vault backup: 2025-09-25 09:08:18

This commit is contained in:
yize 2025-09-25 09:08:21 +08:00
parent 72a68656bc
commit ff9f0d62b6
3 changed files with 99 additions and 21 deletions

View File

@ -139,23 +139,6 @@
"stream": true,
"enableCors": true
},
{
"name": "gemini-2.5-flash",
"provider": "google",
"enabled": true,
"isBuiltIn": false,
"baseUrl": "http://60.205.246.14:8000",
"apiKey": "gyz",
"isEmbeddingModel": false,
"capabilities": [
"reasoning",
"vision",
"websearch"
],
"stream": true,
"displayName": "gemini-2.5-flash",
"enableCors": true
},
{
"name": "gemini-2.5-pro",
"provider": "google",
@ -172,6 +155,23 @@
"stream": true,
"displayName": "gemini-2.5-pro",
"enableCors": true
},
{
"name": "gemini-2.5-flash",
"provider": "google",
"enabled": true,
"isBuiltIn": false,
"baseUrl": "",
"apiKey": "AIzaSyAnULu8WrFeKeOpW2SoJdqXGu4FrDcyB2I",
"isEmbeddingModel": false,
"capabilities": [
"reasoning",
"vision",
"websearch"
],
"stream": true,
"displayName": "gemini-2.5-flash",
"enableCors": true
}
],
"activeEmbeddingModels": [

View File

@ -1269,10 +1269,10 @@ $$
v_{6}=\left({\frac{v_{1}}{v_{0}}}\right)^{6}\,v_{0}=\left({\frac{4}{5}}\right)^{6}\,(0.20)=0.0524\,i n\quad[0.1331\;c m]
$$
## Overcritically-Damped Systems
## Overcritically-Damped Systems过阻尼系统
Although it is very unusual under normal conditions to have overcriticallydamped structural systems, they do sometimes occur as mechanical systems; therefore, it is useful to carry out the response analysis of an overcritically-damped system to make this presentation complete. In this case having $\xi\equiv c/c_{c}>1$ , it is convenient to write Eq. (2-39) in the form
尽管在正常条件下出现过临界阻尼结构系统非常罕见,但它们有时确实作为机械系统出现;因此,进行过临界阻尼系统的响应分析对于使本次论述完整是有益的。在这种阻尼比 $\xi\equiv c/c_{c}>1$ 的情况下,将方程 (2-39) 写成以下形式是方便的。
$$
s_{1,2}=-\xi\omega\pm\omega\sqrt{\xi^{2}-1}=-\xi\omega\pm\hat{\omega}
$$
@ -1284,13 +1284,13 @@ $$
$$
Substituting the two values of $s$ given by Eq. (2-60) into Eq. (2-21) and simplifying leads eventually to
将由式 (2-60) 给出的 $s$ 的两个值代入式 (2-21) 并进行简化,最终可得
$$
v(t)=[A\,\sinh\hat{\omega}t+B\,\cosh\hat{\omega}t]\,\,\exp(-\xi\omega t)
$$
in which the real constants $A$ and $B$ can be evaluated using the initial conditions $v(0)$ and $\dot{v}(0)$ . It is easily shown from the form of Eq. (2-62) that the response of an overcritically-damped system is similar to the motion of a critically-damped system as shown in Fig. 2-9; however, the asymptotic return to the zero-displacement position is slower depending upon the amount of damping.
其中实常数 $A$ 和 $B$ 可以利用初始条件 $v(0)$ 和 $\dot{v}(0)$ 来确定。从方程 (2-62) 的形式可以很容易地看出,过阻尼系统的响应与临界阻尼系统的运动相似,如图 2-9 所示;然而,渐近返回到零位移位置的速度会变慢,这取决于阻尼量。
# PROBLEMS
2-1. The weight $W$ of the building of Fig. E2-1 is $200\,k i p s$ and the building is set into free vibration by releasing it (at time $t=0$ ) from a displacement of $1.20\;i n$ . If the maximum displacement on the return swing is $0.86\;i n$ at time $t=0.64~s e c$ , determine:

View File

@ -0,0 +1,78 @@
fast
tip motions ---Blade deflections
| Bladed | FAST |
| ------------------------------------------ | ---- |
| x deflection(perpendicular to rotor plane) | |
| y deflection(in rotor plane) | |
| z deflection(in rotor plane) | |
| rotation about x(plane) | × |
| rotation about y(plane) | × |
| rotation about z(plane) | × |
| x deflection(blade root axes) | |
| y deflection(blade root axes) | |
| z deflection(blade root axes) | |
| rotation about x(blade root axes) | × |
| rotation about y(blade root axes) | × |
| rotation about z(blade root axes) | × |
local span motions ---Blade deflections
pitch motions ---pitch system
teeter motions ---pass
shaft motions ---generator variables
| LSSTipPxa | LSSTipPxs, LSSTipP, Azimuth | Rotor azimuth angle (position) | About the xa- and xs-axes | (deg) |
| --------- | ---------------------------- | ------------------------------------------------------------------------------------------------- | -------------------------------------------- | --------- |
| LSSTipVxa | LSSTipVxs, LSSTipV, RotSpeed | Rotor azimuth angular speed | About the xa- and xs-axes | (rpm) |
| LSSTipAxa | LSSTipAxs, LSSTipA, RotAccel | Rotor azimuth angular acceleration | About the xa- and xs-axes | (deg/s^2) |
| LSSGagPxa | LSSGagPxs, LSSGagP | Low-speed shaft strain gage azimuth angle (position) (on the gearbox side of the low-speed shaft) | About the xa- and xs-axes | (deg) |
| LSSGagVxa | LSSGagVxs, LSSGagV | Low-speed shaft strain gage angular speed (on the gearbox side of the low-speed shaft) | About the xa- and xs-axes | (rpm) |
| LSSGagAxa | LSSGagAxs, LSSGagA | Low-speed shaft strain gage angular acceleration (on the gearbox side of the low-speed shaft) | About the xa- and xs-axes | (deg/s^2) |
| HSShftV | GenSpeed | Angular speed of the high-speed shaft and generator | Same sign as LSSGagVxa / LSSGagVxs / LSSGagV | (rpm) |
| HSShftA | GenAccel | Angular acceleration of the high-speed shaft and generator | Same sign as LSSGagAxa / LSSGagAxs / LSSGagA | (deg/s^2) |
nacelle imu motions --- nacelle motion
rotor-furl motions --- pass
tail-furl motions --- pass
nacelle yaw motions --- nacelle motion
Tower-Top / Yaw Bearing Motions --- nacelle motion
Local Tower Motions
Platform Motions
Blade 1 Root Loads --- hub loads rotating gl coordinates
Blade 2 Root Loads
Blade 3 Root Loads
Blade 1 Local Span Loads --- blade loads
Blade 2 Local Span Loads
Blade 3 Local Span Loads
Hub and Rotor Loads
Shaft Strain Gage Loads
High-Speed Shaft Loads
Rotor-Furl Bearing Loads
Tail-Furl Bearing Loads
Tower-Top / Yaw Bearing Loads
Tower Base Loads --- foundation loads
Local Tower Loads
Internal Degrees of Freedom