( vi)% +_( va)QTm"'gzz
i=1 i=4 dt dt
F Sp s L B SEATNLY d e s -
% Z Vidi | T Vrea9rea T Z_( Vi )qi +_( vTFrl)qTFrl+gz2
i=1 i=4 dt dt
and

i=1 i=4

11 ) - L . d .
-m"r" X{(Z Evilql‘j"' Ev;FrquFrl +|:ZE( Evij)qi}+_( Ev;F”)qTF” +gz2}

11 L 4
NaW _ ppA WK K B WI Ei.: |, E T . E T - ET .
My =M g 17 XF o =101 X{(z Vi qij"’ VrEa9rer +|:ZE( Vi )%}4'5( vTFrl)qTFrl +gz2}

i=1 i=4 df

74 {(i Ew{‘éji}r E e +[i%< Lo )ql} +i( E‘";‘Fﬂ)qrm}— EpA T Eg?

i=4 i=7 dt
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TFrIBrM = 2. - MY /1,000 7
TFrl Tail

Now applying the cyclic permutation law of the scalar triple product: 9

10

E_ A WK K BE_ A wlr (E_1 FE_ A wi (E_J
Oppy ¥ - Fy  —m” @, XF ( a +gz2)—m WOrpy X T ( a +gz2) -
s

TFrIBrM = _ _
+ Ew;Frl '(M::emA _IA ’ EaA - EwA XIA ’ EwA)
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Recognizing also that “v!, = fwd xr™, Evli =Ffoit xr™ and EvE =Fwl xr" this can be expanded as follows: '
TFI"ZB’"M :|: TFrl FAK;roA + EwﬁFrl M;:emA ’ EvTI‘Frl .(Eal +gz2)_mF Ev;Frl .(EaJ +gz2)_ Ew?Frl (I:A ’ EaA + XIA . A)j|/] 000
or,
TFABIM =(Fi| + Pl * Frrl )/ 1,000

From the equations of motion, it is easily seen that this is equivalent to saying: 3

TFriBrM = (— F,.

)/1,000 4

SpringTF ~ T DampTF

and thus, 5

TFrISpr -,y + IF | Gyy,y > TFrIUSSP, TFrIUSSpr (s, — TFrIUSSP),0 |
+IF | gy, < TFrIDSSP, TFrIDSSpr gy, — TFrIDSSP),0 |
+ TFrIDmp - Gy + IF | 4,y <> 0,TFrICDmp - SIGN (4, )0 |
+IF ., > TFrIUSDP, TFrlUSDmp - 1,0+ IF |G, < TFrIDSDP, TFrIDSDmp - Gy,,,0]

TFrIBrM = /1,000 (= MY tfa/1,000)

Tail

Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate TFriBrM if 7
various DOFs are disabled, it is best just to use M,¢" -tfa /1,000, which will always work.
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Tower Top / Yaw Bearing Loads: 1

There are 10 output loads at the tower top / yaw bearing location. 5 of them are the 3 components of tower top force FA‘,’M’ 2o (2 components are 2

expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). The 5 other loads are
the 3 components of the tower top bending moment, M ﬁa@&ot (again, 2 components are expressed in a nonrotating frame, 2 components are expressed

in a rotating frame, and 1 component is independent of rotation). All these loads are given relative to point O as indicated. Note that none of these
loads include the effects of the yaw bearing mass (YawBrMass), which would affect the forces but not the moments. The new generalized active
force for the equations of motion resulting from these new loads is:

=5V F g+ F0F MRS (r=12,...,22)3

7 | Nac,Rot r Nac,Rot r Nac,Rot

This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the tower and 4
platform. Thus,

*

/7

N r

+F| F

Bl r ‘BZ !

GravN + F;

=F

+F
R

+F
G

+F
H

" | Nac,Rot A

+F

v F GravB1 r

v F GravH r

+ F GravR r

[ F AeroB1 r

”

AeroB2 +F;’ AeroA +F'V GravB2 T E’ GravA T F;’ Gen T " | Brake + r

GBFric (,,-:],2,..-:22)

”

+ K + K + 5 +F +F + F +F
SpringYaw | DampYaw " |SpringRF | DampRF " |SpringTeet | DampTeet " |SpringTF "\ DampTF

+F

”

S S S +F o+
ElasticB1 | DampB1 " |ElasticB2 " |\DampB2 | ElasticDrive | DampDrive

Since * v:’ and © wf are equal to zero unless = 1,2,...,10, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, 6

and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower
top loads (since also, F

r

ElasticB1° = "\DampB1° = " |ElasticB2 > ~ "|DampB2° = T |SpringTeet > = " |DampTeet> = 7\SpringRF °> = " |DampRF > = " |SpringTF > = " |DampTF > = 7 |SpringYaw > ~ 7| DampYaw >

| ElasticDrive > "1 DampDrive 9 7 |Gen F;‘ Brake’ and ‘F; GBFric are equal tO VASILY) lfl" = 1329- . 710) SO’
. o * e 7 *
" |Nae,Rot F; Bl * E AeroB1 +F" GravB1 +E' B2 * F; AeroB2 + F; GravB2 +E' H + F; Gravit +F; ‘R ' F; e +E. ¢ ( 1,2 ]0)
r=1,z,...,
+F; y + F; Gkl + F; Aerod +E N + F:” GravN

When using the results for the rotor-furl and tail-furl loads, this equation can be simplified as follows: 8
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— * _ 1
|Nac,Rot — F; Gen,Rot v E’ Tail +E’ N +F:’ GravN (V - ]’2" : ’]0)
Thus, 2
Do = Y Elga 50 M3, BV By Pl DY V0P a g} "t (T 70 + P T Pt} (7= 12...,00)

However, “@" and “?” are all equal when r is constrained to be between 1 and 10. Thus, when grouping like terms: 5

_EV pV EW W NE.U (E_U E_B NaV NeW FN E.N E_N_7JN E_N _
r - vr 'FGen,Rat+ vr .FTail_m vr ( a +gz2)+ wr ‘(MGen,Rat—i_MTail -1 a — o xI™ - o j (I"—],Z,...,]O)

Nac,Rot

Recognizing also that “v? = “v? + F@” xr, EyV = Ep0 4+ F? xr?, and 5y =Ey0 1 EwFxp® | when r = 12,...,10, this ’

generalized force can be expanded to:

_(E,O E_ B oV |4 E_O E_B ow w N (E_O E_ B ou ﬁU
r _( vr + wr Xr ).FGen,Rot—l—( vr + wr xr )'FTaiI_m ( vr + wr xXr )( a +gz2)

E_B NaV NeW _FN E_N _E_N_TN E, N
ol (M, + My ~TV - Fa¥ — o T o

Nac,Rot

(r=12...10)

Now applying the cyclic permutation law of the scalar triple product: 9

__E_O Vv w N(E_U E_'B ov vV ow w NOg‘OEU
E’Nac,Rot_ V7 .|:FGen,R0t+FTail_m ( a +gz2):|+ o, '|:l" XFGen,Rot+r ><F'Tail_n/l r X( a +gz2):|

_ _ (r=12...10)
+ ol (M, + MY ~TY P — P xT" - o )
which simplifies to: 11
E_0 v w N(E,U 12
F;Nac,Rot: Ve '[Fcen,Rot"'FTail_m ( a +gz2)}
(r=12...,10)

E_B NaV NaWw 0V 14 ow w _ _N,0U_(E, U _FJN E,N_E, N _ TN E_N
+ o, [MGM’RO,+MM, 17 XFg g+t XFp—m'r x( a +gz2) 1 a o' xI w }

Thus it is seen that, 13

L w N(E,U
Frucror = Fenpor + Fruig =1 ( a + gzz)

and
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(98]
(9]
=

Thus,

11 1 g 2
FI\%c,Rot = F(:/en,Rot + FT,:,il —-m" {(z Eviqu']"' [ZE( EviU)q'i:|+ gzz}
=

i=4

@
~

10
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YawBrMyn =—-M 229 -d, /1,000 1 Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), (kN-m) 2

Nac,Rot ’

YawBrMxp = M ﬁ%ﬁm -b, /1,000 Nonrotating yaw bearing roll moment (about the xp-axis), (kN-m)
YawBrMyp = —-M y°%. -b, /1,000  Nonrotating yaw bearing pitch moment (about the yp-axis), (kN-m)

Nac,Rot

YawBrMzn = YawBrMzp = M g, -d, /1,000 = M332%  -b, /1,000 3 Yaw bearing yaw moment (about the zn-/zp-axis), (kN-m) 4

Like the LSShftTq, LSSTipMza, RFrIBrM, and TFr/BrM, it is noted that the yaw bearing yaw moment can be computed differently using the yaw 5
drive spring and damper, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows.

First of all, the equation above is equivalent to saying:

6

_E_N B@O
YawBrMzn = ~ @y, - My, g / 1,000
Or, 7

_E_N N@V NaW ov v ow w N OU _(E U TN E_N E_N_TJN E_N
YawBrMzn = ~ wy,, -[MGM’RM + My +17 X Fgpy g+ 1 X Fpy —mr x( a +gz2)—l ot "o xIT "o }/],O()()
Now applying the cyclic permutation law of the scalar triple product: 8

9
E_N oV V E__N ow w NE_'N ou E U
wYaw xr ’ FGen,Rot + wYaw xXr ’ FTail —-m wYaw xr ( a + gzZ)
YawBrMzrgy E_N NaV New FN E_N _E_N_JN E_N /1,000
@ 2
+ wYaw ’ (MGen,Rot + MTaiI - I e — 0w X I T )

Recognizing also that “vl = fe) xr®, Evi =fel xr®, and  “v) =Fw) xr”, this can be expanded as follows: 10

= = 1
_| E,)V V E__N NaV E_W w E__N Naw N E_U E_U E_N N E_N E__N N E_N
YawBern—[ Voo Foonsin + " Oy - Mt + "1 Foty + Ft - MO = ol (P04 g2,) = oo, (T - Fa + P xT™ - Fo )}/1,000

Yaw Yaw

or,
YawBrMzn =(Fr |, + Fronlgus * Fronly * Fraelgra )/ 1000
or,

* * * * * * * 12

TS [ 0/ N o /S + F +F,,| tF + F

Yaw Yaw Yaw Yaw Yaw Yaw Yaw Yaw | geroB1 Yaw| geroB2 Yaw| geroa

YawBrMzn = N R g " Bl B2 4 e o /1,000
E FY‘IW GravN - FY‘IW GravR - FY‘IW GravH T FyaW GravB1 T Fyaw GravB2 T Fy"w Grav4
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[958
~
N

)/1,000 2

YawBrMzn = (—F

Yaw

SpringYaw Yaw DampYaw

and thus, 3

Yabrbten =[YouSpr (s, ~Yawead) + YawDamp- 4y, ]/ 1000 (= M32u-d/1000)
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Tower Base Loads: 1
There are 6 output loads at the base of the tower. 3 of them are the 3 components of the base force Fy,, (0). The other 3 are the 3 components of 2

the base bending moments, M, , (0) Note that the tower base loads are all output at the point on the tower where it changes from being rigid to

being flexible (2 = 0). The new generalized active force for the equations of motion resulting from these new loads is:

=5 (0)-Fp,, (0)+ P} My, (0) (r=12...,22)3

Turb L

%

This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the platform. 4
Thus,

Ed £

F

B2 T

F

Turb T

+F

I

F| +F| +F
R G

N 4

AeroT + F‘r

:
HE

+F +F
T H

A

GravT = F;

r

B

GravN +F F"

u F GravB2 + F;

AeroA 7

u F GravB1 + F;

AeroB2 i

GravH = F;

GravR = F;

AeroB1 +F F:’

Gravd (r=12...22)

GBFric

Gen t " | Brake + F;’

+F
DampTF r

SpringTF T E’

/8 i+ 4=/ R/ S SR
" \SpringYaw | DampYaw " |SpringRF "1 DampRF " \SpringTeet " | DampTeet 4

+ F +F +F o .
ElasticB2 "1 DampB2 | ElasticDrive | DampDrive

Iz

o+ F S + K
ElasticT "\ DampT I\ ElasticB1 "1\ DampB1 7

Since “v, (0) and “@;" are equal to zero unless » = 1,2,...,6, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, 6

teeter, and tower elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to

SpringTF > = 7| DampTF > = " |SpringYaw >

DampRF ° F;

the tower base loads (since also, F. Damp2? F SpringTeet ® F DampTeet” F SpringRF * F

and F,

ElasticB1> ~ "|\DampB1° = "|ElasticB2> ~ "

, are equal to zero if r=1,2,...,6). So,

7 Gen® * T'|Brake® ~ "|GBFric >~ " |ElasticT ’ Damp

DampYaw > ~ 7| ElasticDrive > ~ ' |DampDrive > = T

E

+F

GravR &

+F

GravH 3

+F

I

+F

GravB2 &

+F
T

”

+F
B2 r

+F | +F
N

+F

¥
i F GravB1 &

AeroB1 7

+F
A

+F

r r

+F
H

AeroB2 h F:’

+F

GravN r

Turb - F:' Bl

+F°

”

r

¢ (r=12...6)

GravA + F;

4k
r r AeroT "GravT

AeroA

When using the results for the tower-top loads, this equation can be simplified as follows: 8

+F, (r=12...,6)°

i r

Turb F:’

AeroT + F; GravT

+F
r Nac,Rot 4
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Thus, 1

TwrFlexL
_E

2
Bl = v/ .FI\(’)ac,Rot + 0/ 'Mﬁggem - .[ u (h) Eyl (h)'[EaT (h)+gZ2]dh — YawBrMass " v’ '(an +gz2)

0

(r=1,2,...6)
TwrFlexL
n J' [Evf(h)-Fj;m,(h)+wa(h)-MF (h)]dh

AeroT
0

However, ‘o, ‘o] (1), and “o) are all equal when r is constrained to be between 1 and 6. Thus, 3

TwrFlexL

4
P Evro 'FA(ch,Rot + Eer 'Mll\g’tg@;,oliot a .[ /UT (h) EvrT (h)'I:EaT (h)+gZz]dh—YawBrMassEvro '(an +gzz)
TwrFlexL ’ (7' = ],2 ,,,,, 6)
+ I ':Ev’?‘ (h)‘FATemT (h)+ ij( (h).MjeroT (h):l dh

0

Recognizing also that “v? = “y (0)+ ‘o x[rlo —r’" (0)] )

r

and v (h)="v](0)+ ") x[r” (h)—r"" (0)] , when r = 1,2,...,6, this S
generalized force can be expanded to:

E_T

s =50+ 705 5[ = (0)] o o M2 ;

r

TwrFlexL

- J. u (h){Ev,T (0)+ "o x[rZT (h)—r"" (0)}}.[’51/ (h)+gz2]dh

0 (r=12...6)7
—YawBrMass{EvrT (0)+Ew,X><["ZO—VZT (0)]}(E ? )
TwrFlexL

+ }[ ({EvrT (0)+ “o) x[rzr (h)-r?" (0)]}_FL0T (h)+ EaX (h)- M, (h))dh

Now applying the cyclic permutation law of the scalar triple product and simplifying: 8
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TwrFlexL 1
F| =57 (0) [FN ~YawBrMass(*a® + gz, )+ [ {Fl,,.(h)-p" ()] "a” (h)+ gzzj}dh]
0
M., +[rzo —r’" (O)JX[FI\‘;C,M —YawBrMass(an + 8z, )} (r=12...,6)
+ E(O:( . TwrFlexL TwrFlexL
+ [ [T () =17 (0) x| F iy ()= 1 (h)] 4 ()+ g2, |} dh+ ME,(h)dh

0

0

Thus, 4
FTIt;rb (0) = FI\Zc,Rat
and 6

L (0) M8 [~ 0) | P~ it

i=1 i=4

TwrFlexL

0

10 10 d ] TwrFlexL 5 10
—YawBrMass{(z E"?d:]"{ZE(E"io)‘L +gz2}+ I {FATmT (h)—p" (h){[ Ey! (h)q',.]{
s 1

i%(E"iT (h))é'li}gzz}}dh

i= i=4

0
10 7 7

:Zo;,EV?%}{ZE(EV?)%}gzZ}]

i=4

i=4

+ [ ['"(”)—’"(O)JX(FLM(h)—ﬂT(h){@Evf (h)éi,-j{fl%(%f (h))ci,}+gz;}}dh+wamM§emT(h)dh

0
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6 Tower base fore-aft shear force (directed along the xt-axis), (kN) 5
Tower base side-to-side shear force (directed along the yt-axis), (kN)
Tower base axial force (directed along the zt-axis), (kN)

Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) (about the xt-axis),

_7
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M, (H" )= M55, + [rl" — 7T (H )] x [FA‘,ZM’R,,, — YawBrMass(*a® + gz, )] 3
wrFl W | = ], .....
+T ]:ng[rZT(h)_rZT(HNodei)]x{F/feroT(h)_ﬂT(h) EaT(h)+gz2:|}dh+T ]ﬁlwcLMjeMT(h)dh (l 2 5)
0 HNDdei

The output loads are as follows: 4
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Platform Loads: 1
_ |
_ |

EZFZ

E_X Xaz
E|, el My (r=1,2,..
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This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything. Since “v” and 1

£ w,X are equal to zero unless = 1,2,...,6, nothing but inertia, gravity, aerodynamics, and hydrodynamics contribute to these loads. So,

rlAll - F" Bl +F'r AeroB1 +E’ GravB1 +F” B2 +F; AeroB2 +F" GravB2 +F:” H +F" GravH +F1’ R +F:’ GravR h "G ( ] 2 6)
r=1,z,...,
* * * *
+E’ A +F; GravA +F;’ AeroA +F:’ N +F;’ GravN +E’ T +E’ AeroT +F:’ GravT +E’ X +F:’ GravX +F;'|HydroX

When using the results for the tower base loads, this equation can be simplified as follows: 3

+F°

Turb "lx +F

”

(r=12...,6)%

All - F;' GravX + F:’

4 HydroX

Thus, 5

r

FAH:EvrT(O)-FTf”b(O)+wa-Mgrb(0)+Evrz-F,fydm+Eer-M,fy@dzm—mXEv,Y-(EaY+gz2)—6wa-(7X-EaX+EwX><7X-EcoX) (r:1,2,...,6)

Recognizing also that “v] (0)=*v? + f xr*" (0) and v’ =Fp? 1 Fo¥ xp? | when r = 1,2,...,6, this generalized force can be '
expanded to:
TE.z  E_X_ ZT 77 E_X X E.Z pZ E_X X@zZ 8
F"All_I: vr + wr xXr (0):|'FTurb (0)+ wr .MTurb (0)+ vr .FHydm+ wr 'MHydm ( ] 2 6)
r=12,...,

_mX<Eer+Ewrxxrzy)_(EaY+gz2)_wa_(IX_EaX+EwXXIX_EwX)

Now applying the cyclic permutation law of the scalar triple product and simplifying: 9

10
F;’ All = Eer '|:FT71;rb (0)+Flfydr0 _mX (EaY +gz2):| ( ] 2 6)
_ _ r=1,z,...,
+Eo [ M, (0)+ MY+ 177 (0)x L, (0)-m*r™ x(*a” +.g5,) T - Fa* ~ Fo* xT* - 0" |
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I |
(9]
[E=Y

and
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Equations of Motion In Terms of Loads: 1
The reason for finding the partial loads is that many portions of the equations of motion can be expressed in terms of the partial loads instead of in the 2
form given in “FASTKinetics.doc”. Incorporating the partial loads into the development of the equations of motion is beneficial since it requires less
computation time to compute the loads if members of the loads were already found when compiling the equations of motion. For example, many
integrations must be made to develop the portions of the equations of motion associated with the blades. Several more integrations must be made in
order to find the loads once the accelerations are found. When using partial loads associated with the blades to develop the equations of motion, the
additional integrals to find the loads once the accelerations are found will be unnecessary. The main point is that the equations of motion and the
output loads are inherently coupled, and the entire simulation can be done with fewer computations if the system of equations is developed with the
load outputs in mind.

Examining the results from the previous sections of this document, it is easy to see that many portions of the equations of motion can be written in 3
terms of the partial loads as follows:

} Teet,r),(r,Teet)=—"wp, Mo (r=12,...,14,16,17,...,22)

Rotor,

Rotor,

( ). )(
]H+[C(q,1)]‘31+[c q,t)]‘Bj(DrTr,r),(r,DrTr):—Ea)IL,m-ML@P (r=1,2 ..... 14:16,17,..., 22)
]

a.1)],, +[C(a0)],, |(RErLr).(r. RF) =~F ook, - Mo, (r=1.2....,14:16,17....,22)

» +[C(q,t)]

ot [C(q,t)]

J(Yaw,r),(r,Yaw):—Ewﬁw-MB@O (r:1,2 ..... 22)

Nac,Rot,

[c(
\G +[c(g0)] +[C(a.1)]
[c(

! ¢ H}(a,r),(r,a)zEvf Fropo — 00 -M32%, (a=7,8,...,10,r=12,...,22)
I +[C(q t)] y +[C(q,t)]‘ +[C(q t)]A ' r
-[C(q ¢ . +[C(q,t)] o +|:C(q,t)] . +[C(q,t)] . +|:C(q,t)] .
(¢

](a,r),(r,a) =t} -My" (a=456r=12,..,22)

1], +[c(q,t)]\H +[c(gn)] +[can)], +[c(q,t)]\A
[C(q,t)] P [C(q,t)] Ao +[C(q,t):| St [C(q,t)] . +[C(q,t)] .
i +[C(q,t):”H +[C(q,t)]81 +[C(q,t)]‘32 +[c(q,z)]\A

[C(q,t)]‘A (TFrl,r),(r,TFrl) = —Ew;‘m - MYV (r =12,..., II;]5)

}(a,r),(r,a) = vl .Fg (a=123r=12,..,22)

Tail,
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The only additional terms that need to be added to the overall forcing function are as follows: 2

+{~/(@.q.0)]
+H{=r(q.9.0)}

+{_f(q’q’t)}|GravBJ+{_f(q’q’t)}|AeroBJ}(ROW:]6’]7’]8)’ {_f(q’q’t)}
Bz+{_f(q’q’t)}|Grasz+{_f(q’q’t)}|AeroBz}(Row:]9’20’21)’ {_f(q’q’t)}
S (Ga)]

ElasticB1 DampB1 i

ElasticB2

DampTeet i

DampTF° {_f (q’q’t)}|springYaw
+{-f (q,q,t)}|DampT :
+{=/(d.4.1)}

ElasticDrive

(-r(@al], +{-r@an|,, +H-r@an),
Hor(@a ], +{-r@an),,, +{-r(@an),,
+{=f(@al], +{~/ (@al,  +H-r(@al, +{-r @),
H-f(gan))| +H-r(@ar))|, +{-r(@an)l]_ (Row)=*vg,, Fg, (Row=12,3)
H=r(@anl], +{-/(@anl,, +H-r@anl,
Hor(@an)|,, +=r(@anl,, = @an, .
+H=f(d.9.1)]|, +{—f(q"1:f)}‘gm/4 +H-S(ga)),
s @], s (@an)l,,, =S @anl], +{-r@an)|, , +{-r(@ar)), . (Gedz) = "ol - ML
H=r (@9}, IS AR . |
(@.9.0)f,+{

DampB2 i

+{~/(a.9.1)}
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DampYaw i

DampDrive ’



