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590 THE CONTROLLER

8.3.2 Control of variable-speed, pitch-regulated turbines

A variable-speed generator is decoupled from the grid frequency by a power converter,
which can control the load torque at the generator directly, so that the speed of the tur-
bine rotor can be allowed to vary between certain limits. An often-quoted advantage of
variable-speed operation is that below rated wind speed, the rotor speed can be adjusted
in proportion to the wind speed so that the optimum tip speed ratio is maintained. At this
tip speed ratio the power coefficient, Cp, is a maximum, which means that the aerody-
namic power captured by the rotor is maximised. This is often used to suggest that a
variable-speed turbine can capture much more energy than a fixed-speed turbine of the
same diameter. In practice it may not be possible to realise all of this gain, partly because
of losses in the power converter and partly because it is not possible to track optimum
Cp perfectly.

Maximum aerodynamic efficiency is achieved at the optimum tip speed ratio 𝜆= 𝜆opt,
at which the power coefficient Cp has its maximum value Cp(max). Because the rotor speed
𝛺 is then proportional to wind speed U, the power increases with U3 and 𝛺

3, and the
torque with U2 and 𝛺

2. The aerodynamic torque is given by

Qa =
1
2
𝜌ACqU2R = 1

2
𝜌πR3

Cp

𝜆
U2 (8.2)

Since U = 𝛺R/𝜆 we have

Qa =
1
2
𝜌πR5

Cp

𝜆3
𝛺

2 (8.3)

In the steady state therefore, the optimum tip speed ratio can be maintained by setting
the load torque at the generator, Qg, to balance the aerodynamic torque, that is,

Qg =
1
2

π𝜌R5Cp

𝜆3G3
𝜔

2
g −QL (8.4)

Here QL represents the mechanical torque loss in the drive train (which may itself be a
function of rotational speed and torque), referred to the high-speed shaft. The generator
speed is 𝜔g = G𝛺, where G is the gearbox ratio.

This torque-speed relationship is shown schematically in Figure 8.3 as the curve
B1–C1. Although it represents the steady-state solution for optimum Cp, it can also
be used dynamically to control generator torque demand as a function of measured
generator speed. In many cases, this is a very benign and satisfactory way of controlling
generator torque below rated wind speed.

For tracking peak Cp below rated in a variable-speed turbine, the quadratic algorithm
of Eq. (8.4) works well and gives smooth, stable control. However, in turbulent winds,
the large rotor inertia prevents it from changing speed fast enough to follow the wind,
so rather than staying on the peak of the Cp curve it will constantly fall off either side,
resulting in a lower mean Cp. This problem is clearly worse for heavy rotors, and also if
the Cp – 𝜆 curve has a sharp peak. Thus, in optimising a blade design for variable-speed
operation, it is not only important to try to maximise the peak Cp, but also to ensure that
the Cp – 𝜆 curve is reasonably flat-topped.

It is possible to manipulate the generator torque to cause the rotor speed to change
faster when required, so staying closer to the peak of the Cp curve. One way to do this
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Figure 8.3 Schematic torque-speed curve for a variable-speed pitch-regulated turbine

is to modify the torque demand by a term proportional to rotor acceleration (Bossanyi
1994):

Qg =
1
2

π𝜌R5Cp

𝜆3G3
𝜔

2
g −QL − B�̇�g (8.5)

where B is a gain that determines the amount of inertia compensation. For a stiff drive
train, and ignoring frequency converter dynamics, the torque balance gives

I�̇� = Qa − GQg (8.6)

where I is the total inertia (of rotor, drive train and generator, referred to the low-speed
shaft) and 𝛺 is the rotational speed of the rotor. Hence

(I − G2B)�̇� = Qa −
1
2

π𝜌R5Cp

𝜆3G2
𝜔

2
g + GQL (8.7)

Thus, the effective inertia is reduced from I to I−G2B, allowing the rotor speed to
respond more rapidly to changes in wind speed. The gain B should remain significantly
smaller than I/G2 otherwise the effective inertia will approach zero, requiring huge power
swings to force the rotor speed to track closely the changes in wind speed.

Another possible method is to use available measurements to make an estimate of
the wind speed, calculate the rotor speed required for optimum Cp, and then use the
generator torque to achieve that speed as rapidly as possible. The aerodynamic torque
can be expressed as

Qa =
1
2
𝜌ACqRU2 = 1

2
𝜌πR5

𝛺
2Cq∕𝜆2 (8.8)

where R is the turbine radius, 𝛺 the rotational speed, and Cq the torque coefficient.
If drive train torsional flexibility is ignored, a simple estimator for the aerodynamic
torque is

Qa
∗ = GQg + I�̇� = GQg + I�̇�g∕G (8.9)
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where I is the total inertia. A more sophisticated estimator could take into account
drive train torsion, etc. From this it is possible to estimate the value of the function
F(𝜆) = Cq(𝜆)/𝜆2 as

F∗(𝜆) =
Q∗

a
1
2
𝜌𝜋R5(𝜔g∕G)2

(8.10)

Knowing the function F(𝜆) from steady state aerodynamic analysis, one can then
deduce the current estimated tip speed ratio 𝜆

* (see also Section 8.3.16 for a better esti-
mation method). The desired generator speed for optimum tip speed ratio can then be
calculated as

𝜔d = 𝜔g𝜆∕𝜆∗ (8.11)

where 𝜆 is the optimum tip speed ratio to be tracked. A simple PI controller can then be
used, acting on the speed error 𝜔g −𝜔d, to calculate a generator torque demand that will
track 𝜔d. The higher the gain of PI controller, the better will be the Cp tracking, but at
the expense of larger power variations. Simulations for a particular turbine showed that a
below rated energy gain of almost 1% could be achieved, with large but not unacceptable
power variations.

Holley et al. (1999) demonstrated similar results with a more sophisticated scheme,
and also showed that a perfect Cp tracker could capture 3% more energy below rated,
but only by demanding huge power swings of plus and minus three to four times rated
power, which is totally unacceptable.

Because such large torque variations are required to achieve only a modest increase
in power output, it is usual to use the simple quadratic law, possibly augmented by some
inertia compensation as in Eq. (8.5) if the rotor inertia is large enough to justify it.

As turbine diameters increase in relation to the lateral and vertical length scales
of turbulence, it becomes more difficult to achieve peak Cp anyway because of the
non-uniformity of the wind speed over the rotor swept area. Thus if one part of a blade
is at its optimum angle of attack at some instant, other parts will not be.

In most cases, it is actually not practical to maintain peak Cp from cut-in all of the
way to rated wind speed. Although some variable-speed systems can operate all of the
way down to zero rotational speed, this is not the case with limited range variable-speed
systems based on the widely used doubly fed induction generators. These systems only
need a power converter rated to handle a fraction of the turbine power, which is a major
cost saving. This means that in low wind speeds, just above cut-in, it may be necessary
to operate at an essentially constant rotational speed, with the tip speed ratio above the
optimum value.

At the other end of the range, it is usual to limit the rotational speed to some level, usu-
ally determined by aerodynamic noise constraints or blade leading-edge erosion, which
is reached at a wind speed that is still some way below rated. It is then cost-effective to
increase to torque demand further, at essentially constant rotational speed, until rated
power is reached. Figure 8.3 illustrates some typical torque-speed trajectories, which
are explained in more detail below. Turbines designed for noise-insensitive sites may be
designed to operate along the optimum Cp trajectory all of the way until rated power is
reached. The higher rotational speed implies lower torque and in-plane loads, but higher
out-of-plane loads, for the same rated power. This strategy might be of interest for off-
shore wind turbines.


