Compare commits

...

2 Commits

Author SHA1 Message Date
gyz
b2864355b0 2025.5.27 2025-05-27 13:53:21 +08:00
gyz
ce8ef142b4 vault backup: 2025-05-25 23:26:10 2025-05-25 23:26:11 +08:00
4854 changed files with 2260 additions and 2248 deletions

View File

@ -33,6 +33,6 @@
"useInternalPlugins": false
},
"InterestingStuffs": "LiCoffee",
"力学书籍": "📚",
"补课": "🧑‍🏫"
"补课": "🧑‍🏫",
"书籍/力学书籍": "📚"
}

View File

Binary file not shown.

View File

@ -20,21 +20,21 @@ $$
where $\left[\varSigma\right]$ is a diagonal matrix containing the singular values of $[A]$ , which are $\sqrt{e i g e n\nu a l u e s\;o f\left[A\right]\left[A\right]^{T}}\;=\sqrt{e i g e n\nu a l u e s\;o f\left[A\right]^{T}\left[A\right]}\;.$
![](images/b2c0bc757ff696893b956868f5c253bf5635452cfb9931e91b125836026cce64.jpg)
![](b2c0bc757ff696893b956868f5c253bf5635452cfb9931e91b125836026cce64.jpg)
This was derived symbolically by J. Jonkman by computing $\left[U\right]\!\!\left[V\right]^{T}$ by hand with verification in Mathematica.
Tower Base / Platform Coordinate System
![](images/88207e1709e48057eba3e20a48c5537a392d9b45b23b859db0e1ec4e12258df7.jpg)
![](88207e1709e48057eba3e20a48c5537a392d9b45b23b859db0e1ec4e12258df7.jpg)
Tower Element-Fixed Coordinate System
![](images/3242641825dce121996aa8b64d069f719111b388bf56b4d23f53af451eb49b9d.jpg)
![](3242641825dce121996aa8b64d069f719111b388bf56b4d23f53af451eb49b9d.jpg)
Tower-Top / Base Plate Coordinate System
![](images/e15be66677d4a32e794cee5226c75216651a32afe750bafa3f1e124e9814b9c2.jpg)
![](e15be66677d4a32e794cee5226c75216651a32afe750bafa3f1e124e9814b9c2.jpg)
Nacelle / Yaw Coordinate System${\pmb d}_{t}$ cos (qYaw) 0 sin (qYaw) b${\pmb d}_{2}$ 0 1 0 b${\pmb d}_{3}$ sin (qYaw) 0 cos (qYaw) b
@ -74,7 +74,7 @@ The equation for $i^{B2}$ is similar.
Blade / Pitched Coordinate System
![](images/a2a9c533925e493d652a0d69730b87a5df026cde2fee0e7d5f9aaa614a8fa533.jpg)
![](a2a9c533925e493d652a0d69730b87a5df026cde2fee0e7d5f9aaa614a8fa533.jpg)
The equation for $j^{B2}$ is similar.
@ -94,26 +94,26 @@ $$
where,
![](images/cf71b1f3353b9439b47212c215710ee64d1df808df03c0029378347d198cafb7.jpg)
![](cf71b1f3353b9439b47212c215710ee64d1df808df03c0029378347d198cafb7.jpg)
The equation for ${\pmb n}^{B2}(r)$ is similar.
Blade Element-Fixed Coordinate System Used for Calculating and Returning Aerodynamic Loads This coordinate system is coincident with $i^{B I}$ when the blade is undeflected.
![](images/402bb29e7129df0062d48b3c5d723765784131fb70c72e23f07e9c78b7e694af.jpg)
![](402bb29e7129df0062d48b3c5d723765784131fb70c72e23f07e9c78b7e694af.jpg)
The equation for $m^{B2}(r)$ is similar.
Blade Element-Fixed Coordinate System Aligned with Local Aerodynamic Axes (i.e., chordline) / Trailing Edge Coordinate System
![](images/b7bec12025e6f227efffe993d420000c18ea244ff8bae921c771471511c7eeae.jpg)
![](b7bec12025e6f227efffe993d420000c18ea244ff8bae921c771471511c7eeae.jpg)
The equation for $t e^{B2}(r)$ is similar.
Tail-Furl Coordinate System
![](images/533bb40e8037410168158086acafc99d91b7370bfc9c854092d68c0b8bfaea2e.jpg)
![](533bb40e8037410168158086acafc99d91b7370bfc9c854092d68c0b8bfaea2e.jpg)
Tail Fin Coordinate System
![](images/326d9d71696178edb5d7849627247735ea5edae14d157ee4fcf3753eb8210851.jpg)
![](326d9d71696178edb5d7849627247735ea5edae14d157ee4fcf3753eb8210851.jpg)

View File

@ -1,12 +1,12 @@
There are several points on a 2-bladed turbine: Z (platform reference), Y (platform mass center), T (tower node), O (tower-top / base-plate / yaw bearing mass center), U (nacelle mass center), V (arbitrary point on rotor-furl axis), W (arbitrary point on tail-furl axis), D (center of mass of structure that furls with the rotor [not including rotor]), IMU (nacelle inertial measurement unit), P (teeter pin), SG [shaft strain gage location: i.e., a point on the shaft a distance ShftGagL towards the nacelle from point P (or point Q for a 3-blader since point P does not exist)], Q (apex of coning angle), C (hub mass center), S1 (blade node for blade 1), S2 (blade node for blade 2), I (tail boom mass center), J (tail fin mass center), and K (tail fin center-of-pressure). There are also several reference frames: E (earth / inertial), X (platform / tower base), F (tower element body), B (tower-top / base plate), N (nacelle), R (structure that furls with the rotor—generator housing, etc…), L (low speed shaft on rotor end of LSS-compliance), H (hub / rotor), M1 (blade 1 element body), M2 (blade 2 element body), G (fixed in the high speed shaft / generator), and A (tail). The following are derivations of the position vectors, angular velocities, linear velocities, partial angular velocities, partial linear velocities, angular accelerations, and linear accelerations of all these points on the 2-bladed turbine (point SGs velocities and accelerations are not derived since they wont be used in the ensuing analysis). The velocities and accelerations of points on a 3-bladed turbine are very similar.
![](images/aea47d364c3db886f4957a49550f0ee56aef18eef7d0840dede2a171aa848949.jpg)
![](aea47d364c3db886f4957a49550f0ee56aef18eef7d0840dede2a171aa848949.jpg)
ZO =[qTFA1+qTFA2]a1 + Ptfm Re f+TowerHt 21S1T1F+A(S1TT1SwSr(FTlwerxFLl) eqxT2LFA) 1qT+2SSS12T2F+AS(2TT2SSw(rTFlwerxFLl) exqT2LF) A2qT2+SS 22S+1T2F2AS(1T2TSSw(rTFwlerxFLle) xqLTF) A1qTqSTSF1Aq2TSS 2 u +[qTSS1+qTSS 2]a3
OU =NacCMxnd1+NacCMznd2NacCMynd3 rVD=(RFrlCMxnRFrlPntxn)rf1+(RFrlCMznRFrlPntzn)rf2(RFrlCMynRFrlPntyn)rf3 rVIMU= $\big(N c I M U x n-R F r l P n t x n\big)r f_{I}+\big(N c I M U z n-R F r l P n t z n\big)r f_{J}-\big(N c I M U y n-R F r l P n t y n+R F r l P n t z n\big)$ )rf3 rVP= RFrlPntxnrf1+(Twr2ShftRFrlPntzn)rf2(Yaw2ShftRFrlPntyn)rf3+OverHangc1
![](images/f0aa977f81135ff9ada5ba5bbff16d69e441e535ce42fa7471ef27b93ae21afb.jpg)
![](f0aa977f81135ff9ada5ba5bbff16d69e441e535ce42fa7471ef27b93ae21afb.jpg)
PSG = ShftGagLc

Some files were not shown because too many files have changed in this diff Show More