vault backup: 2025-06-27 16:08:57

This commit is contained in:
yize 2025-06-27 16:08:58 +08:00
parent 655e6ca53d
commit 9a824b2201
11 changed files with 91 additions and 9 deletions

View File

@ -31,7 +31,7 @@ It is important to note that in order to enable proper linearised wind turbine d
矩阵 $\mathbf{A}$、$\mathbf{B}$、$\mathbf{C}$ 和 $\mathbf{D}$ 代表这些向量之间的线性化关系。这代表对完整Bladed模型的一个简化该模型使用一组完全非线性方程来计算状态导数和输出。 矩阵 $\mathbf{A}$、$\mathbf{B}$、$\mathbf{C}$ 和 $\mathbf{D}$ 代表这些向量之间的线性化关系。这代表对完整Bladed模型的一个简化该模型使用一组完全非线性方程来计算状态导数和输出。
$$ $$
\begin{array}{r}{\dot{\mathbf{x}}=f(t,\mathbf{x},\mathbf{u})}\\ {\mathbf{y}=h(t,\mathbf{x},\mathbf{u}).}\end{array} \begin{array}{r}{\dot{\mathbf{x}}=f(t,\mathbf{x},\mathbf{u})}\\ {\mathbf{y}=h(t,\mathbf{x},\mathbf{u})}\end{array}
$$ $$
需要注意的是,为了能够建立适当的线性化风轮动力学系统,需要考虑以下模型准备原则: 需要注意的是,为了能够建立适当的线性化风轮动力学系统,需要考虑以下模型准备原则:

View File

@ -1,12 +1,12 @@
{ {
"nodes":[ "nodes":[
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347}, {"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 5.5/10","x":-76,"y":-693,"width":456,"height":347}, {"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9.2/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 7/10","x":-76,"y":-693,"width":456,"height":347},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347}, {"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\n","x":-220,"y":134,"width":440,"height":560}, {"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架","x":-700,"y":134,"width":440,"height":560}, {"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force momentmesh.orientation = coord_sys.n\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架\n\n\nP1 编写线性化理论手册 done\nP1 上手Bladed \\ fast 线性化功能研究OpenFAST线性化实现原理 done","x":-700,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\n\nP1 结果对比\n- Bladed与FAST之间的对比 去掉角度 不能直接比较\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force momentmesh.orientation = coord_sys.n\n\nP1 编写线性化理论手册\nP1 上手Bladed \\ fast 线性化功能\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347}, {"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560},
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560} {"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\nP1 工况点稳态载荷求解F=kx\nP1 数值扰动+回归的线性化方法原理探究\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347}
], ],
"edges":[] "edges":[]
} }

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -11,7 +11,7 @@
系统的状态:能够完全表征系统时间域行为的最小内部变量组 系统的状态:能够完全表征系统时间域行为的最小内部变量组
$$ $$
x(t) = x(t) = {[x_1(t), x_2(t), ..., x_n(t)]}^T
$$ $$
状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量 状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量
@ -52,7 +52,7 @@ $$
2、输出方程描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。 2、输出方程描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。
![[Pasted image 20250626160850.png]] ![[Pasted image 20250626160850.png]]
状态空间表达式:状态方程与输出方程的组合成为状态空间表达式,又称为状态方程或状态空间描述 3、状态空间表达式:状态方程与输出方程的组合成为状态空间表达式,又称为状态方程或状态空间描述
对于一个n个状态变量p个输入变量q个输出变量的系统 对于一个n个状态变量p个输入变量q个输出变量的系统

View File

@ -1,3 +1,76 @@
# 状态空间方程基础
## 状态空间描述
状态空间描述(内部描述):通过建立系统内部状态和系统的输入以及输出之间的数学关系,来描述系统的行为。
系统输入引起系统状态的变化,输入及系统状态共同导致系统输出的变化
状态空间描述是对系统完全的描述,能表征系统的一切动力学
## 状态
系统的状态:能够完全表征系统时间域行为的最小内部变量组
$$
x(t) = {[x_1(t), x_2(t), ..., x_n(t)]}^T
$$
状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量
## 状态空间
状态向量的取值空间称为状态空间
状态空间以n个线性无关的状态向量作为基底所组成的n维空间称为状态空间$R^n$。
系统在任意时刻的状态在状态空间中都可以用一点表示。
状态轨线:随着时间的推移,系统状态$x(t)$在状态空间所留下的轨迹称为状态轨线或状态轨迹
## 状态空间描述的形式
1、状态方程描述系统**状态变量**与**输入变量**之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)
**表征系统中输入所引起的内部状态变化的过程。**
连续时间系统:
$$
\dot{x}(t) = f[x(t), u(t), t]
$$
离散时间系统
$$
{x}(t_{k+1}) = f[x(t_k), u(t_k), t_k]
$$
2、输出方程描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。
连续时间系统:
$$
{y}(t) = g[x(t), u(t), t]
$$
离散时间系统
$$
{y}(t_{k}) = g[x(t_k), u(t_k), t_k]
$$
3、状态空间表达式状态方程与输出方程的组合成为状态空间表达式又称为状态方程或状态空间描述
对于一个n个状态变量p个输入变量q个输出变量的连续时间系统
$$
\begin{array}{r}
{\dot{x}(t) = f[x(t), u(t), t] }\\
{{y}(t) = g[x(t), u(t), t]}
\end{array}
$$
连续线性系统:
$$
\begin{array}{r}
{\dot{x}(t) = A(t)x(t) + B(t)u(t) }\\
{{y}(t) = C(t)x(t)+ D(t)u(t)}
\end{array}
$$
其中:
- $A(t)$系统矩阵
- $B(t)$控制矩阵
- $C(t)$观测矩阵
- $D(t)$前馈矩阵
# 1. 线性化分析背景 # 1. 线性化分析背景

View File

@ -5,13 +5,22 @@
{"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-200,"y":-140,"width":250,"height":60}, {"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-200,"y":-140,"width":250,"height":60},
{"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-200,"y":0,"width":250,"height":60}, {"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-200,"y":0,"width":250,"height":60},
{"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-200,"y":140,"width":250,"height":60}, {"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-200,"y":140,"width":250,"height":60},
{"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60} {"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60},
{"id":"03f26deb8603c7c3","x":-200,"y":280,"width":250,"height":60,"type":"text","text":"输出哪些量"},
{"id":"226774e95f4236f0","x":160,"y":140,"width":250,"height":60,"type":"text","text":"问题2 非线性,如何线性化"},
{"id":"65a392a60c82cf13","x":135,"y":-15,"width":300,"height":90,"type":"text","text":"问题1 动力学方程是二阶线性还是二阶非线性"},
{"id":"8c2eadcabf51301e","x":540,"y":-37,"width":250,"height":135,"type":"text","text":"非线性\n$$\n\\begin{array}{r}{\\dot{\\mathbf{x}}=f(t,\\mathbf{x},\\mathbf{u})}\\\\ {\\mathbf{y}=h(t,\\mathbf{x},\\mathbf{u})}\\end{array}\n$$"},
{"id":"e3f81d5e91896a13","x":540,"y":140,"width":250,"height":60,"type":"text","text":"小扰动+回归"}
], ],
"edges":[ "edges":[
{"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"}, {"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"},
{"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"}, {"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"},
{"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"}, {"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"},
{"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"}, {"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"},
{"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"} {"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"},
{"id":"f392faae7605befa","fromNode":"65a392a60c82cf13","fromSide":"bottom","toNode":"226774e95f4236f0","toSide":"top"},
{"id":"fed5f90bd0d733e8","fromNode":"65a392a60c82cf13","fromSide":"right","toNode":"8c2eadcabf51301e","toSide":"left"},
{"id":"feec362470ce480f","fromNode":"f8e0af85235be889","fromSide":"bottom","toNode":"03f26deb8603c7c3","toSide":"top"},
{"id":"d8d1c9bccc6b3043","fromNode":"226774e95f4236f0","fromSide":"right","toNode":"e3f81d5e91896a13","toSide":"left"}
] ]
} }