diff --git a/.obsidian/plugins/copilot/data.json b/.obsidian/plugins/copilot/data.json
index b7a57cf..0fc15fe 100644
--- a/.obsidian/plugins/copilot/data.json
+++ b/.obsidian/plugins/copilot/data.json
@@ -138,6 +138,23 @@
],
"stream": true,
"enableCors": true
+ },
+ {
+ "name": "gemini-2.5-flash",
+ "provider": "google",
+ "enabled": true,
+ "isBuiltIn": false,
+ "baseUrl": "http://60.205.246.14:8000",
+ "apiKey": "gyz",
+ "isEmbeddingModel": false,
+ "capabilities": [
+ "reasoning",
+ "vision",
+ "websearch"
+ ],
+ "stream": true,
+ "enableCors": true,
+ "displayName": "gemini-2.5-flash"
}
],
"activeEmbeddingModels": [
@@ -268,7 +285,7 @@
"name": "Translate to Chinese",
"prompt": "Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n \n\n{copilot-selection}\n\n1. Blade翻译为叶片,flapwise翻译为挥舞,edgewise翻译为摆振,pitch angle翻译成变桨角度,twist angle翻译为扭角,rotor翻译为风轮,turbine、wind turbine翻译为机组、风电机组,span翻译为展向,deflection翻译为变形,mode翻译为模态,normal mode翻译为简正模态,jacket 翻译为导管架,superelement翻译为超单元,shaft翻译为主轴,azimuth、azimuth angle翻译为方位角,neutral axes 翻译为中性轴\n2. Return only the translated text.\n",
"showInContextMenu": true,
- "modelKey": "gemma3:12b|ollama"
+ "modelKey": "gemini-2.5-flash|google"
},
{
"name": "Summarize",
diff --git a/书籍/力学书籍/力学/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library)/auto/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).md b/书籍/力学书籍/力学/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library)/auto/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).md
index 9e0e91a..f65daba 100644
--- a/书籍/力学书籍/力学/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library)/auto/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).md
+++ b/书籍/力学书籍/力学/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library)/auto/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).md
@@ -3328,13 +3328,13 @@ The principle of impulse and momentum involves two sets of new quantities. First
#### Principle of linear impulse and momentum
Figure 3.13 shows a particle of mass $m$ in motion with respect to an inertial frame $\mathcal{F}^{I}=[\mathbf{O},\mathcal{T}=(\bar{\iota}_{1},\bar{\iota}_{2},\bar{\iota}_{3})]$ . The inertial velocity vector of the particle is denoted $\underline{v}$ . The linear momentum vector of a particle is defined as the product of its mass by its inertial velocity vector
-
+图 3.13 示出了质量为 $m$ 的一个粒子相对于惯性系 $\mathcal{F}^{I}=[\mathbf{O},\mathcal{T}=(\bar{\iota}_{1},\bar{\iota}_{2},\bar{\iota}_{3})]$ 的运动。该粒子的惯性速度矢量记作 $\underline{v}$ 。粒子的线性动量矢量定义为其质量与惯性速度矢量的乘积。
$$
\underline{{p}}=m\underline{{v}}.
$$
Taking a time derivative of the linear momentum vector yields $\dot{\underline{{p}}}=m\underline{{a}}.$ Comparing this result with Newton’s second law, eq. (3.4), leads to
-
+对线性动量矢量求时间导数得到 $\dot{\underline{{p}}}=m\underline{{a}}.$ 将此结果与牛顿第二定律(式3.4)进行比较,可得
$$
\underline{{F}}=\underline{{\dot{p}}}.
$$
@@ -3343,6 +3343,9 @@ This result implies that the time derivative of the linear momentum vector of a
It is interesting to integrate the above equation in time, between an initial and a final time, denoted $t_{i}$ and $t_{f}$ , respectively. These two instants are chosen arbitrarily, but $t_{i}