Compare commits

...

2 Commits

Author SHA1 Message Date
ffcc18fee7 Merge remote-tracking branch 'origin/master' 2025-10-28 13:36:05 +08:00
cd6c4e267d vault backup: 2025-10-28 13:35:54 2025-10-28 13:35:57 +08:00
6 changed files with 212 additions and 5 deletions

View File

@ -3852,7 +3852,7 @@ $$
where u is a vector of inputs, $\times$ is a vector of system states, and y is a vector of outputs. A, B, C and D are the state space matrices.
其中 u 为输入向量,$\times$ 为系统状态向量y 为输出向量。A、B、C 和 D 为状态空间矩阵。
First click Select… to define which variables from the Model linearisation results are required as model outputs. The model states will depend on the dynamics which were selected in the turbine model for that calculation, and the inputs will include wind speed, pitch angle demand and generator torque demand. The state space matrix coefficients are calculated as the slope of a best fit line through a number of points generated by perturbations of different sizes away from the steady state condition.
First click Select… to define which variables from the Model linearisation results are required as model outputs. **The model states will depend on the dynamics which were selected in the turbine model for that calculation**, and the inputs will include wind speed, pitch angle demand and generator torque demand. The state space matrix coefficients are calculated as the slope of a best fit line through a number of points generated by perturbations of different sizes away from the steady state condition.
首先点击“Select…”以定义需要作为模型输出的模型线性化结果中的哪些变量。模型状态将取决于风电机组模型中为该计算选择的动力学输入将包括风速、变桨角度需求和发电机扭矩需求。状态空间矩阵系数是计算通过从稳态条件偏离一定大小扰动产生的多个点的最佳拟合线的斜率。
@ -3867,6 +3867,9 @@ Two output files are created in the selected output directory, using the selecte
RunName .mat This is a .mat file suitable for reading directly into Matlab [2].
RunName.$m2 This is an ASCII text file, also suitable for reading into Excel, containing the same information.
RunName .mat 这是一个‘.mat文件可直接导入Matlab读取 [2]。
RunName.$m2 这是一个ASCII文本文件也可导入Excel读取其中包含相同信息。
Each file contains the four state space matrices for each operating point, and also wind speeds and rotor azimuths defining the operating points. There are also vectors containing the steady state values of all inputs, states and outputs at each operating point, as well as some additional information which may be of use in controller design such as the gearbox ratio, number of blades, and nominal speed and torque values.
In the.mat file, the variable names used are fairly self-explanatory, except that the state space matrices and the names of the inputs, states and outputs are all stored in a structure called SYSTURB. The elements of SYSTURB are:
@ -3877,6 +3880,9 @@ In the.mat file, the variable names used are fairly self-explanatory, except tha
inputname The names of the input variables (character array)
outputname The names of the output variables (character array)
statename The names of the state variables (character array)
输入变量名 输入变量的名称 (字符数组)
输出变量名 输出变量的名称 (字符数组)
状态变量名 状态变量的名称 (字符数组)
A, B, C, D Arrays of the state-space matrices for the different operating points; thus $\mathsf{A}(\mathsf{i},\mathsf{j},\mathsf{k},\mathsf{l})$ is the $i,\mathtt{j}^{\mathtt{t h}}$ element of the A matrix (i.e. row I, column j), for the $k^{\mathrm{th}}$ wind speed and the $\vert t\vert$ rotor azimuth angle.
@ -3886,7 +3892,14 @@ ${\sf S Y S}={\sf s s}$ (SYSTURB.A, SYSTURB.B, SYSTURB.C, SYSTURB.D, … 'inputn
Diagnostic plots may be generated for all matrix coefficients, or for all matrix coefficients whose correlation coefficients fall within a specified range of values. Note: Diagnostic plots cause a much slower calculation, and may generate very large numbers of plot files; these are stored as enhanced metafiles in the selected run output directory, with the following naming convention:
诊断图可以生成所有矩阵系数的图像,也可以生成所有相关系数在指定范围内内的矩阵系数的图像。注意:诊断图会显著降低计算速度,并可能生成大量的图像文件;这些文件以增强的 Meta 文件形式存储在选定的运行输出目录中,并遵循以下命名约定:
A、B、C、D是不同运行点的状态空间矩阵数组因此$\mathsf{A}(\mathsf{i},\mathsf{j},\mathsf{k},\mathsf{l})$ 是A矩阵的第i行第j列元素即第i行第j列对应第k个风速和第l个风轮方位角。
这种结构可以使用单个Matlab命令轻松转换为Matlab lti模型数组
${\sf S Y S}={\sf s s}$ (SYSTURB.A, SYSTURB.B, SYSTURB.C, SYSTURB.D, … 'inputname', cellstr(SYSTURB.inputname), … 'outputname', cellstr(SYSTURB.outputname), … 'statename', cellstr(SYSTURB.statename));
可以为所有矩阵系数生成诊断图,或者为相关系数落在指定值范围内的所有矩阵系数生成诊断图。注意:诊断图会导致计算速度大大降低,并可能生成大量绘图文件;这些文件以增强型图元文件的形式存储在选定的运行输出目录中,并遵循以下命名约定:
RunName M W Az A row col cc .emf

View File

@ -1,12 +1,12 @@
{
"nodes":[
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:\n多体模块完善 线性化模块开发\n### 每周盘点一下它们\n\n\n关键结果多体动力学建模原理、建模方法、线性化原理掌握 9/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果目标工况测试、稳态工况对比 5/10","x":-76,"y":-803,"width":456,"height":457},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:\n多体模块完善 线性化模块开发\n### 每周盘点一下它们\n\n\n关键结果多体动力学建模原理、建模方法、线性化原理掌握 9/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果目标工况测试、稳态工况对比 7/10","x":-76,"y":-803,"width":456,"height":457},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 10月已完成\n\n- 编写输出量\n\t- 方法测试 done\n\t- 批量输出编写 done","x":-220,"y":134,"width":440,"height":560},
{"id":"82708a439812fdc7","type":"text","text":"# 10月已完成\n\n- 编写输出量\n\t- 方法测试 done\n\t- 批量输出编写 done\n\nP2 湍流 气动 多体 控制联调 \n- 更换600s湍流风 done","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 9月已完成\n\nP1 湍流 气动 多体 控制联调 done\n- 5mw 通了\n\t- 纯叶片变形\n\t- 纯塔架变形\n\t- 叶片+塔架变形 \n\nP1 bladed对比--稳态运行载荷,产出报告\n- 气动新版本稳态跑通 done\n- 多体模块输出方法更新\n\t- 增加输出结构体\n\t- 新增输出宏,自动编写变量头和输出\n\t- 输出位置从ed_calcoutput拆分\n- 稳态变形量对比\n- 所有输出量梳理,对比","x":-700,"y":134,"width":440,"height":560},
{"id":"30cb7486dc4e224c","type":"text","text":"# 11月已完成\n\n\n\n","x":260,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 ing\n- 再把握理论 开启哪些自由度 预计叶片 传动链 转速 塔架 全开\n- 开始编写扰动代码\n- 形成系统矩阵\n- 分析矩阵\n\nP1 气动、多体、控制、水动联调\nP2 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持\n- 更换湍流风\n- dll 32位兼容 - 江\n\nP2 停机工况等调试\n\nP1 bladed对比--稳态运行载荷,产出报告\n- 模态对比 两种描述方法不同bladed方向更多x y z deflection, x y z rotation不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n\n- 编写输出量\n\t- 方法测试 done\n\t- 批量输出编写 done\n\nP1 稳态工况前端对接\n- 是否拆分成单独的bin等待气动完成后开始\n- 如何接收参数 配置文件 \n\nP1 专利\n- 做出solidworks模型写专利\n\n\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 ing\n- 再把握理论 开启哪些自由度\n\t- bladed中是否有描述\n\t- 预计叶片 传动链 转速 塔架 全开\n- 开始编写扰动代码\n- 形成系统矩阵\n- 分析矩阵\n\n\nP1 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持 pass\n- dll 32位兼容 - 江 pass\n- 低风速震荡问题解决 不发电?\n\t- Herowind转速掉到0以下fast最小7\n\t- 控制没给对转速,原因是什么?\n\t- 动力学上缺内容?\n\nP2 气动、多体、控制、水动联调\n\nP1 启机工况等调试\n\nP1 稳态工况前端对接-董\n- 是否拆分成单独的bin等待气动完成后开始\n- 如何接收参数 配置文件 \n\nP1 专利\n- 做出solidworks模型写专利\n\nP2 bladed对比--稳态运行载荷,产出报告\n- 气动参与模块对比\n- 模态对比 两种描述方法不同bladed方向更多x y z deflection, x y z rotation不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457},
{"id":"86ab96a25a3bf82e","type":"text","text":" 湍流风+ 控制的联调bladed也算一个算例\n- 加水动的联调\n- 8月份底完成这两个\n- 9月份完成停机等工况测试\n- 10月份明阳实际机型测试","x":580,"y":-803,"width":480,"height":220},
{"id":"e355f33c92cf18ea","type":"text","text":"9月份定常计算对接前端\n非定常测试完也对接前端","x":580,"y":-500,"width":480,"height":100},
{"id":"859e6853b7f1b92b","type":"text","text":"年底考核:\n专利\n线性化模块","x":1200,"y":-803,"width":320,"height":110}

Binary file not shown.

View File

@ -0,0 +1,194 @@
# 7.11 Model linearisation calculation
There are three possible calculations that can be performed:
- Campbell diagram
- Model linearisation needs a Control module licence
- Blade stability analysis needs a Blade Stability Analysis module licence
In order to make the linearisation azimuth independent, the following sources of periodic loading are turned off in all linearisation calculations:
- Gravity
- Tilt
- Imbalances
The wind field is uniform horizontal without shear, tower shadow or wake. All wave loading and currents are turned off. The external controller or any internal control dynamics are not used in any linearisation calculations.
可以执行以下三种计算:
- 坎贝尔图
- 模型线性化 需要“控制”模块许可证
- 叶片稳定性分析 需要“叶片稳定性分析”模块许可证
为了使线性化与方位角无关,在所有线性化计算中,以下周期性载荷源均被关闭:
- 重力
- 倾斜
- 不平衡
风场是均匀水平的,没有剪切、塔影或尾流。所有波浪载荷和水流均被关闭。在任何线性化计算中,均不使用外部控制器或任何内部控制动力学。
## 7.11.1 Campbell diagram
The Campbell diagram calculates the coupled modes of the complete aeroelastic system and their properties such as frequency, damping and their composition in terms of blade modes, tower modes and other states of the system. The coupled mode frequencies are plotted against rotor speed.
There are three main modes of operation:
- Power production Wind speed can be ramped from cut-in to cut-out and the steady state controller is used to determine the operating conditions at each speed.
- Idling A range of rotor speeds are chosen and a wind speed is found in order to produce these rotor speeds given the idling pitch angle.
- Parked The turbine is analysed with wind speed of zero. This can be useful to determine the pure elastodynamic coupled modes of the turbine.
In cases where there are a lot of high frequency modes in the system (e.g. multi-part blades), high frequency modes can be excluded from the plot by setting the maximum frequency for plot. The rotating modes (i.e. blade modes) can be transformed into the non-rotating frame. This will generate forward and backward whirling modes in the output.
坎贝尔图计算了完整气动弹性系统的耦合模态及其特性,例如频率、阻尼以及它们在叶片模态、塔架模态和系统其他状态方面的组成。耦合模态频率随风轮转速绘制。
主要有三种运行模式:
- 发电运行 风速可以从切入风速逐渐增加到切出风速,并使用稳态控制器确定每个风速下的运行条件。
- Idling 选择一系列风轮转速并在给定Idling变桨角度的情况下找到产生这些风轮转速的风速。
- 停机 在风速为零的情况下分析机组。这有助于确定机组的纯弹性动力学耦合模态。
在系统中存在大量高频模态的情况下(例如多段叶片),可以通过设置绘图的最大频率来将高频模态从图中排除。旋转模态(即叶片模态)可以转换到非旋转坐标系。这将在输出中产生正向和反向涡动模态。
## 7.11.2 Model linearisation
Model linearisation generates input and state perturbations, and records the resulting variations in the state derivatives and the selected outputs. This is done for a series of steady-state power production operating points. The Linear Model 8.19 post-processing calculation is then able to derive a linearised model of the turbine in state-space form. This is of particular value for designing controllers.
The possible input perturbations are wind speed, collective pitch angle demand, generator torque. Optionally, linear horizontal and vertical shear and pitch angle demand on each blade can be perturbed. These are particularly useful for individual pitch control design. In the advanced fields, the user can change perturbation magnitudes. This might be useful if it is found that the perturbations are too large and are therefore include too much non-linear response.
Model linearisation can also be performed over a range of azimuth angles for each wind speed. This is usually necessary only for one or two bladed turbines where the structural coupling has a strong azimuthal dependence.
模型线性化生成输入和状态扰动并记录状态导数和选定输出中由此产生的变化。这针对一系列稳态发电运行工况点进行。线性模型8.19后处理计算能够推导出机组的状态空间形式的线性化模型。这对于控制器设计具有特殊价值。
可能的输入扰动包括风速、整体变桨角度需求、发电机扭矩。可选地,可以扰动线性水平和垂直剪切以及每个叶片上的变桨角度需求。这些对于单独变桨控制设计特别有用。在高级字段中,用户可以更改扰动幅度。如果发现扰动过大,从而包含过多的非线性响应,这可能会很有用。
模型线性化也可以针对每个风速,在一系列方位角上执行。这通常只对单叶片或双叶片机组是必要的,因为它们的结构耦合具有强烈的方位角依赖性。
## 7.11.3 Blade stability analysis
The blade stability analysis feature performs a frequency domain analysis of the turbine rotor in steady state. The analysis provides outputs of damping and frequency of all the coupled rotor or blade modes plotted against wind speed. It is a similar analysis to the Campbell diagram but the main differences are:
Only the rotor is modelled
Allowing analysis over a wide range of inflow conditions rather than being constrained to normal operating conditions
Improved initial condition finding suitable for extreme conditions.
For outputs, the blade stability analysis produces a Campbell diagram plot and frequency and damping curves of all coupled modes. It is primarily the damping curves that will be of most interest as this allows the user to detect possible instabilities by finding damping curves that have negative damping.
The coupled mode frequencies and dampings are plotted against wind speed, but can also be plotted against rotor speed by using an output channel as the x-axis in the data viewer.
There are two modes of operation for the blade stability analysis: tip-speed ratio tracking and parked, which are described in the sections below.
叶片稳定性分析功能对机组风轮在稳态工况下进行频域分析。分析结果提供所有耦合风轮或叶片的模态阻尼和频率并以风速为纵坐标进行绘制。该分析类似于坎贝尔图Campbell diagram但主要区别在于
- 仅对风轮进行建模;
- 允许在更广泛的气流工况下进行分析,而不受正常工况的限制;
- 改进的初始条件寻找方法,适用于极端工况。
在输出方面,叶片稳定性分析会生成坎贝尔图以及所有耦合模态的阻尼和频率曲线。其中阻尼曲线最为重要,因为它们能够帮助用户通过寻找具有负阻尼的曲线来检测潜在的不稳定性。
耦合模态的频率和阻尼值以风速为纵坐标进行绘制也可以通过在数据查看器中将输出通道设置为x轴以风轮转速为纵坐标进行绘制。
叶片稳定性分析有两种运行模式:叶片转速比跟踪和停机状态,将在以下章节中进行描述。
## 7.11.4 Tip-speed ratio tracking
In this setup, the user chooses a range of wind speeds, in response to which the rotor will have a certain speed. The pitch angle is usually at fine or at an operational pitch angle in these simulations.
At very high rotor speeds, it often becomes difficult to find initial conditions. If the analysis reaches this point, it will complete without analysing the last few points. This allows the user to set the upper wind speed with some freedom.
The user can specify a torque speed gain which determines an opposition torque applied against the rotor aerodynamic torque (in a gearless case this is equivalent to a generator torque and otherwise equivalent to a generator torque applied on the high-speed side of the gearbox). The torque speed gain is defined as:
In order to follow the optimal mode tip-speed ratio, the torque speed gain can be set as:
𝑇𝑜𝑟𝑞𝑢𝑒 𝑠𝑝𝑒𝑒𝑑 𝑔𝑎𝑖𝑛 $=$ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑚𝑜𝑑𝑒 𝑔𝑎𝑖𝑛 $^*$ (𝑔𝑒𝑎𝑟𝑏𝑜𝑥 𝑟𝑎𝑡𝑖𝑜)3
If the torque-speed gain is set at zero then the rotor will be in a free spin (i.e. zero generator torque).
在本次设置中,用户选择一个风速范围,风轮会相应地达到一定的转速。在这些模拟中,变桨角度通常设定在精细或工作变桨角度。
当风轮转速非常高时,往往难以找到初始条件。如果分析达到这个阶段, it will complete without analysing the last few point。这使得用户可以相对自由地设置上限风速。
用户可以指定一个“扭矩-转速增益”,它决定了施加在风轮气动力矩方向相反的阻尼扭矩(在无齿轮箱的情况下,这相当于发电机扭矩,否则相当于施加在齿轮箱高速侧的发电机扭矩)。扭矩-转速增益定义如下:
为了跟踪最佳模态叶片速度比,扭矩-转速增益可以设定为:
扭矩-转速增益 = 最佳模态增益 * (齿轮箱比)³
如果扭矩-转速增益设定为零,则风轮将处于自由旋转状态(即发电机扭矩为零)。
## 7.11.5 Parked analysis
The user can perform a parked analysis where the rotor speed is locked at zero. Because the rotor freedom is disabled, only one blade is analysed as it is assumed that the blades do not couple. The user can select the wind direction and a range of wind speeds to do the analysis.
用户可以执行停机状态分析,此时风轮转速锁定为零。由于风轮自由度被禁用,仅分析一个叶片,假设叶片之间不耦合。用户可以选择风向和一系列风速范围进行分析。
Linear model (see 8.19) to convert the output of the Model Linearisation (see 7.11) calculation into a state-space model suitable for control design, for example using Matlab [2]
线性模型(参见 8.19),用于将模型线性化(参见 7.11)计算的输出转换为适用于控制设计的状态空间模型,例如使用 Matlab [2]。
# 8.19 Linear Model
This calculation is available for users with a licence for the Control module. It converts the output of a Model Linearisation (see 7.11) calculation into a state-space model, in a form which is suitable for controller design and is directly compatible with Matlab [2]. A state space model has the following form:
本计算适用于拥有控制模块许可的用户。**它将模型线性化见7.11计算的输出转换为状态空间模型该模型适用于控制器设计并与Matlab [2] 直接兼容。状态空间模型具有以下形式:**
$$
\begin{array}{l}{\dot{x}=A x+B u}\\ {\mathrm{~y}=C x+D u}\end{array}
$$
where u is a vector of inputs, $\times$ is a vector of system states, and y is a vector of outputs. A, B, C and D are the state space matrices.
其中 u 为输入向量,$\times$ 为系统状态向量y 为输出向量。A、B、C 和 D 为状态空间矩阵。
First click Select… to define which variables from the Model linearisation results are required as model outputs. **The model states will depend on the dynamics which were selected in the turbine model for that calculation**, and the inputs will include wind speed, pitch angle demand and generator torque demand. The state space matrix coefficients are calculated as the slope of a best fit line through a number of points generated by perturbations of different sizes away from the steady state condition.
首先点击“Select…”以定义需要作为模型输出的模型线性化结果中的哪些变量。模型状态将取决于风电机组模型中为该计算选择的动力学输入将包括风速、变桨角度需求和发电机扭矩需求。状态空间矩阵系数是计算通过从稳态条件偏离一定大小扰动产生的多个点的最佳拟合线的斜率。
The Minimum acceptable correlation coefficient defines whether a best fit will be accepted or not. If the correlation is poorer than this, that particular matrix coefficient is set to zero. A value of $0.5\,-\,0.8\$ is generally suitable.
Two output files are created in the selected output directory, using the selected run name and the following file extensions:
最小可接受的相关系数决定了是否接受最佳拟合。如果相关性低于此值,则该特定矩阵系数将被设置为零。通常,$0.5\,-\,0.8$ 是一个合适的范围。
在选定的输出目录中创建两个输出文件,使用选定的运行名称和以下文件扩展名:
RunName .mat This is a .mat file suitable for reading directly into Matlab [2].
RunName.$m2 This is an ASCII text file, also suitable for reading into Excel, containing the same information.
RunName .mat 这是一个‘.mat文件可直接导入Matlab读取 [2]。
RunName.$m2 这是一个ASCII文本文件也可导入Excel读取其中包含相同信息。
Each file contains the four state space matrices for each operating point, and also wind speeds and rotor azimuths defining the operating points. There are also vectors containing the steady state values of all inputs, states and outputs at each operating point, as well as some additional information which may be of use in controller design such as the gearbox ratio, number of blades, and nominal speed and torque values.
In the.mat file, the variable names used are fairly self-explanatory, except that the state space matrices and the names of the inputs, states and outputs are all stored in a structure called SYSTURB. The elements of SYSTURB are:
每个文件包含每个工况对应的四个状态空间矩阵,以及定义工况的风速和风轮方位角。此外,还包含在每个工况下的所有输入、状态和输出的稳态值向量,以及一些在控制器设计中可能用到的附加信息,例如齿轮箱比、叶片数量、标称转速和扭矩值。
在.mat文件中变量名使用起来相当直观除了状态空间矩阵以及输入、状态和输出的名称都存储在一个名为SYSTURB的结构体中。SYSTURB的元素是
inputname The names of the input variables (character array)
outputname The names of the output variables (character array)
statename The names of the state variables (character array)
输入变量名 输入变量的名称 (字符数组)
输出变量名 输出变量的名称 (字符数组)
状态变量名 状态变量的名称 (字符数组)
A, B, C, D Arrays of the state-space matrices for the different operating points; thus $\mathsf{A}(\mathsf{i},\mathsf{j},\mathsf{k},\mathsf{l})$ is the $i,\mathtt{j}^{\mathtt{t h}}$ element of the A matrix (i.e. row I, column j), for the $k^{\mathrm{th}}$ wind speed and the $\vert t\vert$ rotor azimuth angle.
This structure can readily be converted to a Matlab lti model array using the single Matlab command:
${\sf S Y S}={\sf s s}$ (SYSTURB.A, SYSTURB.B, SYSTURB.C, SYSTURB.D, … 'inputname', cellstr(SYSTURB.inputname), … 'outputname', cellstr(SYSTURB.outputname), … 'statename', cellstr(SYSTURB.statename));
Diagnostic plots may be generated for all matrix coefficients, or for all matrix coefficients whose correlation coefficients fall within a specified range of values. Note: Diagnostic plots cause a much slower calculation, and may generate very large numbers of plot files; these are stored as enhanced metafiles in the selected run output directory, with the following naming convention:
A、B、C、D是不同运行点的状态空间矩阵数组因此$\mathsf{A}(\mathsf{i},\mathsf{j},\mathsf{k},\mathsf{l})$ 是A矩阵的第i行第j列元素即第i行第j列对应第k个风速和第l个风轮方位角。
这种结构可以使用单个Matlab命令轻松转换为Matlab lti模型数组
${\sf S Y S}={\sf s s}$ (SYSTURB.A, SYSTURB.B, SYSTURB.C, SYSTURB.D, … 'inputname', cellstr(SYSTURB.inputname), … 'outputname', cellstr(SYSTURB.outputname), … 'statename', cellstr(SYSTURB.statename));
可以为所有矩阵系数生成诊断图,或者为相关系数落在指定值范围内的所有矩阵系数生成诊断图。注意:诊断图会导致计算速度大大降低,并可能生成大量绘图文件;这些文件以增强型图元文件的形式存储在选定的运行输出目录中,并遵循以下命名约定:
RunName M W Az A row col cc .emf
RunName the run name selected for the Linear Model calculation
${<}\mathsf{M}{>}$ which state-space matrix: A, B, C or D the plot refers to
$<\!\mathsf{W}\!>$ the operating point wind speed
$<\!\mathsf{A}\!>$ the rotor azimuth angle
$<row>, <col>$ which particular coefficient of the matrix the plot refers to
$<\,\!?>$ OK for a coefficient which was accepted, X for one which was rejected
$<cc>$ the correlation coefficient obtained for the best fit line.