From eb4134f04f9772e310aa808ab6c656eeea78a0b6 Mon Sep 17 00:00:00 2001 From: aGYZ <5722745+agyz@user.noreply.gitee.com> Date: Tue, 28 Oct 2025 08:17:40 +0800 Subject: [PATCH] vault backup: 2025-10-28 08:17:40 --- .../auto/Chap 9.md | 56 +++++++++++++++++-- 1 file changed, 50 insertions(+), 6 deletions(-) diff --git a/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Chap 9.md b/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Chap 9.md index 21dcecc..1789306 100644 --- a/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Chap 9.md +++ b/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Chap 9.md @@ -60,14 +60,36 @@ $$ In these expressions it has been tacitly assumed that the structural behavior is linear, so that the principle of superposition applies. The coefficients $k_{i j}$ are called stiffness influence coefficients, defined as follows: 在这些表达式中,已经默认假设结构行为是线性的,从而叠加原理适用。系数 $k_{i j}$ 被称为刚度影响系数,定义如下: $$ -\begin{array}{r}{k_{i j}=\mathrm{~force~corresponding~to~coordinate~}i\mathrm{~d}\mathrm{t}}\\ {\mathrm{~a~unit~}d i s p l a c e m e n t\;\mathrm{of~coordinate~}j\quad\quad}\end{array} +\begin{array}{r}{k_{i j}=\mathrm{~force~corresponding~to~coordinate~}i\mathrm{~due}\mathrm{~to}}\\ {\mathrm{~a~unit~}d i s p l a c e m e n t\;\mathrm{of~coordinate~}j\quad\quad}\end{array} $$ -In matrix form, the complete set of elastic-force relationships may be written +In matrix form, the complete set of elastic-force relationships may be written 以矩阵形式,完整的弹性力关系可以写成 -$$ -\left\{\begin{array}{l}{f_{S1}}\\ {f_{S2}}\\ {\cdot}\\ {\cdot}\\ {f_{S i}}\\ {\cdot}\\ {\cdot}\end{array}\right\}=\left[\begin{array}{l l l l l l l}{k_{11}}&{k_{12}}&{k_{13}}&{\cdots}&{k_{1i}}&{\cdots}&{k_{1N}}\\ {k_{21}}&{k_{22}}&{k_{23}}&{\cdots}&{k_{2i}}&{\cdots}&{k_{2N}}\\ {\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\\ {k_{i1}}&{k_{i2}}&{k_{i3}}&{\cdots}&{k_{i i}}&{\cdots}&{k_{i N}}\\ {\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\end{array}\right]\left\{\begin{array}{l}{v_{1}}\\ {v_{2}}\\ {v_{3}}\\ {\cdot}\\ {v_{i}}\\ {\cdot}\\ {\cdot}\end{array}\right\} -$$ + $$ +\begin{Bmatrix} +f_{S1} \\ +f_{S2} \\ +\vdots \\ +f_{Si} \\ +\vdots +\end{Bmatrix} += +\begin{bmatrix} +k_{11} & k_{12} & k_{13} & \cdots & k_{1i} & \cdots & k_{1N} \\ +k_{21} & k_{22} & k_{23} & \cdots & k_{2i} & \cdots & k_{2N} \\ +\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ +k_{i1} & k_{i2} & k_{i3} & \cdots & k_{ii} & \cdots & k_{iN} \\ +\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots +\end{bmatrix} +\begin{Bmatrix} +v_1 \\ +v_2 \\ +\vdots \\ +v_i \\ +\vdots +\end{Bmatrix} +\tag{9-5} +$$ or, symbolically, @@ -81,7 +103,29 @@ If it is assumed that the damping depends on the velocity, that is, the viscous 其中刚度系数矩阵 $\mathbf{k}$ 称为结构的刚度矩阵 (对于指定的一组位移坐标),且 $\mathbf{v}$ 是表示结构变形形状的位移向量。 如果假设阻尼取决于速度,即黏性类型,则对应于所选自由度的阻尼力可以类似地通过阻尼影响系数来表示。参照式 (9-5),完整的阻尼力集由下式给出 $$ -\left\{\begin{array}{c}{f_{D1}}\\ {f_{D2}}\\ {\cdot}\\ {\cdot}\\ {f_{D i}}\\ {\cdot}\end{array}\right\}=\left[\begin{array}{c c c c c c c}{c_{11}}&{c_{12}}&{c_{13}}&{\cdots}&{c_{1i}}&{\cdots}&{c_{1N}}\\ {c_{21}}&{c_{22}}&{c_{23}}&{\cdots}&{c_{2i}}&{\cdots}&{c_{2N}}\\ {\cdots}&{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\\ {c_{i1}}&{c_{i2}}&{c_{i3}}&{\cdots}&{c_{i i}}&{\cdots}&{c_{i N}}\\ {\cdots}&{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\end{array}\right]\,\left\{\begin{array}{c}{\dot{v}_{1}}\\ {\dot{v}_{2}}\\ {\dot{v}_{3}}\\ {\cdot}\\ {\dot{v}_{i}}\\ {\dot{v}_{i}}\\ {\cdot}\end{array}\right\}\,\, +\begin{Bmatrix} +f_{D1} \\ +f_{D2} \\ +\vdots \\ +f_{Di} \\ +\vdots +\end{Bmatrix} += +\begin{bmatrix} +c_{11} & c_{12} & c_{13} & \cdots & c_{1i} & \cdots & c_{1N} \\ +c_{21} & c_{22} & c_{23} & \cdots & c_{2i} & \cdots & c_{2N} \\ +\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ +c_{i1} & c_{i2} & c_{i3} & \cdots & c_{ii} & \cdots & c_{iN} \\ +\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots +\end{bmatrix} +\begin{Bmatrix} +\dot{v}_1 \\ +\dot{v}_2 \\ +\vdots \\ +\dot{v}_i \\ +\vdots +\end{Bmatrix} +\tag{9-7} $$ in which $\dot{v}_{i}$ represents the time rate of change (velocity) of the $i$ displacement coordinate and the coefficients $c_{i j}$ are called damping influence coefficients. The definition of these coefficients is exactly parallel to Eq. (9-4):