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Stall-induced edgewise blade vibrations have occasionally been observed on three-bladed
wind turbines over the last decade. Experiments and numerical simulations have shown
that these blade vibrations are related to certain vibration modes of the turbines. A recent
experiment with a 600 kW turbine has shown that a backward whirling mode associated
with edgewise blade vibrations is less aerodynamically damped than the corresponding
forward whirling mode. In this article the mode shapes of the particular turbine are analysed,
based on a simplified turbine model described in a multi-blade formulation. It is shown that
the vibrations of the blades for the backward and forward edgewise whirling modes are
different, which can explain the measured difference in aerodynamic damping. The modal
dynamics of the entire turbine is important for stability assessments; blade-only analysis
can be misleading. In some cases the modal dynamics may even be improved to avoid
stall-induced vibrations. Copyright  2003 John Wiley & Sons, Ltd.

Introduction

A theoretical modal analysis of a three-bladed wind turbine is presented, with the aim of explaining observed
differences in aerodynamic damping of two apparently similar modes.1 Similar results have previously been
published,2 but without the present details on the method and analysis.

Stall-induced vibrations of wind turbine blades have become an issue in the optimized design of stall-
regulated wind turbines with increasing rotor diameters. Until the 1990s, no problems with such vibrations
had been observed, although work performed in the 1980s indicated that these problems could arise.3 When
one of the first examples of stall-induced vibrations was reported on a 500 kW wind turbine,4 it led to further
investigations which have provided a detailed understanding of the problem.1,5 – 8

From the studies of stall-induced vibrations, different types of solutions have been developed. The common
solution for a wind turbine in operation is to change the stall characteristics of the blade by placing stall strips
on the leading edge of the blade.8,9 When designing a new blade, this aerodynamic issue must of course be
considered in the choice of aerofoil profiles. However, the structural dynamics of the blade is also important
for the risk of stall-induced vibrations. The aerodynamic damping of a blade section operating in stall is
highly dependent on the direction of blade vibration (relative to the rotor plane) associated with the primary
bending modes.5,7,8 For most aerofoil profiles at high angles of attack it can be shown, using quasi-steady
aerodynamics (see Appendix), that vibrations in the rotor plane (edgewise) are less damped by the air flow
than those out of the rotor plane (flapwise). Another important role of the structural dynamics is the structural
damping of the blade. For example, if the first edgewise mode of a blade has a negative aerodynamic damping

Ł Correspondence to: M. H. Hansen, Wind Energy Department, Risø National Laboratory, PO Box 49, DK-4000 Roskilde,
Denmark. E-mail: morten.hansen@risoe.dk
Contract/grant sponsor: Danish Energy Agency; Contract/grant number: ENS 1363/00-0006.

Published online 7 February 2003 Received 20 August 2002
Copyright  2003 John Wiley & Sons, Ltd. Revised 5 November 2002

Accepted 12 November 2002



180 M. H. Hansen

at some wind speeds, then it may be possible to avoid an instability by adding sufficient structural damping
to the blade, or a distinct vibration damper.10 Thus, besides the aerodynamic issue, it is necessary to consider
the mode shapes and their structural damping when designing a new blade.

Another issue of stall-induced vibrations is the interaction of the blades with the remaining wind turbine. A
numerical simulation of a turbine using the aeroelastic code HAWC11 showed that, by stiffening the support
of the rotor (shaft and nacelle), undamped edgewise blade vibrations could be avoided.7 This observation
may be related to an observation made by Thomsen et al.1 They have developed an experimental method for
estimating the total damping of a wind turbine during operation. Figure 1 shows the results of their experiments
with a stall-controlled Bonus 600 kW wind turbine. The observation is that the forward rotor whirling mode
associated with edgewise blade vibrations is more damped than the backward rotor whirling mode. The
structural damping of these two modes is assumed to be the same, because their natural frequencies and mode
shapes are almost identical; the difference in total damping is therefore a difference in aerodynamic damping.

In this article it is suggested that the dependence of aerodynamic damping on whirl direction and rotor
support stiffness can be explained by analysing the turbine mode shapes. It is shown how a theoretical
modal analysis can be performed for a rotating turbine based on the so-called multi-blade co-ordinate
transformation.12,13 For the particular 600 kW turbine it is shown that the blades vibrate more out of the
rotor plane in the forward edgewise whirling mode than in the backward edgewise whirling mode. This
observation can explain the measured difference in aerodynamic damping for the two whirling modes, because
the direction of blade vibration with respect to the rotor plane is important for the aerodynamic damping in
stall. It is suggested that, using the modal analysis, the design of wind turbines can be tailored to increase
the blade vibration out of the rotor plane for all modes, and thereby increase the aerodynamic damping of
stall-regulated turbines.

The next section describes the model and method for modal analysis of rotating turbines. The modal analysis
of the 600 kW turbine is then presented, followed by a section on the measured differences in aerodynamic
damping and the optimization of its dynamical behaviour.

Model and Method

A linear model of a three-bladed wind turbine is needed for the modal analysis. It must qualitatively describe
the dynamics of the turbine up to the second tilt/yaw modes in order to study the phenomena mentioned
above. Blade torsion is not included in the analysis, because the corresponding natural frequencies are several
times higher than the dynamics of interest.
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Figure 1. Total damping of the forward and backward edgewise whirling modes of the Bonus 600 kW estimated by
Thomsen et al.1
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Figure 2. Simplified structural model of a wind turbine

Equations of Motion

A schema of the structural model is shown in Figure 2. The motion of the nacelle and tower is
described by seven degrees of freedom (DOFs). The nacelle can translate in the two horizontal direc-
tions, described in the ground fixed frame (X,Y, Z) by ut

x (lateral) and ut
y (longitudinal), and can tilt

and yaw about the tower top, described by the angles �t
x and �t

z respectively. The rotor can rotate
out of its plane owing to bending of the shaft, described by the angles �s

x and �s
z defined in the co-

rotating frame of blade number 1. Finally, the torsion of the shaft and drive-train is described by the
angle �s

y .
The motions of the blades are described by a modal expansion defined in their own co-rotating frames

(x, y, z), where the z-axis is the blade axis and the y-axis at rest coincides with the Y-axis. The in- and
out-of-rotor-plane motions of blade number i are given by

uBi
x �t, z� D

N∑
nD1

qi,n�t�
x
n�z�, uBi

y �t, z� D
N∑
nD1

qi,n�t�
y
n�z� �1�

where qi,n are modal blade co-ordinates describing the contents of mode number n in the motion of blade
number i, and x

n and y
n are the mode shape functions. These shape functions can be obtained numerically

or experimentally.
For the derivation of the inertia forces it is assumed that the centre of mass (CM) for the undeformed

blade lies along the z-axis. A vector in the blade frame �x, y, z� from the rotor centre to the CM at radius z
is therefore given by

rB
i D

N∑
nD1

fx
n�z�,

y
n�z�, zgTqi,n�t� �2�

In the ground fixed frame �X, Y, Z� the motion of the CM at radius z on blade number i becomes

ri D rt C Tt[rts C TaTs�rsh C TBir
B
i �] �3�

where rt D fut
x, u

t
y, 0gT is a vector from the origin to the tower top, rts D f0,�Ln, 0gT is a vector from the

tower top to the bending point on the shaft in nacelle co-ordinates, and rsh D f0,�Ls, 0gT is a vector from this
point to the rotor centre in rotor co-ordinates. The transformation matrices Ta and TBi handling the azimuth
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rotations are written as

TBi D




cos
[

2
3��i� 1�

]
0 sin

[
2
3��i� 1�

]
0 1 0

� sin
[

2
3��i� 1�

]
0 cos

[
2
3��i� 1�

]



Ta D




cos��t C �s
y� 0 sin��t C �s

y�
0 1 0

� sin��t C �s
y� 0 cos��t C �s

y�




�4�

where � is the rotation speed. It is assumed that all rotations of the tower top and hub are small
(�t
x, �

t
z, �

s
x, �

s
z << 1), whereby the remaining transformation matrices of equation (3) become

Ts D




1 ��s
z 0

�s
z 1 ��s

x

0 �s
x 1


 , Tt D




1 ��t
z 0

�t
z 1 ��t

x

0 �t
x 1


 �5�

where Ts handles the transformation from rotor to nacelle co-ordinates due to shaft bending, and Tt handles
the transformation from nacelle co-ordinates to the ground fixed frame due to tilt and yaw.

The total kinetic energy of the wind turbine in this model can now be derived as

T D 1

2

(
M� Put2

x C Put2
y �C Ix P�t2

x C Iz P�t2
z C Iy P�s2

y C
3∑
iD1

∫ R

0
m�z�jPrij2dz

)
�6�

where �
.
� � ∂/∂t denotes the time derivative, M is the total mass of the nacelle (and a part of

the tower), Ix and Iz are the rotational inertias of the nacelle about the tilt and yaw axes respec-
tively, Iy is the rotational inertia of the shaft and drive-train, R is the length of the blades includ-
ing the hub and root extension, and m�z� is the mass per unit length of the entire blade–root–hub
assembly.

It is assumed that there is an elastic stiffness coupling between the nacelle tilt �t
x and the longitudinal tower

motion ut
y , whereby the potential energy is defined as

V D 1

2

[
kxu

t2
x C kyu

t2
y C gxyu

t
y�

t
x CGx�

t2
x CGz�

t2
z

CKs��
s
x

2 C �s2

z �CGy�
s2

y C
3∑
iD1

(
N∑
nD1

knq
2
i,n C Vc,i

)] �7�

where kx and ky are the translational stiffnesses of the tower at its top, gxy is the coupling stiffness between
nacelle tilt and longitudinal tower motion, Gx and Gz are the rotational stiffnesses of the tower at its top, Ks

is the bending stiffness of the shaft, and Gy is the torsional stiffness of the shaft and drive-train. The modal
stiffness kn is defined as kn � ω2

nMn, where ωn is the natural frequency of blade mode number n, and Mn is
the modal mass, Mn � ∫ R

0 m�z��
x2

n Cy2

n �dz.
The potential energy term Vc,i is added for modelling of the centrifugal stiffening effect. The tensile force

in the blade due to centrifugal body forces is �2
∫ R
z m�	�	d	, and the additional potential energy due to the

centrifugal body forces can be approximated by

Vc,i D 1

2
�2

∫ R

0




(
N∑
nD1

qi,n
dx

n

dz

)2

C
(

N∑
nD1

qi,n
dy

n

dz

)2

∫ R

z
m�	�	d	dz �8�
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where it is assumed that rotations of the blade cross-sections due to bending are small.
The blade and tower/nacelle co-ordinates are collected in a state vector

x D fq1,1, . . . , q1,N, q2,1, . . . , q2,N, q3,1, . . . , q3,N, �
s
x, �

s
z, u

t
x, u

t
y, �

t
x, �

t
z, �

s
ygT �9�

and Lagrange’s equations are derived from the Lagrangian L D T� V. After linearization about the
undeformed state by assuming small amplitudes of the co-ordinates, xj << 1, the equations of motion can
be written in the form

M�t�Rx C C�t�Px C K�t�x D 0 �10�

Where M, C and K are the mass, gyroscopic and stiffness matrices respectively. All three matrices are
time-dependent, containing harmonic terms with period T D 2�/�.

Note that structural damping is neglected in this simplified wind turbine model. The lower-order modes of
interest to this study are low damped, thus structural damping has practically no effect on their mode shapes.
For studies of resonance phenomena and stability it would be necessary to include the structural damping.14

The equations of motion (10) have a form that is general for linear structural models of wind turbines. The
periodic terms arising from the azimuthal rotation prevent a direct derivation of the natural frequencies and
mode shapes from an eigenvalue problem. Still, the mathematical approach of using Floquet theory should
be avoided, because there is a more physically comprehensive way to set up an eigenvalue problem.

Multi-blade Co-ordinate Transformation

The use of multi-blade co-ordinates, or Fourier co-ordinates, for bladed rotors12,13 is a method to describe
the motions of individual blades in the same co-ordinate system as the structure supporting the rotor, whereby
the periodic terms in the governing equations are eliminated. The fundamental assumption of this method
is that the rotor is isotropic, i.e. all blades are identical, identically pitched and symmetrically mounted on
the hub.

In the wind turbine model given by equation (10), the motion of the tower/nacelle is described in the
ground fixed frame, while the shaft bending is described in rotating shaft co-ordinates, and the motions of the
three blades are described in their own co-rotating frames. The shaft bending can easily be described in the
ground fixed frame by a co-ordinate transformation with respect to the azimuth angle. The transformation of
the blade co-ordinates into the ground fixed frame can be done by the multi-blade co-ordinate transformation,
which is defined by

qi,n D a0,n C a1,n cos i C b1,n sin i �11�

where  i D �t C 2
3��i� 1� is the azimuth angle to blade number i (without shaft torsion) measured from

the Z-axis.
The three multi-blade co-ordinates a0,n, a1,n and b1,n replace the three blade co-ordinates q1,n, q2,n and

q3,n. To see that the multi-blade co-ordinates describe the rotor motion in the ground fixed frame, assume
that blade mode n is the first flapwise bending mode. Then a0,n describes a simultaneous flapwise deflection
of all three blades, while a1,n and b1,n describe tilt and yaw motions respectively.

The multi-blade transformation of the state vector x can be represented by

x D B�t�z �12�

where the state vector z containing the multi-blade co-ordinates is

z D fa0,1, . . . , a0,N, a1,1, . . . , a1,N, b1,1, . . . , b1,N, �
s
X, �

s
Z, u

t
x, u

t
y, �

t
x, �

t
z, �

s
ygT �13�
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and the transformation matrix is

B �




IN IN cos 1 IN sin 1 0 0 0
IN IN cos 2 IN sin 2 0 0 0
IN IN cos 3 IN sin 3 0 0 0
0 0 0 cos�t � sin�t 0
0 0 0 sin�t cos�t 0
0 0 0 0 0 I5


 �14�

where IN is the identity matrix of size NðN. The matrix B has the following properties:

B�1 PB D




0 0 0 0 0 0
0 0 �IN 0 0 0
0 ��IN 0 0 0 0
0 0 0 0 �� 0
0 0 0 � 0 0
0 0 0 0 0 0


 � R

B�1 D mBT, m D




1
3 IN 0 0 0
0 2

3 IN 0 0
0 0 1

3 IN 0
0 0 0 I7




�15�

which shows that PB D BR and RB D BR2. A transformation of equation (10) into the multi-blade co-ordinates
(12) yields

MB Rz C �2MBR C CB�Pz C �MBR2 C CBR C KB�z D 0 �16�

where MB � mBTMB, CB � mBTCB and KB � mBTKB are the transformed system matrices. If the rotor is
isotropic, these matrices are constant, i.e. the transformed equations of motion in the multi-blade co-ordinates
(16) contain no periodic terms. It is therefore possible to define an eigenvalue problem that gives the natural
frequencies and mode shapes of the wind turbine with a rotating rotor.

Eigenvalue Problem and Solution

A substitution of the solution z D zke
kt into (16) yields an eigenvalue problem that determines the complex
eigenvalues 
k � �k C iωk (i � p�1) and complex eigenvectors zk of mode number k.

Inserting the solution z D zke
kt into (12), the blade co-ordinate qi,n for the modal content of blade mode
number n in the motion of blade number i becomes

qi,n,k D A0
n,ke

�kt cos�ωkt C �0
ˇ,k�

C 1
2A

BW
n,k e�kt cos[�ωk C��t C 2

3��i� 1�C �BW
n,k ]

C 1
2A

FW
n,k e�kt cos[�ωk ���t � 2

3��i� 1�C �FW
n,k ]

�17�

where the amplitudes and phases are determined by the complex eigenvectors

A0
n,k D 1

2

√
Refa0,n,kg2 C Imfa0,n,kg2

ABW
n,k D 1

2

√
�Refb1,n,kg � Imfa1,n,kg�2 C �Imfb1,n,kg C Refa1,n,kg�2

AFW
n,k D 1

2

√
�Refb1,n,kg C Imfa1,n,kg�2 C �Refa1,n,kg � Imfb1,n,kg�2

�18�
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and
�0
n,k D tan�1�Imfa0,n,kg/Refa0,n,kg�

�BW
n,k D tan�1[�Imfa1,n,kg � Refb1,n,kg�/�Imfb1,n,kg C Refa1,n,kg�]
�FW
n,k D tan�1[�Refb1,n,kg C Imfa1,n,kg�/�Refa1,n,kg � Imfb1,n,kg�]

�19�

Equation (17) shows that the motion of blade number i for mode number k consists of three components:
a symmetric component where all blades deflect simultaneously in blade mode number n with the amplitude
A0
n,k , and two asymmetric components where the blades deflect with phase shifts of T/3 and the amplitudes
ABW
n,k and AFW

n,k respectively. As indicated by the superscripts, the asymmetric components represent backward
and forward rotor whirling. The direction of the whirl is determined by the sign of the blade-dependent phase
shifts 2

3��i� 1�.
The frequency of the symmetric component is ωk , while the frequencies of the whirling components are

shifted by š�. The reason for these frequency shifts is that the natural frequency ωk is given in the ground
fixed frame. An observer on the tower top (in the ground fixed frame) will measure the natural frequency ωk
for all three modes. An observer on a blade will also measure the frequency ωk for symmetric modes, but for
backward and forward whirling modes the same observer will measure the frequencies ωk C� and ωk ��
respectively.

The damping of the turbine modes is described by the term e�kt; the modal damping factor �k determines
the exponential decay, or growth, of amplitude for a vibration in mode number k. The computation of the
damping factors can therefore be used for stability analyses, e.g. the flutter analysis of a wind turbine.15

Modal Analysis of the Experimental 600 kW Turbine
This section contains derivations of the natural frequencies and mode shapes of the Bonus 600 kW wind
turbine used in the experiments by Thomsen et al.1 A Campbell diagram shows the natural frequencies of
the turbine as a function of rotation speed. A mode identification study shows that some of the corresponding
mode shapes change dramatically as the rotation speed is changed, owing to modal interactions.

Model Parameters

The Bonus 600 kW (Mk III C) wind turbine with its LM 19Ð1 m blades has a rotor radius of 22 m with hub
and root extension. For this study, two blade modes are chosen (N D 2): first flapwise and first edgewise
bending modes for the non-rotating blade. The shape functions x

n and y
n of the entire blade–root–hub

assembly are obtained from curve fits to the results of a finite element model (see Figure 3). The functions
are normalized so that the associated modal masses are one. The natural frequencies of the flapwise and
edgewise blade modes (as measured in a test stand with the hub and root extension) are 1Ð70 and 2Ð94 Hz
respectively.

The remaining model parameters are obtained by tuning the natural frequencies of the stationary turbine
(� � 0) to the frequencies measured for the particular experimental turbine. The turbine is operating at a
speed of about 27Ð4 rpm (� ³ 2Ð87 rad s�1).
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Figure 3. Mode shape functions for the blade–root–hub assembly: first flapwise mode (left) and first edgewise mode (right).
The functions are curve fits to the points obtained from a finite element model with Timoshenko beam elements
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186 M. H. Hansen

Table I. Modelled and measured natural frequencies of the lowest 10 modes of the
stationary turbine

Mode no. Name Modelled
frequency (Hz)

Measured
frequency (Hz)

1 1st shaft torsion 0Ð57 0Ð56
2 1st longitudinal tower bending 0Ð73 0Ð73
3 1st lateral tower bending 0Ð78 0Ð80
4 1st yawing flap 1Ð24 1Ð20
5 1st tilting flap 1Ð48 1Ð50
6 1st symmetric flap 1Ð76 1Ð76
7 1st vertical edgewise 2Ð85
8 1st horizontal edgewise 2Ð95 2Ð90

9 2nd yawing flap 3Ð43
10 2nd tilting flap 3Ð74 3Ð60

Natural Frequencies and Mode Shapes

Modelled and measured natural frequencies of the 10 lowest modes of the stationary turbine are listed in
Table I. The measured frequencies are obtained from identification of peaks in frequency responses. For the
mode pairs 7/8 and 9/10 it is only possible to identify a single response peak.

A comparison of modelled and measured frequencies leads to the assumption that the model is sufficiently
tuned to the experimental turbine. The naming of the 10 lowest modes is based on animations of their mode
shapes and the measured frequency responses. The sequence of modes is typical for a turbine of this size,
with the exception that the 1st shaft torsion may be higher than the tower bending modes. The longitudinal
tower bending always lies slightly lower than the lateral tower bending mode, because it contains some tilting
of the rotor, which has a large inertia.

Modes 4 and 5 are the 1st tilt/yaw modes involving the flapwise blade mode. The yaw mode most often lies
lower than the tilt mode, because towers are stiffer in tilt than in yaw. The sixth mode is the 1st symmetrical
flap mode, where the blades vibrate simultaneously in the flapwise blade mode in counter-phase with a
longitudinal tower vibration. This coupling causes the symmetric flap frequency to lie slightly above the
frequency of the flapwise blade mode.

Modes 7 and 8 involve the edgewise blade mode, and their frequencies are close to the edgewise blade
frequency of 2Ð94 Hz (with an average slightly below). In both modes the blades vibrate edgewise against
each other so that they cancel out the torsional moment at the rotor centre. The two modes differ in the
direction of the reactive force at the rotor centre, as indicated by their names: 1st vertical and 1st horizontal
edgewise mode. The sequence of these two modes is given by the vertical and horizontal stiffness of the rotor
support.

The last two modes listed in Table I are the 2nd tilt/yaw modes, where the rotor blades are tilting and
yawing in counter-phase with the tilt and yaw of the nacelle. Again the yaw mode lies below the tilt mode
because of the lower yaw than tilt stiffness of the tower.

Figure 4 shows how the natural frequencies ωk of these 10 lowest modes change with the rotation speed
� from standstill to the operation speed. The natural frequencies of the tower bending modes and the shaft
torsion mode are constant with rotation speed. The frequency of the symmetric flap mode increases owing
to centrifugal stiffening of flapwise bending. The natural frequencies of the asymmetric rotor modes change
with rotation speed owing to gyroscopic effects.

The naming of the modes at operation listed in the table in Figure 4 requires some introduction. All pairs
of asymmetric rotor modes at standstill (modes 4/5, 7/8 and 9/10) become pairs of rotor whirling modes
owing to the rotation, e.g. the 1st tilt/yaw modes become the 1st flapwise whirling modes. The frequencies
of the backward whirling (BW) modes decrease with rotation speed, whereas the frequencies of the forward
whirling (FW) modes increase with rotation speed.
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Figure 4. Campbell diagram: natural frequencies as a function of rotation speed of the rotor. The points denote the
measured natural frequencies for the turbine at standstill

This splitting of the natural frequencies of a whirling mode pair is related to the co-ordinate system of
observation through gyroscopic effects. The natural frequencies ωk in Figure 4 are observed from the ground
fixed frame. Equation (17) shows that in a co-rotating blade frame the frequency of a symmetric rotor mode
remains ωk , whereas the frequencies of BW and FW modes become ωk C� and ωk �� respectively. If only
blade mode number n is involved in the whirling modes, their frequencies split in the ground fixed frame
about the natural frequency ωn of this blade mode. In this ideal case the observer on the blade will measure
the same frequency ωn D ωBW

k C� D ωFW
k �� for both the BW and FW modes.

This ideal condition is affected by structural asymmetry of the turbine and coupling of blade modes in the
turbine modes. Such modal interactions may occur when the natural frequencies of two turbine modes come
close. Figure 4 shows that the frequencies of the 1st FW edgewise mode (mode 8) and the 2nd BW flapwise
mode (mode 9) become close at about � D 2Ð5 rad s�1. These two modes interact, which can be shown by
the flapwise and edgewise whirling components in their mode shapes.

Figure 5 shows the FW and BW components of the flapwise and edgewise blade modes in modes
7–10. These whirling components are computed from the eigenvectors in multi-blade co-ordinates using
equation (18). The dominating amplitudes for modes 7 and 10 show that these modes are respectively a BW
edgewise and an FW flapwise mode. However, there are no dominant modal amplitude for modes 8 and 9
over the whole range of rotation speeds. It seems that these modes interchange mode shapes: mode 8 can be
defined as an FW edgewise mode and mode 9 as a BW flapwise mode at rotation speeds below 2Ð5 rad s�1,
and vice versa above this speed.

At the operation speed, mode 9 must be characterized as the 1st FW edgewise mode with some content of
flapwise whirling. This content is now suggested to explain the observed difference in aerodynamic damping
of the BW and FW edgewise modes (modes 7 and 9).

Why the Measured Difference in Aerodynamic Damping?

Thomsen et al.1 have estimated the total damping of the two edgewise whirling modes (see Figure 1). The
results show that the FW edgewise mode (mode 9) is more damped than the BW edgewise mode (mode 7).
The structural damping of these two modes is assumed to be the same, because their natural frequencies
and mode shapes are almost identical. Thus the difference in total damping is assumed to be caused by a
difference in aerodynamic damping.
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Figure 5. Flapwise and edgewise whirling components of the modal blade amplitudes for modes 7–10 computed from the
eigenvectors using equation (18)

The aim of the experiment was to measure the damping of edgewise blade vibrations during turbine
operation by exciting the corresponding turbine modes using an exciter mounted in the nacelle. The presented
theoretical modal analysis of the turbine was not available for the experiment. The excitation of the edgewise
whirling modes was therefore based on tuning the excitation frequency to obtain the maximum edgewise
blade response. The two initial guesses, however, were based on the assumption that the ideal condition for
frequency splitting existed, i.e. the excitation frequency should be the natural frequency of the edgewise blade
mode plus or minus the operation speed (1P).

Figure 6 shows a zoom in the Campbell diagram (Figure 4) on the natural frequencies of modes 7–9,
together with lines of the š1P splitting about the edgewise blade frequency (2Ð94 Hz). These lines intersect
with the natural frequencies of modes 7 and 9 at the operation speed, showing that the initial guesses on the
experimental excitation frequencies are close. However, the modal analysis has also shown that mode 9 is
not a pure edgewise whirling mode; it has some flapwise component. This component affects the direction
in which the blades are vibrating relative to the rotor plane.

Effective Direction of Blade Vibration

Figure 7 shows how the blade cross-section at 90% radius is moving in and out of the rotor plane during
vibrations in the two edgewise whirling modes (modes 7 and 9). The motion of the cross-section includes
the motion of the rotor support, i.e. the shaft and tower deformations add to the effective blade vibration.
The traces show that the blades move more out of the rotor plane in the FW edgewise mode than in the
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Figure 7. Motion of a blade cross-section at 90% radius for the 1st BW edgewise mode (left) and the 1st FW edgewise
mode (right). The motion includes the tower and shaft deformations

BW edgewise mode. This difference in blade vibration for the two modes can explain why Thomsen et al.
observed that the FW mode is more damped than the BW mode.

A quasi-steady aerodynamic analysis in the Appendix shows that the aerodynamic damping of a blade
cross-section is lowest for vibrations close to the rotor plane. It is presumed in the analysis that the blade
cross-section is performing a small elliptical motion, with the major axes being parallel and perpendicular
to the rotor plane. This type of motion is assumed to characterize the qualitative pattern of the traces in
Figure 7, except for a slight tilt of the major axes which originates from the direction of blade vibration for
the edgewise blade mode (see Figure 3). An effective direction of blade vibration is defined for the elliptical
motion of a blade cross-section as

�eff D tan�1

(
max. amplitude out of rotor plane

max. amplitude in rotor plane

)
�20�
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Because the elliptical motion is assumed to have the major axes parallel and perpendicular to the rotor plane,
the maximum amplitudes are positive, yielding 0° < �eff < 90°. Using this definition on the motion of the
cross-section at 90% radius in Figure 7, it is found that �eff ³ 9° and 30° for the 1st BW and FW edgewise
modes respectively. Computations of �eff along the blade show that the entire blade is vibrating more out of
the rotor plane in the 1st FW edgewise mode than in the 1st BW edgewise mode. Hence, based on quasi-
steady aerodynamics, this behaviour can explain the measured difference in aerodynamic damping of these
two modes.

Improved Modal Dynamics

The out-of-plane motion of the blades in the 1st FW edgewise mode is mainly due to a component of the
flapwise blade mode through the previously described modal interaction with the 2nd BW flapwise mode (see
Figure 5). The 1st BW edgewise mode is not interacting with a flapwise whirling mode; the blades are mainly
vibrating in the edgewise blade mode (with the additional motion due to the tower and shaft deformations). Is
it possible to add a flapwise component to the BW edgewise mode without removing the flapwise component
in the FW edgewise mode, thereby increasing the overall aerodynamic damping of the turbine?

An example shows that such improvement of the modal dynamics of the Bonus 600 kW turbine may be
possible. The natural frequency of the edgewise blade mode is chosen to be the design parameter in this
optimization problem. Note that in reality an improved design must be the result of an integrated process
towards a ‘global optimum’, where not only a single design parameter (the edgewise blade stiffness) is
considered to achieve a single objective (the effective direction of blade vibration).

Figure 8 shows the effective directions of blade vibration defined by equation (20) at the 90% radius
for modes 7–10 as function of the edgewise blade frequency. The modes are here named by their numbers,
because their modal interactions prevent a unique mode identification over the entire range of design variation.
These modes are all interesting, because they involve the edgewise blade mode. Shaft torsion and lateral tower
bending modes also involve blade vibrations close to the rotor plane; however, the resulting low aerodynamic
damping is compensated by high structural damping due to the generator slip of an asynchronous machine.

A local optimum is marked at an increase of 22% in the edgewise blade frequency, from 2Ð94 to 3Ð59 Hz.
For this design the effective direction of blade vibration for mode 7 has tripled to approximately 27°. The
effective direction of blade vibration has also increased for mode 8; however, the blades are now vibrating
closer to the rotor plane in modes 9 and 10. In fact, mode 10 would be the most critical mode for higher
edgewise blade frequencies.
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Figure 8. Effective directions of blade vibration at 90% radius with respect to the rotor plane for modes 7–10 as a function
of the edgewise blade frequency
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The improved design (with respect to the effective direction of blade vibration) uses the modal interaction
with 2nd flapwise whirling modes to increase the flapwise component in the 1st edgewise whirling
modes. It is not a coincidence that the optimal edgewise blade frequency is almost identical to the
average frequency of the 2nd tilt and yaw modes at standstill (see Table I and Figure 4). Figure 9
shows a Campbell diagram for modes 7–10 of the improved turbine, together with the š1P splitting
about the edgewise blade frequency. The ideal condition with a single blade mode involved in the
rotor whirling mode is not present, and the modal interaction of edgewise and flapwise whirling is
complete.

For this particular turbine it may be impossible to increase the edgewise blade frequency by 22%; however,
by changing other design parameters, it may be possible to lower the frequencies of the 2nd flapwise whirling
modes to obtain the desired modal interaction. A rule of thumb in structural design for maximum out-of-
rotor-plane blade vibration can be formulated as: Make sure the 1st edgewise blade frequency lies between
the frequencies of the 2nd tilt and yaw modes. Whether and how this design guideline can be followed will
depend on the wind turbine.

Conclusion

A theoretical modal analysis of a three-bladed wind turbine shows that the blades cannot be consid-
ered as separate dynamic components of the turbine. Blade vibrations in the different modes of the
turbine are strongly affected by the dynamics of the shaft, nacelle and tower. It is therefore necessary
to consider the dynamics of the complete turbine when estimating the risk of stall-induced blade vibra-
tions.

The analysis of a stall-controlled 600 kW turbine suggests why the forward and backward edgewise whirling
modes have been observed to have different aerodynamic damping.1 The explanation is a difference in the
blade vibration for the two edgewise whirling modes. The forward whirling mode interacts with a flapwise
whirling mode, whereby the blades vibrate more out of the rotor plane, yielding an increased aerodynamic
damping.

Variations of the turbine design indicate that the structural dynamics of a wind turbine can be tailored to
obtain a higher aerodynamic damping of its critical modes. A rule of thumb in structural design to lower the
risk of stall-induced edgewise vibrations can be formulated as: Make sure the 1st edgewise blade frequency
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lies between the frequencies of the 2nd tilt and yaw modes. Whether and how this design guideline can be
followed will depend on the wind turbine.
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Appendix: Aerodynamic Damping
This appendix deals with the aerodynamic damping of blade vibrations based on quasi-steady aerodynamics.
Unsteady aerodynamic effects can be dominating when the blades operate in stall; however, the basic
qualitative behaviour of the aerodynamic damping is assumed to be described by quasi-steady aerodynamics
(see e.g. References 8 and 16 for details on dynamic stall effects).

The aim is to determine the aerodynamic damping of a vibrating blade cross-section. The cross-section is
assumed to translate in and out of the rotor plane with the velocities Pux and Puy respectively, as shown in
Figure 10. Torsional motion is neglected. The velocity triangle shows that the relative flow angle with respect
to the rotor plane and the relative flow speed are

� D tan�1

(
V� Puy
r�C Pux

)
, W D

√
�V� Puy�2 C �r�C Pux�2 �21�

where V is the wind speed, and the product of radius and rotation speed, r�, is the steady tangential speed of
the cross-section. Note that induced velocities from the wake behind the turbine are neglected, which has no
qualitative influence on the derivations. The angle of attack is the difference between the relative flow angle
and the twist of the cross-section: ˛ D � � �.

The assumption of quasi-steady conditions (neglecting added mass effects) means that the lift and drag on
the cross-section can be written as

L� Pux, Puy� D 1

2
c
W2CL�˛�, D� Pux, Puy� D 1

2
c
W2CD�˛� �22�

where c is the chord length, 
 is the air density, and CL and CD are the steady aerodynamic lift and drag
coefficients given as functions of the angle of attack. The lift and drag forces are non-linear functions of the
velocities Pux and Puy of the cross-section.

Assuming that these velocities are small compared with the steady flow velocities (Pux << r� and Puy << V),
the aerodynamic forces (22) are linearized and projected onto the co-ordinate system of the rotor plane �x, y�.
The resulting linear quasi-steady aerodynamic forces can be written as

F D
{
Fx
Fy

}
D �1

2
c
W0

[
cxx cxy
cyx cyy

] { Pux
Puy

}
�23�

a

q

f

rotor plane
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•

Figure 10. Velocity triangle for a blade cross-section (without induced velocities from the turbine wake)
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where W0 D p
V2 C r2�2 is the steady relative velocity, and the diagonal elements of the damping coefficient

matrix are
cxx D �3CD C C0

L C �CD � C0
L� cos 2�0 � �CL CC0

D� sin 2�0�/2

cyy D �3CD C C0
L � �CD � C0

L� cos 2�0 C �CL CC0
D� sin 2�0�/2

�24�

where ��0 � d/d˛, and �0 D tan�1�V/r�� is the steady flow angle. The lift and drag coefficients and their
derivatives are evaluated at the steady angle of attack ˛0 D �0 � �.

Previous studies of quasi-steady aerodynamic damping have presented linear aerodynamic forces identical
to equation (23), although their expressions for the damping coefficient have another form (see e.g. References
5, 7 and 8). These studies deal with the damping of blade vibrations, where the blade cross-sections move in
straight lines in the �x, y� plane. This is the case for a blade mounted in a test stand; however, the present
modal analysis of the rotating turbine shows that cross-sections move in a more elliptical motion when the
blades are vibrating in a turbine mode (see Figure 7).

It is assumed that the cross-section is moving in an ellipse with the major axes parallel and perpendicular
to the rotor plane, as shown in Figure 11. Using definition (20) of the effective direction of vibration �eff to
describe the ratio of the major axes, this elliptical motion of a blade cross-section can be described by the
vector

u D a

{
cos �eff cosωt
sin �eff sinωt

}
�25�

where a and ω are the amplitude and frequency of the elliptical motion.
The aerodynamic damping can be approximated as the negative work done by the aerodynamic forces on

the blade cross-section over one period of oscillation, T � 2�/ω. Positive aerodynamic work corresponds to
negative aerodynamic damping. For the elliptical motion (25) the aerodynamic work can be derived as

Waero D
∫ T

0
FT Pudt D ��

2
ωa2c
W0ceff �26�

where ceff is an effective aerodynamic damping coefficient given by

ceff D 1

2
�cxx C cyy�C 1

2
�cxx � cyy� cos 2�eff �27�

When this coefficient is negative, the aerodynamic damping of the elliptical motion is negative. Note that
the elliptical motion (25) is clockwise; the work of the linear aerodynamic forces is identical to (26) for
counter-clockwise motion (this is not the case when unsteady aerodynamic effects are included).

Expression (26) shows that c eff D cxx for purely in-plane motion of the cross-section (�eff D 0°), whereas
c eff D cyy for purely out-of-plane motion of the cross-section (�eff D 90°). For elliptical motion between purely
in- and out-of-plane motion the effective damping coefficient lies between cxx and cyy . Figure 12 shows these
two damping coefficients for the cross-section at 90% radius as a function of operational wind speeds of the
experimental turbine analysed in this article. The grey area shows the effective damping of elliptical motion

qeff rotor plane

Fx

u

Fy

x

y

wt

Figure 11. Elliptic motion of the blade cross-section described by the vector u (equation (25)). The effective direction of
blade vibration is given by �eff
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of the cross-section. Note that cxx < cyy at all operational wind speeds, which shows that the aerodynamic
damping at this radius is always lowest for the blade vibration closest to the rotor plane.

The simple expression (26) enables a qualitative understanding of the critical parameters for stall-induced
vibrations. The mean �cxx C cyy�/2 determines a mean aerodynamic damping of arbitrary blade vibrations.
The variation �cxx � cyy�/2 about this mean determines how the damping varies with the effective direction of
vibration in and out of the rotor plane. Using equation (24), the sum and difference of the two aerodynamic
coefficients become

cxx C cyy D 3CD C C0
L

cxx � cyy D �CD � C0
L� cos 2�0 � �CL C C0

D� sin 2�0

�28�

which shows that the drag, and the lift gradient add to the mean aerodynamic damping, e.g. a negative
lift gradient decreases the mean damping. It also shows that the variation of damping with the direction of
vibration depends on all aerodynamic profile coefficients weighted with the steady relative flow angle �0. It
can be deduced from (28) that the aerodynamic damping of in-plane motion increases proportionally to drag
but decreases proportionally to lift, lift gradient and drag gradient, because 0° � �0 � 90° for most operation
conditions.
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