From ed20f7ef1e2934772e1c6ca089d5ad3a59331f40 Mon Sep 17 00:00:00 2001 From: yz Date: Fri, 16 May 2025 09:18:09 +0800 Subject: [PATCH] vault backup: 2025-05-16 09:18:05 --- ... uae wind turbine for refinement of fast_ad.md | 25 +++++++++++++++---- 工作OKRs/xxx.md | 3 +++ 杂项/NV显卡显存占用查看 ollama清理显存.md | 5 ++++ 杂项/NV显卡显存占用查看.md | 1 - 4 files changed, 28 insertions(+), 6 deletions(-) create mode 100644 工作OKRs/xxx.md create mode 100644 杂项/NV显卡显存占用查看 ollama清理显存.md delete mode 100644 杂项/NV显卡显存占用查看.md diff --git a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md index b952f0a..3af48e2 100644 --- a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md +++ b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md @@ -747,8 +747,10 @@ In turbulent conditions, the extended flow field around the rotor cannot react p Once wind-inflow conditions are correlated to applied loads on the wind turbine, structural models are needed to accurately predict and understand the complex interactions between their dynamically active members. Accurate structural models are thus essential to successfully design and analyze wind energy systems. -The subsequent analysis develops the fundamental structural models employed in the FAST_AD design code for two-bladed HAWTs. The modifications needed to extend the model to threebladed HAWTS are beyond the scope of this work. Wind turbine geometry, coordinate systems, and degrees of freedom (DOFs) are first discussed in section 3.1. Since FAST_AD models the blades and tower as flexible bodies, their deflections are presented next in section 3.2. Expressions relating to the kinematics and kinetics of wind turbine motion are developed in sections 3.3 and 3.4, respectively. Finally, Kane’s equations of motion, which describe the force-acceleration relationships of the entire wind turbine system, are presented in section 3.5. Discrepancies between the models developed herein and those given by Wilson et al. (1999) and implemented in the FAST_AD design code and the Modes preprocessor code are noted using footnotes where appropriate. This chapter is devoted entirely to the structural models employed in the FAST_AD design code. Structural models, such as the commonly used equivalent-springhinge models of flexible blades, though simpler, are beyond the scope of this work. +The subsequent analysis develops the fundamental structural models employed in the FAST_AD design code for two-bladed HAWTs. The modifications needed to extend the model to three bladed HAWTS are beyond the scope of this work. Wind turbine geometry, coordinate systems, and degrees of freedom (DOFs) are first discussed in section 3.1. Since FAST_AD models the blades and tower as flexible bodies, their deflections are presented next in section 3.2. Expressions relating to the kinematics and kinetics of wind turbine motion are developed in sections 3.3 and 3.4, respectively. Finally, Kane’s equations of motion, which describe the force-acceleration relationships of the entire wind turbine system, are presented in section 3.5. Discrepancies between the models developed herein and those given by Wilson et al. (1999) and implemented in the FAST_AD design code and the Modes preprocessor code are noted using footnotes where appropriate. This chapter is devoted entirely to the structural models employed in the FAST_AD design code. Structural models, such as the commonly used equivalent-spring-hinge models of flexible blades, though simpler, are beyond the scope of this work. +一旦风速流入条件与风力涡轮机的载荷相关联,就需要结构模型来准确预测和理解其动态活动部件之间的复杂相互作用。因此,准确的结构模型对于成功设计和分析风能系统至关重要。 +后续分析阐述了FAST_AD设计代码中用于两叶片水平轴风力涡轮机的基本结构模型。将该模型扩展到三叶片水平轴风力涡轮机所需的修改超出了本工作的范围。风力涡轮机的几何形状、坐标系和自由度(DOFs)首先在第3.1节中讨论。由于FAST_AD将叶片和塔架建模为柔性体,因此它们的挠曲变形在第3.2节中介绍。关于风力涡轮机运动的运动学和动力学关系的表达式分别在第3.3节和第3.4节中推导。最后,第3.5节介绍了描述整个风力涡轮机系统力-加速度关系的Kane运动方程。使用脚注标明本文开发的模型与Wilson et al. (1999) 给出的模型以及在FAST_AD设计代码和Modes预处理器代码中实现的模型的差异。本章完全致力于FAST_AD设计代码中使用的结构模型。诸如常用的柔性叶片的等效弹簧铰链模型之类的结构模型,虽然更简单,但超出了本工作的范围。 # 3.1 Geometry, Coordinate Systems, and Degrees of Freedom The FAST_AD design code models a wind turbine structurally as a combination of six rigid and four flexible members. The six rigid bodies are the Earth, nacelle, tower-top base plate, armature, hub, and gears. The four flexible bodies are the two blades, tower, and drive shaft. The model connects these bodies through 15 DOFs. Blade deflections account for six DOFs: two arise from the first flapwise, two from the second flapwise, and two from the first edgewise natural vibration mode of each blade. Tower deflections account for four DOFs: the first two natural vibration modes in each longitudinal and lateral direction. Rotor teeter, rotor speed variation, drive train flexibility, and nacelle yaw and tilt account for the remaining five DOFs. Each blade can be regarded as having a structural pretwist, but no torsional freedom is modeled. @@ -756,7 +758,11 @@ The FAST_AD design code models a wind turbine structurally as a combination of s FAST_AD employs several reference frames for ease in conceptualizing geometry and developing kinematics and kinetics expressions. Most reference frames, corresponding to a coordinate system formed by a dextral set of orthogonal unit vectors (denoted by a bold lowercase script letter) are fixed in one of the rigid bodies (denoted by an uppercase character). These coordinate systems are listed in Table $3.1^{7}$ . A number of points on the wind turbine are also labeled for convenience. These are listed in Table 3.2. +FAST_AD 设计代码将风力发电机结构建模为一个由六个刚体和四个柔性构件的组合。这六个刚体分别是:地球、机舱、塔顶底板、转子臂、轮毂和齿轮箱。四个柔性构件分别是:两叶片、塔筒和驱动轴。该模型通过 15 个自由度 (DOF) 将这些构件连接起来。叶片挠曲占据六个自由度:每个叶片的第一种翼向自然振动模式产生两个自由度,第二种翼向自然振动模式也产生两个自由度,第一种纵向自然振动模式也产生两个自由度。塔筒挠曲占据四个自由度:每个纵向和横向方向上的前两种自然振动模式。旋转倾覆、转子转速变化、驱动系柔性和机舱偏航和俯仰占据剩余的五个自由度。每片叶片可以被视为具有结构预扭,但没有模拟扭转自由度。 +FAST_AD 采用多个参考坐标系,以便于概念化几何形状,并开发运动学和动力学表达式。大多数参考坐标系对应于由一组正交单位向量(用粗体小写字母表示)形成的坐标系,并且固定在其中一个刚体上(用大写字母表示)。 + +这些坐标系列在表 3.17 中。风力发电机上的许多点也被标记,以便使用。这些点列在表 3.2 中。 Table 3.1: Coordinate System Descriptions7 @@ -787,7 +793,9 @@ Table 3.5: Other Distance Variables Relationships between the various coordinate systems, points, DOFs, and other angles and distances are illustrated graphically in Fig. 3.1. FAST_AD employs the convention that downwind displacements are positive displacements. In FAST_AD, the bottom part of the tower can be modeled as rigid to a height $H_{S}$ ; thus, the length of the flexible part of the tower, $H.$ is defined as: +图 3.1 详细地用图形方式说明了各个坐标系、点、自由度 (DOF) 之间的关系,以及其他角度和距离。FAST_AD 采用的惯例是,顺风位移为正位移。 +在 FAST_AD 中,塔的底部可以被建模为刚性,高度为 $H_{S}$;因此,塔的柔性部分的长度,$H$,定义如下: $$ H=H_{H}-T W R H T O F F S E T-H_{S} $$ @@ -795,7 +803,9 @@ $$ where $H_{H}$ is the elevation of the hub (hub height) relative to the Earth’s surface and TWRHTOFFSET is the vertical distance between the hub and the tower-top base plate, both specified while assuming that the tower deflection and nacelle tilt are negligible. The sums of the tip deflections for both natural modes in the longitudinal and lateral deflections form the total longitudinal and lateral displacements of the tower-top base plate, $u_{7}$ and $u_{\delta.}$ , respectively: +其中,$H_{H}$ 为塔毂(毂高)相对于地球表面的高度,TWRHTOFFSET 为塔毂与塔顶底板之间的垂直距离,两者均在假设塔架挠度和机舱倾斜可忽略的情况下指定。 +塔顶底板的纵向和横向总位移(分别为 $u_{7}$ 和 $u_{\delta}$)是两个自然模式下塔尖挠度的总和: $$ u_{7}=q_{7}+q_{9} $$ @@ -803,7 +813,7 @@ $$ and $$ -u_{\delta}=q_{\delta}+q_{I\partial} +u_{8}=q_{8}+q_{10} $$ ![](d7aaefcc2ec24837a4766f274d6c0c8509183d389972a23361280170a027ebf2.jpg) @@ -812,16 +822,21 @@ Figure 3.1: FAST_AD coordinate system illustrations Since the generalized coordinates associated with the tip deflections are functions of time, so too are the total longitudinal and lateral displacements of the tower-top base plate. In section 3.2, dealing with deflections of the tower and blades, the assumption is employed that the deflections are small. With this assumption, the tower-top rotations in both the longitudinal and lateral directions, $\theta_{7}$ and $\theta_{8}$ respectively, can be approximated: +由于与塔尖挠度相关的广义坐标是时间的函数,因此塔顶底板的总纵向和横向位移也是时间的函数。 + +在第3.2节中,关于塔和叶片的挠度分析时,采用挠度较小的假设。基于此假设,塔顶在纵向和横向方向上的旋转,分别表示为 $\theta_{7}$ 和 $\theta_{8}$,可以近似为: $$ -\theta_{7}=-\Bigg(\frac{d\phi_{_{I T}}(h)}{d h}_{_{h=H}}q_{7}+\frac{d\phi_{_{2T}}(h)}{d h}\biggl|_{h=H}q_{9}\Bigg) +\theta_{7}=-\Bigg(\frac{d\phi_{_{1 T}}(h)}{d h}\biggl|_{h=H}q_{7}+\frac{d\phi_{_{2T}}(h)}{d h}\biggl|_{h=H}q_{9}\Bigg) $$ $$ -\theta_{\vartheta}=\frac{d\phi_{_{I T}}(h)}{d h}\bigg\vert_{h=H}q_{\vartheta}+\frac{d\phi_{_{2T}}(h)}{d h}\bigg\vert_{h=H}q_{I\0} +\theta_{8}=\frac{d\phi_{_{1 T}}(h)}{d h}\bigg\vert_{h=H}q_{8}+\frac{d\phi_{_{2T}}(h)}{d h}\bigg\vert_{h=H}q_{10} $$ -where $\phi_{l T}(h)$ and $\phi_{2T}(h)$ are the first and second natural mode shapes of the tower, respectively. In these expressions, the elevation along the flexible part of the tower, $h$ , ranges from zero to $H.$ . Note that $h$ equals zero at an elevation of $H_{S}$ relative to the Earth’s surface. Also, the derivatives of the mode shapes are evaluated at an elevation of $h=H$ as indicated. The derivation of these natural mode shapes of the tower is presented in section 3.2 where the tower is assumed to deflect in the longitudinal and lateral directions independently; yet, the natural mode shapes in each direction are assumed to be identical in each direction. The negative sign is present in Eq. (3.4) since positive longitudinal displacements of the tower-top base plate tend to rotate the base plate about the negative ${\pmb a}_{3}$ -axis. The generalized coordinates associated with the tip deflections are functions of time; so are the longitudinal and lateral tower-top rotations of the plate. +where $\phi_{1 T}(h)$ and $\phi_{2T}(h)$ are the first and second natural mode shapes of the tower, respectively. In these expressions, the elevation along the flexible part of the tower, $h$ , ranges from zero to $H.$ . Note that $h$ equals zero at an elevation of $H_{S}$ relative to the Earth’s surface. Also, the derivatives of the mode shapes are evaluated at an elevation of $h=H$ as indicated. The derivation of these natural mode shapes of the tower is presented in section 3.2 where the tower is assumed to deflect in the longitudinal and lateral directions independently; yet, the natural mode shapes in each direction are assumed to be identical in each direction. The negative sign is present in Eq. (3.4) since positive longitudinal displacements of the tower-top base plate tend to rotate the base plate about the negative ${\pmb a}_{3}$ -axis. The generalized coordinates associated with the tip deflections are functions of time; so are the longitudinal and lateral tower-top rotations of the plate. + +其中 $\phi_{1 T}(h)$ 和 $\phi_{2T}(h)$ 分别是塔的第一个和第二个固有振型。 在这些表达式中,塔柔性部分沿高度方向的坐标 $h$ 从零到 $H$ 变化。需要注意的是,$h$ 在相对于地球表面的高度 $H_{S}$ 时等于零。 此外,振型的导数在高度 $h=H$ 处进行评估,如所示。 这些塔的固有振型的推导见第 3.2 节,其中假设塔在纵向和横向方向上独立挠曲;然而,假设每个方向的固有振型在每个方向上是相同的。 方程 (3.4) 中存在负号,因为塔顶底板的正向纵向位移倾向于使底板绕负 ${\pmb a}_{3}$ 轴旋转。 与塔尖挠度相关的广义坐标是时间的函数;塔顶底板的纵向和横向旋转也是时间的函数。 Attached to the tower-top base plate is a yaw bearing (O). The yaw bearing allows everything atop the tower to rotate $\left(q_{\delta}\right)$ as winds change direction. The yaw bearing also has the flexibility to allow everything atop the tower to tilt $(q_{\cal S})$ when responding to wind loads. The nacelle houses the generator and gearbox and supports the rotor. The center of mass of the nacelle (D) is related to the tower-top base plate by the position vector $r^{O D10}$ : diff --git a/工作OKRs/xxx.md b/工作OKRs/xxx.md new file mode 100644 index 0000000..71ecb50 --- /dev/null +++ b/工作OKRs/xxx.md @@ -0,0 +1,3 @@ + +自主开发基于Python的风电机组叶片气动设计软件,实现稳态叶素动量理论(BEM)方法的全自主实现。该软件在气动性能评估精度上达到行业主流软件Bladed的水平相当,构建高自由度叶片外形控制点体系。采用多目标优化算法确保各叶素截面工作在最优攻角区间。软件架构采用模块化设计思想,集成多线程并行计算框架,显著缩短复杂叶片的优化设计周期。应用于16MW级叶片气动设计,气动性能满足设计要求。 +自主开发基于Rust语言的风电机组多体动力学求解器,实现从基础结构到关键柔性部件(叶片、塔架)的全系统建模能力,支持固定式与漂浮式风电机组的多场景仿真。采用多体系统动力学理论建立风电机组各部件(塔架、叶片、机舱等)的运动学与动力学方程,考虑柔性体的模态分解与刚柔耦合效应。该求解器采用完全自主知识产权的算法框架,基于Rust语言的内存安全机制与高性能编译特性,实现代码自主可控,计算精度达到国际主流软件OpenFAST的同等水平。通过理论建模、算法开发实现了多体动力学理论在风电工程中的深度落地。 diff --git a/杂项/NV显卡显存占用查看 ollama清理显存.md b/杂项/NV显卡显存占用查看 ollama清理显存.md new file mode 100644 index 0000000..bd4f8d7 --- /dev/null +++ b/杂项/NV显卡显存占用查看 ollama清理显存.md @@ -0,0 +1,5 @@ +nvidia-smi + +ollama list +ollama ps +ollama stop \ No newline at end of file diff --git a/杂项/NV显卡显存占用查看.md b/杂项/NV显卡显存占用查看.md deleted file mode 100644 index b623e40..0000000 --- a/杂项/NV显卡显存占用查看.md +++ /dev/null @@ -1 +0,0 @@ -nvidia-smi \ No newline at end of file