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The following are derivations of the output loads available in FAST for a 2-bladed turbine configuration.  The loads for a 3-bladed turbine are very 
similar.  Note that some of the loads are given multiple names in order to support variation among the user’s preferences. 
 
Along with most of the loads are associated partial loads.  These partial loads will be used at the end of this document to redevelop portions of the 
equations of motion to speed up the computations.  The definition of these partial loads is as follows: 
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t

N @X
SourceM  is all components of i iN @X

SourceM  that are not of this form. 
 
To find the loads characterizing the constraint forces between two bodies, say A and B, all that is needed is to remove body B from the equations of 
motion and determine what equivalent load applied on A would give the same effect that body B had on A originally. 
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Blade 1 Root Loads: 
There are 10 output loads at the root of blade 1.  5 of them are the 3 components of the root force ( )0S1

B1F  (2 components are expressed in both the 
coned and blade reference frames).  The other 5 are the 3 components of the root bending moments, ( )0H

B1M  (again, 2 components are expressed in 
both the coned and blade reference frames).  If blade 1 is to be removed from the turbine, loads ( )0S1

B1F  and ( )0H
B1M  applied to the hub at the blade 1 

root (r = 0) must give the equivalent effect of blade 1 in the resulting equations of motion.  The new generalized active force for the equations of 
motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r B1
F r 1,2, ,22E C C E H H

r B1 r B1v F ω M  
 
where the equivalent loads acting at the hub’s center of mass (point C) are related to ( )0S1

B1F  and ( )0H
B1M  because the hub is rigid as follows: 

 
( )0S1

B1
C

B1 FF =  and ( ) ( ) ( )000 S1
B1

CS1H
B1

H
B1 FrMM ×+=  or ( ) ( ) ( )0 0 0 = + − × 

H H QS1 QC S1
B1 B1 B1M M r r F  

 
But since = + ×E C E Q E H QC

r r rv v ω r  , this generalized active force can be expanded to: 
 

( ) ( ) ( ) ( ) ( ){ } ( ) = + × ⋅ + ⋅ + − × =  r B1
F 0 0 0 0 r 1,2, ,22E Q E H QC S1 E H H QS1 QC S1

r r B1 r B1 B1v ω r F ω M r r F  

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( ){ } ( ) ( ) ( ){ } ( ) = ⋅ + ⋅ × + ⋅ + − × =  r B1
F 0 0 0 0 0 r 1,2, ,22E Q S1 E H QC S1 E H H QS1 QC S1

r B1 r B1 r B1 B1v F ω r F ω M r r F  

 
which simplifies to: 
 

( ) ( ) ( ) ( ) ( ) = ⋅ + ⋅ + × =  r B1
F 0 0 0 0 r 1,2, ,22E Q S1 E H H QS1 S1

r B1 r B1 B1v F ω M r F  
 
[This can also be simplified to ( ) ( ) ( ) ( )= ⋅ + ⋅ = r B1

F 0 0 0 r 1,2, ,22E S1 S1 E H H
r B1 r B1v F ω M  , which will be used later in the ensuing analysis.] 

 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1.  Thus, 
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( )= + + + + = 

*
r r r r r rB1 AeroB1 GravB1 ElasticB1 DampB1B1

F F F F F F r 1,2, ,22  

 
Since C

r
E v  and H

r
Eω  (and Q

r
E v  and ( )0S1

r
E v ) are equal to zero unless r = 1,2,…,14;Teet, the generalized active forces associated blade elasticity and 

damping do not contribute to the root loads (since also, 
1ElasticBrF  and 

1DampBrF  are equal to zero within this range of r’s).  So, 

 
( )= + + = 

*
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F F F F r 1,2, ,14;Teet  

 
Thus, 
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However, since r is constrained to be between 1,2,…,14;Teet and since ( )rS1
r

H v  is equal to zero and ( )rE M1
rω  equals E H

rω  with this constraint, this 
can be simplified as follows: 
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Or by engaging the cyclic permutation law of the scalar triple product, 
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Thus it is seen that, 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )µ µ   = − − + − +   ∫
BldFlexL

B1 B1 B1Tip

0

0 r r g r r dr BldFlexL m g BldFlexLS1 S1 E S1 S1 E S1
B1 AeroB1 2 TipDragB1 2F F z a F z a  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

µ µ + × = + × − − 

 + × − + 

∫ ∫
BldFlexL BldFlexL

B1 B1

0 0

B1Tip

0 0 0 r dr r r r g r r dr

BldFlexL BldFlexL m g BldFlexL

H QS1 S1 M1 QS1 S1 E S1
B1 B1 AeroB1 AeroB1 2

QS1 S1 E S1
TipDragB1 2

M r F M r F z a

r F z a
 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

µ µ

µ µ

 = + × − − 

 + × − + 

 − × − − + 

∫ ∫

∫

BldFlexL BldFlexL
B1 B1

0 0

B1Tip

BldFlexL
B1 B1

0

0 r dr r r r g r r dr

BldFlexL BldFlexL m g BldFlexL

0 r r g r r dr

H M1 QS1 S1 E S1
B1 AeroB1 AeroB1 2

QS1 S1 E S1
TipDragB1 2

QS1 S1 E S1
AeroB1 2 TipDrag

M M r F z a

r F z a

r F z a F ( ) ( )
   − +    

B1TipBldFlexL m g BldFlexLS1 E S1
B1 2z a

 

12

3

4

5

6

7

8



5  Jason Jonkman 
  FASTLoads.doc 
  1/13/2025 

 

or 
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( ) ( ) ( ) ( ) ( )µ= − − =∫ 
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The output loads are as follows: 
 

( )RootFxc1 0 / 1,000= ⋅S1 B1
B1 1F i  Blade 1 OoP shear force at the blade root (directed along the xc1-axis), (kN) 

( )RootFyc1 0 / 1,000= ⋅S1 B1
B1 2F i  Blade 1 IP shear force at the blade root (directed along the yc1-axis), (kN) 

( )RootFxb1 0 / 1,000= ⋅S1 B1
B1 1F j  Blade 1 flapwise shear force at the blade root (directed along the xb1-axis), (kN) 

( )RootFyb1 0 / 1,000= ⋅S1 B1
B1 2F j  Blade 1 edgewise shear force at the blade root (directed along the yb1-axis), (kN) 

( ) ( )RootFzc1 RootFzb1 0 / 1,000 0 / 1,000= = ⋅ = ⋅S1 B1 S1 B1
B1 3 B1 3F i F j  Blade 1 axial force at the blade root (directed along the zc1-/zb1-axis), (kN) 

( )RootMxc1 RootMIP1 0 / 1,000= = ⋅H B1
B1 1M i  Blade 1 IP moment (i.e., the moment caused by IP forces) at the blade root (about the xc1-axis), 

(kN·m) 
( )RootMyc1 RootMOoP1 0 / 1,000= = ⋅H B1

B1 2M i  Blade 1 OoP moment (i.e., the moment caused by OoP forces) at the blade root (about the yc1-
axis), (kN·m) 

( )RootMxb1 RootMEdg1 0 / 1,000= = ⋅H B1
B1 1M j  Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade root (about 

the xb1-axis), (kN·m) 
( )RootMyb1 RootMFlp1 0 / 1,000= = ⋅H B1

B1 2M j  Blade 1 flapwise moment (i.e., the moment caused by flapwise forces)at the blade root (about the 
yb1-axis), (kN·m) 

( ) ( )RootMzc1 RootMzb1 0 / 1,000 0 / 1,000= = ⋅ = ⋅H B1 H B1
B1 3 B1 3M i M j  Blade 1 pitching moment at the blade root (about the zc1-/zb1-axis), 

(kN·m) 
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Blade 1 Local Moment Outputs: 
There are 3 output loads at any of the selected span stations i (r = Span iR ) of blade 1 (i=1,2,…,5).  These are the 3 components of the bending moment 

( )Span iRM1
B1M  expressed in the local blade coordinate system (principal structural axes).  Examining the results for the blade 1 root loads, it follows 

that: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( )

µ µ   = + − × − −   =
   + − × − +  

∫ ∫


Span i Span i

BldFlexL BldFlexL
Span i Span i B1 B1

R R

Span i B1Tip

R r dr r R r r g r r dr
i 1,2, ,5

BldFlexL R BldFlexL m g BldFlexL

M1 M1 QS1 QS1 S1 E S1
B1 AeroB1 AeroB1 2

QS1 QS1 S1 E S1
TipDragB1 2

M M r r F z a

r r F z a

 

 
The output loads are as follows: 
 

( ) ( )Span i Span iSpniMLxb1 R R / 1,000= ⋅M1 B1
B1 1M n  Blade 1 local edgewise moment at span station i (about the local xb1-structural axis), (kN·m) 

( ) ( )Span i Span iSpniMLyb1 R R / 1,000= ⋅M1 B1
B1 2M n  Blade 1 local flapwise moment at span station i (about the local yb1-structural axis), (kN·m) 

( ) ( )= ⋅Span i Span iSpniMLzb1 R R / 1,000M1 B1
B1 3M n  Blade 1 pitching moment at span station i (about the zc1-/zb1-/local zb1-axis), (kN·m) 
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Blade 2 Root Loads: 
The equations for ( )0S2

B2F , ( )0H
B2M , ( )0

r

S2
B2F , ( )0

t

S2
B2F , ( )0

r

H
B2M , ( )0

t

H
B2M , and all 10 output loads are similar to blade 1. 
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Hub and Rotor Loads: 
There are 14 output loads at the hub end of the low-speed shaft.  5 of them are the 3 components of the thrust and shear force P

RotorF  (2 components 
are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation).  5 other loads are 
the 3 components of the shaft bending moments, L@P

RotorM  (again, 2 components are expressed in a nonrotating frame, 2 components are expressed in a 
rotating frame, and 1 component is independent of rotation).  The 11th and 12th loads are the rotor power and rotor power coefficient, respectively.  
The 13th and 14th loads are the rotor thrust and rotor torque coefficients, respectively.  For a 2-blader, all these loads are given relative to the teeter 
pin (point P) as indicated.  For the 3-blader, all of these loads are given relative to the apex of rotation (point Q, which is coincident with point P).  
The new generalized active force for the equations of motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r Rotor
F r 1,2, ,22E P P E L L@P

r Rotor r Rotorv F ω M  
 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, and 
the teeter springs and dampers.  Thus, 
 

( )

= + + + +

+ + + + + =

+ + + +



*
r r r r r rRotor AeroB1 GravB1 ElasticB1 DampB1B1

*
r r r r rAeroB2 GravB2 ElasticB2 DampB2B2

*
r r r rGravH SpringTeet DampTeetH

F F F F F F

F F F F F r 1,2, ,22

F F F F

 

 
Since P

r
E v  and L

r
Eω  are equal to zero unless r = 1,2,…,14, the generalized active forces associated with blade and teeter elasticity and damping do 

not contribute to the hub and rotor loads (since also, 
1ElasticBrF , 

1DampBrF , 
2ElasticBrF , 

2DampBrF , 
SpringTeetrF , and 

DampTeetrF  are equal to zero if r = 

1,2,…,14).  So, 
 

( )= + + + + + + + = 

* * *
r r r r r r r r rRotor AeroB1 GravB1 AeroB2 GravB2 GravHB1 B2 H

F F F F F F F F F r 1,2, ,14  

 
When using the results for the blade 1 and blade 2 root loads, this equation can be simplified as follows: 
 

( )= + + + = 

*
r r r r rRotor B1 B2 GravHH

F F F F F r 1,2, ,14  

 
Thus, 
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( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( )

( )
   = ⋅ + ⋅ + − + × + ⋅ + ⋅ + − ×   

=
− ⋅ + − ⋅ ⋅ + × ⋅



r Rotor

H

F 0 0 0 0 0 0 0 0
r 1,2, ,14

m g

E C S1 E H H QS1 QC S1 E C S2 E H H QS2 QC S2
r B1 r B1 B1 r B2 r B2 B2

E C E C E H H E H E H H E H
r 2 r

v F ω M r r F v F ω M r r F

v a z ω I α ω I ω
 

or when grouping like terms: 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
( )

 = ⋅ + − + 
=

   + ⋅ + + − × + − × − ⋅ − × ⋅   


H
r Rotor

F 0 0 m g
r 1,2, ,14

0 0 0 0 0 0

E C S1 S2 E C
r B1 B2 2

E H H H QS1 QC S1 QS2 QC S2 H E H E H H E H
r B1 B2 B1 B2

v F F a z

ω M M r r F r r F I α ω I ω
 

 
Recognizing that ( )= + × +E C E P E H PQ QC

r r rv v ω r r  , this generalized force can be expanded to: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( )
   = + × + ⋅ + − +   

=
   + ⋅ + + − × + − × − ⋅ − × ⋅   



H
r Rotor

F 0 0 m g
r 1,2, ,14

0 0 0 0 0 0

E P E H PQ QC S1 S2 E C
r r B1 B2 2

E H H H QS1 QC S1 QS2 QC S2 H E H E H H E H
r B1 B2 B1 B2

v ω r r F F a z

ω M M r r F r r F I α ω I ω
 

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

( )
   = ⋅ + − + + ⋅ + × + − +   

=
   + ⋅ + + − × + − × − ⋅ − × ⋅   



H H
r Rotor

F 0 0 m g 0 0 m g
r 1,2, ,14

0 0 0 0 0 0

E P S1 S2 E C E H PQ QC S1 S2 E C
r B1 B2 2 r B1 B2 2

E H H H QS1 QC S1 QS2 QC S2 H E H E H H E H
r B1 B2 B1 B2

v F F a z ω r r F F a z

ω M M r r F r r F I α ω I ω
 

 
which simplifies to: 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

 = ⋅ + − + 
     =+ + + × + + ×    + ⋅ 

− + × + − ⋅ − × ⋅  



H
r Rotor

H

F 0 0 m g

r 1,2, ,140 0 0 0 0 0

m g

E P S1 S2 E C
r B1 B2 2

H H PQ QS1 S1 PQ QS2 S2
B1 B2 B1 B2E H

r PQ QC E C H E H E H H E H
2

v F F a z

M M r r F r r F
ω

r r a z I α ω I ω

 

However, H
r

Eω  equals L
r

Eω  when r is not equal to Teet.  Thus the generalized active force associated with the rotor can be expressed as follows: 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

 = ⋅ + − + 
     =+ + + × + + ×    + ⋅ 

− + × + − ⋅ − × ⋅  



H
r Rotor

H

F 0 0 m g

r 1,2, ,140 0 0 0 0 0

m g

E P S1 S2 E C
r B1 B2 2

H H PQ QS1 S1 PQ QS2 S2
B1 B2 B1 B2E L

r PQ QC E C H E H E H H E H
2

v F F a z

M M r r F r r F
ω

r r a z I α ω I ω

 

 
Thus it is seen that, 
 

( ) ( ) ( )= + − +H0 0 m gP S1 S2 E C
Rotor B1 B2 2F F F a z  

and 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   = + + + × + + × − + × + − ⋅ − × ⋅   

H0 0 0 0 0 0 m gL@P H H PQ QS1 S1 PQ QS2 S2 PQ QC E C H E H E H H E H
Rotor B1 B2 B1 B2 2M M M r r F r r F r r a z I α ω I ω  

Thus, 

( ) ( ) ( ) ( )
= =

    
= + − + + + +    

    
∑ ∑   

14 14
H

i Teet i Teet
i 1 i 4

d d0 0 m q q q q g
dt dt

P S1 S2 E C E C E C E C
Rotor B1 B2 i Teet i Teet 2F F F v v v v z  

and 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
= =

=

   = + + + × + + ×   
    

− + × + + + +    
    

 
− ⋅ + + 

 

∑ ∑

∑

   

 

14 14
H

i Teet i Teet
i 1 i 4

14

i Teet
i 4

0 0 0 0 0 0

d dm q q q q g
dt dt

dq q

L@P H H PQ QS1 S1 PQ QS2 S2
Rotor B1 B2 B1 B2

PQ QC E C E C E C E C
i Teet i Teet 2

H E H E H
i Teet

M M M r r F r r F

r r v v v v z

I ω ω ( ) ( )
=

  
+ − × ⋅  

  
∑  

14

i Teet
i 7

dq q
dt dt

E H E H E H H E H
i Teetω ω ω I ω
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Or, 
( ) ( ) ( )= + − =  

H0 0 m r 1,2, ,14;16 ,17, ,22
r r r

P S1 S2 E C
Rotor B1 B2 rF F F v  

( ) ( ) ( ) ( )
=

  
= + − + +  

  
∑  

14
H

i Teet
i 4

d d0 0 m q q g
dt dtt t t

P S1 S2 E C E C
Rotor B1 B2 i Teet 2F F F v v z  

and 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   = + + + × + + × − + × − ⋅ =     

H0 0 0 0 0 0 m r 1,2, ,14;16 ,17, ,22
r r r r r

L@P H H PQ QS1 S1 PQ QS2 S2 PQ QC E C H E H
Rotor B1 B2 B1 B2 r rM M M r r F r r F r r v I ω

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
=

=

     = + + + × + + × − + × + +        
  

− ⋅ + − × ⋅  
  

∑

∑

 

 

14
H

i Teet
i 4

14

i Teet
i 7

d d0 0 0 0 0 0 m q q g
dt dt

d dq q
dt dt

t t t t t

L@P H H PQ QS1 S1 PQ QS2 S2 PQ QC E C E C
Rotor B1 B2 B1 B2 i Teet 2

H E H E H E H H E H
i Teet

M M M r r F r r F r r v v z

I ω ω ω I ω

 

 
The output loads are as follows, 
 
RotThrust LSShftFxs LSShftFxa / 1,000 / 1,000= = = ⋅ = ⋅P P

Rotor 1 Rotor 1F e F c   Low-speed shaft thrust force (directed along the xs-/xa-axis) (this 
is constant along the shaft and is equivalent to the rotor thrust force), (kN) 
LSShftFya / 1,000= ⋅P

Rotor 2F e  Rotating low-speed shaft shear force (directed along the ya-axis) (this is constant along the shaft), (kN) 
LSShftFza / 1,000= ⋅P

Rotor 3F e  Rotating low-speed shaft shear force  (directed along the za-axis) (this is constant along the shaft), (kN) 
LSShftFys / 1,000= − ⋅P

Rotor 3F c  Nonrotating low-speed shaft shear force (directed along the ys-axis) (this is constant along the shaft), (kN) 
LSShftFzs / 1,000= ⋅P

Rotor 2F c   Nonrotating low-speed shaft shear force (directed along the zs-axis) (this is constant along the shaft), (kN) 
RotTorq LSShftTq LSShftMxs LSShftMxa / 1,000 / 1,000= = = = ⋅ = ⋅L@P L@P

Rotor 1 Rotor 1M e M c  Low-speed shaft torque (about the xs-/xa-axis) (this is 
constant along the shaft and is equivalent to the rotor torque), (kN·m) 
LSSTipMya / 1,000= ⋅L@P

Rotor 2M e  Rotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 blades] 
(about the ya-axis), (kN·m) 
LSSTipMza / 1,000= ⋅L@P

Rotor 3M e  Rotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 blades] 
(about the za-axis), (kN·m) 
LSSTipMys / 1,000= − ⋅L@P

Rotor 3M c  Nonrotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 
blades] (about the ys-axis), (kN·m) 

1
2

3

4

5 6

7 8

9

10 11

12

13 14



15  Jason Jonkman 
  FASTLoads.doc 
  1/13/2025 

 

LSSTipMzs / 1,000= ⋅L@P
Rotor 2M c  Nonrotating low-speed shaft bending moment at the shaft tip [teeter pin for 2 blades] [apex of rotation for 3 

blades] (about the zs-axis), (kN·m) 

( )
π

  = − − ⋅ + + +    

180CThrstAzm MOD ATAN 2 CThrstzs, CThrstys 360 AzimB1Up 90,360  Azimuth location of the center of thrust (about the 

xs-/xa-axis), (deg) 
+

= =
2 2CThrstys CThrstzs

CThrstRad CThrstArm
AvgNrmTpRd

 Dimensionless radial (arm) location of the center of thrust (always positive, directly 

radially outboard at azimuth angle CThrstAzm), (-) 

where: = −
LSSTipMzsCThrstys
RotThrust

 and =
LSSTipMysCThrstzs
RotThrust

 

( ) ( )= = + ⋅ = + ⋅   DrTr GeAz DrTr GeAzRotPwr LSShftPwr q q RotTorq q q LSShftTq  Low-speed shaft power (this is equivalent to the rotor power), (kW) 

3
0

1,000 RotPwrRotCp LSShftCp 1 Rho Pr ojArea V
2

⋅
= =

⋅ ⋅
 Low-speed shaft power coefficient (this is equivalent to the rotor power coefficient), (-)  

2
0

1,000 RotTorqRotCq LSShftCq 1 Rho Pr ojArea V TipRad
2

⋅
= =

⋅ ⋅ ⋅
 Rotor torque coefficient, (-) 

2
0

1,000 RotThrustRotCt 1 Rho Pr ojArea V
2

⋅
=

⋅ ⋅
 Rotor thrust coefficient, (-) 

where V0 is the hub-height wind speed and the projected area of the rotor, ProjArea, is found as follows: 

( ) ( )
2

2 cos Pr eCone 1 cos Pr eCone 2
Pr ojArea TipRad

2
π

    +    =  
  

 

 
The rotor torque is equal to low-speed shaft torque as seen above.  It is noted that this torque can be computed differently using the drivetrain 
flexibility and damping, though the load summation method and this other constraint method are equivalent.  This can be demonstrated as follows.  
First of all, the equation above is equivalent to saying: 
 

= ⋅LSShftTq / 1,000E L L@P
DrTr Rotorω M  
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However, since E P
DrTrv  is equal to zero, it is also equivalent to say: 

 
( )= ⋅ + ⋅LSShftTq / 1,000E P P E L L@P

DrTr Rotor DrTr Rotorv F ω M  
or, 

= DrTr Rotor
LSShftTq F / 1,000  or ( )= + + + + + + +* * *

DrTr DrTr DrTr DrTr DrTr DrTr DrTr DrTrAeroB1 GravB1 AeroB2 GravB2 GravHB1 B2 H
LSShftTq F F F F F F F F / 1,000  

 
From the equations of motion, it is easily seen that this is equivalent to saying: 
 

( )= − −DrTr DrTrElasticDrive DampDrive
LSShftTq F F / 1,000  

 
and thus, 
 

( )= ⋅ + ⋅ DrTr DrTrLSShftTq DTTorSpr q DTTorDmp q / 1,000  (= / 1,000⋅L@P
Rotor 1M c  and is equivalent to the rotor torque) 

 
Thus, both the load summation method and the constraint method are equivalent.  However, if the drivetrain DOF is disabled, then DrTrq  will equal 
zero and DrTrq  will equal zero, which implies that, at least, DTTorSpr  is equal to infinity (since the product of DTTorSpr  and DrTrq  is, in general, 
nonzero).  Thus, to avoid using 2 different methods to calculate LSShftTq , it is best just to use / 1,000⋅L@P

Rotor 1M c , which will always work, regardless 
of the number of DOFs disabled. 
 
Like the LSShftTq , it is noted that LSSTipMya  can also be computed differently using the teeter springs and dampers, though the load summation 
method and this other constraint method are equivalent.  This also can be demonstrated as follows.  First of all, the equation above is equivalent to 
saying: 
 

= ⋅LSSTipMya / 1,000E H L@P
Teet Rotorω M  

Or, 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
    + + + × + + ×    = ⋅ 

− + × + − ⋅ − × ⋅  
H

0 0 0 0 0 0
LSSTipMya / 1,000

m g

H H PQ QS1 S1 PQ QS2 S2
B1 B2 B1 B2E H

Teet PQ QC E C H E H E H H E H
2

M M r r F r r F
ω

r r a z I α ω I ω
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Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

    × + ⋅ + × + ⋅ − × + ⋅ +    =   + ⋅ + − ⋅ − × ⋅   

H0 0 0 0 m g
LSSTipMya / 1,000

0 0

E H PQ QS1 S1 E H PQ QS2 S2 E H PQ QC E C
Teet B1 3 B2 Teet 2

E H H H H E H E H H E H
Teet B1 B2

ω r r F ω r r F ω r r a z

ω M M I α ω I ω
 

 
Recognizing also that ( ) ( ) = ×  0 0E S1 E H PQ QS1

Teet Teetv ω r + r  , ( ) ( ) = ×  0 0E S2 E H PQ QS2
Teet Teetv ω r + r , and ( )= ×E C E H PQ QC

Teet Teetv ω r + r , this can 
be simplified as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

 ⋅ + ⋅ + ⋅ + ⋅ − ⋅ +
 =
 − ⋅ ⋅ + × ⋅  

H0 0 0 0 0 0 m g
LSSTipMya / 1,000

E S1 S1 E H H E S2 S2 E H H E C E C
Teet B1 Teet B1 Teet B2 Teet B2 Teet 2

E H H E H E H H E H
Teet

v F ω M v F ω M v a z

ω I α ω I ω
 

or 

( )= + + +*
Teet Teet Teet TeetB1 B2 GravHH

LSSTipMya F F F F / 1,000  

or, 

( )= + + + + + + +* * *
Teet Teet Teet Teet Teet Teet Teet TeetAeroB1 AeroB2 GravH GravB1 GravB2H B1 B2

LSSTipMya F F F F F F F F / 1,000  

 
From the equations of motion, it is easily seen that this is equivalent to saying: 
 

( )= − −Teet TeetSpringTeet DampTeet
LSSTipMya F F / 1,000  

 
and thus, 
 

( )( )
( )( )

( )

  > ⋅ − 
 = + > ⋅ −  
   + <> ⋅ + > ⋅    

Teet Teet Teet

Teet Teet Teet

Teet Teet Teet Teet

IF q TeetSStP,TeetSSSp SIGN q q TeetSStP ,0

LSSTipMya IF q TeetHStP,TeetHSSp SIGN q q TeetHStP ,0

IF q 0,TeetCDmp SIGN q ,0 IF q TeetDmpP,TeetDmp q ,0




 


 
  

/ 1,000  (= / 1,000⋅L@P
Rotor 2M e ) 
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Thus, both the load summation method and the constraint method are equivalent.  Thus, to avoid using 2 different methods to calculate LSSTipMya  
if various DOFs are disabled, it is best just to use / 1,000⋅L@P

Rotor 2M e , which will always work. 
 
 

1
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Shaft Strain Gage Loads: 
There are 4 output loads at point SG on the low-speed shaft [which is a point on the shaft a distance ShftGagL  towards the nacelle from point P (or 
point Q for a 3-blader since point P does not exist)].  These are 2 of the 3 components of the shaft bending moments, L@SG

RotorM  (2 components are 
expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and third component which is directed in the c1 direction is not 
used because it is the same as the rotor torque).  Since the low-speed shaft is assumed to be rigid and massless between points P and SG, it is easily 
seen that: 
 

= − ×L@SG L@P PSG P
Rotor Rotor RotorM M r F  

 
since rPSG equals –rSGP. 
 
Thus, 
 

= ⋅ = + ⋅LSSGagMya / 1,000 LSSTipMya ShftGagL LSShftFzaL@F
Rotor 2M e  Rotating low-speed shaft bending moment at the shaft’s strain gages 

(about the ya-axis), (kN·m) 
= ⋅ = − ⋅LSSGagMza / 1,000 LSSTipMza ShftGagL LSShftFyaL@F

Rotor 3M e  Rotating low-speed shaft bending moment at the shaft’s strain gages 
(about the za-axis), (kN·m) 

= − ⋅ = + ⋅LSSGagMys / 1,000 LSSTipMys ShftGagL LSShftFzsL@F
Rotor 3M c  Nonrotating low-speed shaft bending moment at the shaft’s strain gages 

(about the ys-axis), (kN·m) 
= ⋅ = − ⋅LSSGagMzs / 1,000 LSSTipMzs ShftGagL LSShftFysL@F

Rotor 2M c  Nonrotating low-speed shaft bending moment at the shaft’s strain gages 
(about the zs-axis), (kN·m) 
 
Note that no shear or thrust forces need be output at point SG since these would be the same as the shear and thrust forces at point P.  Note also that 
 
⋅ = ⋅L@P L@SG

1 Rotor 1 Rotorc M c M  
 
and thus the low-speed shaft torque or rotor torque are constant along the shaft. 
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Generator and High-Speed Shaft Loads: 
There are 9 output loads on the high-speed shaft.  The first and second are the high-speed shaft torque, HSShftTq , and high-speed shaft torque 
coefficient, HSShftCq , whose convention is that it has a positive value when the LSShftTq  is positive.  The third and fourth are the high-speed shaft 
power, HSShftPwr , and high-speed shaft power coefficient, HSShftCp .  The fifth and sixth are the generator electrical torque, GenTq , and 
generator electrical torque coefficient, GenCq .  The seventh is the high-speed shaft braking torque, HSSBrTq .  The eighth is the generator electrical 
power, GenPwr .  The ninth is the electrical generator power coefficient, GenCp . 
 
From a simple free-body diagram of a black-box gearbox, 
 

( )SIGN LSShftTqLSShftTq GBoxEffHSShftTq
GBRatio
⋅

=   High-speed shaft torque (this is constant along the shaft and has the convention that it is positive 

when the LSShftTq is positive), (kN·m) 
 
This can alternatively be written in terms of the high-speed shaft motions and torques through use of the equation for the GeAz DOF as follows.  
From earlier work, 

( )⋅
=

⋅

SIGN LSShftTqGBoxEffHSShftTq
1,000 GBRatio

E L L@P
DrTr Rotorω M  

or, 

( ) ( )+ + + + + + +
=

⋅

SIGN LSShftTq* * *
DrTr DrTr DrTr DrTr DrTr DrTr DrTr DrTrAeroB1 GravB1 AeroB2 GravB2 GravHB1 B2 H

F F F F F F F F GBoxEff
HSShftTq

1,000 GBRatio
 

or, 

( ) ( )+ + + + + + +
=

⋅

SIGN LSShftTq* * *
GeAz GeAz GeAz GeAz GeAz GeAz GeAz GeAzAeroB1 GravB1 AeroB2 GravB2 GravHB1 B2 H

F F F F F F F F GBoxEff
HSShftTq

1,000 GBRatio
 

 
From the equations of motion for the GeAz DOF, it is seen that this is equivalent to saying: 

( ) ( )− − − −
=

⋅

SIGN LSShftTq*
GeAz GeAz GeAz GeAzGen Brake GBFricG

F F F F GBoxEff
HSShftTq

1,000 GBRatio
 

and thus, 
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( )

( ) ( )
( )

= =

     
⋅ ⋅ + ⋅ ⋅ + ⋅     

     
 + ⋅ ⋅ + ⋅ 
 
 
 
  
 =

∑ ∑  



12 12
2

GeAz i i
i 4 i 7

Gen Brake
GeAz

SIGN LSShftTq

dGenIner GBRatio q GenDir GenIner GBRatio q q
dt

GBRatio T GBRatio q ,t GBRatio T t
GBoxEf

GBoxEff

HSShftTq

E R E R
i i 1ω ω c

( )

⋅

SIGN LSShftTqf

1,000 GBRatio
 

or, 

( ) ( ) ( )
= =

    
⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ +    

    =
∑ ∑   

12 12
Gen Brake

GeAz i i GeAz
i 4 i 7

dGenIner GBRatio q GenDir GenIner q q T GBRatio q ,t T t
dt

HSShftTq
1,000

E R E R
i i 1ω ω c

 

or, 
( ) ( ) = ⋅ ⋅ + ⋅ ⋅ + ⋅ +  

Gen Brake
GeAz GeAzHSShftTq GenIner GBRatio q GenDir GenIner T GBRatio q ,t T t / 1,000E R

1α c  
 

2
0

1,000 HSShftTqHSShftCq 1 Rho Pr ojArea V TipRad
2

⋅
=

⋅ ⋅ ⋅
 High-speed shaft torque coefficient, (-) 

 
= ⋅ ⋅ GeAzHSShftPwr HSShftTq GBRatio q  High-speed shaft power, (kW) 

3
0

1,000 HSShftPwrHSShftCp 1 Rho Pr ojArea V
2

⋅
=

⋅ ⋅
 High-speed shaft power coefficient, (-)  

 
( )BrakeHSSBrTq T t / 1,000=   High-speed shaft braking torque, (kN·m) 

 
( )= ⋅ Gen

GeAzGenTq T GBRatio q ,t / 1,000  Electrical generator torque (positive reflects power extracted and negative represents a motoring-up 
situation or power input), (kN·m) 
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2
0

1,000 GenTqGenCq 1 Rho Pr ojArea V TipRad
2

⋅
=

⋅ ⋅ ⋅
 Electrical generator torque coefficient, (-) 

 
Though the HSShftTq is calculated the same regardless of the generator model employed, GenPwr is not.  Similar to how power is transmitted 
through the gearbox with a simple efficiency, for the simple generator or simple variable-speed generator control models, the electrical generator 
power is as follows: 
 

( ) ⋅ = ⋅ ⋅ ⋅




Gen
GeAzSIGN T GBRatio q ,t

GeAzGenPwr GBRatio q GenTq GenEff / 1,000  Electrical generator power (positive reflects power extracted and negative 
represents a motoring-up situation or power input), (kW) 
 
And for the Thevenin-Equivalent induction generator model, 
 

( )Mechanical StatorLoss ResistiveLossGenPwr Pwr Pwr Pwr / 1,000= − −   Electrical generator power (positive reflects power extracted and negative 
represents a motoring-up situation or power input), (kW) 
 
where, 

( )= ⋅ ⋅ ⋅ 

Gen
Mechanical GeAz GeAzPwr GBRatio q T GBRatio q ,t  (the sign of this is governed by TGen) 

2
StatorLossPwr TEC _ NPha TEC _ S Re s= 1I    (always positive) 

and 
2

ResistiveLossPwr TEC _ NPha TEC _ R Re s= 2I   (always positive) 
where, 

( )
1A

e1 e1

V
TEC _ R Re sR X TEC _ RLR

Slip

=
 

− + + 
 

2I
j

 

and 
1AV

TEC_MR
= +1 2I I

j
 

where the definition of V1a, Re1, Xe1, and Slip are given elsewhere and 1= −j . 
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Otherwise, the electrical generator power, GenPwr, is a user-defined function of the high-speed shaft speed, ⋅ GeAzGBRatio q , and time t. 
 
Finally, 

3
0

1,000 GenPwrGenCp 1 Rho Pr ojArea V
2

⋅
=

⋅ ⋅
 Electrical generator power coefficient, (-)  
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Rotor-Furl Axis Loads: 
There is 1 output load on the rotor-furl axis.  This is the rotor-furl moment about the rotor-furl axis.  Of course, we could also output all 6 
components of the force V

Gen,RotF  / moment N@V
Gen,RotM  acting on the rotor-furl axis at point V on the nacelle.  Following the analysis for finding the 

blade root loads, the new generalized active force for the equations of motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r Gen,Rot
F r 1,2, ,22E V V E N N@V

r Gen,Rot r Gen,Rotv F ω M  
 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with blade 1, blade 2, the hub, the 
drivetrain, and the structure that furls with the rotor.  Thus, 
 

= + + + + + + + + +

+ + + + + + + + + +

+ +

* *
r r r r r r r r r r rGen,Rot AeroB1 GravB1 ElasticB1 DampB1 AeroB2 GravB2 ElasticB2 DampB2B1 B2

* *
r r r r r r r r r rGravH SpringTeet DampTeet Gen Brake GBFric ElasticDrive DampDriveH G

*
r r GR

F F F F F F F F F F F

F F F F F F F F F F

F F

( )=

+ +



r rravR SpringRF DampRF

r 1,2, ,22

F F

 

 
Since E V

rv  and E N
rω  are equal to zero unless r = 1,2,…,11, the generalized active forces associated with blade, drivetrain, rotor-furl, and teeter 

elasticity and damping, as well as the generator torque, HSS braking torque, and gearbox friction do not contribute to the rotor-furl loads (since also, 

1ElasticBrF , 
1DampBrF , 

2ElasticBrF , 
2DampBrF , 

SpringTeetrF , 
DampTeetrF , r SpringRF

F , r DampRF
F , r ElasticDrive

F , r DampDrive
F , r Gen

F , r Brake
F , and r GBFric

F  are equal to 

zero if r = 1,2,…,11).  So, 
 

( )= + + + + + + + + + + = 

* * * * *
r r r r r r r r r r r rGen,Rot AeroB1 GravB1 AeroB2 GravB2 GravH GravRB1 B2 H R G

F F F F F F F F F F F F r 1,2, ,11  

 
When using the results for hub and rotor loads, this equation can be simplified as follows: 
 

( )= + + + = 

* *
r r r r rGen,Rot Rotor GravRR G

F F F F F r 1,2, ,11  

Thus, 
 

( ) ( ) ( ) ( )= ⋅ + ⋅ − ⋅ + − ⋅ ⋅ + × ⋅ − ⋅ ⋅ + × ⋅ = 

R
r Gen,Rot

F m g r 1,2, ,11E P P E L L@P E D E D E R R E R E R R E R E G G E G E G G E G
r Rotor r Rotor r 2 r rv F ω M v a z ω I α ω I ω ω I α ω I ω  

However, E L
rω , E G

rω , E R
rω , and E N

rω  are all equal when r is constrained to be between 1 and 11.  Thus, when grouping like terms: 
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( ) ( ) ( )= ⋅ − ⋅ + + ⋅ − ⋅ − × ⋅ − ⋅ − × ⋅ = 

R
r Gen,Rot

F m g r 1,2, ,11E P P E D E D E N L@P R E R E R R E R G E G E G G E G
r Rotor r 2 r Rotorv F v a z ω M I α ω I ω I α ω I ω  

 
Recognizing also that = + ×E P E V E N VP

r r rv v ω r  and = + ×E D E V E N VD
r r rv v ω r , when r = 1,2,…,11, this generalized force can be expanded to: 

 
( ) ( ) ( )

( ) ( )
= + × ⋅ − + × ⋅ +

=
+ ⋅ − ⋅ − × ⋅ − ⋅ − × ⋅



R
r Gen,Rot

F m g
r 1,2, ,11

E V E N VP P E V E N VD E D
r r Rotor r r 2

E N L@P R E R E R R E R G E G E G G E G
r Rotor

v ω r F v ω r a z

ω M I α ω I ω I α ω I ω
 

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( )
( )

( )
   = ⋅ − + + ⋅ × − × +   

=
+ ⋅ − ⋅ − × ⋅ − ⋅ − × ⋅



R R
r Gen,Rot

F m g m g
r 1,2, ,11

E V P E D E N VP P VD E D
r Rotor 2 r Rotor 2

E N L@P R E R E R R E R G E G E G G E G
r Rotor

v F a z ω r F r a z

ω M I α ω I ω I α ω I ω
 

which simplifies to: 
( )

( )( )
( )

 = ⋅ − + 
=

+ ⋅ + × − × + − ⋅ − × ⋅ − ⋅ − × ⋅


R
r Gen,Rot

R

F m g
r 1,2, ,11

m g

E V P E D
r Rotor 2

E N L@P VP P VD E D R E R E R R E R G E G E G G E G
r Rotor Rotor 2

v F a z

ω M r F r a z I α ω I ω I α ω I ω
 

Thus it is seen that, 
 

( )= − +Rm gV P E D
Gen,Rot Rotor 2F F a z  

and 
( )+ × − × + − ⋅ − × ⋅ − ⋅ − × ⋅Rm gN@V L@P VP P VD E D R E R E R R E R G E G E G G E G

Gen,Rot Rotor Rotor 2M = M r F r a z I α ω I ω I α ω I ω  
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Thus, 

( )
= =

    
= − + +    

    
∑ ∑ 

12 12
R

i i
i 1 i 4

dm q q g
dt

V P E D E D
Gen,Rot Rotor i i 2F F v v z  

and 

( )

( ) ( )
= =

= = = =

    
+ × − × + +    

    
       

− ⋅ + − × ⋅ − ⋅ +     
       

∑ ∑

∑ ∑ ∑ ∑

 

   

12 12
R

i i
i 1 i 4

12 12 13 13

i i i i
i 4 i 7 i 4 i 7

dm q q g
dt

d dq q q q
dt dt

N@V L@P VP P VD E D E D
Gen,Rot Rotor Rotor i i 2

R E R E R E R R E R G E G E G
i i i i

M = M r F r v v z

I ω ω ω I ω I ω ω
 

− × ⋅  
 

E G G E Gω I ω

 

Or, 
( )= − =  

Rm r 1,2, ,14;16 ,17, ,22
r r

V P E D
Gen,Rot Rotor rF F v  

( )
=

  
= − +  

  
∑ 

12
R

i
i 4

dm q g
dtt t

V P E D
Gen,Rot Rotor i 2F F v z  

and 
( )+ × − × − ⋅ − ⋅ =  

Rm r 1,2, ,14;16 ,17, ,22
r r r

N@V L@P VP P VD E D R E R G E G
Gen,Rot Rotor Rotor r r rM = M r F r v I ω I ω  

( )

( ) ( )
=

= =

  
+ × − × +  

  
   

− ⋅ − × ⋅ − ⋅ − × ⋅   
   

∑

∑ ∑



 

12
R

i
i 4

12 13

i i
i 7 i 7

dm q g
dt

d dq q
dt dt

t t t

N@V L@P VP P VD E D
Gen,Rot Rotor Rotor i 2

R E R E R R E R G E G E G G E G
i i

M = M r F r v z

I ω ω I ω I ω ω I ω

 

 
The output loads is as follows, 
 
RFrlBrM / 1,000= ⋅N@V

Gen,RotM rfa  Rotor-furl bearing furl moment (about the rotor-furl axis), (kN·m) 
 
Like the LSShftTq and LSSTipMza, it is noted that the rotor-furling furl moment can be computed differently using the rotor-furl springs and dampers, 
though the load summation method and this other constraint method are equivalent.  This can be demonstrated as follows.  First of all, the equation 
above is equivalent to saying: 
 

= ⋅RFrlBrM / 1,000E R N@V
RFrl Gen,Rotω M  
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Or, 

( ) = ⋅ + × − × + − ⋅ − × ⋅ − ⋅ − × ⋅ 
RRFrlBrM m g / 1,000E R L@P VP P VD E D R E R E R R E R G E G E G G E G

RFrl Rotor Rotor 2ω M r F r a z I α ω I ω I α ω I ω  

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( )
( )

 × ⋅ − × ⋅ +
 =
 + ⋅ − ⋅ − × ⋅ − ⋅ − × ⋅  

Rm g
RFrlBrM / 1,000

E R VP P E R VD E D
RFrl Rotor RFrl 2

E R L@P R E R E R R E R G E G E G G E G
RFrl Rotor

ω r F ω r a z

ω M I α ω I ω I α ω I ω
 

 
Recognizing also that = ×E P E R VP

RFrl RFrlv ω r  and = ×E D E R VD
RFrl RFrlv ω r , and also that E L

RFrlω , E R
RFrlω , and E G

RFrlω , are equal, this can be expanded 
as follows: 
 

( ) ( ) ( ) = ⋅ + ⋅ − ⋅ + − ⋅ ⋅ + × ⋅ − ⋅ ⋅ + × ⋅  
RRFrlBrM m g / 1,000E P P E L L@P E D E D E R R E R E R R E R E G G E G E G G E G

RFrl Rotor RFrl Rotor RFrl 2 RFrl RFrlv F ω M v a z ω I α ω I ω ω I α ω I ω

 
or, 

( )= + + +* *
RFrl RFrl RFrl RFrlRotor GravR GR

RFrlBrM F F F F / 1,000  

or, 

( )= + + + + + + + + + +* * * * *
RFrl RFrl RFrl RFrl RFrl RFrl RFrl RFrl RFrl RFrl RFrlAeroB1 AeroB2 GravR GravH GravB1 GravB2R H B1 B2 G

RFrlBrM F F F F F F F F F F F / 1,000  

 
From the equations of motion, it is easily seen that this is equivalent to saying: 
 

( )= − −RFrl RFrlSpringRF DampRF
RFrlBrM F F / 1,000  

 
and thus, 
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( )
( )

( )

 ⋅ + > − 
 + < − =

 + ⋅ + <> ⋅ 
+ > ⋅

  



RFrl RFrl RFrl

RFrl RFrl

RFrl RFrl RFrl

RFrl RF

RFrlSpr q IF q RFrlUSSP,RFrlUSSpr q RFrlUSSP ,0

IF q RFrlDSSP,RFrlDSSpr q RFrlDSSP ,0
RFrlBrM

RFrlDmp q IF q 0,RFrlCDmp SIGN q ,0

IF q RFrlUSDP,RFrlUSDmp q[ ] [ ]

 
 
  
 
 
 

+ < ⋅  rl RFrl RFrl

/ 1,000

,0 IF q RFrlDSDP,RFrlDSDmp q ,0

 (= / 1,000⋅N@V
Gen,RotM rfa ) 

 
Thus, both the load summation method and the constraint method are equivalent.  Thus, to avoid using 2 different methods to calculate RFrlBrM if 
various DOFs are disabled, it is best just to use / 1,000⋅N@V

Gen,RotM rfa , which will always work. 
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Tail-Furl Axis Loads: 
There is 1 output load on the tail-furl axis.  This is the tail-furl moment about the tail-furl axis.  Of course, we could also output all 6 components of 
the force W

TailF  / moment N@W
TailM  acting on the tail-furl axis at point W on the nacelle.  Following the analysis for finding the rotor-furl loads, the new 

generalized active force for the equations of motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r Tail
F r 1,2, ,22E W W E N N@W

r Tail r Tailv F ω M  
 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with the tail and tail fin.  Thus, 
 

( )= + + + + = 

*
r r r r r rTail GravA AeroA SpringTF DampTFA

F F F F F F r 1,2, ,22  

 
Since E W

rv  and E N
rω  are equal to zero unless r = 1,2,…,11, the generalized active forces associated with tail-furl elasticity and damping do not 

contribute to the tail-furl loads (since also, r SpringTF
F  and r DampTF

F  are equal to zero if r = 1,2,…,11).  So, 

 
( )= + + = 

*
r r r rTail GravA AeroAA

F F F F r 1,2, ,11  

 
Thus, 
 

( ) ( ) ( ) ( )= − ⋅ + − ⋅ + + ⋅ + ⋅ − ⋅ + × ⋅ = 

B F
r Tail

F m g m g r 1,2, ,11E I E I E J E J E K K E A A A E A E A A E A
r 2 r 2 r AeroA r AeroAv a z v a z v F ω M I α ω I ω  

However, E A
rω  and E N

rω  are all equal when r is constrained to be between 1 and 11.  Recognizing also that = + ×E I E W E N WI
r r rv v ω r , 

= + ×E J E W E N WJ
r r rv v ω r ,  and = + ×E K E W E N WK

r r rv v ω r , when r = 1,2,…,11, this generalized force can be expanded to: 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

= + × ⋅ − + × ⋅ + − + × ⋅ +
=

+ ⋅ − ⋅ − × ⋅


B F
r Tail

F m g m g
r 1,2, ,11

E W E N WK K E W E N WI E I E W E N WJ E J
r r AeroA r r 2 r r 2

E N A A E A E A A E A
r AeroA

v ω r F v ω r a z v ω r a z

ω M I α ω I ω
 

 
Now applying the cyclic permutation law of the scalar triple product: 
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( ) ( )
( ) ( )( )

( )
 = ⋅ − + − + 

=
+ ⋅ + × − × + − × + − ⋅ − × ⋅



B F
r Tail

B F

F m g m g
r 1,2, ,11

m g m g

E W K E I E J
r AeroA 2 2

E N A WK K WI E I WJ E J A E A E A A E A
r AeroA AeroA 2 2

v F a z a z

ω M r F r a z r a z I α ω I ω
 

 
Thus it is seen that, 
 

( ) ( )= − + − +B Fm g m gW K E I E J
Tail AeroA 2 2F F a z a z  

and 
( ) ( )+ × − × + − × + − ⋅ − × ⋅B Fm g m gN@W A WK K WI E I WJ E J A E A E A A E A

Tail AeroA AeroA 2 2M = M r F r a z r a z I α ω I ω  
Thus, 

( ) ( )

( ) ( )
= =

= =

    
= − + + + +    

    
    

− + + + +    
    

∑ ∑

∑ ∑

   

   

11 11
B

i TFrl i TFrl
i 1 i 4

11 11
F

i TFrl i TFrl
i 1 i 4

d dm q q q q g
dt dt

d dm q q q q g
dt dt

W K E I E I E I E I
Tail AeroA i TFrl i TFrl 2

E J E J E J E J
i TFrl i TFrl 2

F F v v v v z

v v v v z

 

and 

( ) ( )

( ) ( )
= =

= =

    
+ × − × + + + +    

    

   
− × + + +   

   

∑ ∑

∑ ∑

   

   

11 11
B

i TFrl i TFrl
i 1 i 4

11 11
F

i TFrl i TF
i 1 i 4

d dm q q q q g
dt dt

d dm q q q q
dt dt

N@W A WK K WI E I E I E I E I
Tail AeroA AeroA i TFrl i TFrl 2

WJ E J E J E J E J
i TFrl i TFrl

M = M r F r v v v v z

r v v v v

( ) ( )
= =

 
+ 

 
    

− ⋅ + + + − × ⋅    
    
∑ ∑   

rl

11 11

i TFrl i TFrl
i 4 i 7

g

d dq q q q
dt dt

2

A E A E A E A E A E A A E A
i TFrl i TFrl

z

I ω ω ω ω ω I ω
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Or, 
( )= − − = 

B Fm m r 1,2, ,11;15
r

W E I E J
Tail r rF v v  

( ) ( ) ( ) ( )
= =

      
= − + + − + +      

      
∑ ∑   

11 11
B F

i TFrl i TFrl
i 4 i 4

d d d dm q q g m q q g
dt dt dt dtt

W K E I E I E J E J
Tail Aero i TFrl 2 i TFrl 2F F v v z v v z  

and 
( )− × − × − ⋅ = 

B Fm m r 1,2, ,11;15
r

N@W WI E I WJ E J A E A
Tail r r rM = r v r v I ω  

( ) ( ) ( ) ( )

( ) ( )
= =

=

      
+ × − × + + − × + +      

      
  

− ⋅ + − × ⋅  
  

∑ ∑

∑

   

 

11 11
B F

i TFrl i TFrl
i 4 i 4

11

i TFrl
i 7

d d d dm q q g m q q g
dt dt dt dt

d dq q
dt dt

t

N@W A WK K WI E I E I WJ E J E J
Tail AeroA AeroA i TFrl 2 i TFrl 2

A E A E A E A A E
i TFrl

M = M r F r v v z r v v z

I ω ω ω I ωA

 

 
The output loads is as follows, 
 
TFrlBrM / 1,000= ⋅N@W

TailM tfa  Tail-furl bearing furl moment (about the tail-furl axis), (kN·m) 
 
Like the LSShftTq, LSSTipMza, and RFrlBrM, it is noted that the tail-furling furl moment can be computed differently using the tail-furl springs and 
dampers, though the load summation method and this other constraint method are equivalent.  This can be demonstrated as follows.  First of all, the 
equation above is equivalent to saying: 
 

= ⋅TFrlBrM / 1,000E A N@W
TFrl Tailω M  

Or, 

( ) ( ) = ⋅ + × − × + − × + − ⋅ − × ⋅ 
B FTFrlBrM m g m g / 1,000E A A WK K WI E I WJ E J A E A E A A E A

TFrl AeroA AeroA 2 2ω M r F r a z r a z I α ω I ω  

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( )
( )

 × ⋅ − × ⋅ + − × ⋅ +
 =
 + ⋅ − ⋅ − × ⋅  

B Fm g m g
TFrlBrM / 1,000

E A WK K E A WI E I E A WJ E J
TFrl AeroA TFrl 2 TFrl 2

E A A A E A E A A E A
TFrl AeroA

ω r F ω r a z ω r a z

ω M I α ω I ω
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Recognizing also that = ×E I E A WI
TFrl TFrlv ω r , = ×E J E A WJ

TFrl TFrlv ω r , and = ×E K E A WK
TFrl TFrlv ω r , this can be expanded as follows: 

 

( ) ( ) ( ) = ⋅ + ⋅ − ⋅ + − ⋅ + − ⋅ ⋅ + × ⋅  
B FTFrlBrM m g m g / 1,000E K K E A A E I E I E J E J E A A E A E A A E A

TFrl AeroA TFrl AeroA TFrl 2 TFrl 2 TFrlv F ω M v a z v a z ω I α ω I ω  

or, 

( )= + +*
TFrl TFrl TFrlGravA AeroAA

TFrlBrM F F F / 1,000  

 
From the equations of motion, it is easily seen that this is equivalent to saying: 
 

( )= − −TFrl TFrlSpringTF DampTF
TFrlBrM F F / 1,000  

 
and thus, 
 

( )
( )

( )

 ⋅ + > − 
 + < − =

 + ⋅ + <> ⋅ 
+ > ⋅

  



TFrl TFrl TFrl

TFrl TFrl

TFrl TFrl TFrl

TFrl TF

TFrlSpr q IF q TFrlUSSP,TFrlUSSpr q TFrlUSSP ,0

IF q TFrlDSSP,TFrlDSSpr q TFrlDSSP ,0
TFrlBrM

TFrlDmp q IF q 0,TFrlCDmp SIGN q ,0

IF q TFrlUSDP,TFrlUSDmp q[ ] [ ]

 
 
  
 
 
 

+ < ⋅  rl TFrl TFrl

/ 1,000

,0 IF q TFrlDSDP,TFrlDSDmp q ,0

 (= / 1,000⋅N@W
TailM tfa ) 

 
Thus, both the load summation method and the constraint method are equivalent.  Thus, to avoid using 2 different methods to calculate TFrlBrM if 
various DOFs are disabled, it is best just to use / 1,000⋅N@W

TailM tfa , which will always work. 
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Tower Top / Yaw Bearing Loads: 
There are 10 output loads at the tower top / yaw bearing location.  5 of them are the 3 components of tower top force O

Nac,RotF  (2 components are 
expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation).  The 5 other loads are 
the 3 components of the tower top bending moment, B@O

Nac,RotM  (again, 2 components are expressed in a nonrotating frame, 2 components are expressed 
in a rotating frame, and 1 component is independent of rotation).  All these loads are given relative to point O as indicated.  Note that none of these 
loads include the effects of the yaw bearing mass (YawBrMass), which would affect the forces but not the moments.  The new generalized active 
force for the equations of motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r Nac ,Rot
F r 1,2, ,22E O O E B B@O

r Nac,Rot r Nac,Rotv F ω M  
 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the tower and 
platform.  Thus, 
 

= + + + +

+ + + + + + + + + + + +

+ + + + + +

* * * * * * *
r r r r r r r rNac ,Rot N R G H B1 B2 A

r r r r r r r r r r r rAeroB1 AeroB2 AeroA GravN GravR GravH GravB1 GravB2 GravA Gen Brake GBFric

r r r r rSpringYaw DampYaw SpringRF DampRF SpringTeet

F F F F F F F F

F F F F F F F F F F F F

F F F F F F
( )=

+ +

+ + + + + +



r r rDampTeet SpringTF DampTF

r r r r r rElasticB1 DampB1 ElasticB2 DampB2 ElasticDrive DampDrive

r 1,2, ,22
F F

F F F F F F

 

 
Since E O

rv  and E B
rω  are equal to zero unless r = 1,2,…,10, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, 

and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower 
top loads (since also, 

1ElasticBrF , 
1DampBrF , 

2ElasticBrF , 
2DampBrF , 

SpringTeetrF , 
DampTeetrF , r SpringRF

F , r DampRF
F , r SpringTF

F , r DampTF
F , r SpringYaw

F , r DampYaw
F , 

r ElasticDrive
F , r DampDrive

F , r Gen
F , r Brake

F , and r GBFric
F  are equal to zero if r = 1,2,…,10).  So, 

 

( )
= + + + + + + + + + +

=
+ + + + +



* * * * *
r r r r r r r r r r r rNac ,Rot AeroB1 GravB1 AeroB2 GravB2 GravH GravRB1 B2 H R G

* *
r r r r rGravA AeroA GravNA N

F F F F F F F F F F F F
r 1,2, ,10

F F F F F
 

 
When using the results for the rotor-furl and tail-furl loads, this equation can be simplified as follows: 
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( )= + + + = 

*
r r r r rNac ,Rot Gen,Rot Tail GravNN

F F F F F r 1,2, ,10  

 
Thus, 
 

( ) ( ) ( )= ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + − ⋅ ⋅ + × ⋅ = 

N
r Nac,Rot

F m g r 1,2, ,10E V V E N N@V E W W E N N@W E U E U E N N E N E N N E N
r Gen,Rot r Gen,Rot r Tail r Tail r 2 rv F ω M v F ω M v a z ω I α ω I ω  

However, E N
rω  and E B

rω  are all equal when r is constrained to be between 1 and 10.  Thus, when grouping like terms: 
 

( ) ( ) ( )= ⋅ + ⋅ − ⋅ + + ⋅ + − ⋅ − × ⋅ = 

N
r Nac,Rot

F m g r 1,2, ,10E V V E W W E U E U E B N@V N@W N E N E N N E N
r Gen,Rot r Tail r 2 r Gen,Rot Tailv F v F v a z ω M M I α ω I ω  

 
Recognizing also that = + ×E U E O E B OU

r r rv v ω r , = + ×E V E O E B OV
r r rv v ω r , and = + ×E W E O E B OW

r r rv v ω r , when r = 1,2,…,10, this 
generalized force can be expanded to: 
 

( ) ( ) ( ) ( )
( ) ( )

= + × ⋅ + + × ⋅ − + × ⋅ +
=

+ ⋅ + − ⋅ − × ⋅


N
r Nac,Rot

F m g
r 1,2, ,10

E O E B OV V E O E B OW W E O E B OU E U
r r Gen,Rot r r Tail r r 2

E B N@V N@W N E N E N N E N
r Gen,Rot Tail

v ω r F v ω r F v ω r a z

ω M M I α ω I ω
 

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( ) ( )
( )

( )
   = ⋅ + − + + ⋅ × + × − × +   

=
+ ⋅ + − ⋅ − × ⋅



N N
r Nac,Rot

F m g m g
r 1,2, ,10

E O V W E U E B OV V OW W OU E U
r Gen,Rot Tail 2 r Gen,Rot Tail 2

E B N@V N@W N E N E N N E N
r Gen,Rot Tail

v F F a z ω r F r F r a z

ω M M I α ω I ω
 

which simplifies to: 
( )

( )
( )

 = ⋅ + − + 
=

 + ⋅ + + × + × − × + − ⋅ − × ⋅ 



N
r Nac,Rot

N

F m g
r 1,2, ,10

m g

E O V W E U
r Gen,Rot Tail 2

E B N@V N@W OV V OW W OU E U N E N E N N E N
r Gen,Rot Tail Gen,Rot Tail 2

v F F a z

ω M M r F r F r a z I α ω I ω
 

Thus it is seen that, 
 

( )= + − +Nm gO V W E U
Nac,Rot Gen,Rot Tail 2F F F a z  

and 
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( )+ + × + × − × + − ⋅ − × ⋅Nm gB@O N@V N@W OV V OW W OU E U N E N E N N E N
Nac,Rot Gen,Rot Tail Gen,Rot Tail 2M = M M r F r F r a z I α ω I ω  

Thus, 

( )
= =

    
= + − + +    

    
∑ ∑ 

11 11
N

i i
i 1 i 4

dm q q g
dt

O V W E U E U
Nac,Rot Gen,Rot Tail i i 2F F F v v z  

and 

( )

( )
= =

= =

    
+ + × + × − × + +    

    
    

− ⋅ + − × ⋅    
    

∑ ∑

∑ ∑

 

 

11 11
N

i i
i 1 i 4

11 11

i i
i 4 i 7

dm q q g
dt

dq q
dt

B@O N@V N@W OV V OW W OU E U E U
Nac,Rot Gen,Rot Tail Gen,Rot Tail i i 2

N E N E N E N N E N
i i

M = M M r F r F r v v z

I ω ω ω I ω

 

Or, 
( )= + − = 

Nm r 1,2, ,22
r r r

O V W E U
Nac,Rot Gen,Rot Tail rF F F v  

( )
=

  
= + − +  

  
∑ 

11
N

i
i 4

dm q g
dtt t t

O V W E U
Nac,Rot Gen,Rot Tail i 2F F F v z  

and 
( )+ + × + × − × − ⋅ = 

Nm r 1,2, ,22
r r r r r

B@O N@V N@W OV V OW W OU E U N E N
Nac,Rot Gen,Rot Tail Gen,Rot Tail r rM = M M r F r F r v I ω  

( ) ( )
= =

    
+ + × + × − × + − ⋅ − × ⋅    

    
∑ ∑ 

11 11
N

i i
i 4 i 7

d dm q g q
dt dtt t t t t

B@O N@V N@W OV V OW W OU E U N E N E N N E N
Nac,Rot Gen,Rot Tail Gen,Rot Tail i 2 iM = M M r F r F r v z I ω ω I ω  

 
The output loads are as follows, 
 
YawBrFxn / 1,000= ⋅O

Nac,Rot 1F d  Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN) 

YawBrFyn / 1,000= − ⋅O
Nac,Rot 3F d  Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN) 

YawBrFxp / 1,000= ⋅O
Nac,Rot 1F b  Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN) 

YawBrFyp / 1,000= − ⋅O
Nac,Rot 3F b  Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN) 

YawBrFzn YawBrFzp / 1,000 / 1,000= = ⋅ = ⋅O O
Nac,Rot 2 Nac,Rot 2F d F b   Yaw bearing axial force (directed along the zn-/zp-axis), (kN) 

= ⋅YawBrMxn / 1,000B@O
Nac,Rot 1M d  Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), (kN·m) 
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= − ⋅YawBrMyn / 1,000B@O
Nac,Rot 3M d  Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), (kN·m) 

= ⋅YawBrMxp / 1,000B@O
Nac,Rot 1M b  Nonrotating yaw bearing roll moment (about the xp-axis), (kN·m) 

= − ⋅YawBrMyp / 1,000B@O
Nac,Rot 3M b  Nonrotating yaw bearing pitch moment (about the yp-axis), (kN·m) 

= = ⋅ = ⋅YawBrMzn YawBrMzp / 1,000 / 1,000B@O B@O
Nac,Rot 2 Nac,Rot 2M d M b  Yaw bearing yaw moment (about the zn-/zp-axis), (kN·m) 

 
Like the LSShftTq, LSSTipMza, RFrlBrM, and TFrlBrM, it is noted that the yaw bearing yaw moment can be computed differently using the yaw 
drive spring and damper, though the load summation method and this other constraint method are equivalent.  This can be demonstrated as follows.  
First of all, the equation above is equivalent to saying: 
 

= ⋅YawBrMzn / 1,000E N B@O
Yaw Nac,Rotω M  

Or, 

( ) = ⋅ + + × + × − × + − ⋅ − × ⋅ 
NYawBrMzn m g / 1,000E N N@V N@W OV V OW W OU E U N E N E N N E N

Yaw Gen,Rot Tail Gen,Rot Tail 2ω M M r F r F r a z I α ω I ω  

 
Now applying the cyclic permutation law of the scalar triple product: 
 

( )
( )

 × ⋅ + × ⋅ − × ⋅ +
 =
 + ⋅ + − ⋅ − × ⋅  

Nm g
YawBrMzn / 1,000

E N OV V E N OW W E N OU E U
Yaw Gen,Rot Yaw Tail Yaw 2

E N N@V N@W N E N E N N E N
Yaw Gen,Rot Tail

ω r F ω r F ω r a z

ω M M I α ω I ω
 

 
Recognizing also that = ×E U E N OU

Yaw Yawv ω r , = ×E V E N OV
Yaw Yawv ω r , and = ×E W E N OW

Yaw Yawv ω r , this can be expanded as follows: 
 

( ) ( ) = ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + − ⋅ ⋅ + × ⋅  
NYawBrMzn m g / 1,000E V V E N N@V E W W E N N@W E U E U E N N E N E N N E N

Yaw Gen,Rot Yaw Gen,Rot Yaw Tail Yaw Tail Yaw 2 Yawv F ω M v F ω M v a z ω I α ω I ω  

or, 

( )= + + +*
Yaw Yaw Yaw YawRotor Tail GravNN

YawBrMzn F F F F / 1,000  

or, 
 + + + + + + + + +
 =
 + + + + + + 

* * * * * * *
Yaw Yaw Yaw Yaw Yaw Yaw Yaw Yaw Yaw YawAeroB1 AeroB2 AeroAN R G H B1 B2 A

Yaw Yaw Yaw Yaw Yaw YawGravN GravR GravH GravB1 GravB2 GravA

F F F F F F F F F F
YawBrMzn / 1,000

F F F F F F
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From the equations of motion, it is easily seen that this is equivalent to saying: 
 

( )= − −Yaw YawSpringYaw DampYaw
YawBrMzn F F / 1,000  

 
and thus, 
 

( ) = − + ⋅ Yaw YawYawBrMzn YawSpr q YawNeut YawDamp q / 1,000   (= ⋅ / 1,000B@O
Nac,Rot 2M d ) 

 
Thus, both the load summation method and the constraint method are equivalent.  Thus, to avoid using 2 different methods to calculate YawBrMzn if 
various DOFs are disabled, it is best just to use ⋅ / 1,000B@O

Nac,Rot 2M d , which will always work. 
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Tower Base Loads: 
There are 6 output loads at the base of the tower.  3 of them are the 3 components of the base force ( )0T

TurbF .  The other 3 are the 3 components of 
the base bending moments, ( )0X

TurbM .  Note that the tower base loads are all output at the point on the tower where it changes from being rigid to 
being flexible (h = 0).  The new generalized active force for the equations of motion resulting from these new loads is: 
 

( ) ( ) ( ) ( )= ⋅ + ⋅ = r Turb
F 0 0 0 r 1,2, ,22E T T E X X

r Turb r Turbv F ω M  
 
This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the platform.  
Thus, 
 

= + + + + +

+ + + + + + + + + + +

+ + + + + +

* * * * * * * *
r r r r r r r r rTurb T N R G H B1 B2 A

r r r r r r r r r r rAeroT AeroB1 AeroB2 AeroA GravT GravN GravR GravH GravB1 GravB2 GravA

r r r r r rSpringYaw DampYaw SpringRF DampRF SpringTeet Damp

F F F F F F F F F

F F F F F F F F F F F

F F F F F F
( )=

+ + + + +

+ + + + + + + +



r r r r rTeet SpringTF DampTF Gen Brake GBFric

r r r r r r r rElasticT DampT ElasticB1 DampB1 ElasticB2 DampB2 ElasticDrive DampDrive

r 1,2, ,22
F F F F F

F F F F F F F F

 

 
Since ( )0E T

rv  and E X
rω  are equal to zero unless r = 1,2,…,6, the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, 

teeter, and tower  elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to 
the tower base loads (since also, 

1ElasticBrF , 
1DampBrF , 

2ElasticBrF , 
2DampBrF , 

SpringTeetrF , 
DampTeetrF , r SpringRF

F , r DampRF
F , r SpringTF

F , r DampTF
F , r SpringYaw

F , 

r DampYaw
F , r ElasticDrive

F , r DampDrive
F , r Gen

F , r Brake
F , r GBFric

F , r ElasticT
F , and r DampT

F  are equal to zero if r = 1,2,…,6).  So, 

 

( )
= + + + + + + + + + +

=
+ + + + + + + +



* * * * *
r r r r r r r r r r r rTurb AeroB1 GravB1 AeroB2 GravB2 GravH GravRB1 B2 H R G

* * *
r r r r r r r rGravA AeroA GravN AeroT GravTA N T

F F F F F F F F F F F F
r 1,2, ,6

F F F F F F F F
 

 
When using the results for the tower-top loads, this equation can be simplified as follows: 
 

( )= + + + = 

*
r r r r rTurb Nac,Rot AeroT GravTT

F F F F F r 1,2, ,6  
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Thus, 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

µ  = ⋅ + ⋅ − ⋅ + − ⋅ + 
=

 + ⋅ + ⋅ 

∫

∫


TwrFlexL
T

r Turb
0

TwrFlexL

0

F h h h g dh YawBrMass g
r 1,2, ,6

h h h h dh

E O O E B B@O E T E T E O E O
r Nac,Rot r Nac,Rot r 2 r 2

E T T E F F
r AeroT r AeroT

v F ω M v a z v a z

v F ω M
 

However, E B
rω , ( )hE F

rω , and E X
rω  are all equal when r is constrained to be between 1 and 6.  Thus, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

µ  = ⋅ + ⋅ − ⋅ + − ⋅ + 
=

 + ⋅ + ⋅ 

∫

∫


TwrFlexL
T

r Turb
0

TwrFlexL

0

F h h h g dh YawBrMass g
r 1,2, ,6

h h h h dh

E O O E X B@O E T E T E O E O
r Nac,Rot r Nac,Rot r 2 r 2

E T T E X F
r AeroT r AeroT

v F ω M v a z v a z

v F ω M
 

 
Recognizing also that ( ) ( ) = + × − 0 0E O E T E X ZO ZT

r r rv v ω r r , and ( ) ( ) ( ) ( ) = + × − h 0 h 0E T E T E X ZT ZT
r r rv v ω r r , when r = 1,2,…,6, this 

generalized force can be expanded to: 
 

( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ) ( ){ } ( ) ( ) ( )( )

µ

 = + × − ⋅ + ⋅ 

   − + × − ⋅ +   

 − + × − ⋅ + 

 + + × − ⋅ + ⋅ 

∫

r Turb

TwrFlexL
T

0

F 0 0

h 0 h 0 h g dh

YawBrMass 0 0 g

0 h 0 h h h

E T E X ZO ZT O E X B@O
r r Nac,Rot r Nac,Rot

E T E X ZT ZT E T
r r 2

E T E X ZO ZT E O
r r 2

E T E X ZT ZT T E X F
r r AeroT r AeroT

v ω r r F ω M

v ω r r a z

v ω r r a z

v ω r r F ω M

( )=

∫



TwrFlexL

0

r 1,2, ,6

dh

 

 
Now applying the cyclic permutation law of the scalar triple product and simplifying: 
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( ) ( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( ) ( ){ }

µ

µ

 
 = ⋅ − + + − +  

 

  + − × − +   
+ ⋅

   + − × − + +   

∫

∫

TwrFlexL
T

r Turb
0

TwrFlexL
T

0

F 0 YawBrMass g h h h g dh

0 YawBrMass g

h 0 h h h g dh

E T O E O T E T
r Nac,Rot 2 AeroT 2

B@O ZO ZT O E O
Nac,Rot Nac,Rot 2

E X
r ZT ZT T E T

AeroT 2 Aero

v F a z F a z

M r r F a z
ω

r r F a z M ( )

( )  =
 
 
  
 

∫



TwrFlexL

0

r 1,2, ,6

h dhF
T

 

 
Thus it is seen that, 
 

( ) ( ) ( ) ( ) ( ){ }µ  = − + + − + ∫
TwrFlexL

T

0

0 YawBrMass g h h h g dhT O E O T E T
Turb Nac,Rot 2 AeroT 2F F a z F a z  

and 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )µ

  = + − × − +   

   + − × − + +   ∫ ∫
TwrFlexL TwrFlexL

T

0 0

0 0 YawBrMass g

h 0 h h h g dh h dh

X B@O ZO ZT O E O
Turb Nac,Rot Nac,Rot 2

ZT ZT T E T F
AeroT 2 AeroT

M M r r F a z

r r F a z M
 

 
Thus, 

( ) ( ) ( ) ( ) ( ) ( )( )µ
= = = =

            = − + + + − + +          
            
∑ ∑ ∑ ∑∫   

TwrFlexL10 10 10 10
T

i i i i
i 1 i 4 i 1 i 40

d d0 YawBrMass q q g h h h q h q g dh
dt dt

T O E O E O T E T E T
Turb Nac,Rot i i 2 AeroT i i 2F F v v z F v v z  

and 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )µ

= =

= =

      + − × − + +             
      + − × − + +            

∑ ∑

∑ ∑

 

 

10 10

i i
i 1 i 4

10 10
T

i i
i 1 i 4

d0 0 YawBrMass q q g
dt

dh 0 h h h q h q g
dt

X B@O ZO ZT O E O E O
Turb Nac,Rot Nac,Rot i i 2

ZT ZT T E T E T
AeroT i i 2

M = M r r F v v z

r r F v v z ( )+


∫ ∫
TwrFlexL TwrFlexL

0 0

dh h dhF
AeroTM
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Or, 

( ) ( ) ( ) ( )µ= − − =∫ 

TwrFlexL
T

0

0 YawBrMass h h dh r 1,2, ,22
r r

T O E O E T
Turb Nac,Rot r rF F v v  

( ) ( ) ( ) ( ) ( )( )µ
= =

        = − + + − +       
        
∑ ∑∫ 

TwrFlexL10 10
T

i i
i 4 i 40

d d0 YawBrMass q g h h h q g dh
dt dtt t

T O E O T E T
Turb Nac,Rot i 2 AeroT i 2F F v z F v z  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )µ     + − × − − − × =     ∫ 

TwrFlexL
T

0

0 0 YawBrMass h 0 h h dh r 1,2, ,22
r r r

X B@O ZO ZT O E O ZT ZT E T
Turb Nac,Rot Nac,Rot r rM = M r r F v r r v  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )µ

=

=

    + − × − +         
    + − × − + +         

∑

∑∫ ∫





10

i
i 4

TwrFlexL TwrFlexL10
T

i
i 40 0

d0 0 YawBrMass q g
dt

dh 0 h h h q g dh h dh
dt

t t t

X B@O ZO ZT O E O
Turb Nac,Rot Nac,Rot i 2

ZT ZT T E T F
AeroT i 2 AeroT

M = M r r F v z

r r F v z M

 

 
Thus, 
 

( )= ⋅TwrBsFxt 0 / 1,000T
Turb 1F a  Tower base fore-aft shear force (directed along the xt-axis), (kN) 

( )= − ⋅TwrBsFyt 0 / 1,000T
Turb 3F a  Tower base side-to-side shear force (directed along the yt-axis), (kN) 

( )= ⋅TwrBsFzt 0 / 1,000T
Turb 2F a  Tower base axial force (directed along the zt-axis), (kN) 

( )= ⋅TwrBsMxt 0 / 1,000X
Turb 1M a  Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) (about the xt-axis), 

(kN·m) 
( )= − ⋅TwrBsMyt 0 / 1,000X

Turb 3M a  Tower base pitching (or fore-aft) moment (i.e., the moment caused by fore-aft forces) (about the yt-axis), (kN·m) 

( )= ⋅TwrBsMzt 0 / 1,000X
Turb 2M a  Tower base yaw (or torsional) moment (about the zt-axis), (kN·m) 
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Tower Local Moment Outputs: 
There are 3 output loads at any of the selected tower node locations i (h = Node iH ) (i=1,2,…,5).  These are the 3 components of the bending moment 

( )Node iHF
TurbM  expressed in the local tower element coordinate system (principal structural axes).  Examining the results for the tower base loads, it 

follows that: 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )
( )

µ

   = + − × − +   
=

   + − × − + +  ∫ ∫


Node i

Node i Node i

TwrFlexL TwrFlexL
Node i T

0 H

H H YawBrMass g
i 1,2, ,5

h H h h h g dh h dh

F B@O ZO ZT O E O
Turb Nac,Rot Nac,Rot 2

ZT ZT T E T F
AeroT 2 AeroT

M M r r F a z

r r F a z M
 

 
The output loads are as follows: 
 

( ) ( )= ⋅Node i Node iTwHtiMLxt H H / 1,000F B1
Turb 1M t  Tower local roll moment of tower gage i (about the local xt-structural axis), (kN·m) 

( ) ( )= − ⋅Node i Node iTwHtiMLyt H H / 1,000F B1
Turb 3M t  Tower local pitching moment of tower gage i (about the local yt-structural axis), (kN·m) 

( ) ( )= ⋅Node i Node iTwHtiMLzt H H / 1,000F B1
Turb 2M t  Tower local yaw (or torsion) moment of tower gage i (about the local zt-structural axis), (kN·m) 
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Platform Loads: 
There are 12 output loads at the platform reference point.  6 of them are the 3 components of the platform force Z

HydroF  (3 components expressed in 
the tower base / platform coordinate system and 3 components expressed in the inertia frame).  The remaining 6 are the 3 components of the platform 
moment X@Z

HydroM  (3 components expressed in the tower base / platform coordinate system and 3 components expressed in the inertia frame).  These 
are the loads transmitted from the water/mooring lines or foundation to the platform. 
 
The output loads are as follows: 
 

= ⋅PtfmFxt / 1,000Z
Hydro 1F a   Platform horizontal surge force (directed along the xt-axis), (kN) 

= − ⋅PtfmFyt / 1,000Z
Hydro 3F a   Platform horizontal sway force (directed along the yt-axis), (kN) 

= ⋅PtfmFzt / 1,000Z
Hydro 2F a   Platform vertical heave force (directed along the zt-axis), (kN) 

= ⋅PtfmFxi / 1,000Z
Hydro 1F z   Platform horizontal surge force (directed along the xi-axis), (kN) 

= − ⋅PtfmFyi / 1,000Z
Hydro 3F z   Platform horizontal sway force (directed along the yi-axis), (kN) 

= ⋅PtfmFzi / 1,000Z
Hydro 2F z   Platform vertical heave force (directed along the zi-axis), (kN) 

= ⋅PtfmMxt / 1,000X@Z
Hydro 1M a   Platform roll tilt moment (about the xt-axis), (kN·m) 

= − ⋅PtfmMyt / 1,000X@Z
Hydro 3M a  Platform pitch tilt moment (about the yt-axis), (kN·m) 

= ⋅PtfmMzt / 1,000X@Z
Hydro 2M a   Platform yaw moment (about the zt-axis), (kN·m) 

= ⋅PtfmMxi / 1,000X@Z
Hydro 1M z   Platform roll tilt moment (about the xi-axis), (kN·m) 

= − ⋅PtfmMyi / 1,000X@Z
Hydro 3M z  Platform pitch tilt moment (about the yi-axis), (kN·m) 

= ⋅PtfmMzi / 1,000X@Z
Hydro 2M z   Platform yaw moment (about the zi-axis), (kN·m) 

 
However, there are two loads, Z

AllF  and X@Z
AllM , that are useful to use when assembling the equations of motion.  Both of these loads are always equal 

zero, defining the balance between all inertia loads and all applied forces.  It makes the most sense to discuss these loads in this section.  The new 
generalized active force for the equations of motion resulting from these new loads is: 
 

( )= ⋅ + ⋅ = r All
F r 1,2, ,22E Z Z E X X@Z

r All r Allv F ω M  
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This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything.  Since E Z
rv  and 

E X
rω  are equal to zero unless r = 1,2,…,6, nothing but inertia, gravity, aerodynamics, and hydrodynamics contribute to these loads.  So, 

 

( )
= + + + + + + + + + +

=
+ + + + + + + + + + +



* * * * *
r r r r r r r r r r r rAll AeroB1 GravB1 AeroB2 GravB2 GravH GravRB1 B2 H R G

* * * *
r r r r r r r r r r rGravA AeroA GravN AeroT GravT GravX HydroXA N T X

F F F F F F F F F F F F
r 1,2, ,6

F F F F F F F F F F F
 

 
When using the results for the tower base loads, this equation can be simplified as follows: 
 

( )= + + + = 

*
r r r r rAll Turb GravX HydroXX

F F F F F r 1,2, ,6  

 
Thus, 
 

( ) ( ) ( ) ( ) ( ) ( )= ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + − ⋅ ⋅ + × ⋅ = 

X
r All

F 0 0 0 m g r 1,2, ,6E T T E X X E Z Z E X X@Z E Y E Y E X X E X E X X E X
r Turb r Turb r Hydro r Hydro r 2 rv F ω M v F ω M v a z ω I α ω I ω  

 
Recognizing also that ( ) ( )= + ×0 0E T E Z E X ZT

r r rv v ω r  and = + ×E Y E Z E X ZY
r r rv v ω r , when r = 1,2,…,6, this generalized force can be 

expanded to: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )
 = + × ⋅ + ⋅ + ⋅ + ⋅ 

=
− + × ⋅ + − ⋅ ⋅ + × ⋅



r All

X

F 0 0 0
r 1,2, ,6

m g

E Z E X ZT T E X X E Z Z E X X@Z
r r Turb r Turb r Hydro r Hydro

E Z E X ZY E Y E X X E X E X X E X
r r 2 r

v ω r F ω M v F ω M

v ω r a z ω I α ω I ω
 

 
Now applying the cyclic permutation law of the scalar triple product and simplifying: 
 

( ) ( )
( ) ( ) ( ) ( )

( )
 = ⋅ + − + 

=
 + ⋅ + + × − × + − ⋅ − × ⋅ 



X
r All

X

F 0 m g
r 1,2, ,6

0 0 0 m g

E Z T Z E Y
r Turb Hydro 2

E X X X@Z ZT T ZY E Y X E X E X X E X
r Turb Hydro Turb 2

v F F a z

ω M M r F r a z I α ω I ω
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Thus it is seen that, 
 

( ) ( )= + − +X0 m gZ T Z E Y
All Turb Hydro 2F F F a z  

and 
( ) ( ) ( ) ( )= + + × − × + − ⋅ − × ⋅X0 0 0 m gX@Z X X@Z ZT T ZY E Y X E X E X X E X

All Turb Hydro Turb 2M M M r F r a z I α ω I ω  
 
Thus, 

( ) ( )
= = =

      
= + + − + +      

     
∑ ∑ ∑  

6 6 6
X

j i i
j 1 i 1 i 4

d0 q m q q g
dtj t

Z T Z Z E Y E Y
All Turb Hydro Hydro i i 2F F F F v v z  

and 

( ) ( ) ( ) ( )
= = = =

        
= + + + × − × + + − ⋅ − × ⋅       

       
∑ ∑ ∑ ∑   

6 6 6 6
X

j i i i
j 1 i 1 i 4 i 4

d0 q 0 0 m q q g q
dtj t

X@Z X X@Z X@Z ZT T ZY E Y E Y X E X E X X E X
All Turb Hydro Hydro Turb i i 2 iM M M M r F r v v z I ω I ωω

 
Or, 

( ) ( )= + − = 

X0 m r 1,2, ,22
r r r

Z T Z E Y
All Turb Hydro rF F F v  

( ) ( )
=

  
= + − +  

  
∑ 

6
X

i
i 4

d0 m q g
dtt t t

Z T Z E Y
All Turb Hydro i 2F F F v z  

and 
( ) ( ) ( ) ( )× + − × − ⋅ = 

X0 0 0 m r 1,2, ,22
r r r r

X@Z X ZT T X@Z ZY E Y X E X
All Turb Turb Hydro r rM = M + r F M r v I ω  

( ) ( ) ( ) ( )
=

  
× + − × + − × ⋅  

  
∑ 

6
X

i
i 4

d0 0 0 m q g
dtt t t t

X@Z X ZT T X@Z ZY E Y E X X E X
All Turb Turb Hydro i 2M = M + r F M r v z ω I ω  
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Equations of Motion In Terms of Loads: 
The reason for finding the partial loads is that many portions of the equations of motion can be expressed in terms of the partial loads instead of in the 
form given in “FASTKinetics.doc”.  Incorporating the partial loads into the development of the equations of motion is beneficial since it requires less 
computation time to compute the loads if members of the loads were already found when compiling the equations of motion.  For example, many 
integrations must be made to develop the portions of the equations of motion associated with the blades.  Several more integrations must be made in 
order to find the loads once the accelerations are found.  When using partial loads associated with the blades to develop the equations of motion, the 
additional integrals to find the loads once the accelerations are found will be unnecessary.  The main point is that the equations of motion and the 
output loads are inherently coupled, and the entire simulation can be done with fewer computations if the system of equations is developed with the 
load outputs in mind. 
 
Examining the results from the previous sections of this document, it is easy to see that many portions of the equations of motion can be written in 
terms of the partial loads as follows: 
 

( ) ( ) ( ) ( ) ( ) ( )      + + = − ⋅ =        

H B1 B2
C q,t C q,t C q,t Teet ,r , r ,Teet r 1,2, ,14;16 ,17, ,22

r

E H L@P
Teet Rotorω M  

( ) ( ) ( ) ( ) ( ) ( )      + + = − ⋅ =        

H B1 B2
C q,t C q,t C q,t DrTr,r , r ,DrTr r 1,2, ,14;16 ,17, ,22

r

E L L@P
DrTr Rotorω M  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )          + + + + = − ⋅ =            

R G H B1 B2
C q,t C q,t C q,t C q,t C q,t RFrl ,r , r ,RFrl r 1,2, ,14;16 ,17, ,22

r

E R N@V
RFrl Gen,Rotω M  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )              + + + + + + = − ⋅ =               

N R G H B1 B2 A
C q,t C q,t C q,t C q,t C q,t C q,t C q,t Yaw,r , r ,Yaw r 1,2, ,22

r

E N B@O
Yaw Nac,Rotω M  

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

        + + +         = − ⋅ − ⋅ = =
      + + +       

 

N R G H

B1 B2 A

C q,t C q,t C q,t C q,t
a,r , r ,a a 7,8, ,10,r 1,2, ,22

C q,t C q,t C q,t r r

E O O E B B@O
a Nac,Rot a Nac,Rotv F ω M  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

          + + + +           = − ⋅ = =          + + + + +           



X HydroX T N R

G H B1 B2 A

C q,t C q,t C q,t C q,t C q,t
a,r , r ,a a 4,5,6 ,r 1,2, ,22

C q,t C q,t C q,t C q,t C q,t
r

E X X@Z
a Allω M  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

          + + + +           = − ⋅ = =        + + + +         



X HydroX T N R

H B1 B2 A

C q,t C q,t C q,t C q,t C q,t
a,r , r ,a a 1,2,3,r 1,2, ,22

C q,t C q,t C q,t C q,t
r

E Z Z
a Allv F  

( ) ( ) ( ) ( )  = − ⋅ =  

A
C q,t TFrl ,r , r ,TFrl r 1,2, ,11;15

r

E A N@W
TFrl Tailω M  
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This last expression is not needed; instead, just add ( ) ( )   A
C q,t 15,15 . 

 
Also, since DOFs DrTr and GeAz are so similar, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

      + +       =
      = + +      

 

H B1 B2

H B1 B2

C q,t C q,t C q,t GeAz,r , r ,GeAz
r 1,2, ,14;16 ,17, ,22

C q,t C q,t C q,t DrTr,r , r ,DrTr
 

This last expression is only used for ( )= r 13,14;16 ,17, ,22  however.  This is because if this expression was used for all of the r’s then the 

( )
G

C q,t    effects for the generator azimuth DOF row and column would be removed for ( )= r 4,5, ,12 , which is undesirable. 

 
The only additional terms that need to be added to the overall mass matrix are as follows: 

( ) ( )  =  B1
C q,t Row,Col 16 ,17,18 , ( ) ( )  =  B2

C q,t Row,Col 19,20,21 , ( ) ( )  =  

T
C q,t Row,Col 7,8, ,10 , ( ) ( )

G
C q,t 15,15   , and ( )

GBFric
C q,t   . 

 
 
Also, 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( )
 − + − + − + − + −  = ⋅ 

+ − + − + −  

    

  

H GravH B1 GravB1 AeroB1

B2 GravB2 AeroB2

f q,q,t f q,q,t f q,q,t f q,q,t f q,q,t
Teet

f q,q,t f q,q,t f q,q,t t

E H L@P
Teet Rotorω M  

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( )
 − + − + − + − + −  = ⋅ 

+ − + − + −  

    

  

H GravH B1 GravB1 AeroB1

B2 GravB2 AeroB2

f q,q,t f q,q,t f q,q,t f q,q,t f q,q,t
DrTr

f q,q,t f q,q,t f q,q,t t

E L L@P
DrTr Rotorω M  

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( )

 − + − + − + − + −
 
 + − + − + − = ⋅ 
 

+ − + − + −  

    

  

  

R GravR G H GravH

B1 GravB1 AeroB1

B2 GravB2 AeroB2

f q,q,t f q,q,t f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t RFrl

f q,q,t f q,q,t f q,q,t

t

E R N@V
RFrl Gen,Rotω M  
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( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

− + − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

   

  

  

  

  

N GravN R GravR

G H GravH

B1 GravB1 AeroB1

B2 GravB2 AeroB2

A GravA Aero

f q,q,t f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

( )

 
 
 
 
  = ⋅ 
 
 
 
 
 A

Yaw
t

E N B@O
Yaw Nac,Rotω M  

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

− + − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

   

  

  

  

  

N GravN R GravR

G H GravH

B1 GravB1 AeroB1

B2 GravB2 AeroB2

A GravA Aero

f q,q,t f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

( ) ( )

 
 
 
 
  = ⋅ + ⋅ = 
 
 
 
 
 



A

Row Row 7,8, ,10
t t

E O O E B B@O
Row Nac,Rot Row Nac,Rotv F ω M  

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

− + − + −

+ − + − + −

+ − + − + − + −

+ − + − + −

+ − + − + −

+

  

  

   

  

  

X HydroX GravX

T GravT AeroT

N GravN R GravR

G H GravH

B1 GravB1 AeroB1

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( ) ( )

 
 
 
 
 
 
   = ⋅ = 
 
 
 
 − + − + −
 
 + − + − + −  

  

  

B2 GravB2 AeroB2

A GravA AeroA

Row Row 4,5,6

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

t

E X X@Z
Row Allω M  
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( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

− + − + −

+ − + − + −

+ − + − + − + −

+ − + − + −

+ − + − + −

+

  

  

   

  

  

X HydroX GravX

T GravT AeroT

N GravN R GravR

G H GravH

B1 GravB1 AeroB1

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( ) ( )

 
 
 
 
 
 
   = ⋅ = 
 
 
 
 − + − + −
 
 + − + − + −  

  

  

B2 GravB2 AeroB2

A GravA AeroA

Row Row 1,2,3

f q,q,t f q,q,t f q,q,t

f q,q,t f q,q,t f q,q,t

t

E Z Z
Row Allv F  

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

( )
 − + − + − + − + −  = ⋅ 

+ − + − + −  

    

  

H GravH B1 GravB1 AeroB1

B2 GravB2 AeroB2

f q,q,t f q,q,t f q,q,t f q,q,t f q,q,t
GeAz

f q,q,t f q,q,t f q,q,t t

E L L@P
GeAz Rotorω M  

( ){ } ( ){ } ( ){ }{ }( )− + − + − = ⋅  

A GravA AeroA
f q,q,t f q,q,t f q,q,t TFrl

t

E A N@W
TFrl Tailω M  

 
The only additional terms that need to be added to the overall forcing function are as follows: 
 

( ){ } ( ){ } ( ){ }{ }( )− + − + − =  

B1 GravB1 AeroB1
f q,q,t f q,q,t f q,q,t Row 16,17,18 , ( ){ } ( ){ }

ElasticB1 DampB1
f q,q,t f q,q,t− + −  , 

( ){ } ( ){ } ( ){ }{ }( )− + − + − =  

B2 GravB2 AeroB2
f q,q,t f q,q,t f q,q,t Row 19,20,21 , ( ){ } ( ){ }

ElasticB2 DampB2
f q,q,t f q,q,t− + −  , 

( ){ } ( ){ }
SpringTeet DampTeet

f q,q,t f q,q,t− + −  , 

( ){ } ( ){ }
SpringRF DampRF

f q,q,t f q,q,t− + −  , ( ){ } ( ){ }
SpringTF DampTF

f q,q,t f q,q,t− + −  , ( ){ } ( ){ }
SpringYaw DampYaw

f q,q,t f q,q,t− + −  , 

( ){ } ( ){ } ( ){ }{ }( )− + − + − =  


T AeroT GravT
f q,q,t f q,q,t f q,q,t Row 7,8, ,10 , ( ){ } ( ){ }− + − 

ElasticT DampT
f q,q,t f q,q,t , 

( ){ } ( )− 

G
f q,q,t 13 , ( ){ }

Gen
f q,q,t−  , ( ){ }

Brake
f q,q,t−  , ( ){ }

GBFric
f q,q,t−  , and ( ){ } ( ){ }

ElasticDrive DampDrive
f q,q,t f q,q,t− + −  . 
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