diff --git a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md index fedfe0f..df1915c 100644 --- a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md +++ b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md @@ -976,11 +976,11 @@ $$ or equivalently: $$ -u(r,t)\!=\!q_{I}\phi_{I}(r)\!+\!q_{I I}\phi_{2}(r)\!+\!q_{I3}\phi_{3}(r) +u(r,t)\!=\!q_{1}\phi_{I}(r)\!+\!q_{11}\phi_{2}(r)\!+\!q_{13}\phi_{3}(r) $$ $$ -\nu(r,t)\!=\!q_{I}\psi_{I}(r)\!+\!q_{I I}\psi_{2}(r)\!+\!q_{I3}\psi_{3}(r) +\nu(r,t)\!=\!q_{1}\psi_{1}(r)\!+\!q_{11}\psi_{2}(r)\!+\!q_{13}\psi_{3}(r) $$ where $\acute{r}$ is a dummy variable representing the span along the flexible part of the blade. @@ -1072,16 +1072,19 @@ Equation (3.37) is applicable to either blade. When representing blade 1, $\bet # 3.2 Blade and Tower Deflections The structural model of FAST_AD considers the blades and tower to be flexible cantilevered beams with continuously distributed mass and stiffness. In theory, such bodies possess an infinite number of DOFs, since an infinite number of coordinates are needed to specify the position of every point on the body. In practice, such bodies are modeled as a linear sum of known shapes of the dominant normal vibration modes. This technique is known as the normal mode summation method and reduces the number of DOFs from infinity to $N_{\ast}$ the number of normal modes considered to be dominant. With this method, the lateral deflection (perpendicular to the undeformed beam) anywhere on the flexible beam at any time, $u(z,t)$ , is given as the summation of the products of each normal mode shape, $\phi_{a}(z)$ , and their associated generalized coordinate, $q_{a}(t)$ : -FAST_AD结构的模型将叶片和塔架视为具有连续分布的质量和刚度的柔性悬臂梁。理论上,这种结构体拥有无限多的自由度(DOF),因为需要无限多个坐标来指定结构体上每个点的位移。但在实践中,这种结构体被建模为由主振动模式的已知形状的线性组合。这种技术被称为正模叠加法,它将自由度数从无限减少到$N_{\ast}$,即考虑的主振动模式数量。通过这种方法,在任何时间和在柔性梁上的任意位置,横向挠度(垂直于未变形的梁),表示为$u(z,t)$,可以表示为每个正模形状函数$\phi_{a}(z)$及其相关广义坐标$q_{a}(t)$的乘积之和: +FAST_AD结构模型将叶片和塔架视为具有连续分布质量和刚度的柔性悬臂梁。理论上,此类物体具有无限多的自由度(DOF),因为需要无限多个坐标来指定物体上每个点的位置。实际上,此类物体被建模为由主振动模式的已知形状的线性组合。这种技术被称为主模叠加法,将自由度数从无限减少到$N_{\ast}$,即考虑的主振动模式数量。通过该方法,在任何时间和柔性梁上的任意位置的横向挠度(垂直于未变形的梁),$u(z,t)$,表示为每个主模形状函数,$\phi_{a}(z)$,及其相关广义坐标,$q_{a}(t)$,的乘积之和: $$ u(z,t)\!=\!\sum_{a=l}^{N}\phi_{a}\!\left(z\right)\!q_{a}\!\left(t\right) $$ The normal mode shape for mode $a$ , $\phi_{a}(z)$ , is purely a function of the distance $z$ along the beam $[z=0$ at the fixed end and $z=Z$ at the free end) and the generalized coordinate associated with normal mode $a$ , $q_{a}(t)$ , is purely a function of time $t$ . Each normal mode has an associated natural frequency, $\omega_{a}$ , and phase, $\psi_{a}$ . The generalized coordinate associated with a normal mode is customarily allowed to be the deflection of the free end of the cantilever beam; thus, each normal mode shape is dimensionless and normalized so it is equal to unity at the free end. -对于模式 $a$ 的正常模式形状 $\phi_{a}(z)$,它纯粹是沿梁的距离 $z$ 的函数(其中 $z=0$ 为固定端,$z=Z$ 为自由端),而与该正常模式 $a$ 相关的广义坐标 $q_{a}(t)$ 纯粹是时间的函数 $t$。每个正常模式都具有相关的固有频率 $\omega_{a}$ 和相位 $\psi_{a}$。与正常模式相关的广义坐标通常允许是悬臂梁自由端的挠度;因此,每个正常模式形状都是无量纲的,并且被归一化,使其在自由端处等于一。 + +第 $a$ 阶固有振型,$\phi_{a}(z)$,纯粹是沿梁的距离 $z$ 的函数(其中 $z=0$ 为固定端,$z=Z$ 为自由端),而与第 $a$ 阶固有振型相关的广义坐标 $q_{a}(t)$ 纯粹是时间的函数 $t$。 每个固有振型都具有相关的固有频率,$\omega_{a}$,和相位,$\psi_{a}$。 与固有振型相关的广义坐标通常允许是悬臂梁自由端的挠度;因此,每个固有振型都无量纲且归一化,使其在自由端处等于一。 + When each normal mode shape is known, $N$ parameters are required to specify the deflection of the flexible body at any time. Thus, alternatively, the lateral deflection of the flexible body could be expressed using $N$ other functions, $\varphi_{b}(z)$ , not unique to each normal mode: +当每个固有振型已知时,需要 $N$ 个参数来指定柔性体的任意时刻的挠度。 因而,也可以使用 $N$ 个其他函数 $\varphi_{b}(z)$ 来表达柔性体的侧向挠度,这些函数不唯一对应于每个固有振型: $$ u(z,t)\!=\sum_{b=p}^{N+p-I}\!\varphi_{b}(z)c_{b}(t) diff --git a/多体+耦合求解器/Simpack学习/Simpack Modeling and Simulation Fundamentals Guide.pdf b/多体+耦合求解器/Simpack学习/Simpack Modeling and Simulation Fundamentals Guide.pdf new file mode 100644 index 0000000..749658e Binary files /dev/null and b/多体+耦合求解器/Simpack学习/Simpack Modeling and Simulation Fundamentals Guide.pdf differ diff --git a/多体+耦合求解器/V0.5版本结果对比/对比步骤.md b/多体+耦合求解器/V0.5版本结果对比/对比步骤.md new file mode 100644 index 0000000..50ab6e3 --- /dev/null +++ b/多体+耦合求解器/V0.5版本结果对比/对比步骤.md @@ -0,0 +1,17 @@ +算例: +1 正常发电工况: +- 均匀风 +- 没有变桨、偏航、转速调整 +对比结果 +功率、叶片变形量、什么什么载荷? + +q 叶片、塔架的振型如何看? + +风速 8m/s +转速不知 + +1、Bladed、FAST 15MW模型直接对比结果 + +2、V0.5软件与fast 15mw对比 + +3、气动改用AeroDyn ED对比 diff --git a/工作OKRs/25.2-5 OKR.canvas b/工作OKRs/25.2-5 OKR.canvas index 78c732c..1051c60 100644 --- a/工作OKRs/25.2-5 OKR.canvas +++ b/工作OKRs/25.2-5 OKR.canvas @@ -3,9 +3,9 @@ {"id":"b698e88ca5fb9c51","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情,它们是完成OKR的保障。\n\n\n效率状态 green","x":-96,"y":80,"width":456,"height":347}, {"id":"2b068bfe5df15a72","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (8/10)\n\n关键结果:对标Bladed模块完成 (8.5/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)","x":-96,"y":-307,"width":456,"height":347}, {"id":"01ee5c157d0deeae","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-620,"y":80,"width":456,"height":347}, - {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\nP1 建立IEA 15yaml文件\nP1 结合yaml解析代码,联合气动更新对yaml文件的支持\nP1 结果对比\n- 优先瞬态\n\nP1 如何优雅的存储、输出结果。\nP1 开发板联系\nP2 yaw 自由度再bug确认 已知原理了\n\n","x":-614,"y":-307,"width":450,"height":347}, {"id":"cb9319d24c3e70e3","type":"text","text":"# 5月已完成\n\nP1 Steady Operational Loads求解器测试 \n- 变桨算法测试完成\n- 转速算法基本完成\n- 两个结合点测试 完成\n\nP1 simpack多体对CAE的需求梳理 分成塔架、叶片、传动链模型 完成","x":-240,"y":520,"width":440,"height":560}, - {"id":"1ebeabaf5c73ddbb","type":"text","text":"# 4月已完成\n\n多体原理学习 YouTube课程 018\n\n气动模块联合调试,跑通\n\n使用python搭建风电机组多体模型 刚性部件主动力、惯性力计算 \n\n编写Steady Operational Loads求解器\n- 稳态工况多体动力学求解方法 --龙格库塔+ed_caloutput 初步方案完成\n- 遍历风速框架 完成\n- 不同风速下转速、变桨角度算法 完成\n- 多体设置参数 完成\n- 每个风速直接是否需要重新初始化 需要 完成\n\n\n\ngenerator torque计算 简单了解,确定方案","x":-720,"y":520,"width":440,"height":560} + {"id":"1ebeabaf5c73ddbb","type":"text","text":"# 4月已完成\n\n多体原理学习 YouTube课程 018\n\n气动模块联合调试,跑通\n\n使用python搭建风电机组多体模型 刚性部件主动力、惯性力计算 \n\n编写Steady Operational Loads求解器\n- 稳态工况多体动力学求解方法 --龙格库塔+ed_caloutput 初步方案完成\n- 遍历风速框架 完成\n- 不同风速下转速、变桨角度算法 完成\n- 多体设置参数 完成\n- 每个风速直接是否需要重新初始化 需要 完成\n\n\n\ngenerator torque计算 简单了解,确定方案","x":-720,"y":520,"width":440,"height":560}, + {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\nP1 建立IEA 15yaml文件\nP1 结合yaml解析代码,联合气动更新对yaml文件的支持\nP1 结果对比\n- 优先瞬态,**如何设置计算?**\n\nP1 如何优雅的存储、输出结果。\nP1 国产化适配交给甲子营,对接\nP1 推进气动、控制、多体、水动\nP2 yaw 自由度再bug确认 已知原理了\n\n","x":-614,"y":-307,"width":450,"height":347} ], "edges":[] } \ No newline at end of file