vault backup: 2025-09-03 17:09:39

This commit is contained in:
yize 2025-09-03 17:09:40 +08:00
parent b3b3a4d609
commit a98ace3389
2 changed files with 202 additions and 25 deletions

View File

@ -9,4 +9,4 @@
| 唐世泽 | 结婚 | 600 | | 唐世泽 | 结婚 | 600 |
| 华瑞 | 结婚 | 800 | | 华瑞 | 结婚 | 800 |
| 朱钰龙 | 结婚 | 800 | | 朱钰龙 | 结婚 | 800 |
| | | | | 许建强 | 结婚 | 800 |

View File

@ -539,19 +539,81 @@ Coordinate Transformations
The derivation of the transformation matrices follows the method used in Hodges and Dowell.3 The major difference between these matrices and those of Hodges and Dowell3 is the inclusion of the pitch angle $\beta$ . The transformation between the initial $\left(X,\,Y,\,Z\right)$ -frame and the $\left(\hat{x},\,\hat{y},\,\hat{z}\right)$ -frame is given by The derivation of the transformation matrices follows the method used in Hodges and Dowell.3 The major difference between these matrices and those of Hodges and Dowell3 is the inclusion of the pitch angle $\beta$ . The transformation between the initial $\left(X,\,Y,\,Z\right)$ -frame and the $\left(\hat{x},\,\hat{y},\,\hat{z}\right)$ -frame is given by
$$ $$
\begin{array}{r}{\left[\hat{\mathbf{i}}\right]}\\ {\left[\hat{\mathbf{j}}\right]=\mathbf{T}_{\phi}\left[\mathbf{J}\right]=\left[\begin{array}{c c c}{\cos(\phi(t))}&{0}&{-\sin(\phi(t))}\\ {0}&{1}&{0}\\ {\sin(\phi(t))}&{0}&{\cos(\phi(t))}\end{array}\right]\left[\mathbf{J}\right]}\end{array} \begin{bmatrix}
\hat{\mathbf{i}} \\
\hat{\mathbf{j}} \\
\hat{\mathbf{k}}
\end{bmatrix} = \mathbf{T}_{\phi} \begin{bmatrix}
\mathbf{I} \\
\mathbf{J} \\
\mathbf{K}
\end{bmatrix} = \begin{bmatrix}
\cos(\phi(t)) & 0 & -\sin(\phi(t)) \\
0 & 1 & 0 \\
\sin(\phi(t)) & 0 & \cos(\phi(t))
\end{bmatrix} \begin{bmatrix}
\mathbf{I} \\
\mathbf{J} \\
\mathbf{K}
\end{bmatrix}
\tag{43}
$$ $$
and between the $(\hat{x},\hat{y},\hat{z})$ -frame and the $(x,\,y,\,z)$ -frame is given by and between the $(\hat{x},\hat{y},\hat{z})$ -frame and the $(x,\,y,\,z)$ -frame is given by
$$ $$
\begin{array}{r l}&{\left[\!\!\begin{array}{c}{\mathbf{\hat{i}}}\\ {\mathbf{j}}\\ {\mathbf{k}}\end{array}\!\!\right]=\mathbf{T}_{\beta}\left[\!\!\begin{array}{c}{\hat{\mathbf{i}}}\\ {\hat{\mathbf{j}}}\\ {\hat{\mathbf{k}}}\end{array}\!\!\right]=\left[\!\!\begin{array}{c c c}{\cos(\beta(t))}&{\sin(\beta(t))}&{0\!\!\sqrt{\!\!\dot{\mathbf{i}}}}\\ {-\sin(\beta(t))}&{\cos(\beta(t))}&{0\!\!\sqrt{\!\!\dot{\mathbf{j}}}}\\ {0}&{0}&{1\!\!\sqrt{\!\!\dot{\mathbf{k}}}}\end{array}\!\!\right]\!\!\right]_{\mathbf{\hat{k}}}}\end{array} \begin{bmatrix}
\mathbf{i} \\
\mathbf{j} \\
\mathbf{k}
\end{bmatrix} = \mathbf{T}_{\beta} \begin{bmatrix}
\hat{\mathbf{i}} \\
\hat{\mathbf{j}} \\
\hat{\mathbf{k}}
\end{bmatrix} = \begin{bmatrix}
\cos(\beta(t)) & \sin(\beta(t)) & 0 \\
-\sin(\beta(t)) & \cos(\beta(t)) & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\hat{\mathbf{i}} \\
\hat{\mathbf{j}} \\
\hat{\mathbf{k}}
\end{bmatrix}
\tag{44}
$$ $$
The principle axis of each cross section of the blade is described by the $(\mathfrak{n},\xi,\zeta)$ -frame with origin at $e a$ , where $\eta$ and $\zeta$ are the principle axes of the cross section and the $\zeta.$ -axis points outward along the elastic axis of the deformed blade. This frame has the unit vectors $(\tilde{\mathrm{i}},\tilde{\mathrm{j}},\tilde{\mathrm{k}})$ given by the following transformation: The principle axis of each cross section of the blade is described by the $(\mathfrak{n},\xi,\zeta)$ -frame with origin at $e a$ , where $\eta$ and $\zeta$ are the principle axes of the cross section and the $\zeta.$ -axis points outward along the elastic axis of the deformed blade. This frame has the unit vectors $(\tilde{\mathrm{i}},\tilde{\mathrm{j}},\tilde{\mathrm{k}})$ given by the following transformation:
$$ $$
\begin{array}{r l}&{\left[\begin{array}{l}{\overline{{\mathbf{i}}}}\\ {\overline{{\mathbf{j}}}}\\ {\overline{{\mathbf{k}}}}\end{array}\right]=\mathbf{T}_{\mathrm{e}}\left[\begin{array}{l l l}{{\mathbf{i}}}\\ {{\bf{j}}}\\ {{\bf{k}}}\end{array}\right]=\left[\begin{array}{l l l}{\cos(\hat{\theta}(s,t))}&{\sin(\hat{\theta}(s,t))}&{0}\\ {-\sin(\hat{\theta}(s,t))}&{\cos(\hat{\theta}(s,t))}&{0}\\ {0}&{0}&{1}\end{array}\right]}\\ &{\begin{array}{r l}{{\mathbf{\theta}}_{1}}&{0}\\ {0}&{\sqrt{1-\nu^{\prime}(s,t)^{2}}}&{-\nu^{\prime}(s,t)}\\ {0}&{0}&{1}\end{array}\right]}\\ &{\begin{array}{r l}{\sqrt{\bigg[\frac{1-(l_{p}^{\prime}(s)+u^{\prime}(s,t))^{2}-\nu^{\prime}(s,t)^{2}}{1-\nu^{\prime}(s,t)^{2}}}}&{0}&{\cdots\frac{l_{p}^{\prime}(s)+u^{\prime}(s,t)}{\sqrt{1-\nu^{\prime}(s,t)^{2}}}}\\ {0}&{0}&{1}\end{array}\right]\times\left[\begin{array}{l}{1}\\ {1}\\ {\overline{{\mathbf{k}}}}\\ {\overline{{\mathbf{k}}}}\end{array}\right]}\\ &{\begin{array}{r l}{\frac{L_{p}^{\prime}(s)+u^{\prime}(s,t)}{\sqrt{1-\nu^{\prime}(s,t)^{2}}}}&{0}\\ {0}&{\sqrt{\frac{1-\big(l_{p}^{\prime}(s)+u^{\prime}(s,t)\big)^{2}-\nu^{\prime}(s,t)^{2}}{1-\nu^{\prime}(s,t)^{2}}}}\end{array}\right]\mathbf{k},}\end{array}}\end{array} \begin{bmatrix}
\tilde{\mathbf{i}} \\
\tilde{\mathbf{j}} \\
\tilde{\mathbf{k}}
\end{bmatrix} = \mathbf{T}_c \begin{bmatrix}
\mathbf{i} \\
\mathbf{j} \\
\mathbf{k}
\end{bmatrix} = \begin{bmatrix}
\cos(\hat{\theta}(s,t)) & \sin(\hat{\theta}(s,t)) & 0 \\
-\sin(\hat{\theta}(s,t)) & \cos(\hat{\theta}(s,t)) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & \sqrt{1-v'(s,t)^2} & -v'(s,t) \\
0 & v'(s,t) & \sqrt{1-v'(s,t)^2}
\end{bmatrix}
\begin{bmatrix}
\sqrt{\frac{1-(l'_{pi}(s)+u'(s,t))^2 - v'(s,t)^2}{1-v'(s,t)^2}} & 0 & \frac{-(l'_{pi}(s)+u'(s,t))}{\sqrt{1-v'(s,t)^2}} \\
0 & 1 & 0 \\
\frac{l'_{pi}(s)+u'(s,t)}{\sqrt{1-v'(s,t)^2}} & 0 & \sqrt{\frac{1-(l'_{pi}(s)+u'(s,t))^2 - v'(s,t)^2}{1-v'(s,t)^2}}
\end{bmatrix}
\begin{bmatrix}
\mathbf{i} \\
\mathbf{j} \\
\mathbf{k}
\end{bmatrix}
\tag{45}
$$ $$
where $\tilde{\theta}$ is the rotation of the blade around the elastic axis. The first matrix in equation (45) is the rotation about the $\hat{z}$ -axis, the next matrix is the rotation about the $x$ -axis and the last matrix is the rotation about the $y$ -axis. where $\tilde{\theta}$ is the rotation of the blade around the elastic axis. The first matrix in equation (45) is the rotation about the $\hat{z}$ -axis, the next matrix is the rotation about the $x$ -axis and the last matrix is the rotation about the $y$ -axis.
@ -567,7 +629,7 @@ where ${{\bf{T}}_{c}}$ is equal to ${\bf{T}}_{e}$ except that the twist qˆ incl
The rotation of the principle axis of the blade sections as a function of the $s$ coordinate is given by the differential equation: The rotation of the principle axis of the blade sections as a function of the $s$ coordinate is given by the differential equation:
$$ $$
\begin{array}{r}{\mathbf{T}_{e}^{\prime}\!=\!\!\left[\!\!\begin{array}{c c c}{0}&{\tilde{\omega}_{k}}&{-\tilde{\omega}_{j}}\\ {-\tilde{\omega}_{k}}&{0}&{\tilde{\omega}_{i}}\\ {\tilde{\omega}_{j}}&{-\tilde{\omega}_{i}}&{0}\end{array}\!\!\right]\!\mathbf{T}_{c}\!\Rightarrow\!\!\left[\!\!\begin{array}{c c c}{0}&{\tilde{\omega}_{k}}&{-\tilde{\omega}_{j}}\\ {-\tilde{\omega}_{k}}&{0}&{\tilde{\omega}_{i}}\\ {\tilde{\omega}_{j}}&{-\tilde{\omega}_{i}}&{0}\end{array}\!\!\right]\!=\!T_{\mathrm{c}}\mathbf{T}_{\mathrm{c}}^{-1}}\end{array} \begin{array}{r}{\mathbf{T}_{e}^{\prime}=\left[\!\!\begin{array}{c c c}{0}&{\tilde{\omega}_{k}}&{-\tilde{\omega}_{j}}\\ {-\tilde{\omega}_{k}}&{0}&{\tilde{\omega}_{i}}\\ {\tilde{\omega}_{j}}&{-\tilde{\omega}_{i}}&{0}\end{array}\right]\!\mathbf{T}_{c}\!\Rightarrow\left[\begin{array}{c c c}{0}&{\tilde{\omega}_{k}}&{-\tilde{\omega}_{j}}\\ {-\tilde{\omega}_{k}}&{0}&{\tilde{\omega}_{i}}\\ {\tilde{\omega}_{j}}&{-\tilde{\omega}_{i}}&{0}\end{array}\right]=T_{\mathrm{c}}\mathbf{T}_{\mathrm{c}}^{-1}}\end{array}
$$ $$
where $(\tilde{w}_{i},\,\tilde{w}_{j},\,\tilde{w}_{k})$ is the rotation about the $(\tilde{\mathbf{i}},\tilde{\mathbf{j}},\tilde{\mathbf{k}})$ -directions respectively, and it is utilized that $\mathbf{T}_{\phi}^{\prime}=\mathbf{T}_{\beta}^{\prime}=0$ . The rotation about the $\tilde{\mathbf{k}}$ -direction is also measured by changes in the twist coordinates of the blade, (the pre-twist $\tilde{\theta}=\tilde{\theta}(s)$ and the elastic twist $\theta_{e l a}=\theta_{e l a}(s,\,t))$ . Hence, where $(\tilde{w}_{i},\,\tilde{w}_{j},\,\tilde{w}_{k})$ is the rotation about the $(\tilde{\mathbf{i}},\tilde{\mathbf{j}},\tilde{\mathbf{k}})$ -directions respectively, and it is utilized that $\mathbf{T}_{\phi}^{\prime}=\mathbf{T}_{\beta}^{\prime}=0$ . The rotation about the $\tilde{\mathbf{k}}$ -direction is also measured by changes in the twist coordinates of the blade, (the pre-twist $\tilde{\theta}=\tilde{\theta}(s)$ and the elastic twist $\theta_{e l a}=\theta_{e l a}(s,\,t))$ . Hence,
@ -595,7 +657,31 @@ Note that $\mathbf{T}^{\mathrm{T}}\mathbf{T}=\mathbf{I}$ holds for all the trans
The individual terms in the assumed mode approximated blade model (equation (39)) are The individual terms in the assumed mode approximated blade model (equation (39)) are
$$ $$
\begin{array}{r l}&{\mathbb{D}(\boldsymbol{\phi},\boldsymbol{\beta},\boldsymbol{\beta})=\hat{\wp}(\mathbb{D}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}(\boldsymbol{\beta})+\mathbb{D}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}(\boldsymbol{\beta}))+\hat{\varrho}(\mathbb{D}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}(\boldsymbol{\beta})+\mathbb{D}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}\cos(\beta))+\hat{\jmath}\mathfrak{D}_{\boldsymbol{\mathcal{N}}_{\boldsymbol{\ell}}}(\boldsymbol{\beta})}\\ &{\mathrm{K}(\boldsymbol{\phi},\boldsymbol{\beta},\boldsymbol{\beta})=\mathbf{K}_{\boldsymbol{\ell}}+\boldsymbol{\mathrm{K}}+\boldsymbol{\beta}^{2}\mathbb{K}_{\boldsymbol{\ell}}+2\hat{\beta}\hat{\boldsymbol{\psi}}(\mathbb{R}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}\sin(\beta)+\mathbb{K}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}(\boldsymbol{\beta}))}\\ &{\qquad\qquad\quad+\vec{\varrho}^{2}\left(\mathbb{K}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}+\mathbb{K}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}\sin^{2}(\beta)+\mathbb{K}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}\cos^{2}(\beta)+\mathbb{K}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}\sin(\beta)\cos(\beta)\right)}\\ &{L(\vec{\beta},\boldsymbol{\phi},\boldsymbol{\beta})=\hat{\jmath}\mathcal{R}_{\boldsymbol{\ell}\times\boldsymbol{\sin}}(\boldsymbol{\phi})(\mathbb{D}_{\boldsymbol{\ell}\times\boldsymbol{\sin}},\sin(\beta)+\mathbb{F}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}(\boldsymbol{\beta}))+\boldsymbol{\mathrm{g}}\sin(\phi)\boldsymbol{\mathrm{F}}_{\boldsymbol{\ell}},}\\ &{\mathrm{N}(\boldsymbol{\phi},\boldsymbol{\beta},\boldsymbol{\beta},\boldsymbol{\mathrm{q}})=\varrho,\mathbb{F}_{\boldsymbol{\ell}}(\boldsymbol{\mathrm{q}})+\mathbb{F}_{\boldsymbol{\ell}}\left[L_{\boldsymbol{\ell}\times\boldsymbol{\sin}}^{\prime}(\boldsymbol{\mu})^{2}\right]^{\dagger}+2\hat{\varrho}(\mathbb{F}_{\boldsymbol{\ell}},\sin(\beta)+\mathbb{F}_{\boldsymbol{\ell}\times\boldsymbol{\cos}}(\boldsymbol{\beta}))\boldsymbol{\mathrm{q}}}\\ &{\qquad \begin{align*}
\mathbf{D}(\phi, \dot{\beta}, \beta) &= \dot{\phi}(\mathbf{D}_{\phi,s} \sin(\beta) + \mathbf{D}_{\phi,c} \cos(\beta)) + \dot{\phi}(\mathbf{D}_{\phi,a,s} \sin(\beta) + \mathbf{D}_{\phi,a,c} \cos(\beta)) + \dot{\beta}\mathbf{D}_{\beta}(\beta) \\
\mathbf{K}(\phi, \dot{\beta}, \beta) &= \mathbf{K}_s + \mathbf{K} + \dot{\beta}^2 \mathbf{K}_{\beta} + 2\dot{\phi}\dot{\beta}(\mathbf{K}_{\beta\phi,s} \sin(\beta) + \mathbf{K}_{\beta\phi,c} \cos(\beta)) \\
&\quad + \dot{\phi}^2(\mathbf{K}_{\phi,0} + \mathbf{K}_{\phi,ss} \sin^2(\beta) + \mathbf{K}_{\phi,cc} \cos^2(\beta) + \mathbf{K}_{\phi,sc} \sin(\beta)\cos(\beta)) \\
\mathbf{L}(\dot{\beta}, \phi, \beta) &= \ddot{\beta}\mathbf{F}_{\beta,1} + g \sin(\phi)(\mathbf{F}_{g,1,s} \sin(\beta) + \mathbf{F}_{g,1,c} \cos(\beta)) + g \sin(\phi)\mathbf{F}_{g,2} \\
\mathbf{N}(\dot{\phi}, \dot{\beta}, \beta, q) &= \theta_t \mathbf{F}_1 q + \mathbf{F}_2[u_l^2 v_l^2 \theta_l^2]^T + 2\dot{\phi}\mathbf{Q}(\mathbf{F}_{3,s} \sin(\beta) + \mathbf{F}_{3,c} \cos(\beta))\dot{q} \\
&\quad + 2\dot{\phi}\dot{\beta}\mathbf{Q}(\mathbf{F}_{4,s} \sin(\beta) + \mathbf{F}_{4,c} \cos(\beta))q + f_5 u_l v_l \\
\mathbf{F}(\ddot{\beta}, \dot{\phi}, \dot{\beta}, \dot{\phi}, \beta, \phi) &= 2\dot{\phi}\dot{\beta}\mathbf{F}_{\phi\beta}(\beta) + \dot{\phi}^2 f_{\phi} + g(\mathbf{F}_{g,0} + \mathbf{F}_{g,s} \sin(\beta) + \mathbf{F}_{g,c} \cos(\beta))
\begin{bmatrix}
\sin(\phi) \\
\cos(\phi)
\end{bmatrix} \\
&\quad + \mathbf{F}_{\beta,0}
\begin{bmatrix}
\beta \\
\dot{\beta}^2
\end{bmatrix}
+ (\mathbf{F}_{\phi,0} + \mathbf{F}_{\phi,s} \sin(\beta) + \mathbf{F}_{\phi,c} \cos(\beta) + \mathbf{F}_{\phi,ss} \sin^2(\beta) \\
&\quad + \mathbf{F}_{\phi,cc} \cos^2(\beta) + \mathbf{F}_{\phi,sc} \sin(\beta)\cos(\beta))
\begin{bmatrix}
\ddot{\phi} \\
\dot{\phi}^2
\end{bmatrix}
\tag{50}
\end{align*}
$$ $$
where the constants for the linear terms are where the constants for the linear terms are
@ -605,7 +691,13 @@ $$
$$ $$
$$ $$
\int_{r}^{R}\left[\frac{E\big(I_{\xi}\;\mathrm{cos}^{2}(\tilde{\theta})+I_{\eta}\;\mathrm{sin}^{2}(\tilde{\theta})\big)u_{*}^{\prime\prime}u_{*}^{\prime\prime}}{E\big(I_{\xi}\;I_{\eta}\big)\cos(\tilde{\theta})\sin(\tilde{\theta})u_{*}^{\prime\prime}v_{*}^{\prime\prime}}\right.\qquad E\big(I_{\xi}\;-\;I_{\eta}\big)\cos(\tilde{\theta})\sin(\tilde{\theta})u_{*}^{\prime\prime}v_{*}^{\prime\prime}\qquad-E\big(I_{\xi}\;I_{\eta}\big)\cos(\tilde{\theta})\sin(\tilde{\theta})\big)d\tilde{\eta}=0,\quad\mathrm{for~o~r~o~r~}\quad R\in\mathbb{R}^{3}, \mathbf{K}_s = \int_r^R
\begin{bmatrix}
E(I_{\xi} \cos^2(\tilde{\theta}) + I_{\eta} \sin^2(\tilde{\theta}))u_s''u_s'' & E(I_{\xi} - I_{\eta})\cos(\tilde{\theta})\sin(\tilde{\theta})u_s''v_s'' & -E(I_{\xi} - I_{\eta})\cos(\tilde{\theta})\sin(\tilde{\theta})l_{pi}''u_s''\theta_s \\
E(I_{\xi} - I_{\eta})\cos(\tilde{\theta})\sin(\tilde{\theta})u_s''v_s'' & E(I_{\xi} \sin^2(\tilde{\theta}) + I_{\eta} \cos^2(\tilde{\theta}))v_s''v_s'' & -E(I_{\xi} \sin^2(\tilde{\theta}) + I_{\eta} \cos^2(\tilde{\theta}))l_{pi}''v_s''\theta_s \\
-E(I_{\xi} - I_{\eta})\cos(\tilde{\theta})\sin(\tilde{\theta})l_{pi}''u_s''\theta_s & -E(I_{\xi} \sin^2(\tilde{\theta}) + I_{\eta} \cos^2(\tilde{\theta}))l_{pi}''u_s''\theta_s & GJ\theta_s'\theta_s'
\end{bmatrix}
ds
$$ $$
$$ $$
@ -617,7 +709,7 @@ $$
$$ $$
$$ $$
\mathbf{K}_{\phi,s s}\!=\!\int_{r}^{R}\!\!\left[\!\!\begin{array}{c c c}{0}&{0}&{0}\\ {0}&{-m\nu_{s}^{2}}&{-l_{c g}m\cos(\overline{{\theta}})\nu_{s}\theta_{s}}\\ {0}&{-l_{c g}m\cos(\overline{{\theta}})\nu_{s}\theta_{s}}&{0}\end{array}\!\!\right]\!\mathrm{d}s \mathbf{K}_{\phi,s s}=\int_{r}^{R}\left[\begin{array}{c c c}{0}&{0}&{0}\\ {0}&{-m\nu_{s}^{2}}&{-l_{c g}m\cos(\overline{{\theta}})\nu_{s}\theta_{s}}\\ {0}&{-l_{c g}m\cos(\overline{{\theta}})\nu_{s}\theta_{s}}&{0}\end{array}\right]\!\mathrm{d}s
$$ $$
$$ $$
@ -625,11 +717,24 @@ $$
$$ $$
$$ $$
\mathbf{D}_{\phi,a,\mathrm{s}}\!=\!\int_{r}^{R}\!\left[m l_{c g}\cos(\overline{{\theta}})u_{s}^{\prime}\nu_{s}\right.\left.\right.-m l_{c g}\cos(\overline{{\theta}})\nu_{s}u_{s}^{\prime}\left.\right.\left.0\right]\!\!\!\!\mathrm{d}s \mathbf{D}_{\phi,a,s} = \int_r^R
\begin{bmatrix}
0 & -ml_{cg} \cos(\bar{\theta})v_s u_s' & 0 \\
ml_{cg} \cos(\bar{\theta})u_s'v_s & -ml_{cg} \sin(\bar{\theta})v_s v_s' & 0 \\
0 & +ml_{cg} \sin(\bar{\theta})v_s v_s' & 0
\end{bmatrix}
ds
$$ $$
$$ $$
\mathbf{D}_{\phi,a,\varsigma}=\int_{r}^{R}\left[\begin{array}{c c c}{m l_{c g}\cos(\overline{{\theta}})u_{s}u_{s}^{\prime}}&{-m l_{c g}\sin(\overline{{\theta}})\nu_{s}^{\prime}u_{s}}&{0}\\ {-m l_{c g}\cos(\overline{{\theta}})u_{s}u_{s}^{\prime}}&{0}&{0}\\ {m l_{c g}\sin(\overline{{\theta}})u_{s}\nu_{s}^{\prime}}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\end{array}\right]\mathrm{d}s \mathbf{D}_{\phi,a,c} = \int_r^R
\begin{bmatrix}
ml_{cg} \cos(\bar{\theta})u_s u_s' & -ml_{cg} \sin(\bar{\theta})v_s' u_s & 0 \\
-ml_{cg} \cos(\bar{\theta})u_s u_s' & 0 & 0 \\
ml_{cg} \sin(\bar{\theta})u_s v_s' & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
ds
$$ $$
$$ $$
@ -641,31 +746,91 @@ $$
$$ $$
$$ $$
\mathbf{K}_{\beta\phi,s}=\int_{r}^{R}\left[\begin{array}{c c c}{-m l_{c g}u_{s}u_{s}^{\prime}\cos(\overline{{\theta}})-l_{p i}^{\prime}u_{s}^{\prime}\biggr\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {-u_{s}^{\prime2}\int_{s}^{R}m(l_{p i}+l_{c g}\cos(\overline{{\theta}}))m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {-m l_{c g}u_{s}\nu_{s}^{\prime}\sin(\overline{{\theta}})}&{-u_{s}^{\prime2}\int_{s}^{R}m(l_{p i}+l_{c g}\cos(\overline{{\theta}}))\mathrm{d}\rho}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\end{array}\right]\mathrm{d}s \mathbf{F}_{\beta,1} = \int_r^R
\begin{bmatrix}
0 & -mv_s u_s & -ml_{cg} \theta_s u_s \cos(\bar{\theta}) \\
m u_s v_s & 0 & -ml_{cg} \theta_s v_s \sin(\bar{\theta}) \\
ml_{cg} u_s \theta_s \cos(\bar{\theta}) & ml_{cg} \theta_s v_s \sin(\bar{\theta}) & 0
\end{bmatrix}
ds
$$ $$
$$ $$
\mathbf{K}_{\beta\phi,c}=\int_{r}^{R}\left[\begin{array}{c c c c}{-{u_{s}^{\prime}}^{2}\displaystyle\int_{s}^{R}m l_{c g}\sin(\overline{{\theta}}){\mathrm{d}}\rho}&{-{m l_{c g}}{\nu_{s}}{u_{s}^{\prime}}\cos(\overline{{\theta}})}&{0}\\ {0}&{-{l_{p}^{\prime}}{u_{s}^{\prime}}\displaystyle\int_{s}^{R}m{\nu_{s}}{\mathrm{d}}\rho}&{0}\\ {0}&{-{m l_{c g}}{\nu_{s}}{\nu_{s}^{\prime}}\sin(\overline{{\theta}}){\mathrm{d}}\rho}&{0}\\ {0}&{-{\nu_{s}^{\prime}}^{2}\displaystyle\int_{r}^{R}m l_{c g}\sin(\overline{{\theta}}){\mathrm{d}}\rho}&{0}\\ {0}&{0}&{0}\end{array}\right]{\mathrm{d}}s \mathbf{K}_{\beta \phi,s} = \int_r^R
\begin{bmatrix}
-ml_{cg}u_s u_s' \cos(\bar{\theta}) - l_{pi}'u_s' \int_s^R mu_s d\rho & 0 & 0 \\
-u_s'^2 \int_s^R m(l_{pi} + l_{cg} \cos(\bar{\theta}))mu_s d\rho & 0 & 0 \\
-ml_{cg}u_s v_s' \sin(\bar{\theta}) & -u_s'^2 \int_s^R m(l_{pi} + l_{cg} \cos(\bar{\theta}))d\rho & 0 \\
0 & 0 & 0
\end{bmatrix}
ds
ds
$$
$$
\mathbf{K}_{\beta \phi,c} = \int_r^R
\begin{bmatrix}
-u_s'^2 \int_s^R ml_{cg} \sin(\bar{\theta}) d\rho & -ml_{cg} v_s u_s' \cos(\bar{\theta}) & 0 \\
0 & -l_{pi}'u_s' \int_s^R mv_s d\rho & 0 \\
0 & -ml_{cg} v_s v_s' \sin(\bar{\theta}) d\rho & 0 \\
0 & -v_s'^2 \int_r^R ml_{cg} \sin(\bar{\theta}) d\rho & 0
\end{bmatrix}
ds
$$
$$
\mathbf{F}_{g,1,s} = \int_r^R
\begin{bmatrix}
0 & 0 & 0 \\
0 & ml_{cg}v_s'^2 \sin(\bar{\theta}) & 0 \\
0 & 0 & ml_{cg}\theta_s^2 \sin(\bar{\theta})
\end{bmatrix}
ds
$$
$$
\mathbf{F}_{g,1,c} = \int_r^R
\begin{bmatrix}
-ml_{cg}u_s'^2 \cos(\bar{\theta}) & -ml_{cg}u_s u_s' \sin(\bar{\theta}) & 0 \\
-ml_{cg}v_s'u_s' \sin(\bar{\theta}) & 0 & 0 \\
0 & 0 & -ml_{cg}\theta_s^2 \cos(\bar{\theta})
\end{bmatrix}
ds
$$ $$
$$ $$
\mathbf{F}_{g,1,s}=\int_{r}^{R}\!\left[\begin{array}{c c c}{0}&{0}&{0}\\ {0}&{m l_{c g}\nu_{s}^{\prime2}\sin(\overline{{\theta}})}&{0}\\ {0}&{0}&{m l_{c g}\theta_{s}^{2}\sin(\overline{{\theta}})\right]\!\mathrm{d}s}\end{array} \mathbf{F}_{g,2} = \int_r^R
\begin{bmatrix}
-u_s'^2 \int_s^R md\rho & 0 & -ml_{cg} \theta_s u_s' \sin(\bar{\theta}) \\
0 & -v_s'^2 \int_s^R md\rho & ml_{cg} \theta_s v_s' \cos(\bar{\theta}) \\
-ml_{cg} \theta_s u_s' \sin(\bar{\theta}) & ml_{cg} \theta_s v_s' \cos(\bar{\theta}) & 0
\end{bmatrix}
ds
$$ $$
$$ $$
\mathbf{F}_{g,1,c}=\int_{r}^{R}\!\left[\!\!{\begin{array}{c c c}{-m l_{c g}u_{s}^{\prime\,2}\cos(\overline{{\theta}})}&{-m l_{c g}u_{s}^{\prime}u_{s}^{\prime}\sin(\overline{{\theta}})}&{0}\\ {-m l_{c g}{\nu}_{s}^{\prime}u_{s}^{\prime}\sin(\overline{{\theta}})}&{0}&{0}\\ {0}&{0}&{-m l_{c g}{\theta}_{s}^{2}\cos(\overline{{\theta}})}\end{array}}\!\!\right]\!\mathrm{d}s \mathbf{D}_{\phi,s} = \int_r^R
\begin{bmatrix}
0 & -l'_{pi}u'_{s}\int_s^R mv_s d\rho & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
ds, \quad \mathbf{D}_{\phi,c} = \int_r^R
\begin{bmatrix}
l'_{pi}u'_{s}\int_s^R mu_s d\rho & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
ds
$$ $$
$$ $$
\mathbf{F}_{g,2}=\int_{r}^{R}{\left[\begin{array}{c c c}{-{u_{s}^{\prime}}^{2}{\int_{s}^{R}}m\mathrm{d}\rho}&{0}&{-m l_{c g}\theta_{s}{u_{s}^{\prime}}\sin{(\overline{{\theta}})}}\\ {0}&{-{\nu_{s}^{\prime}}^{2}{\int_{s}^{R}}m\mathrm{d}\rho}&{m l_{c g}\theta_{s}{\nu_{s}^{\prime}}\cos(\overline{{\theta}})}\\ {-m l_{c g}\theta_{s}{u_{s}^{\prime}}\sin(\overline{{\theta}})}&{m l_{c g}\theta_{s}{\nu_{s}^{\prime}}\cos(\overline{{\theta}})}&{0}\end{array}\right]}\mathrm{d}s \mathbf{K} = \int_r^R
$$ \begin{bmatrix}
0 & 0 & 0 \\
$$ 0 & 0 & 0 \\
\mathbf{D}_{\phi,s}=\int_{r}^{R}\left[\begin{array}{c c c c}{0}&{-l_{p i}^{\prime}u_{s}^{\prime}\int_{s}^{R}m\nu_{s}\mathrm{d}\rho}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0\Biggr]\mathrm{d}s,}&{\mathbf{D}_{\phi,c}=\int_{r}^{R}\left[\begin{array}{c c c c}{l_{p i}^{\prime}u_{s}^{\prime}\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\end{array}\right]\mathrm{d}s EI_{\eta\eta\zeta}\bar{\theta}'\theta_s'u_s''\sin(\bar{\theta}) - EI_{\eta\zeta\zeta}\bar{\theta}'\theta_s'u_s''\cos(\bar{\theta}) & -EI_{\eta\eta\zeta}\bar{\theta}'\theta_s''u_s'\cos(\tilde{\theta}) - EI_{\eta\zeta\zeta}\bar{\theta}'\theta_s'v_s''\sin(\tilde{\theta}) & 0
$$ \end{bmatrix}
ds
$$
\mathbf{K}=\int_{r}^{\kappa}\left[\begin{array}{c c c c}{0}&{0}&{0}&{0}\\ {0}&{0}&{0}\\ {E I_{\eta\eta\xi}\overline{{\theta}}^{\prime}\theta_{s}^{\prime}u_{s}^{\prime\prime}\mathrm{sin}(\overline{{\theta}})-E I_{\eta\xi\overline{{\xi}}}\overline{{\theta}}^{\prime}\theta_{s}^{\prime}u_{s}^{\prime\prime}\mathrm{cos}(\overline{{\theta}})}&{-E I_{\eta\eta\overline{{\xi}}}\overline{{\theta}}^{\prime}\theta_{s}^{\prime}u_{s}^{\prime\prime}\mathrm{cos}(\overline{{\theta}})-E I_{\eta\xi\overline{{\xi}}}\overline{{\theta}}^{\prime}\theta_{s}^{\prime}\nu_{s}^{\prime\prime}\mathrm{sin}(\widetilde{\theta})}&{0}\end{array}\right]^{0},
$$ $$
and for constants for the nonlinear terms: and for constants for the nonlinear terms:
@ -679,11 +844,23 @@ $$
$$ $$
$$ $$
\mathbf{F}_{3,s}=\int_{r}^{R}{\left[\begin{array}{l l l l}{0}&{-u_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m\nu_{s}\mathrm{d}\rho}&{0}\\ {0}&{-\nu_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m\nu_{s}\mathrm{d}\rho}&{0}\\ {0}&{0}&{0}\\ {0}&{\qquad0}&{0}\end{array}\right]}\mathrm{d}s,\quad\mathbf{F}_{3,c}=\int_{r}^{R}{\left[\begin{array}{l l l}{u_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {\nu_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\end{array}\right]}\mathrm{d}s \mathbf{F}_{3,s}=\int_{r}^{R}{\left[\begin{array}{l l l}{0}&{-u_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m\nu_{s}\mathrm{d}\rho}&{0}\\ {0}&{-\nu_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m\nu_{s}\mathrm{d}\rho}&{0}\\ {0}&{\qquad0}&{0}\end{array}\right]}\mathrm{d}s,\quad\mathbf{F}_{3,c}=\int_{r}^{R}{\left[\begin{array}{l l l}{u_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {\nu_{s}^{\prime\,2}\displaystyle\int_{s}^{R}m u_{s}\mathrm{d}\rho}&{0}&{0}\\ {\qquad0}&{0}&{0}\\ \end{array}\right]}\mathrm{d}s
$$ $$
$$ $$
\mathbf{F}_{4,s}=\int_{r}^{R}\left[-\nu_{s}^{\prime2}\int_{s}^{R}m u_{s}\mathrm{d}\rho\quad0\quad0\right]\mathrm{d}s,\quad\mathbf{F}_{4,c}=\int_{r}^{R}\left[0\quad-u_{s}^{\prime2}\int_{s}^{R}m\nu_{s}\mathrm{d}\rho\quad0\right]}\\ {0\quad\qquad\qquad\quad0\quad0\quad0\quad0\right]\mathrm{d}s,\quad\mathbf{F}_{4,c}=\int_{r}^{R}\left[0\quad-\nu_{s}^{\prime2}\int_{s}^{R}m\nu_{s}\mathrm{d}\rho\quad0\right]\mathrm{d}s}\end{array} \mathbf{F}_{4,s} = \int_r^R
\begin{bmatrix}
-u_s'^2 \int_s^R mu_s d\rho & 0 & 0 \\
-v_s'^2 \int_s^R mu_s d\rho & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
ds, \quad \mathbf{F}_{4,c} = \int_r^R
\begin{bmatrix}
0 & -u_s'^2 \int_s^R mv_s d\rho & 0 \\
0 & -v_s'^2 \int_s^R mv_s d\rho & 0 \\
0 & 0 & 0
\end{bmatrix}
ds
$$ $$
$$ $$