vault backup: 2025-06-27 16:08:57
This commit is contained in:
parent
655e6ca53d
commit
9a824b2201
@ -31,7 +31,7 @@ It is important to note that in order to enable proper linearised wind turbine d
|
|||||||
矩阵 $\mathbf{A}$、$\mathbf{B}$、$\mathbf{C}$ 和 $\mathbf{D}$ 代表这些向量之间的线性化关系。这代表对完整(Bladed)模型的一个简化,该模型使用一组完全非线性方程来计算状态导数和输出。
|
矩阵 $\mathbf{A}$、$\mathbf{B}$、$\mathbf{C}$ 和 $\mathbf{D}$ 代表这些向量之间的线性化关系。这代表对完整(Bladed)模型的一个简化,该模型使用一组完全非线性方程来计算状态导数和输出。
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{array}{r}{\dot{\mathbf{x}}=f(t,\mathbf{x},\mathbf{u})}\\ {\mathbf{y}=h(t,\mathbf{x},\mathbf{u}).}\end{array}
|
\begin{array}{r}{\dot{\mathbf{x}}=f(t,\mathbf{x},\mathbf{u})}\\ {\mathbf{y}=h(t,\mathbf{x},\mathbf{u})}\end{array}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
需要注意的是,为了能够建立适当的线性化风轮动力学系统,需要考虑以下模型准备原则:
|
需要注意的是,为了能够建立适当的线性化风轮动力学系统,需要考虑以下模型准备原则:
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"nodes":[
|
"nodes":[
|
||||||
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情,它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
|
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情,它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
|
||||||
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (9/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)\n关键结果:风机模型线性化原理、方法掌握 (5.5/10)","x":-76,"y":-693,"width":456,"height":347},
|
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (9.2/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)\n关键结果:风机模型线性化原理、方法掌握 (7/10)","x":-76,"y":-693,"width":456,"height":347},
|
||||||
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
|
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
|
||||||
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
|
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
|
||||||
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架","x":-700,"y":134,"width":440,"height":560},
|
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force moment,mesh.orientation = coord_sys.n\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架\n\n\nP1 编写线性化理论手册 done\nP1 上手Bladed \\ fast 线性化功能,研究OpenFAST线性化实现原理 done","x":-700,"y":134,"width":440,"height":560},
|
||||||
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\n\nP1 结果对比\n- Bladed与FAST之间的对比 去掉角度 不能直接比较\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force moment,mesh.orientation = coord_sys.n\n\nP1 编写线性化理论手册\nP1 上手Bladed \\ fast 线性化功能\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347},
|
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560},
|
||||||
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560}
|
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\nP1 工况点稳态载荷求解,F=kx\nP1 数值扰动+回归的线性化方法原理探究\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347}
|
||||||
],
|
],
|
||||||
"edges":[]
|
"edges":[]
|
||||||
}
|
}
|
BIN
工作总结/周报/~$83-郭翼泽.docx
Normal file
BIN
工作总结/周报/~$83-郭翼泽.docx
Normal file
Binary file not shown.
BIN
工作总结/周报/周报83-郭翼泽.docx
Normal file
BIN
工作总结/周报/周报83-郭翼泽.docx
Normal file
Binary file not shown.
BIN
工作总结/月报/25年6月团队员工考核表-郭翼泽.docx
Normal file
BIN
工作总结/月报/25年6月团队员工考核表-郭翼泽.docx
Normal file
Binary file not shown.
BIN
工作总结/月报/~$年5月团队员工考核表-郭翼泽.docx
Normal file
BIN
工作总结/月报/~$年5月团队员工考核表-郭翼泽.docx
Normal file
Binary file not shown.
BIN
工作总结/月报/~$年6月团队员工考核表-郭翼泽.docx
Normal file
BIN
工作总结/月报/~$年6月团队员工考核表-郭翼泽.docx
Normal file
Binary file not shown.
BIN
工作总结/月报/~WRL0506.tmp
Normal file
BIN
工作总结/月报/~WRL0506.tmp
Normal file
Binary file not shown.
@ -11,7 +11,7 @@
|
|||||||
|
|
||||||
系统的状态:能够完全表征系统时间域行为的最小内部变量组
|
系统的状态:能够完全表征系统时间域行为的最小内部变量组
|
||||||
$$
|
$$
|
||||||
x(t) =
|
x(t) = {[x_1(t), x_2(t), ..., x_n(t)]}^T
|
||||||
$$
|
$$
|
||||||
|
|
||||||
状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量
|
状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量
|
||||||
@ -52,7 +52,7 @@ $$
|
|||||||
2、输出方程:描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。
|
2、输出方程:描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。
|
||||||
![[Pasted image 20250626160850.png]]
|
![[Pasted image 20250626160850.png]]
|
||||||
|
|
||||||
状态空间表达式:状态方程与输出方程的组合成为状态空间表达式,又称为状态方程或状态空间描述
|
3、状态空间表达式:状态方程与输出方程的组合成为状态空间表达式,又称为状态方程或状态空间描述
|
||||||
|
|
||||||
对于一个n个状态变量,p个输入变量,q个输出变量的系统
|
对于一个n个状态变量,p个输入变量,q个输出变量的系统
|
||||||
|
|
||||||
|
@ -1,3 +1,76 @@
|
|||||||
|
|
||||||
|
# 状态空间方程基础
|
||||||
|
## 状态空间描述
|
||||||
|
状态空间描述(内部描述):通过建立系统内部状态和系统的输入以及输出之间的数学关系,来描述系统的行为。
|
||||||
|
|
||||||
|
系统输入引起系统状态的变化,输入及系统状态共同导致系统输出的变化
|
||||||
|
|
||||||
|
状态空间描述是对系统完全的描述,能表征系统的一切动力学
|
||||||
|
|
||||||
|
## 状态
|
||||||
|
|
||||||
|
系统的状态:能够完全表征系统时间域行为的最小内部变量组
|
||||||
|
|
||||||
|
$$
|
||||||
|
x(t) = {[x_1(t), x_2(t), ..., x_n(t)]}^T
|
||||||
|
$$
|
||||||
|
|
||||||
|
状态变量:构成系统状态的每一个变量。状态变量构成的列向量为状态向量
|
||||||
|
|
||||||
|
## 状态空间
|
||||||
|
|
||||||
|
状态向量的取值空间称为状态空间
|
||||||
|
|
||||||
|
状态空间:以n个线性无关的状态向量作为基底所组成的n维空间称为状态空间$R^n$。
|
||||||
|
系统在任意时刻的状态在状态空间中都可以用一点表示。
|
||||||
|
状态轨线:随着时间的推移,系统状态$x(t)$在状态空间所留下的轨迹称为状态轨线或状态轨迹
|
||||||
|
|
||||||
|
## 状态空间描述的形式
|
||||||
|
|
||||||
|
1、状态方程:描述系统**状态变量**与**输入变量**之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)
|
||||||
|
|
||||||
|
**表征系统中输入所引起的内部状态变化的过程。**
|
||||||
|
连续时间系统:
|
||||||
|
$$
|
||||||
|
\dot{x}(t) = f[x(t), u(t), t]
|
||||||
|
$$
|
||||||
|
离散时间系统
|
||||||
|
$$
|
||||||
|
{x}(t_{k+1}) = f[x(t_k), u(t_k), t_k]
|
||||||
|
$$
|
||||||
|
|
||||||
|
2、输出方程:描述系统**输出变量**与**状态变量**和**输入变量**之间函数关系的代数方程组。
|
||||||
|
连续时间系统:
|
||||||
|
$$
|
||||||
|
{y}(t) = g[x(t), u(t), t]
|
||||||
|
$$
|
||||||
|
离散时间系统
|
||||||
|
$$
|
||||||
|
{y}(t_{k}) = g[x(t_k), u(t_k), t_k]
|
||||||
|
$$
|
||||||
|
|
||||||
|
3、状态空间表达式:状态方程与输出方程的组合成为状态空间表达式,又称为状态方程或状态空间描述
|
||||||
|
|
||||||
|
对于一个n个状态变量,p个输入变量,q个输出变量的连续时间系统:
|
||||||
|
$$
|
||||||
|
\begin{array}{r}
|
||||||
|
{\dot{x}(t) = f[x(t), u(t), t] }\\
|
||||||
|
{{y}(t) = g[x(t), u(t), t]}
|
||||||
|
\end{array}
|
||||||
|
$$
|
||||||
|
连续线性系统:
|
||||||
|
$$
|
||||||
|
\begin{array}{r}
|
||||||
|
{\dot{x}(t) = A(t)x(t) + B(t)u(t) }\\
|
||||||
|
{{y}(t) = C(t)x(t)+ D(t)u(t)}
|
||||||
|
\end{array}
|
||||||
|
$$
|
||||||
|
|
||||||
|
其中:
|
||||||
|
- $A(t)$系统矩阵
|
||||||
|
- $B(t)$控制矩阵
|
||||||
|
- $C(t)$观测矩阵
|
||||||
|
- $D(t)$前馈矩阵
|
||||||
# 1. 线性化分析背景
|
# 1. 线性化分析背景
|
||||||
|
|
||||||
|
|
||||||
|
@ -5,13 +5,22 @@
|
|||||||
{"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-200,"y":-140,"width":250,"height":60},
|
{"id":"82e0fa4b70baffed","type":"text","text":"每个工况点求稳态解","x":-200,"y":-140,"width":250,"height":60},
|
||||||
{"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-200,"y":0,"width":250,"height":60},
|
{"id":"d3aa69200118cea0","type":"text","text":"小扰动求A, B, C, D","x":-200,"y":0,"width":250,"height":60},
|
||||||
{"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-200,"y":140,"width":250,"height":60},
|
{"id":"f8e0af85235be889","type":"text","text":"A上做特征值、模态","x":-200,"y":140,"width":250,"height":60},
|
||||||
{"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60}
|
{"id":"5818e7212360b063","type":"text","text":"可选是否MBC转换","x":160,"y":-140,"width":250,"height":60},
|
||||||
|
{"id":"03f26deb8603c7c3","x":-200,"y":280,"width":250,"height":60,"type":"text","text":"输出哪些量"},
|
||||||
|
{"id":"226774e95f4236f0","x":160,"y":140,"width":250,"height":60,"type":"text","text":"问题2 非线性,如何线性化"},
|
||||||
|
{"id":"65a392a60c82cf13","x":135,"y":-15,"width":300,"height":90,"type":"text","text":"问题1 动力学方程是二阶线性还是二阶非线性"},
|
||||||
|
{"id":"8c2eadcabf51301e","x":540,"y":-37,"width":250,"height":135,"type":"text","text":"非线性\n$$\n\\begin{array}{r}{\\dot{\\mathbf{x}}=f(t,\\mathbf{x},\\mathbf{u})}\\\\ {\\mathbf{y}=h(t,\\mathbf{x},\\mathbf{u})}\\end{array}\n$$"},
|
||||||
|
{"id":"e3f81d5e91896a13","x":540,"y":140,"width":250,"height":60,"type":"text","text":"小扰动+回归"}
|
||||||
],
|
],
|
||||||
"edges":[
|
"edges":[
|
||||||
{"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"},
|
{"id":"83d84c5b21257d2f","fromNode":"c03f206d2e22c014","fromSide":"right","toNode":"9effe93fe812b3d5","toSide":"left"},
|
||||||
{"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"},
|
{"id":"37a2d445314c2e41","fromNode":"c03f206d2e22c014","fromSide":"bottom","toNode":"82e0fa4b70baffed","toSide":"top"},
|
||||||
{"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"},
|
{"id":"b3b8ce2f8d88a52b","fromNode":"82e0fa4b70baffed","fromSide":"bottom","toNode":"d3aa69200118cea0","toSide":"top"},
|
||||||
{"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"},
|
{"id":"69ff8f3a58b056e7","fromNode":"d3aa69200118cea0","fromSide":"bottom","toNode":"f8e0af85235be889","toSide":"top"},
|
||||||
{"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"}
|
{"id":"3cd64f8e16aa900b","fromNode":"82e0fa4b70baffed","fromSide":"right","toNode":"5818e7212360b063","toSide":"left"},
|
||||||
|
{"id":"f392faae7605befa","fromNode":"65a392a60c82cf13","fromSide":"bottom","toNode":"226774e95f4236f0","toSide":"top"},
|
||||||
|
{"id":"fed5f90bd0d733e8","fromNode":"65a392a60c82cf13","fromSide":"right","toNode":"8c2eadcabf51301e","toSide":"left"},
|
||||||
|
{"id":"feec362470ce480f","fromNode":"f8e0af85235be889","fromSide":"bottom","toNode":"03f26deb8603c7c3","toSide":"top"},
|
||||||
|
{"id":"d8d1c9bccc6b3043","fromNode":"226774e95f4236f0","fromSide":"right","toNode":"e3f81d5e91896a13","toSide":"left"}
|
||||||
]
|
]
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user