vault backup: 2025-08-28 08:10:14
This commit is contained in:
parent
9372d4403e
commit
948d035083
@ -173,6 +173,7 @@ $$
|
||||
\mathbf{r}_{1,b,n} = \sum_{p=0}^{P+3}\left(\mathbf{r}_{o,b,n,p} + x\,\mathbf{r}_{x,b,n,p} + y\,\mathbf{r}_{y,b,n,p}\right)\zeta^{p}
|
||||
$$
|
||||
This brilliant step separates the position vector into parts that depend only on the nodal DOFs and the lengthwise coordinate $\zeta$ (the $\mathbf{r}_{o,x,y}$ vectors), and parts that depend on the cross-section coordinates ($x, y$). This is the key that unlocks the integration in the next stage.
|
||||
|
||||
最终目标是找到叶片中任何质点的位置矢量 $\mathbf{r}$,因为所有惯性力都由此导出(参见式 1.8)。
|
||||
|
||||
**1.1. 宏观视角:子结构位置(式 1.12)**
|
||||
|
Loading…
x
Reference in New Issue
Block a user