vault backup: 2025-02-27 10:03:30

This commit is contained in:
gyz 2025-02-27 10:03:31 +08:00
parent f8fe3e23c5
commit aa6d2e654b
8 changed files with 625 additions and 12 deletions

View File

@ -1,7 +1,7 @@
{
"nodes":[
{"id":"b698e88ca5fb9c51","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n","x":-96,"y":80,"width":456,"height":347},
{"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\nP1 多体原理学习 YouTube课程\nP1 根据HEROWind数据结构更新多体模块结构体\nP1 公共模块整理与探讨\nP1 气动模块联合调试,跑通\n","x":-620,"y":-307,"width":450,"height":347},
{"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\nP1 多体原理学习 YouTube课程\nP1 根据HEROWind数据结构更新多体模块结构体\nP1 公共模块整理与探讨\nP1 气动模块联合调试,跑通\nP1 多体动力学节点细化\n","x":-620,"y":-307,"width":450,"height":347},
{"id":"2b068bfe5df15a72","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 5/10\n\n关键结果对标Bladed模块完成 5/10\n\n关键结果风机多体动力学文献调研情况完成 5/10","x":-96,"y":-307,"width":456,"height":347},
{"id":"01ee5c157d0deeae","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-620,"y":80,"width":456,"height":347}
],

View File

@ -0,0 +1,40 @@
推进设计流程编写明确团队在设计流程中的位置区分工作范围。20MW模型、设计好好规划一下。
跟曹老师再谈谈整机设计的
根据工作进展可以提前提报采购申请,团队的证据链清楚,申报时间,审批时间都很清楚,点到为止
培训计划,多次优化后断崖式领先其他团队,还是没被职能满意,
2025年任务分得比较清楚还都在做这个星期集中审查一次两个半天
软件组是标志性软件,比较重视软件,对科研来讲好开展,只要需求方参与,测试反馈,脑力要求比较高,基本功还是在专业上,规划的软件功能要清晰,界面友好,进度要有规划,尽可能早点,支撑科研任务,通过科研成果反馈校核迭代。软件工作要做规划,规划评审一下,开发者手册,框架、功能,早点评审,早点吸取建议
联培博士工作要重视,再找教授,看研究生部的要求,检查作业,学生向职业的转换过程中,确保能毕业
两重要求全力以赴全员参与三个月了可研报告有几稿了是一个历练知道可研工作怎么做方案探讨工程总结教训能力不够做的工作科创部没法拍板总结经验1 可研报告还没做完就花大精力做ppt不如把可研工作做扎实有点投机取巧心理不是踏踏实实做事情2 可研报告大量注水说的不痛不痒通读不下去主要内容看不到了投机取巧心理3 综合打捆,多个合一。失败损失的是信誉,以后做正确的也不会被相信。做什么事都要踏踏实实,投机取巧,害人害己。批下来后,怎么建设,怎么深化,招标方案,招标设计,招标设计,设计联络会,确定方案。
实验室月度例会风电机组团队建设要加快瞄准百人规模前进今年计划83人科创部指导下可研要挖到根追到底-变压器的;风机团队两重项目是重点,核心区平台也不要放松,材料经不经得起评审,怎么操作怎么执行,详细设计的问题,我们做还是招标后请别人做,招标完厂家要做详细设计,根据我们的方案是不是可操作,接下来分几个步骤,提前考虑,提前采购的
文档用AI
边建设边科研边出成果,试验场地,利用总平台的左右,带动高质量参与,强调团队,不要担心来了没事干,
碳捕集,每周一学习,学习实验室的制度,碳捕集内控责任书以及签了。利用体制机制优势开展科研工作,成果有益,
对双聘人员,有些顾虑,回去后跟不上,实验室正在研究,新的做法再说,新员工培训形成常态机制
电缆团队材料研究数字化开发探讨改变科研范式赋予AI新的应用场景大量使用博士生开展模型研究大量重复性工作用AI做
2027年内预算可下达到团队今年采购量特别大18个亿如果有卡点尽快反馈加快审批流程被山西的院士从头骂到尾。采购提前加强综合计划的分析团队汇报要汇报相关内容综合计划是什么综合部留意一下
王书记两会期间实验室安排要到位303楼3楼理化实验室单位较多管理可能空缺
1 签订责任书的单位根据责任书执行,要凝练科技问题,要善于报央企大腿,三不要,不要自大,不要当包工头,负责人们不要沽名钓誉,每周至少四天在实验室干活,半天一天到外面当专家
2 管理二级院怎么管还在探讨中共建二级院难度更大尽快形成成熟管理模式比较推崇南网管理模式共建规则协议三峡想拷贝实验室不同意核心是1配资1比1南网下设自办机构归南网管借助实验室平台扩展一下科研渠道智能电网2030给了13个项目。三峡认可实验室模式资金支撑人员支撑落地示范支撑。管理没有放权到二级院防止二级院把科研模式带回央企模式知识产权布局要加快结合试验平台配置试验专责
3 实验室职能调整成立采购处知识产权分立二级单位超过200人可以增设人事部明确实验室总人数921人职能部门加强服务加强对两重的服务团队不强是科创部不能拍板的主要原因。
4 启动内部审计用权要自立支持招标采购工作团队权力很大双聘人员不能成为潜伏人员规范花钱近五年要花150亿今年总人数要达到2000人

View File

@ -0,0 +1,348 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import sympy as sm"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"sm.init_printing()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"theta, alpha = sm.symbols(\"theta, alpha\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}\\cos{\\left(\\theta \\right)} & \\sin{\\left(\\theta \\right)} & 0\\\\- \\sin{\\left(\\theta \\right)} & \\cos{\\left(\\theta \\right)} & 0\\\\0 & 0 & 1\\end{matrix}\\right]$"
],
"text/plain": [
"⎡cos(θ) sin(θ) 0⎤\n",
"⎢ ⎥\n",
"⎢-sin(θ) cos(θ) 0⎥\n",
"⎢ ⎥\n",
"⎣ 0 0 1⎦"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"B_C_A = sm.Matrix([[sm.cos(theta), sm.sin(theta), 0],\n",
" [-sm.sin(theta), sm.cos(theta), 0],\n",
" [0, 0, 1]])\n",
"B_C_A"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}1 & 0 & 0\\\\0 & \\cos{\\left(\\alpha \\right)} & \\sin{\\left(\\alpha \\right)}\\\\0 & - \\sin{\\left(\\alpha \\right)} & \\cos{\\left(\\alpha \\right)}\\end{matrix}\\right]$"
],
"text/plain": [
"⎡1 0 0 ⎤\n",
"⎢ ⎥\n",
"⎢0 cos(α) sin(α)⎥\n",
"⎢ ⎥\n",
"⎣0 -sin(α) cos(α)⎦"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C_C_B = sm.Matrix([[1, 0, 0],\n",
" [0, sm.cos(alpha), sm.sin(alpha)],\n",
" [0, -sm.sin(alpha), sm.cos(alpha)]])\n",
"C_C_B"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}\\cos{\\left(\\theta \\right)} & \\sin{\\left(\\theta \\right)} & 0\\\\- \\sin{\\left(\\theta \\right)} \\cos{\\left(\\alpha \\right)} & \\cos{\\left(\\alpha \\right)} \\cos{\\left(\\theta \\right)} & \\sin{\\left(\\alpha \\right)}\\\\\\sin{\\left(\\alpha \\right)} \\sin{\\left(\\theta \\right)} & - \\sin{\\left(\\alpha \\right)} \\cos{\\left(\\theta \\right)} & \\cos{\\left(\\alpha \\right)}\\end{matrix}\\right]$"
],
"text/plain": [
"⎡ cos(θ) sin(θ) 0 ⎤\n",
"⎢ ⎥\n",
"⎢-sin(θ)⋅cos(α) cos(α)⋅cos(θ) sin(α)⎥\n",
"⎢ ⎥\n",
"⎣sin(α)⋅sin(θ) -sin(α)⋅cos(θ) cos(α)⎦"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C_C_A = C_C_B * B_C_A\n",
"C_C_A"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import sympy.physics.mechanics as me"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"A = me.ReferenceFrame('A')\n",
"B = me.ReferenceFrame('B')\n",
"C = me.ReferenceFrame('C')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"B.orient_axis(A, theta, A.z)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABcAAAAVCAYAAACt4nWrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAABJ0AAASdAHeZh94AAAB4UlEQVR4nM3UTYhOcRTH8c+DCJGZhLBASiQ1E8lCCNmNDVITdmQxJfKyUMfZWGDJQhIbKRbyUhZkUlYsKDUoslASC5JoYmYs7v9hvDzTvFg4q/u/95zvOf9fv3tqfX19GkVmtmBjOV6KiK6GyX+JWiN4Zk7CI8xFDV1YGhFfBgsfNcC3U5iHPTiERTgxWDANJs/MrbiIIxGR5d0x7EdbRFwfNvxfxUCy/N/wMfWHzGzGQbRiPpoxAR/xDFdwcrhumYkDWIc5mFyaN2MFjuFeZk4c8uToxVPcxxu8x1gsxKaS24rdBmnJP9ySmbOwrNxkvOoH2oHFJeVORKwd0uSZ2YRzaCvARjF7MOBf4Djr5x4ZKMYNCZ6ZE1QT16MTO/EyInoy8xI29y/MzDZcLcf1EXE7M1eV2hq21N0yBaP71d6IiOcFPA1rfp8qIq7hdDmeycwZKllrOB8Rl+uyvMWH0gQOZ+Z09GEbpja4+V6sxgLVBp2OF+ig+DwivuFov6ImlecPlga3/kaOiM9oR08B96I9Ij79gJfE49iFJ/iKd7iA5XjdYHIq99QlHaXa/xjhViw6P1bJ9hAtKnmXRMSrYcMzs4ab2IAHWIm7qpt2Yt1ItmJHAXdjR0R0Yzs+q9y17zu2Cpf87xXnRgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\mathbf{\\hat{a}_x}$"
],
"text/plain": [
"a_x"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A.x"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}\\cos{\\left(\\theta \\right)} & \\sin{\\left(\\theta \\right)} & 0\\\\- \\sin{\\left(\\theta \\right)} & \\cos{\\left(\\theta \\right)} & 0\\\\0 & 0 & 1\\end{matrix}\\right]$"
],
"text/plain": [
"⎡cos(θ) sin(θ) 0⎤\n",
"⎢ ⎥\n",
"⎢-sin(θ) cos(θ) 0⎥\n",
"⎢ ⎥\n",
"⎣ 0 0 1⎦"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"B.dcm(A)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"C.orient_axis(B, alpha, B.x)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}1 & 0 & 0\\\\0 & \\cos{\\left(\\alpha \\right)} & \\sin{\\left(\\alpha \\right)}\\\\0 & - \\sin{\\left(\\alpha \\right)} & \\cos{\\left(\\alpha \\right)}\\end{matrix}\\right]$"
],
"text/plain": [
"⎡1 0 0 ⎤\n",
"⎢ ⎥\n",
"⎢0 cos(α) sin(α)⎥\n",
"⎢ ⎥\n",
"⎣0 -sin(α) cos(α)⎦"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C.dcm(B)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}\\cos{\\left(\\theta \\right)} & \\sin{\\left(\\theta \\right)} & 0\\\\- \\sin{\\left(\\theta \\right)} \\cos{\\left(\\alpha \\right)} & \\cos{\\left(\\alpha \\right)} \\cos{\\left(\\theta \\right)} & \\sin{\\left(\\alpha \\right)}\\\\\\sin{\\left(\\alpha \\right)} \\sin{\\left(\\theta \\right)} & - \\sin{\\left(\\alpha \\right)} \\cos{\\left(\\theta \\right)} & \\cos{\\left(\\alpha \\right)}\\end{matrix}\\right]$"
],
"text/plain": [
"⎡ cos(θ) sin(θ) 0 ⎤\n",
"⎢ ⎥\n",
"⎢-sin(θ)⋅cos(α) cos(α)⋅cos(θ) sin(α)⎥\n",
"⎢ ⎥\n",
"⎣sin(α)⋅sin(θ) -sin(α)⋅cos(θ) cos(α)⎦"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C.dcm(A)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"A = me.ReferenceFrame(\"A\")\n",
"C = me.ReferenceFrame(\"C\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"psi, theta, phi = sm.symbols('psi, theta, varphi')"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"C.orient_body_fixed(A, (phi, theta, phi), 'ZXZ')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}- \\sin^{2}{\\left(\\varphi \\right)} \\cos{\\left(\\theta \\right)} + \\cos^{2}{\\left(\\varphi \\right)} & \\sin{\\left(\\varphi \\right)} \\cos{\\left(\\theta \\right)} \\cos{\\left(\\varphi \\right)} + \\sin{\\left(\\varphi \\right)} \\cos{\\left(\\varphi \\right)} & \\sin{\\left(\\theta \\right)} \\sin{\\left(\\varphi \\right)}\\\\- \\sin{\\left(\\varphi \\right)} \\cos{\\left(\\theta \\right)} \\cos{\\left(\\varphi \\right)} - \\sin{\\left(\\varphi \\right)} \\cos{\\left(\\varphi \\right)} & - \\sin^{2}{\\left(\\varphi \\right)} + \\cos{\\left(\\theta \\right)} \\cos^{2}{\\left(\\varphi \\right)} & \\sin{\\left(\\theta \\right)} \\cos{\\left(\\varphi \\right)}\\\\\\sin{\\left(\\theta \\right)} \\sin{\\left(\\varphi \\right)} & - \\sin{\\left(\\theta \\right)} \\cos{\\left(\\varphi \\right)} & \\cos{\\left(\\theta \\right)}\\end{matrix}\\right]$"
],
"text/plain": [
"⎡ 2 2 ↪\n",
"⎢ - sin (varphi)⋅cos(θ) + cos (varphi) sin(varphi)⋅cos(θ) ↪\n",
"⎢ ↪\n",
"⎢ 2 ↪\n",
"⎢-sin(varphi)⋅cos(θ)⋅cos(varphi) - sin(varphi)⋅cos(varphi) - sin (v ↪\n",
"⎢ ↪\n",
"⎣ sin(θ)⋅sin(varphi) ↪\n",
"\n",
"↪ ⎤\n",
"↪ ⋅cos(varphi) + sin(varphi)⋅cos(varphi) sin(θ)⋅sin(varphi)⎥\n",
"↪ ⎥\n",
"↪ 2 ⎥\n",
"↪ arphi) + cos(θ)⋅cos (varphi) sin(θ)⋅cos(varphi)⎥\n",
"↪ ⎥\n",
"↪ -sin(θ)⋅cos(varphi) cos(θ) ⎦"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C.dcm(A)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Turtle",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,39 @@
Vectors
- magnitude 大小
- direction 方向
- sense 正负
Unit vectors 模=1
Reference Frames
Euclidean 3D Space:all points in some 3D space
Observer of position + motion
motion is a function of the obsersiver's orientation
Frame of reference "reference frame" is a set of all Euclidean points fixed to the observer. An abstraction to understand motion
We will fix 3 right-handed mutually perpendiculur unit vectors to a reference frame and use them to determine orientation among reference frames
互相垂直,右手坐标系,满足叉乘规律
Simple 2D orientation
B关于A的的变换矩阵 ---- 方向余弦矩阵 direct cosine matrix or 旋转矩阵 rotation matrix of B with respect to A
或者称之为
Right handed rotation of B with respect to A about the shared Z unit vector through the angle theta
Successive Rotations
C^[C]^A = C^[C]^B * B^[C]^A
Euler Angles
3 successive simple rotations about shared axes that allows for arbitrary orientation of two reference frames with two additional or auxiliary reference frames

View File

View File

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 17,
"metadata": {},
"outputs": [
{
@ -21,7 +21,7 @@
"(a, b, theta, gamma, x, t, y, z)"
]
},
"execution_count": 2,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@ -32,7 +32,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 18,
"metadata": {},
"outputs": [
{
@ -41,7 +41,7 @@
"f"
]
},
"execution_count": 5,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@ -53,7 +53,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 19,
"metadata": {},
"outputs": [
{
@ -65,7 +65,7 @@
"sin(f(t)) - tan(a/b)/log(gamma)"
]
},
"execution_count": 4,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@ -77,7 +77,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 20,
"metadata": {},
"outputs": [
{
@ -89,7 +89,7 @@
"2*a*(tan(a/b)**2 + 1)*tan(a/b)/(b**3*log(gamma)) + (tan(a/b)**2 + 1)/(b**2*log(gamma))"
]
},
"execution_count": 6,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@ -99,11 +99,197 @@
"part2 = sm.diff(part1, b)\n",
"part2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Matrices & Linear Algebra"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]$"
],
"text/plain": [
"Matrix([\n",
"[1, 2],\n",
"[3, 4]])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mat1 = sm.Matrix([[1, 2],[3, 4]])\n",
"mat1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Linear systems"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"lin_expr_1 = a * x +b**2*y + sm.sin(gama) *z"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle x \\sin{\\left(f{\\left(t \\right)} \\right)} + z \\log{\\left(f{\\left(t \\right)} \\right)}$"
],
"text/plain": [
"x*sin(f(t)) + z*log(f(t))"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lin_expr_2 = sm.sin(f(t)) *x + sm.log(f(t)) * z\n",
"lin_expr_2"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle a x + b^{2} y + z \\sin{\\left(\\gamma \\right)} = 0$"
],
"text/plain": [
"Eq(a*x + b**2*y + z*sin(gamma), 0)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sm.Eq(lin_expr_1, 0)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle x \\sin{\\left(f{\\left(t \\right)} \\right)} + z \\log{\\left(f{\\left(t \\right)} \\right)} = 0$"
],
"text/plain": [
"Eq(x*sin(f(t)) + z*log(f(t)), 0)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sm.Eq(lin_expr_2, 0)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{x: -b**2*y*log(f(t))/(a*log(f(t)) - sin(gamma)*sin(f(t))),\n",
" z: b**2*y*sin(f(t))/(a*log(f(t)) - sin(gamma)*sin(f(t)))}]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = sm.solve([lin_expr_1, lin_expr_2], x, z, dict = True)\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: -b**2*y*log(f(t))/(a*log(f(t)) - sin(gamma)*sin(f(t))),\n",
" z: b**2*y*sin(f(t))/(a*log(f(t)) - sin(gamma)*sin(f(t)))}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res_dict = res[0]\n",
"res_dict"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle x = - \\frac{b^{2} y \\log{\\left(f{\\left(t \\right)} \\right)}}{a \\log{\\left(f{\\left(t \\right)} \\right)} - \\sin{\\left(\\gamma \\right)} \\sin{\\left(f{\\left(t \\right)} \\right)}}$"
],
"text/plain": [
"Eq(x, -b**2*y*log(f(t))/(a*log(f(t)) - sin(gamma)*sin(f(t))))"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sm.Eq(x, res_dict[x])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "blade",
"display_name": "Turtle",
"language": "python",
"name": "python3"
},
@ -117,7 +303,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
"version": "3.11.8"
}
},
"nbformat": 4,