Merge remote-tracking branch 'origin/master'
This commit is contained in:
commit
ffcc18fee7
@ -60,14 +60,36 @@ $$
|
||||
In these expressions it has been tacitly assumed that the structural behavior is linear, so that the principle of superposition applies. The coefficients $k_{i j}$ are called stiffness influence coefficients, defined as follows:
|
||||
在这些表达式中,已经默认假设结构行为是线性的,从而叠加原理适用。系数 $k_{i j}$ 被称为刚度影响系数,定义如下:
|
||||
$$
|
||||
\begin{array}{r}{k_{i j}=\mathrm{~force~corresponding~to~coordinate~}i\mathrm{~d}\mathrm{t}}\\ {\mathrm{~a~unit~}d i s p l a c e m e n t\;\mathrm{of~coordinate~}j\quad\quad}\end{array}
|
||||
\begin{array}{r}{k_{i j}=\mathrm{~force~corresponding~to~coordinate~}i\mathrm{~due}\mathrm{~to}}\\ {\mathrm{~a~unit~}d i s p l a c e m e n t\;\mathrm{of~coordinate~}j\quad\quad}\end{array}
|
||||
$$
|
||||
|
||||
In matrix form, the complete set of elastic-force relationships may be written
|
||||
In matrix form, the complete set of elastic-force relationships may be written
|
||||
以矩阵形式,完整的弹性力关系可以写成
|
||||
$$
|
||||
\left\{\begin{array}{l}{f_{S1}}\\ {f_{S2}}\\ {\cdot}\\ {\cdot}\\ {f_{S i}}\\ {\cdot}\\ {\cdot}\end{array}\right\}=\left[\begin{array}{l l l l l l l}{k_{11}}&{k_{12}}&{k_{13}}&{\cdots}&{k_{1i}}&{\cdots}&{k_{1N}}\\ {k_{21}}&{k_{22}}&{k_{23}}&{\cdots}&{k_{2i}}&{\cdots}&{k_{2N}}\\ {\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\\ {k_{i1}}&{k_{i2}}&{k_{i3}}&{\cdots}&{k_{i i}}&{\cdots}&{k_{i N}}\\ {\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\end{array}\right]\left\{\begin{array}{l}{v_{1}}\\ {v_{2}}\\ {v_{3}}\\ {\cdot}\\ {v_{i}}\\ {\cdot}\\ {\cdot}\end{array}\right\}
|
||||
$$
|
||||
$$
|
||||
\begin{Bmatrix}
|
||||
f_{S1} \\
|
||||
f_{S2} \\
|
||||
\vdots \\
|
||||
f_{Si} \\
|
||||
\vdots
|
||||
\end{Bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
k_{11} & k_{12} & k_{13} & \cdots & k_{1i} & \cdots & k_{1N} \\
|
||||
k_{21} & k_{22} & k_{23} & \cdots & k_{2i} & \cdots & k_{2N} \\
|
||||
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
|
||||
k_{i1} & k_{i2} & k_{i3} & \cdots & k_{ii} & \cdots & k_{iN} \\
|
||||
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots
|
||||
\end{bmatrix}
|
||||
\begin{Bmatrix}
|
||||
v_1 \\
|
||||
v_2 \\
|
||||
\vdots \\
|
||||
v_i \\
|
||||
\vdots
|
||||
\end{Bmatrix}
|
||||
\tag{9-5}
|
||||
$$
|
||||
|
||||
or, symbolically,
|
||||
|
||||
@ -81,7 +103,29 @@ If it is assumed that the damping depends on the velocity, that is, the viscous
|
||||
其中刚度系数矩阵 $\mathbf{k}$ 称为结构的刚度矩阵 (对于指定的一组位移坐标),且 $\mathbf{v}$ 是表示结构变形形状的位移向量。
|
||||
如果假设阻尼取决于速度,即黏性类型,则对应于所选自由度的阻尼力可以类似地通过阻尼影响系数来表示。参照式 (9-5),完整的阻尼力集由下式给出
|
||||
$$
|
||||
\left\{\begin{array}{c}{f_{D1}}\\ {f_{D2}}\\ {\cdot}\\ {\cdot}\\ {f_{D i}}\\ {\cdot}\end{array}\right\}=\left[\begin{array}{c c c c c c c}{c_{11}}&{c_{12}}&{c_{13}}&{\cdots}&{c_{1i}}&{\cdots}&{c_{1N}}\\ {c_{21}}&{c_{22}}&{c_{23}}&{\cdots}&{c_{2i}}&{\cdots}&{c_{2N}}\\ {\cdots}&{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\\ {c_{i1}}&{c_{i2}}&{c_{i3}}&{\cdots}&{c_{i i}}&{\cdots}&{c_{i N}}\\ {\cdots}&{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}\end{array}\right]\,\left\{\begin{array}{c}{\dot{v}_{1}}\\ {\dot{v}_{2}}\\ {\dot{v}_{3}}\\ {\cdot}\\ {\dot{v}_{i}}\\ {\dot{v}_{i}}\\ {\cdot}\end{array}\right\}\,\,
|
||||
\begin{Bmatrix}
|
||||
f_{D1} \\
|
||||
f_{D2} \\
|
||||
\vdots \\
|
||||
f_{Di} \\
|
||||
\vdots
|
||||
\end{Bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
c_{11} & c_{12} & c_{13} & \cdots & c_{1i} & \cdots & c_{1N} \\
|
||||
c_{21} & c_{22} & c_{23} & \cdots & c_{2i} & \cdots & c_{2N} \\
|
||||
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
|
||||
c_{i1} & c_{i2} & c_{i3} & \cdots & c_{ii} & \cdots & c_{iN} \\
|
||||
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots
|
||||
\end{bmatrix}
|
||||
\begin{Bmatrix}
|
||||
\dot{v}_1 \\
|
||||
\dot{v}_2 \\
|
||||
\vdots \\
|
||||
\dot{v}_i \\
|
||||
\vdots
|
||||
\end{Bmatrix}
|
||||
\tag{9-7}
|
||||
$$
|
||||
|
||||
in which $\dot{v}_{i}$ represents the time rate of change (velocity) of the $i$ displacement coordinate and the coefficients $c_{i j}$ are called damping influence coefficients. The definition of these coefficients is exactly parallel to Eq. (9-4):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user