vault backup: 2025-04-15 16:53:12
This commit is contained in:
parent
25c5cf713a
commit
8e18d5e689
@ -2318,17 +2318,22 @@ $$
|
||||
|
||||
The motion that results when forces act on a material system depends not only on the forces, but also on the constitution of the system. In particular, the manner in which mass is distributed throughout a system generally affects the behavior of the system. For example, suppose that a rod is supported at one end by a fixed horizontal pin and that a relatively heavy particle is attached at a point of the rod, so that together the rod and the particle form a pendulum. The frequency of the oscillations that ensue when the pendulum is released from rest after having been displaced from the vertical depends on the location of the particle along the rod, that is, on the manner in which mass is distributed throughout the pendulum.
|
||||
|
||||
For the purpose of certain analyses, it is unnecessary to know in detail how mass is distributed throughout each of the bodies forming a system; all one needs to know for each body is the location of the mass center, as well as the values of six quantities called inertia scalars. The subject of mass center location is considered in Secs. 3.1 and 3.2. Products of inertia and moments of inertia, which are inertia scalars, are defined in Sec. 3.3 in terms of quantities called inertia vectors. Sections 3.4-3.7 deal with the evaluation of inertia scalars, in which connection inertia matrices and inertia dyadics are discussed. A special kind of moment of inertia, called a principal moment of inertia, is introduced in Sec. 3.8. The chapter concludes with an examination of the relationship between principal moments of inertia, on the one hand, and maximum and minimum moments of inertia, on the Other hand.
|
||||
**For the purpose of certain analyses, it is unnecessary to know in detail how mass is distributed throughout each of the bodies forming a system; all one needs to know for each body is the location of the mass center, as well as the values of six quantities called inertia scalars**. The subject of mass center location is considered in Secs. 3.1 and 3.2. Products of inertia and moments of inertia, which are inertia scalars, are defined in Sec. 3.3 in terms of quantities called inertia vectors. Sections 3.4-3.7 deal with the evaluation of inertia scalars, in which connection inertia matrices and inertia dyadics are discussed. A special kind of moment of inertia, called a principal moment of inertia, is introduced in Sec. 3.8. The chapter concludes with an examination of the relationship between principal moments of inertia, on the one hand, and maximum and minimum moments of inertia, on the Other hand.
|
||||
当力作用于一个物质系统时,产生的运动不仅取决于这些力,也取决于系统的构成。特别是,质量在系统中的分布方式通常会影响系统的行为。例如,假设一根杆在一端由一个固定的水平销支撑,并且在杆的某个点上连接了一个相对较重的粒子,使得杆和粒子共同构成一个单摆。当单摆从垂直位置偏离后释放,产生的振荡频率取决于粒子沿杆的位置,也就是说,取决于质量在单摆中的分布方式。
|
||||
|
||||
为了某些分析的目的,不必详细了解构成系统的每个物体的质量分布情况;对于每个物体,只需要知道其质量中心的位置,以及六个称为惯性标量的数值即可。质量中心的位置将在第3.1和3.2节中进行讨论。惯性标量的惯性矩和惯性积将在第3.3节中,用惯性矢量的概念来定义。第3.4-3.7节讨论惯性标量的计算,其中涉及惯性矩阵和惯性二阶张量。一种特殊的惯性矩,称为主惯性矩,将在第3.8节中介绍。本章最后将考察主惯性矩与最大和最小惯性矩之间的关系。
|
||||
|
||||
# 3.1 MASS CENTER
|
||||
|
||||
$\boldsymbol{s}$ is a set of partiles $P_{1},...,P_{v}$ of masses $m_{1},\ldots,m_{\nu}$ respetivly,there exists a unique point $s^{*}$ such that
|
||||
If $S$ is a set of particles $P_{1},...,P_{v}$ of masses $m_{1},\ldots,m_{\nu}$ respectively, there exists a unique point $S^{*}$ such that
|
||||
如果 $S$ 是由粒子 $P_{1},...,P_{v}$ 组成的集合,它们的质量分别为 $m_{1},\ldots,m_{\nu}$,那么存在一个唯一的点 $S^{*}$,使得
|
||||
|
||||
$$
|
||||
\sum_{i=1}^{\nu}\,m_{i}\mathbf{r}_{i}=0
|
||||
$$
|
||||
|
||||
where $\mathbf{r}_{i}$ is the position vector from $s^{*}$ to $P_{i}\;(i=1,\ldots,\nu).\;S^{*},$ , called the mass center of S, can be located as follows. Let $^o$ be any point whatsoever, and let $\pmb{{\mathsf{p}}_{i}}$ be the position vector from $^o$ to $P_{i}\;(i=1,\ldots,\nu)$ Then $\mathfrak{p}^{\ast}$ , the position vector from $^o$ to $s^{*}$ , is given by
|
||||
where $\mathbf{r}_{i}$ is the position vector from $S^{*}$ to $P_{i}\;(i=1,\ldots,\nu).\;S^{*},$ , called the mass center of S, can be located as follows. Let $O$ be any point whatsoever, and let ${{\mathsf{p}}_{i}}$ be the position vector from $O$ to $P_{i}\;(i=1,\ldots,\nu)$ Then ${{\mathsf{p}}_{i}}$ , the position vector from $O$ to $S^{*}$ , is given by
|
||||
其中 $\mathbf{r}_{i}$ 是从 $S^{*}$ 到 $P_{i}\;(i=1,\ldots,\nu)$ 的位置向量。$S^{*}$,称为 S 的质心,其位置可以如下确定。令 $O$ 为任意一点,并且 ${\mathsf{p}}_{i}$ 是从 $O$ 到 $P_{i}\;(i=1,\ldots,\nu)$ 的位置向量。那么 ${\mathsf{p}}_{i}$,即从 $O$ 到 $S^{*}$ 的位置向量,由
|
||||
|
||||
$$
|
||||
\mathbf{p}^{*}={\frac{\displaystyle\sum_{i=1}^{\nu}m_{i}\mathbf{p}_{i}}{\displaystyle\sum_{i=1}^{\nu}m_{i}}}
|
||||
|
@ -9696,17 +9696,17 @@ $$
|
||||
|
||||
# 第九章 柔性多体系统动力学
|
||||
|
||||
当多体系统中物体变形对运动的影响不容忽略时,必须采用柔性多体模型替代多刚体模型。与多刚体系统相比,柔性多体系统建模的主要问题是如何描述变形体的位形。在小变形假设的前提下,浮动坐标系方法将物体的运动视为浮动坐标系的大范围运动与小弹性变形的叠加。用多刚体系统动力学方法描述大范围运动,同时采用瑞利一里茨法、模态分析法或有限单元法实现小变形的离散化。对于大变形问题,则必须在惯性坐标系中直接描述变形体的位形,如近年提出的绝对节点坐标方法。本章首先介绍浮动坐标系的基本概念,叙述基于瑞利一里茨法及有限单元法的浮动坐标系方法。最后叙述绝对节点坐标方法。
|
||||
当多体系统中物体变形对运动的影响不容忽略时,必须采用柔性多体模型替代多刚体模型。与多刚体系统相比,**柔性多体系统建模的主要问题是如何描述变形体的位形**。**在小变形假设的前提下,浮动坐标系方法将物体的运动视为浮动坐标系的大范围运动与小弹性变形的叠加**。**用多刚体系统动力学方法描述大范围运动,同时采用瑞利一里茨法、模态分析法或有限单元法实现小变形的离散化**。对于大变形问题,则必须在惯性坐标系中直接描述变形体的位形,如近年提出的绝对节点坐标方法。本章首先介绍浮动坐标系的基本概念,叙述基于瑞利一里茨法及有限单元法的浮动坐标系方法。最后叙述绝对节点坐标方法。
|
||||
|
||||
# 9.1 浮动坐标系方法
|
||||
|
||||
# 9.1.1 浮动坐标系
|
||||
|
||||
第一章中对刚体运动学的分析是利用与刚体固结的参考坐标系,即刚体的连体基确定刚体的位置和姿态。变形体与刚体的情况不同,由于变形体在运动过程中各质点之间有相对位移,以致任何参考系都不可能与变形体完全固结。为确定变形体的位置和姿态,仍需要建立适当的参考坐标系。但这坐标系不可能与变形体固结,而只是“浮动”在变形体内,称为浮动坐标系。以浮动坐标系为参考系,可将变形体的实际运动理解为浮动坐标系的大范围刚体运动与相对浮动坐标系的变形运动的合成。
|
||||
第一章中对刚体运动学的分析是利用与刚体固结的参考坐标系,即刚体的连体基确定刚体的位置和姿态。**变形体与刚体的情况不同,由于变形体在运动过程中各质点之间有相对位移,以致任何参考系都不可能与变形体完全固结。为确定变形体的位置和姿态,仍需要建立适当的参考坐标系。但这坐标系不可能与变形体固结,而只是“浮动”在变形体内,称为浮动坐标系**。以浮动坐标系为参考系,可将变形体的实际运动理解为浮动坐标系的大范围刚体运动与相对浮动坐标系的变形运动的合成。
|
||||
|
||||
浮动坐标系有多种选取方法。选取的原则是要使所建立的动力学方程尽量避免大范围刚体运动与弹性小变形运动的耦合,有利于对变形体运动的数值计算。
|
||||
|
||||
设变形体内任意点 $P$ 在变形前的位置为 $\boldsymbol{P}_{0}$ ,$\pmb{\rho}$ 和 ${\pmb\rho}_{0}$ 分别为 $P$ 和 $\boldsymbol{P}_{0}$ 相对变形体内任选的参考点 $o$ 的矢径, $\pmb{u}$ 为 $P$ 点的位移矢量, $_r$ 和 $r_{0}$ 为 $P$ 和$o$ 相对惯性参考系中固定点 $O_{0}$ 的矢径(图9.1),
|
||||
设变形体内任意点 $P$ 在变形前的位置为 $\boldsymbol{P}_{0}$ ,$\pmb{\rho}$ 和 ${\pmb\rho}_{0}$ 分别为 $P$ 和 $\boldsymbol{P}_{0}$ 相对变形体内任选的参考点 $O$ 的矢径, $\pmb{u}$ 为 $P$ 点的位移矢量, $r$ 和 $r_{0}$ 为 $P$ 和$O$ 相对惯性参考系中固定点 $O_{0}$ 的矢径(图9.1),
|
||||
|
||||

|
||||
图9.1变形体
|
||||
@ -9714,16 +9714,16 @@ $$
|
||||
则有
|
||||
|
||||
$$
|
||||
{\textbf{\em r}}=\,{\pmb r}_{0}\,+\,{\pmb\rho}\,,\quad{\pmb\rho}\,=\,{\pmb\rho}_{0}\,+\,{\pmb u}
|
||||
{{r}}=\,{\pmb r}_{0}\,+\,{\pmb\rho}\,,\quad{\pmb\rho}\,=\,{\pmb\rho}_{0}\,+\,{\pmb u}
|
||||
$$
|
||||
|
||||
柔性体相对 $o$ 点的动量矩为
|
||||
柔性体相对 $O$ 点的动量矩为
|
||||
|
||||
$$
|
||||
L\;=\;\int\!\pmb{\rho}\,\times\,\dot{r}\,\mathrm{d}m\;=\;\int\!\pmb{\rho}\,\times\,\left(\,\dot{r}_{\!\!\!0}\;+\frac{}{}\dot{\pmb{\rho}}\,\right)\mathrm{d}m
|
||||
L\;=\;\int\!\pmb{\rho}\,\times\,\dot{r}\,\mathrm{d}m\;=\;\int\!\pmb{\rho}\,\times\,\left(\,\dot{{\pmb r}_{0}}\,+\,\dot{{\pmb\rho}}\,\right)\mathrm{d}m
|
||||
$$
|
||||
|
||||
在变形体内建立以 $o$ 为基点的浮动坐标系 $(\,O\,,\underline{{e}}\,)$ ,设此坐标系的转动角速度为 $\omega$ ,将式(9.1.2)中 $\dot{\pmb\rho}$ 的求导过程改为相对浮动坐标系进行,利用式(1.2.23)表示为
|
||||
在变形体内建立以$O$为基点的浮动坐标系 $(\,O\,,\underline{{e}}\,)$ ,设此坐标系的转动角速度为 $\omega$ ,将式(9.1.2)中 $\dot{\pmb\rho}$ 的求导过程改为相对浮动坐标系进行,利用式(1.2.23)表示为
|
||||
|
||||
$$
|
||||
\dot{\pmb{\rho}}\ =\ \stackrel{\circ}{\pmb{\rho}}\ +\ \pmb{\omega}\times\pmb{\rho}
|
||||
@ -9732,25 +9732,25 @@ $$
|
||||
空心点表示浮动坐标系中的相对导数。将上式代人式(9.1.2),且利用式(A.4.9)化作
|
||||
|
||||
$$
|
||||
L~=~J\cdot\omega\,+\,\left(\int\!\rho\mathrm{d}m\right)\times\dot{r}_{\!\circ}~+\,\int\!\rho\,\times\,\!\rho\mathrm{d}m
|
||||
L~=~J\cdot\omega\,+\,\left(\int\!\rho\mathrm{d}m\right)\times\dot{r}_{0}~+\,\int\!\rho\,\times\,\!\stackrel{\circ}\rho\mathrm{d}m
|
||||
$$
|
||||
|
||||
其中, $\boldsymbol{J}$ 为变形体相对 $o$ 点的惯量张量
|
||||
其中, $\boldsymbol{J}$ 为变形体相对$O$点的惯量张量
|
||||
|
||||
$$
|
||||
J\,=\,\int(\rho^{2}E\,-\,\pmb{\rho}\pmb{\rho})\,\mathrm{d}m
|
||||
$$
|
||||
|
||||
与刚体不同,变形体的惯量张量J并非常值,而是随物体的变形而改变。如将0 点选择为变形体的质心,则满足
|
||||
与刚体不同,变形体的惯量张量 $\boldsymbol{J}$ 并非常值,而是随物体的变形而改变。如将$O$点选择为变形体的质心,则满足
|
||||
|
||||
$$
|
||||
\int\!\!\pmb{\rho}\mathrm{d}m\ =\ \int\!\!\pmb{\rho}_{0}\mathrm{d}m\ =\ \int\!\!\pmb{u}\,\mathrm{d}m\ =\ \mathbf{0}
|
||||
$$
|
||||
|
||||
变形体的质心在变形前后视为同一0点,但并非变形体内确定的物质点。将式(9.1.6)代人式(9.1.4),简化为
|
||||
变形体的质心在变形前后视为同一$O$点,但并非变形体内确定的物质点。将式(9.1.6)代人式(9.1.4),简化为
|
||||
|
||||
$$
|
||||
\textbf{\em L}=J\cdot\omega\,+\,\int_{\rho}\times\mathring{\rho}\,\mathrm{d}m
|
||||
{L}=J\cdot\omega\,+\,\int{\rho}\times\mathring{\rho}\,\mathrm{d}m
|
||||
$$
|
||||
|
||||
1889年梯塞朗(Tisserand)提出浮动坐标系的建立方法是令式(9.1.7)右边第二项等于零
|
||||
@ -9759,7 +9759,7 @@ $$
|
||||
\int\!\!\pmb{\rho}\times\mathring{\pmb{\rho}}\,\mathrm{d}m\;=\;\mathbf{0}
|
||||
$$
|
||||
|
||||
于是变形体的动量矩有与刚体相同的计算公式L=J·∞。用此方法定义的浮动坐标系称为梯塞朗坐标系,其位置由式(9.1.8)的3个投影式确定。利用梯塞朗坐标系计算的变形体相对运动的动能为最小值。为证明此结论,令相对运动动能的变分为零
|
||||
于是变形体的动量矩有与刚体相同的计算公式${L}=J\cdot\omega$。用此方法定义的浮动坐标系称为梯塞朗坐标系,其位置由式(9.1.8)的3个投影式确定。利用梯塞朗坐标系计算的变形体相对运动的动能为最小值。为证明此结论,令相对运动动能的变分为零
|
||||
|
||||
$$
|
||||
\delta\Big(\frac{1}{2}\!\!\int\!\!\bar{\pmb{\rho}}\,\cdot\,\bar{\pmb{\rho}}\,\mathrm{d}m\Big)\,=\,\int\!\!\bar{\pmb{\rho}}\,\cdot\,\delta\bar{\pmb{\rho}}\,\mathrm{d}m\,\,=\,0
|
||||
|
@ -13,6 +13,8 @@ tags: [excalidraw]
|
||||
Q1: yaw 主动力为何如此计算?
|
||||
由控制计算,作为一个外力直接施加 ^enHSE5Ed
|
||||
|
||||
刚体:platform 机舱 高速轴 轮毂 ^fklhUVEK
|
||||
|
||||
## Embedded Files
|
||||
c0166535889251fc00499757c5d32377c8fd6767: [[Pasted Image 20250120103502_252.png]]
|
||||
|
||||
@ -2047,14 +2049,400 @@ tBg+fkSmDDh6TbFsfPj9coql8lHh7lYP09pUg9y23f8pTYjACOjCKBDggtuM6o95lY8AEBnqEBni9bAQ
|
||||
|
||||
XA87BjtVt0GNwMHltSMfXgI+iAfLqqCZN0uRSeUhXA/sH800vYUcA3zMlv9pR62/3fet/bagOwtqsobim6ddKlg6dSu9t+7Th4Mnr0aefKO7095HzmJ0+/t6OVHByINFnK5oP2bK7XZSSqV9cj6pbXzjpcSWyBpSVIYKZS5tpu6PWRw9QJBjSsEmojp5Tg8arFOGd7CIOteoifnuilZaJpk0/1I0CwALDoNVAw+YGwx87G0BFUIYotvF0B+TLpgb
|
||||
|
||||
sE7BaTKoPdJ772jrf7SWWjl9QiquX1ffp6g5QevwVz9RZb3QFXZrImBDzmqTLOmpcwe3SMVQUiKnzwCJrqPw7xvOAIwJ5QAVbyAACx/1AA//0KACoAEAANxygAAKpUAANlKgAAuOUAAKrygAAgzUAACbWgABC6MAAOnegAB8f4AADocAEAAIyugABy40AAGxKHCHAAAw/4AAHXlaEOAAAA5QAAVHKAADRNahDgAAXt0AAKXGgABe00AAAVKpSBKA
|
||||
sE7BaTKoPdJ772jrf7SWWjl9QiquX1ffp6g5QevwVz9RZb3QFXZrImBDzmqTLOmpcwcGWZ88Aia6j8O8bzgCMCeUAFW8gAAsf9QAP/9CgAqABAADccoAACqVAADZSoAALjlAACq8oAAIM1AAAm1oAAQujAADp3oAAfH+AAA6HABAACMroAAcuNAABsSmwhwAAMP+AAB15ahDgAAAOUAAFRygAA0TUoQ4AAF7dAAClxoAAXtNAAAFSqUgSgAP1ZcE
|
||||
|
||||
A/VnwQz48zYAxCHSEMUIZoQwwhlhDHCGeEP8IeEQ2IhyRDsiGFEMqIY0QyjgTgAjSIWOjSFATAI4hxbo38BimgyICyIM/BnsmcIBcCBPgH+RbDoFsA2CD3AC+IdOMImgb0AuoA9ABZAGyLq6AZsyg7hGQBwgCzAAQAHRD9lAxLb6IZIQ5QAIxDdCGmENsIa4Q7whwRDIiH2EMSIekQ/IhpRDaiHNEOA4G5RDuPcIAziG73gnrHkiGDZDDAfuA8sD
|
||||
M+PM2AIQh4hDZCGqEN0IaYQ2whrhDvCHBEMiIfEQ9IhuRDSiG1EMo4E4AI0iFjo0hQEwD2IcW6N/AYpoMiAsiDPwZ7JnCAXAgT4B/kWw6BbANgg9wA3iHTjCJoG9ALqAPQAWQBsi6ugGbMoO4RkAcIAswAEAC0Q/ZQMS2uiGiEOUAAMQzQhhhDLCGOEPcIf4Q0Ih1hDYiHJEOyIYUQyoh9RDgOBuUQ7j3CAI4hu94J6x5Ihg2QwwLGJJX8JKqlcg
|
||||
|
||||
b4DvYeqAG+ALhRxVAwgAyADkQADgqwAGACVWDQQDsTZkAB70xkNnTlLWCIAVNAEH70gDqgDBZSDsyZDxKB7EAzIf0AK8MY4tiyHpkPzgAiEJA1DZDyyGtkNzIZuXLshrIAKyGDkNc4KOQ+DoLZDHNydRTnIZWQ+3WLS4NyGtkM4QiyAO4h5UASikBkMbVqWQ8chx5DjiHC8TIyDohSUAD5DmyH0gCpIbCQ/4h4IADGquQAPIdmQ4KfJTY8mwl+BQ
|
||||
fgafg7ghu+q8wRT0wMalmVFbeJRS2pJ3VSABIwIN7xIZEqUCxjRvqsbZv55D9YBjIlB38SWpgzcuqldxf7U30DsPDABkex1S+pIyIIvxxniS6si1GaCGAHDFUFIin3yFDhMN6lEg4IZSQ4AALCVAADK8vghnwAJ4Aa9SkAH0AKgAQAAXOaAAEYg1AAgAANrMAAPgJgAAXeNQAIAAO3jAABD1hoh4iQz8HygBXIZuQ0Owe5DjyHXkMfIZ+Q/8hoFD
|
||||
|
||||
odQ1rM4IU+nuAACgAoamQ3sh9IAXhB4tbw6FPRrKAaeGeoBZ1j0gAzwIk4Ljpi4YgSCBDH/IAShikAySoNgBK7ET2OcHEfyqKCCgADYBKLm1oNAASeB6AAEABfgIiAA0gCKGrkOmij1APike4MkKGBQAkAF+Qy4h5lDoqGzoLzgHnWNxAEJwJAAsrzdoF5mtmFYIArCh5UP0JCTwOggbOmilBlAA8gAAABTQfHSJFOAI1D1ABnagAAEpdQAY8iC7
|
||||
ziGsgCF4mRkCeQKHMtxgcEqsuVDIDXqLIAriHlQBKKU8Q0YEkJDviHggAMat1AIEh8wABAAiUNhIde9pEhqIAJ6xYkNOEHiQ/4AJJDoKGJADgoduQ8EUxkA0KG3kNfId+Q4Ch3UAbGIlPoY8lYACihkbEdSGh9SNIdzaPnEbTYXRRa5j24FIAKUdEcAqsp+gDpgHQPY0hTRw4+AfixZhnGwdxs1A0i/JPYMwHFOg0lPLax4376T3GAfv/QDex/9L
|
||||
|
||||
DVgcHAZJR9UMjEFNQw6hvcUJIBzUMQAF5Q4Ch+xApyGHNFwAGwQZwAPYUGWoMeTZgBegsM4JPAmQAVUM/gEQCF0AVwt1DwBtK9IeoeMIAbveJ6wjRC8obsAJJUzbAkhEBtJ0w2mwCwdAbSe6wh/DbcGwQYwAfGYmzb2UMYTDCAMEATbAc6AZ1hhFCU+rBMBqwoKyzXCoyELQ0KjEouhCBJ1DgAFd4IUke8wwAA/cAgICAAA=
|
||||
J7rp2OsBm/N/ev14KHpBYlLewOQ0Cje28cLs3u3ZbplxT7C67RxcslIOMQM0escAhQ4vqH/Y57NM9jjsAmhSeWCSbAxf3xWJu62oDN8HJSDiQACaMNbSNo0wEMrwv63anIDoHm4IlBdCQgW32iWxGLMUa3awgNR9D3hMQwMcMv9L+aB6oZD2hlFPhcLKQSAHR2qfRU3e8BD/mqJgNQIcf/Q6exSSX4kGQJbIRK2GMUDuBZ5oXUO+czdQ74PQTNbM
|
||||
|
||||
roLGWcKOKW+MmCJm47lS13vtviQh3FFZYjTg+4phJV2WI0pKOB9TyiXW9NFA9cq1Zm4kBKuZx6lTQ7m0fyUmABk1KoDQLiN7gdR02W1c9B3ALuQVD25EAVbkBGhrFT0uRGQHaAKMJSpjVnXuFca+hr+pqGjANM+scg62hiEDDZ7jz2ZKheAoMnFEGRrIML0qXqxMgOhnQK9t4eHRW/phDpoO6HOLcrSGXQ3DvUnO9YKpXkBgoOvprwYe+kBXO1YT
|
||||
|
||||
QjY4iwMyckkiSNSJjZS79N3I6cvuzwDfaxXkiLapKCAehykUpr0wXHIAK/+hUiZgAhQqkJlJEHOAMTQoB11YB594loffkPhoctDJWp+hTfDhwju8YQQNFv4wX1JHsYfeMB1T9TkHdAgtbNn7QL6HxS6DVMqxAevEHLkY6DDYqVYMPqtRD3U5UR+xRC6Kua9t2wRgjXQ6yqN7/xZZDy9rhdq5bmnTb7qVXD0UVI1MjXdI566+3iQEeQL7QejDePoG
|
||||
|
||||
RQCgGWyRZpNBgNmqI3DirUwCa0ERZ+fwx+MMryXb9qRcgYgL6GxMN+fjWJgm3FLJt+7HYPKfuqfWCBh/9EIGUL2/KQ3vJbeYQpsUL69guQCLzVphtNYsGGzeQh7oJ6RrO6Qtf07KTE25JxUW0auXmzaMq+nzFN7PkaEFNhM0g/EnsQQFKXMZJ3OKarVhGvPXy3Z8oDJRGZSku0IDMgYeCGr9+usrmdGz3sDadXan4pxzrHnqfhKGiU7pcdDP0jtF
|
||||
|
||||
XiQAz1rSsDzDZxI0UiRMw6nCaZfXia8iRQbRYRpZNHZR/Na1r91b3oe6aI+hyLD7JZRMOAjHEw98O7vdply9QMdQfiTSYB6b9Zf6ZL0doYydP/mPHtu+ornRmelDEYVhhRy9t4y7A2HufXULzWuh5E6Ct1iiqs3TJK7/eDWHSD6XAf0WH2sHGwDAgNsPB8ICPVoAMTa/NxGYZi1AVgZb4IdUHAAzd2xesayMXYZQMF2G+AR6XKLktFh27DsWHKcZ
|
||||
|
||||
misByWFuzx9677nj03QfXAwph4K9vUd7SlapHyrl/OQiKZgoCsM2SEOQwtWB6goOH2wMgwf1Iakva3GLI8J9UN4NBxrBPDcxH/9UEkkTry9hZuo3po9k68lFKQdkXtSoGVstsKuYHxp+Dk/Y5m+u0cl0Ns6QpATOdH/O4zdd9auZlmjtPktkyET1kqljn1jvhA+piBjicsr0kfRulctu5E9LmHwIDA50K6NnSNHDZX51YJjeNzUm3hGS2D0E5KB8
|
||||
|
||||
ulXUD5dIZ1iUBzsM5tksdLc0Mg4JVcacPvodqFhOM91h6X6S4Mk/rLgxIGhmDPUGEG01NXeme30fJiXBDRgZ8kABw4Lh11DwuGNVCptrM3SWo+Ad5f9JIUvu2hyW8Qjflzj8rnUMPUXMfJi5yBE3Mjxj4pP1UQh0PiGURdTx3eywlMgGB76R1WHnhavEJpKURIkCJV3M60lCJrkdvZ3FB+JLDkw22FO/sbpE81tGqqeSnGZPxqBupJ3OmYMYk5kG
|
||||
|
||||
RPPimqsPSFSkSvarYdeSDzagPDgkyy9RcJzMFTQuG0Q9nS47AXgC2ZuhIIC9lUA48NR7gTw3+Ww3eIIpOgTh9M1XezIJ7DVRa0h2vYYYLa8EcBIGb6RCh9zFNTjRbHcumqTOq2A4fpKvbeIWkfBqJ1bn1rvPSPIzPBKFj023XvvQHdgRqvRwnNC91TNq7niaaqU94Y6phEjWoMSBP+kN+uLKZWZDWxGw2n88zZBJK3P0BVLAAXm061tiO7E2F1fv
|
||||
|
||||
jhQCuhOOcvK5eZg3QvDqKbVEVVXS8oOZ3oKg0hkPtYDlk1zo34Ys0BVNCeGE2MdR4wW1lfu0AGdZFF0oKWcoBi/UdGuI4+hxr/ThYaEwzVQKnDN2HCCyp4YtHi+q/SpDo6xgMQIZbQ3nhx/94t7jkULTmSJt7Bn+96jJWOLPWrC+sgRrsaD1Z7Fai4ZEA5SirDJfWGlA5dEMRWFOMW9t8B83zYNYzcKTM89SGfaxeVIDYeP8PIRpoI9qJGYbcJxN
|
||||
|
||||
MrrKAp2lXsg3ANMM1ZToRxpCrhpNUOOnAmJH0hiVUKfVb2xQfSsyvLGo6dUjCrCOgIZa7bcup0dJf7HO17tAl+m/k/TssS7AmxSYz1qFPGTTDleHB0PXXEK4EZ+gIjDU7xI0XOpAWfM0q8yMRGGvmjET7WLeIYaIyRHP4qV7pcsbVxVAMUOh+HhZA19qKfSHDdXIpCiMYWHu4IYR4qY7RAbswVEYVKg5KuwZmXrv0P2QdXA+XBtnDVLhw+CxH2vw
|
||||
|
||||
WMujjWp34DXJs7AFw9KQIXD2y0iNgm1oPYYfWw7ZzR7lIMxgcZUath4iAJKlFiNM9S2MBuPGpCtX4QiAiOGuQXKSF/hr0FdiMsBVmQY5IMSCNKU8jmIcnRfQahzOhvl9CpXFgbAQ8m+yOtyyHKeEh8FYzdENVgt7NZHQX9VmX+X0Rz4jVeGUxpOSH7mTcUn7tlQHmF0c/vKvuZdVg9o2c+1ivIAqYBCRw3AfWlYeJe8H3aOPw5AM8sE8A4NgFAMV
|
||||
|
||||
yNGkOaJG1MyuGnt2XU4OBVi1j7dg1ofSmQrG4mIQEGzM1NEdJI/FY2RNW5TDhAFtVoPaP2K0kt1gPiOYaC+I5FFZOo/MGp23OFKr0TuvZt9lV7G8NJErDpbH6xSFlNj1bVZhJ9PTB3Yc9XuGqMM+4bisPuhkQ2yMRhyZMIDSENwwmEA+jsNqASoCPYFyNVEjpgR0SPKEXt2UlFHEjldS8SP4m0a7VTBnQ9RJGi/13LqkvdnkkKyINdFakHH2+PQ6
|
||||
|
||||
+lqK8+tnUP9EZgw9dcdaELJGPHkmFp2/WERlhdcH9rw53CKbI7/EmxdaVaKEbxEeIgIioQUj5QAQ8439Q5eK+8P4AgwRjnDBvuttAwgWUj5Mw66rvMJz8npc8bV7wa19ioeXNJkjqm/J3QbOIPExrPXTxB+p9zcymYxj7tkWS1amfWAbZdjwWkZdBr4RwDoZH6m/0Oz0oI3fgvzIL3jnJmmLos7s+RprSM0LeSPgQE2HRIvAUjEOpbNABjRvQjxG
|
||||
|
||||
c3ZaK7psBhcGD4MAkZ4dgtyGED6Ef1gg0cBcjpFzOEAqkdxI+qRhoQFpMpMONoeJI9SugsjcEjALDMeQmuKWR7Vt+bj/qCxkAqdQPervw3hH9pqXkaBGDRKnTueWMOF2sz0Mwyg/B8jkGd0yn+lPmhixR/DwH5HiTXBnzmsgORiQAE2MEpLKgH0WZIADNIZ2Dl2BNbOswXZoXD2s5HIoDzkdDtT38kTDvqA8gEAHi6XawHE1Dl0HnsNnNotQ91Bx
|
||||
|
||||
/9sL7m5la2lgyUrUiZ2jzkkAr9oerI9ph6647EATkPIQZGMplC2x5NtbumlkvJc+TDk4lSiFjMH4HNO8RRxSiJJQh7MAOmE3EgEiwBf1TndeKPoADD4PUKRTmxKBuVYCKTEqfzS+sy/YHg/77FjnIwfuOCjQ3zzkyIUfTI8hRloJS08rl3zIcpXbTByjd7XbI6FZ4FZanFidp9OujnsmzVGViPSRy0jjJHsiqBukEzc3UtG5k2bxAEFJu3XhBs8C
|
||||
|
||||
WAO6kGihlCtjtWuw+Nye79L1QPokI9fB31NB4gxPWuhC/I3T9IKjT4ACEBpkSanNGOdvCKGt/FAuWPpaBy0EmhI+ZoKPN4Fgo3JRy5ou5w0yPVoanCZoe34dMF6Y7VKfurPbYRuTD/6HjQPWvsdFcVOD9gr116kbLunxxQoOpwgVpHfUB/qhYPYbekH+LgH5cVr/IovZ9RuLNsTQuyOEvp7I5+R+0IoB7FfAZXj3YIHUkvW6eAfN5awkTEtoSDsJ
|
||||
|
||||
ySLH4Oxeq5cHeh7LDGJH7dmObB2o2qRvaj3qqu/HqUdAI7pOrSjb2GVMi+NXeRndAls9Syj6LwQ9lXbKZRhkjAxGgSw7bGoo50enptq8GAfUSpo9zW4Bwq+/1GMANb3KBo3Du/LmoNG9FAZXl2AD/w/yUgbg51Cr3SwhHlYRtcA+F5V3uYuV+omRhUj5jiuFl9lFSo7tR84jEAjtSO0Ft1I/lRlZDO77HVKR+G1Yvah8lxcRYh2S00aqo/TRsEqS
|
||||
|
||||
kS8F1Cps6dHFBvN1SuyzTlfrJIeiru3stFAjfMratOpBjVO4kxuWL+8l2/tzUU0OpQOXdTOKOjPrAGNHXCaj2g84SMPRj6CKuocboVgA0hDzKToRrjBlNkJAk1qOyUZ/w5tcRSjjhI4U1gCIO7a0dEAj25awCNE0YgI2X+iqN/Ak5O7ZkQJKUEKmfW4xxS0iNgcfWeRR9+cduZANWYvpbI6x4xTtdiSUUY2JL1VcYO9AeaipV3nkLqu9XFU4Fd4P
|
||||
|
||||
re31Z3urCLuh61g4dHfyNCgGlyFzRUWNhFEeijVIk/yA1uxpCyZsiiOzKkB2MsBob57a41aPY0ZUo607LWjrXadaM0ruwo7/27lKIOHXgJswfHYVPgG1OFpjG6PXbDtzJUIZEDgj7qR5OfPdyR03XZROFrSvoHKpqbaBm97143d5gXgtCgDlRzP2mJ8aQymg2scaTMRvmj/ZbN15NWJ+SBNR/YwrDwcn2mbHjcmSUeSRI1id1hjACnbkvAouwv24
|
||||
|
||||
WxSCoRWudtR/VDaVGcaNfhuRCUCBrPDGv6UsMuwfBA8aBvL9KNkkpQsVgyaeMutE1e77iDjm0YvI/PNDqttXryh3cStMKV80otFDJihGNUMJEY8thhGDpFA+1glmVCI/vAVia/2jKQBtFG6dZZqePenABosJc3FIAJgAQtDPF6moPykfoCIqR5gF1+ZlyPc0IKqOmLaI8NsdtD6EkYaI4sh/Mj0LKCvFESGMTcVBV357SBRgnHCDzTJwxkCGD1Zi
|
||||
|
||||
qTjQZRA4W6Zz0ad7VQ1a4ZD2OxY78gKAJooPHdzzYORI2XgkTGEoDOJ2mOMEx5hyNg0XzKhtFxSSNDKUyF3dEJZm2MNwRIx80Qu6G2GrXdyWMhNRlool6DCkIuWIqFKrKFJW3uAnSJoFynfb1eqseCVGNqMJ4a0iJuCJSjOdH8/3GvvuPcXBrcjjKaDD2x/HsWCkmgZy8rqOU2cXK/WNnsCvDdNGayNk6iqErwxsqdY96QFnsHqItVUU+ijB2zKS
|
||||
|
||||
XfhrNvesc7m11Fq40NDUdH6Ksx429uigJqNbj2QUT/BJbEzwllAB360YaCU7cbOGLqSaFVIP2I+tRrvqjTHK0OqkcNQ7Xsv5NG4RX+2jAeZw8LegK9YEGeoOU/t+UnwgMIEuqKISCwpwslGr2+6BD9GDUL3YBCJdMx/BdDHj7aNvxKPAawRsJjezGXtpIrKyXsx+iatZLroLKK0P8zT1GzZVF28DH2y417NjretgjlWyZ+VgluBg51GiKNYwze6N
|
||||
|
||||
ntMotb6esN+SZT9zVrd3A7tSpYIj1v6+xYcyqR3csOzRpPdH2jVfvp5Y2OavidwrHvKO80d8o5+R2IIou6WRATUc7qK4BEBIRApXgxeiGi4HAgGpCIW97L3I0a0rfgx4fYhDGVaPXYazozlRUgmxFg6xxH0caI3TBr/tpf6SaO6/pRslvLTIkaAi2z26rD2xO4xmDGnjGn1iN/omgwY2+8JlkT0Q1A2ICqUqQyENroHPEYAxst/vu0qQly97vZ5E
|
||||
|
||||
3ojY4tBlbDPuHXkib9vEEIiUDK8/NKvZWEhw2UhxlKoAGYkAEq/FTJ9HRBzVjZX8tAIEMe3o4D8zhALTivIKrkdeYwm+gg0W1SQmMsyBjYJnhrpj9paiW2x/E/+gn8ae83d760qg2y8kChQc8jHjG8Mx+6m8Y6/Rm/+59bgM4iSITYVqbRYukCjs8GxxIryJ/Ql3DbxCULVXlLSHgsXL3e49TBzYt6LHJdWxhJjgQUvlignNiKDWxxJj7U6hPTxM
|
||||
|
||||
Yz5tuxw9jCx6CGErsdTPpexvZJyT7ccHiQBthsxHBioE1GC8B3b0kmQIME/8iBdaBQGbET7m+hG2dmrG1X4FsZ1Y0WxvI5rcUDWM+bUC6coidyhdRHPmO3/vSbcXR6OtL4RkbqstS3VOI8oZjnwyR1I/TOdY5ybB6sK6QBU3CAbq9ZNB9kjV6clt2XYosYUgPYUpdBG3KnTEaqJbMR8CA8K0IcNC0dzaPwpVd6ZABJXR9aT02KxwzzQq6hxnEi6L
|
||||
|
||||
BRZagfQjPCimYwZuG42aBxn8KhrGIOPVaBAgYzh8F9TsGaGO3Eddg7etLCQnVSWqA/QfLhECpOhMeSoe2MusbwzIBmSXBaxSiMluyMWlNnGqR9nchBq3sphDo2qcTP0E1HoviMN1RmI6IOSI3MtK2hNFFYaKwdHq9rvapN26MfRo0KsoZEO0BZxDgcdB+fQB+2DiWGqGMggbk47nh35jQ4lzJWKBih3EJAEZB0I7JsGmQAQMBCxsyjRWGdOMk4iD
|
||||
|
||||
g1Rxr7N1P8Mb1SBMQuX0e+tJNQH8oO/vpyY5+R61gP5Hd/y4kL/LvMtHZmbnDSUA9AA2MKXiJoANqzZ8E3sD0XaNRYTjFeyk8Nicf842UWi2ZBdGhB0bvtZwwpx3QIVEsM30PNyetlCBVEyK9RwERjMYtoxMx5zY577bSNfWqitdlizkpgGd0HmM/3HgzKbCU22IbpcESPrZsEZ672Ff8D2g4VKITDeIo5ANfTzi+10saSvf4iwkDCfzEclnMogp
|
||||
|
||||
mex4WDY9GpCMT0fAgDbDDXoE1HE3JZiivDdVy/ZmJTtTS79ACvANggGqDbfzmaKAca3o4sub7Z5RHe9CVEcBgkLU9ihprHrGMn0awo5BkwCul2ksQA6lWDDdy1NMg/iYtOPYcbwzF9BW89MX9e9XmbqxTlI+6emhWrSPBbcY+nZhi2njC5q4H7YnLmPVmGtL2Yj6iOPhgd7A3cLEi1zNLM+2Gmw4PRenS2x3SxK80of0gfoOWrZjbia+1jkRH2qR
|
||||
|
||||
29CajlmD1BnNIls1NW0EncyCRApQiUvzxEThni9sBRScMf3i84+6shSj3XHlKNAsqgvaXwcld2VHj11JAbqrSkBmWph5zQTF4AkS6bO4DBqiIUMF2zca4Y57Mmmh7cHBPXoCudIxFmzG9Jyx//1Ygbsddo+ko98UGl2HI7p5fhupfTR6P98XlZv0UNUOeuPjmGK/SOYPoDI2HLXw6qOH0hZzzIJohVNSvdmhIOeqZqUDAJuPSbyhBCQ8qK0b0Y8r
|
||||
|
||||
RvS5m66jGOIIQDurSKiKxyPHcqOSXtsY9nk8BgLy1seJ3tWeZOlohDwGL6kCMpcaBwwNmJs4jxDMwncgfWQah/OfJ7Asko7Sns6sW1kw72SlC2qPI5GPY6Exg+1jNI5qmDYc1dc0Qr+jjTyF+O1saX4/8TIXhrmSOYxa0KPAfH4sXxm4CVfGM/yTjjso7TRRmiu8MAtJv47DQqBjNHGYGM53MiVoubCajc8RruzJPST9t8Et88+f1OUBpgGIDhBR
|
||||
|
||||
13tDU148I++CE4wghtV5ivY/8NsZrHuNKitXeGit6+N6HrLAzuR4NZmAQ9P6p4TPPWIgPcpw6k8dBYccEQThx/OsmyjGf4Z0rz+br00gT14HvcNbfFJYBNR3TYOmwMV194XsYZuDHwABEACJLgvw5ncjR0oGpfG9eMV8bAzLjOavjfMMwSXSsZzLvWxiS9Mvb33Uf83uAdq416ggZha8YR4I1JHuEhujvfGUCN4Zjf2Q6BtSVEsyvvUzULzfqqQ3
|
||||
|
||||
kDY/HXZaf5zndd9YtppW/GD2N3ep/NHuxrdjKLHhfUH+qbyRiw72WvSVjBOnsbtRfT83cRzF8mBFT/rWKYjnNbjFebFcO2cM3YyexywTz/HQaF+CcX412Bj/Rg2Hgkl3KAcEwEJwwOg7sohOiJpjY1H4gKOJtS45whCYFgBNR5Au3NxIrbbsGiID/LPxIhGQRDInAFXo3tBjby2rGoeNHEY1tFAJ+Hj1asZnX9cZ0nfs+w0DdDGKmqu9EkiVPpTf
|
||||
|
||||
plNGGJmFsgv2LgJmdyOHHn6QNTP+3SMe4JEqozzMNzBowfWveigTcdwSFgTUZMVbImy6u8y0O5aIFwFdO2gIJqfqUJN17QcfRNBR0tDgmGjiPcWsqE2cR/cWDuKEBOlgeSA9xBlATzBrBgnRqD95qZOk8jtPJzGrdCatI99cYYjBHHxcM76QsXQr6yXdmXHNv1rMZ6PfHx6Yd0A7O+aI/waw7HxxHD5wxkcOPG3T4/AmtmduehCBTRkMXmYJGek4
|
||||
|
||||
oqBRIgPXtd7dVCDejhbHoeNTiEzo6s60gghF6jX1xAdXdSvkYQTNhHm0NnUfsI7xpZr8eJSu+oDAzQ4zfR7jsdRB76OKCZ8Ix9JXO2eE6ZcF2ksYRXmvEpdlnLMPncicj/dkxhNDPuHnqgEiegTRNRoZcuFk3OWGanwQOovERsBgAoUok9ldoZTFW3hlR03xXcbNh44o4aR56j9WR2ZU3rQ2Cy46jMmHTqNa/vOo00J1W5zkbCPw+xN8lQ5bebwo
|
||||
|
||||
AZGf09CY+kurUAdj1lHKm3iZoB9Zoq/g1aztMWNB91do3Bm92japqqk3Sds65rLB/ZViddn9JImLXAf+CkETlNSfN5LAAfgL+oGWFhFNBKD/ACFdsRceSdvrrtIw68Y21OFmIbZJWpK0Ogxm0yOlAvOjx8cjhOW8cD7REur1mMCAhl31wLB2OCVZ09FcNlTlRhgPTOwlB6slxoHROk9ueHEQurCD3v7iancsa7E/yxy7jxsrOnQD0auSATUhKpnX
|
||||
|
||||
Tg6Or/okAFJufLao4LhgB3sNnFps4H4eg6oS8T9YrBRSucfQj9FZZnwxJArQycR9Iwh+hfQQH0dIsB8x2yDDbHCW2JUubY7AyyURGOxjhC1gSdslPgew4JFGbQMJYybE/aJsQZo5y7BPT3psw0OJ9v9IOdeO3QEojg6LYKAlV9rxp1yNLZjZAxo1e4LR6VEyAYaTW+XRkUa8jGLTOAHcPMoASBgLIoYeJRSlopiTQrgIa4nUDib0bKWbsJznY0iy
|
||||
|
||||
9xPU7si5d6HMERRImvmPmoYaE2lh8vyYM9PYlqiXzXWzxPWlaTpvBg/rEwSnkB6qjzYnbz1jFIQCcIxriTojGeJPiMcgkw7Wi4SBNFKSg2+HA/eQuUtoYropVKOiBZSa7QuvSSonSGAqibXWQpRrlw+1VueJXQrMcOFojcj1hGyJO/odrPWSJqiTRq7ZMl69210exyTLsjaUfiwk4iTjV8u7Tj+KZg9h6Ya2ZfPUqzDZbA4hMk9Cp4LOxqJjPs8M
|
||||
|
||||
JbrL02zMEJ7fjJPQoS0pMf32GkxzJjlkSru6fTwEk8JO9AAFABpg5UArw9fLBPPQRepxDDlfjmfpveoyD2FhTAgZieTyFmJy5oNhwM8yd4DzEwiPK/9FxHtE340cLo4TRiiTlqHyRNbgeu7UimX4kTRyLJq6zGFwKi+p8TdknPePh+sDNRQR5ZjbNG3mlMNuWKfxfRhtQJHNd2eAYmulzcKoAyADEpVNlGEcFs4DPQzo9zjHTzh4w5rMRxasyDMp
|
||||
|
||||
PcQRWuZAJvCTu4n3rgVsaIk/TQyxjNMHEBMnCeQEzbxiCDMKq6GDUNiA1W/I4oQaa8PRUtSasdfhxvhj5U6MCPa5NYo56KeJVLH7RO39UYRvQQ0PDhn9G7P2SFqandsqwU90Xa4M2EBpJYw3hsrZmhbZsOmS3QTtYOpj9DLHhsMID0JY+zi15p/BHVW6dif6k92JjGTcwq5eZt4ZovZOh3qTo2Gar3TofjnRLx6adPcNgIDtoEDqcOqca03QRiMj
|
||||
|
||||
9hAkIo7bcN9eMHl3CYSZ4/AH+bjZxDHtjiDlTr4S8vKDjHySOIMiCf0PU2xwzEQ+1ttWOBmzcPVJsbdPpxop2QYZlGQ8J58TRF7qCMwGqvA1A9Djd5sc4LlMEby4xRh0mTAX6IdQMwyASt6NXd6Ce9j0aaABfAAUCCMWLKE62GUGtMCAbUC00HbQGClwKtzEy++aoTuoG9pMLIYb46IJpb1zbHBt24op98GZAxJlux8MzY/rHV7bdJlsTCfanROi
|
||||
|
||||
SMnw9I+7ON9mSWbWO/uD46Zx/0DEYnhKkKNgapTVgFKSo+9XpazeTlA63Mexi+y6wUVZUVlzAmBb4QCkY1Xm5SbGNPlJ52TiaSK51Bcde/SFx2TjsmHDRP6SaaE/dB6ONHIJW9iSyZpfn9s6yprEnLaPsSYC7RrJsGFT56wYObks+EzlxmDOMw7CuOSEeK4+HPIu92pMKJC5UL4MF0ADdg38U1ZTbAE1fb662WesyDbZMyiyIY6PYiuT3Mn+WSma
|
||||
|
||||
z6427JnKjB0mreOnCZt40zBvwVI1wDbzwqteI3cIcw4jYm7ROtSdhY7bRibClLqLIlRydMwyrBkaJAMa8A27MpGE/d6kTtg/6X4mJXpO456us7jqfyLuOUf2rhS5/auFEZ7id4ULoe471OqatPYGWm5oQseANBYPGYgjqe/55AjWMIPDHCARkqWTWPXp2xBlFNmThDVSLlsBCCnMTIsbwnp4D+n3jxs7UeJwWTSAmemMiyfdg+z61ruA0H2az0CR
|
||||
|
||||
bJXDsAZUyKrQ5Mk8YPg8xfaEtG5hKePs2pEU3A/BnjG6kGePdLGZ48J6mhdbPGRH2Jas5431XbG93U732188faPTcfDiGQvHLcYGFoMU0l9NZZiaQErbUgDgANO3GOxVWAmpwOLAhfovROthEDr5JOy5lLkxKqbEjB8nD95HyclFEp/M3jOZGrGMeyaFk6eJkWTI+7tN0BHCn6lNyl3amxoBBXNSZfk3dJm2jUpaN4Ms2KodcHxwKDJnLFx279o9
|
||||
|
||||
JdHTLMBFHHdi6AiczfpPShPj9DqClNSeCT4+MJ4aT66NrMGDlx3YLLBJMAdLRxDY8UALYuILNYTzMmB+1OKZLk/bJvYiQU5oRL21ndehaTHUTHPL65PJYcbk6lhyqTVEmq4ODBM6U8Ly/ulhi4i9jHCGfk7ZJ2JTejaZmM3eiH46PxkfjnRDdBOrKeWCcVu6CWz0nHMnyQeb2nPxqBYLknp/CHNO9lggpjfj+8HjlNmet3w/7xj19KI6T+PKX2F8
|
||||
|
||||
atbM/jrPyXBP38av43IEu/jFDLZcNoTwf43rquxdqmwegBmlzVmU2sdOwEfC7Dwr0UsUaKgOX4Ygi5VCtKcUkxXxmmIXxIulN/BndegIJnHNa77YONF0Yqk9pR8kTY3KZNmsGtU4/2qzvuT9gyarRKfmU2HJ2bdnrGCubH5pbcfrkrQT8wTx+PTRILhU9ox2WAc9AhZXKdMEycOlITfknp/BH+uZjv0Iuahq0BOVNweucE/mvTFBHEj3BMg2K9Y9
|
||||
|
||||
/JrwTCGifBOqaN8kyYJidFVsMRVMNrIVzhEJq6AaqmWuGxCfME/4J+IT/Imed4UY2FQOYOEIgVLIv6AMHW8Hf5vQ5mqsExBFLv04E8mR7zj+rHsRPafH3XV+GkBDMHGSwPFifCXdbx4PWMCB3j2PTMhXuYWDyDPeyacT3IirI+Mx8yj6rklpJtSabkYVS3K9TXqoPYc2Jqhnz8/Sxkwz1/Vsid6cTCsp6e53y90EOy2Y8ZAMgDlKUGhsMYQbyvbT
|
||||
|
||||
rZkD5ami1ODSecwynxpcl4hM5CMQ6kpAPSKASgL+ti2KCOoN8Obyndg02AFAps3sL4A6p/Rj7qyKKx7CYAI1dGnaBBgHjxNdQeJo1wUdvCwGNEewcZtADTx8fuCzxl7hPVUdMYKDEpbjdwJnkXXca4RZAsqel4MmDnWrsPSvcAenfjwCmqI4Gcbz3brevbjFPzyMFeRJvU9upu9TI8zo4Mi+vsPT4i05TJMmiuNEQYFE+L6zz9u8Bn2N6EnP/I50
|
||||
|
||||
/KhHKyJ8C89Uq5UWFTAAL3KVxNyka/w5dh5KjBvHX0N3YcYFZqRiXtp8mLeMGgaG440JxTj7aGvA0IwlMPUFuG9uKuhfJ5QpMhY88YU2WJf8N1N/yMyhWA49vIfxG0DnGT3PrdxzHDBKy9BGkzVuBk7XasYTPlGMJLiQDisFMJiHUt/VjFiCGTdtslbBPsRgA0pI6fRNMq8AfSNrvaExqzIJGjN/hgxj+8mq0P70dHUwetIsT6GmfmMVwZG44Bhx
|
||||
|
||||
hCyjgJFS842ZBXdRmA4F54V1OW0cz6UhB1sTb9G/5mLqu9KEqQ4U9GfrbMMfrPao45pvvRFnHXvBgka1gBNR+poy7BZNw5s2Y6UjjQdUNlIerQIxDrYdPi2XMZPI/WxKkdh43MB/YTeInkNORrDU09dBjTTdxHh3DXEhuzap2epFUIEh61OdWVPJVRt3jWANzNPhyepU/96y9T3vGvP3UV00HaGaz99RyqPpNs6XRY27R999oekvRMW2uzUzBDFD
|
||||
|
||||
NEUnFZS5MdvEGIjc7aEdHWDrpPWruc1+QZcpNFrNCdThKg2II/u+YWGy0M7CbcU0ppl5jr5qaEEJac6g1N+kujKmQwX5XzMdza92sO8idCW8AxFHkE8TqkjTD1ZCYVWUYs00Ox74TDazij23CK+zRlIGMFZBlXVYDkIzWrOQuH+oimL8Ofkel4+5hx9eVWBGvz2gIMdIlwRBgcbI+wBONzTIps8tejb8HPOOOqZVo0ipgRoF2QEUGBLsgnQ4GiBt
|
||||
|
||||
dcmJ1PLaYQ46tpj7D5s0IWYrxDzzbKw08ol/wTNPzcYtTm2BkYj5wGooMnqYlaTa64nTU5KzP0tfQp02Du8eTrh09xHO0f7JSC28VjXGnBROymGWdrntCajgy4+8JioFnFpuoNvCeJRwdA55PanEjRni9WRxScMjHXwsD74bjZzqnaFNInBYnru3RbTL2H4OMujsQ4xzhwdSN4ZUGrH7zm9rLoUTEcynd/Q2kaAfare5PBS/6HaOH5r9Q4vWmCGa
|
||||
|
||||
AL/43tgl9E17R/0TMIbfaMg5ycbcvU/2jY4nDVPdYxjIR3LH/hCXxqyi6OgG1TZoQRSoUoELatqOzKjkFaFyFI9FyNDqY2kxqJwGCBYmnfVK6c0ozipqdTe7R8n1Cqlwypbm9jkd2kTZYzxTGTPrpuJ4hOnnhOl8Xe7RQ2i8p3dHKmnl6f9PbDJ/AjA4mvxPu/os/RkS0NjHGmWdMTPspFIZqToAWAAZsDVAH/MAVYJeO3vQtgCDytd7cvOIuTyo
|
||||
|
||||
mq4jcbKxE3Lp2scKmnbyGJ6eVbSrpy1j06mgb2ZYdpGIwCvxVw6CDBS2Iusk4TxizEukAXxNBCaLwRCu2MJn4mf6NbKr/o1J7F3TKpckIWHBKAk5ccm/THDTpqngSb+U1r6gFT06gMAz0LIY6XqLJ0tIRAkxzESHwhEr+FwAjyiziwwhlH0y4pqcQoHGB0xanCn0zSm8hjCWHEdMsKcOk2wpzQUlSFFfZdbF1Y5Pc30m1nkbm2CKZ/CAXpjiT8AT
|
||||
|
||||
F4PcSYIM7xJogz/EnuyMv6dQkNLtNFdDA7EADW8REEeRIM5uiCa6gB6ANbUecmVJcqmVSyDd6guWZzJ1gEK5HTGMDTXMY+/vUiTWKnypMYacok00JkO9/AketiAbG10+GSEfMVnZ89PX8EL0w9Jzrpl9qQA6BMaD0tqpzZeETHPJMeSYNw15J8QBGEtNDMIZqo2oFJ2gRtCt0mOzRwsMzexyjDqkHa41OmCFdC9BME4yvGc2I7j2SfvYo7zdeMG7
|
||||
|
||||
hBrif+ZKA4HCT60mdxOx6cKk5WY4iTlxHSpMDcZZw0lp4bjVLhfZU/j3pCgwoVEl2sx+SAr+RtE1aR3AzI97mG20Ua6k7ren9TcngcoMZGaFY6IfZnTsRGiX3rYHKchkAKrB5jsUHyCzzpht2IDtYtr0+VaRKB9zOHp1eIkenSLkMZBoU1R6eXT20m2J67Sek49JhptDF+r6YMRcfJE+/exhCBtVWjmOSLkpiSEzMgmXKt9N4CZwM4oZ9Ajlvtdl
|
||||
|
||||
PNZIQeV9J96TknbeqPrGaxY0AcmTtf0mf1m0LAJY5u0n5tIMm7bXL/rJY2VsiljOS60IPDiraeTDJuljpzqqP28seLPgQ2o+D0/GUH7sschw58oCOOmMmcwWWTy7zul2omTBDQsoPQDxFY3KO6MDQ0nbDO7/n8UC0ABBI+ekcJB6AG98nzLCr2V0E3DzZ4qoLMAZhSTY+mVaNqifwk1tJ43jIl7aiP8ybQ/fAZi+TR0m/VN7keerShQIfYx+80SV
|
||||
|
||||
jFBvICHJhYzu+nFZOqKeVkyRxy/lZHHKOPM0fI4xffbWTH6n40M87z9SuI/T4lWelZdoA6ZgNFQFetckBp4KVD6cAvBTELCT7MmcTPbifVE1C2XmJtrLUNP97qW0+ARlHT06njn06jTbDN3x/tV0irdkKtK3JUwbppQzSynvBPSqfkfatx2PduG445OJBvmPTUHMzjwNLp5OfqZ53sk9DnEq89ctrPQUJQNVYL/IAFhs8XpSYTjISQRf0DBz/DMq
|
||||
|
||||
mYIk7nPRrt/VKwjN1CcG45EZzDTI3HdKM2VuhTl84UMkux8DPKHCAeo2PW7mDh2nFjMDyeyU79m7Ljv2a5/2Wtq6NVMAno1t7HbY14+lelidXSrB/eFTwrgWEeDLiUO4ymZKSaFAbFZk5J3ShTQ3yoOSL8kjM/iZg5tl26keO1CeUXREZz79zcnFOO8vsUktXCEHsVJ9jp5zeADINgZnfThun7pOWmZzUZ/JmzTuLCA+Pd/pF8Qzx7ZlB6DduNAK
|
||||
|
||||
eXbSAp1S+l+L1mUQKddXXSEpANl5m+xMa23gUzUQ+9T8/qB5l2ma+nU9x9BTCZQSlOcadb03j6H0aWCD7AA7GFYADAgEIg42BcIQvILFqPnJnoDsKL4VPYmfvueXJv7qXZp2+4MKZPk30Z9CjeZHUeNN8bgkR1OS7SPHRczbt9Tv9tLoY3Yx5RlzPmmeEU12mnn+5PGEP4SKdWpeRZ5i+MimaePqPpi2gopiXDTpnFaY6evMeUep1spePtUA3sfq
|
||||
|
||||
PHd3Br7N/PHoYUaCY+fkYpueDAf6xeOcLrIM+KB1CQTJzyklVAEY6DSyC0YVmkCKLK30a/EIYBAxEun2DNhmb3ky04gczmomvFNxAZ8U5ipr1T6mmJzPDGaok/L2lRtBWxIHhZyteI9hORU5ssnAjnzGZXMxaZuFjCSmXEki8aDFZQ6oPjToH8WEFXsjFWzSnLB2Smq77bMLjOSJfYo91PcilP0CC/My3puH9GNDnbbbGCYOs4Wj9CIL8MiCqgHo
|
||||
|
||||
ABJuZcTPQHm7BsGZGQBwZnCTM2meDOXqGjM3Xx0czv17dJOQIcnMyNx/Wj6OnIWwyArJntnowOobiJqa35meZM7Gp2et7niHSPqEP2qYyp4fjU+SmVNbKZhw86mGCxpXTZ+NmYfn43qp1ITktqBuGr8fOUwfp93GRhmVwETvJ94Qd2Q/jACiO6EPKYV1jL48/jbynvlP1/wM0T8p9xFXynAcaZIPHE+gAVkBumx6uPx7zCpvU5f6OuCCkEjppEgs
|
||||
|
||||
672shQmlm8rPaWfdWYVZ6MgvBmaIX4iYxUwLJ4kTgxmLWMtEa64PRaFvuPwQ5A2DQdRMlVFPPTN0mmTOrmbiU+rOq+6Gjz1BOKT3pU8XCuN+OgnmVOdEP0E47CwwTQoSlVOOCckWPwCSazvKmfaW+ws0KdSzNGzCzBFrOWurFU/GUgc9kqnu8NKoP94QthhlGaxSh8ksuJps+dSwkxXNnnHnQqxEcc8p3mzbjzdVPMIX1U8069rTVwGElSoIG4ML
|
||||
|
||||
lQ6HUfYB+wjOKAY6eygeIA0oBgdHAhn7U+XxtozM2nSxaNID+9o3y4kznTHSTMlid9U0JjEpOyiMnqDNWcjWWly1TaHPS8dNRqfWvqW4kPdOWLaNMkpOr6c3bfWd2e6nTkPFKfbel7TAjdCKcOEGt2QSc8U1l5lejwhNuktSXuQw0q9bNhKXZsNOrlVHxlCNwaGdL0IQrQU8pCk6l02Gt0N9pqf4yHxl7jE1HNx4uaH/cn2AHBBlIB/3ibGC96EK
|
||||
|
||||
Y/9yJ2GegOk4zC09tNVisK1ztbMTBmW2Ak2ytjzlqNTOTXq1M/Pp4GzDvafv2yXqO4IYmG6cQYjv9jnfmI04yJiijveUwcwJFryxeI7aGmKEKPM1aB3mw000r8oT99CCOr8aHkWy/Om5CqnB/ymcPCjUdfHbjrlGUFObnN0fUYw5HW8uG3d7XKdvHdsg4W+xQ8r7PpVMhMyCR8CAVuj6TEFMb409EQdGYbAA7+rkLmsYs4kKAAGwyDNhTZ2TkerZ
|
||||
|
||||
snD8eHmAXR6bh4zFpgNt7AZomlxmbHM98xsyzmmnojP/MdS0uGIF40Q6C8Faw/FvdMlxyNTqXGWDmxmAvfR7ZiD1dh707OKsvr00rB53TV7pXU3S6QM4xDnN0h35SVA7J11+LSAs5AlCQnTP3OtMGdBNRl3AAM868rGYwduqZsRXAQxNf2QG8RveUPpwBzCqhycONtuYQEnhl1TMOmEq4t+tn03f+5PTK2np1PWsZqara5JhyHp4xA5cBCpjDCo/
|
||||
|
||||
bTo9mm6OavMifRRpyPV0ezIx2druK0xcZqfDOA7db24bJlPZSIF8xb6aM20hidRLQ/g2kxV7779MNaeHReQJ2tTrNGJF6N2k8084oOF+86hLq4XO2ZUfHIhlChnaamMmsqwcDrxuTTsGnirWGMchvIBGdKj21o8pQI6coY0jp7UzqumVMiansu0gOCD9YB76I4JAwFbgXbZ7BznNBNHKqCaayaQOhJoaGHzM6rBK/savxnIzd0k2TJKjpNyQi0GM
|
||||
|
||||
+isqDcMLquMiWnqjOzpe6TNK7obEqP7h8i0HgFbk4jADtGF7wafBP7wpTw5inaAPkRiBCGqH9iNbCb4TOdGyRzNTIsFKJ+RIATZBjt1SWGTqMkiabk+ZZipqXQQ+k51iiive524dBhWolDjFOb74/biRswrZbnMmkTuXVWmnRuhAX8a319VyudROdHYp9Dnq5U+JOVxrg/H2z78TOnm8/qkszuhz8jcR1kDITUYDcC8qowAATtLSBHgGkADaMZho
|
||||
|
||||
dwwUECzB0/w0A5+TTIJq3FNOQGacEzAgn9v1nx1NG2Z9U5fJ4PW0CRkF3/tQd4+IUVEyMn5STSXOaUE+IkULq5sbrK7S437nomE/p9BNyBm27Uoc0wak18zzeGXuMgEu3rT1Grn+0T614ME9GWFcyxhz9pGq5lVZMAlPVXpsgjeS65q5yls9yfyZ7ZjoLIxKiv8b1k2W0SQAYwAeVZi72jkSS9c2EML908Bcuyh7dAUaPMtdnACrouZOIzNGX+80
|
||||
|
||||
Wd/67JXQzw8uB7PDYXH0Z1JmapcCMydgJcndGcrPMidstwceMQCbbHqNAUC+I5wmDGpCNngH1GZ3upv6xpbDUcn9qlwyZ+DjkvF6x+j7lIWBIuDPQRhpyjx39V8MVAalU1W/HN+HxSKLMcVL6ssm5saN7lG6qoKduneTSLRI2OQ9VjJOkrn5grfAC6rxSKVHlsHJqR7p0foYbG+BCuIwmo+O3JugiDBDmN5vMqQmNcw5wAiIT72C3PVqJqh3iFEW
|
||||
|
||||
mFjUWufapdNMaLOqcc3mM9Ak2cyxW7Zz+ondnPDKdxU+X5NbJfSdGkBY/DdRK1bDpydMrXeO9sbFqd88WvDVPtOun21JRFcPhtGxMkKTzYU3tFsG7Y7NtiVbos3MUa/k6zZ7a9qCSmbHY+EOLj/bcxpfTSG34UDD8jk80kjDgz7GZaQDy+aTTcrQtndTx/0zWQMDmiLfB+5GHhz4WuvZCrOhtaOj19nqYODrtdohGukWmFitA7yoLn5noOyXDybR
|
||||
|
||||
URYkMpEBFckPyOCelMpZfVGGrmuImGmv4mPvCayvRELR5zxzpXLuNNIsGno7v+Ph48uBfGmi2jZVhNnPoaJqn9F4LYCZkymySFww7nwtN12ZBNZDpmdIE5xxEgzD30A4dRhtDeomBjMpvt1o5TwpfV7ASdELFeusA5cixVy1UbPCNQYd0c4/R9w4TJ92rMtQKYo/VjNujgLnAaMSse1nWMMfsjXwS5SSJUX8eRlavagVTQUJhf5GbCF8pLkatA4T
|
||||
|
||||
XOpurNc78qjoUCxYfExpSlXYrH/bFtcjm4OMKOZ1M3u0WVYsRmAjjj4T3A+9afb4hAICePOWYTvLY/I3TSd7ijafduFTbhW5OTKARxIA42HK48VxAI9KF8sEApCCFeCy0JoDzcsKAhjt3jI/kILzzCp5wBO2+vAM6s5qTzOlThzOAoLbs0wBjuz4XnMnNcFHTZnrXNqg6FgY20H2IqOO1YPdzNkmzpPMHsMc8Xp5AtcDC4cM/CcT45LiwpT2bnmL
|
||||
|
||||
72Zxn/bCuoFz/Kc+1il1HmY4mx3NohIcg6nrsC3UMxdE16ArwzQ6O+A8MXLRyCjmXwa7PeeYa8wPaprzzfoWvNHq2NfaDnXMIoXnsVOiGZGUwc5t6hxdTw+gh4Hw/aSSLjcwY8GRNYOauc3x8KuwQi8atPPGeVHU5pxC1gIdbNOWpJjc2qXLGzFyrdbVUrLjfoxtVu2EtmkcM+4YCaK957nIE1GxXSnWxziPQASykRYVBHCBuElJEX9OcWNXnNhM
|
||||
|
||||
CYaWc+HK37AQU5mvO+nAC4+M0d7zIhnEzNiGdvWpN0bVkbaZpHhejpJjlTsH4QuWn93NFNr5g2l5tn9U3DVO4eePyM+e2ktZtOiqyl5tOKPVa2l7TXFHND7PsdQQQ2Z02EzgAcAMCGEldAlWD942vcUSOhYYMI1NpvJF1izvYn6mmYQN0ZmqYHLLBDP2ueoY0Mp2hj3PndAgpgaF1FDVO61yW70BE8bnnhdS5pkTygJgoimboQ/o94oIj6zHwZny
|
||||
|
||||
lwISWXgj+JT+nvG2s6bgfQbdBjju3m9eJegTdtqygR8B42cUpg+pSFMYPtMtog0rIKMASJg0xTht1VGLmAvM/nDZ8yEZkqT7UGCaP1Cc+8yu5g5z0wGEflK3GYDBZMy657HBILiYObm41GpjFyD781zNuWYmzffOx515l0HyN5tKwbreW7o1zomV/2NudBZEsJcEjrE1E+zoZBmWkXifqcwwB7RgoBjLaAO5z8D5rAi/ONttLSPvJzFzgXmEp0ha
|
||||
|
||||
j6U5uR/FzGH7CXNCYzxiFCBjwstQIhBWY6K92Et1UXz43nhQxPCeUMzd6QAO+DmdWHr4dX4/snaaz2nLsS3syt7E6nEwEzJa9p/O7oYCaKq53f8xrCsYhZXmMWFAAWpoaehMxTnXssYsstXD2KLnRHPAOY/lXqhg/z5fmZHMv9o587X5rnzX3mefMVibl1bY0QryD+rEUz5sgEhJ35t3jDzHXLPvybTpa+C9puFravEX7qer0XIvFiRSobUH2rm3
|
||||
|
||||
yvfzZtPBmDcbinAhpbfQeYq8ddB8ITM1qcY83Rx28QwgWZWMQ6lTxWgAqoAVXEMPZFhSZQk0AGcANIALD7pAHjdgdZHfz4Dr4LNl+exc8sauF1eLmAbOKedPo5BksykDY60tJx3IstHuUpisDPYn/Pb6ZMoK0Z5bl/+65CkZmWElZN2n3j9v7MvNb4ZNbQx5++z/NGMy4FedgfHAAATI/igiaLv2rq5aMACx2PW8VoU6Bfio2b57YTeSL2jNfEhZ
|
||||
|
||||
83aEjKjrPKmFNbOYGUzs5wGzzo6F9OReZALeTG5BwFqc7u2TYPQRHTG3Mz26QDtMEpgazE3nPLdgw6NmPJVseNRfBzg9gQXAXFSMcvEBCJxYC0qA6MROxsqQiNjHKpRBTbwEu9Mi+Lmxni9/dhonMPoeL8xR69aTlrnJ3P3YeuDX4W1Cz8nmMKNLIaU8/FY+w8Cfxmuzg4R+wwsoO7gt/Y9tN+ucDUF8Rq8SWCGpvOg7vCJfyaEfz8OHB/MckeJ7
|
||||
|
||||
jl56QjpXHpWChBeGIanoBn20Lj8xTRKmPAFoAE0wAfkATgfgNjw6i52JzcjqFgsTuZt8+pMmhB3Kn92PbsYICwmZuBzyWnXgjzTN3ND92M5F4H1cYJv5SoYP75sezDJZCpJGeYrXSsZ7VhaxmDqkoPuqKTMAo/T1wTF2PW/oao8SYp+++KkSd4Ng2SE3CF6ITzdST2YXVJ8k0LZrxoJRwSbPKqbjPRevWELFgnSdNDLCFC2LZh5gllQxQtTWa6fq
|
||||
|
||||
evKULpNmZQsXDzlC/yFnpzPh7QROfkbEqLyF0Wz0oXGOMfc2cLTOWt22ao9EpUDAGYAGWUHvT2Y73OPb+dBC3MF4q10enFgtQhfUk1/SQU1vin9pPHCbJM4gZpqUS1ATpORtvUcmSlY2jg6rrHAL4RB81357BzTTIQ75XBf9o0n5jczX9H4z1xvz25ONZj6l8TRR8k6RJbbgTZtkLWHzP6GIeeltbm2rU218bb7OSBaCC2n67MLz9nd/w54COoAd
|
||||
|
||||
QR5OvXrJGxv62jnrtQPtSPX73ON1MeSCwz535Vv+GEnNWuda8zURq7dUF8riOlwcdc6BB+Bzw7goEit8d62CaSh/ppU9/yKPDT2Q2RRvTzULGV/h+Qcl804B+J9CH9DB06Z3Bw3up4bsITReuH4QfDMWn2sbm4DH9i5jmtPNo+53XJ4HcWIZKTzPC7H5uMd8fm3KOlKXHITxR9IW1mkNqBtACJKGkillEOzgaFnH3q77fRB0waegXUgvEMZwC0YF
|
||||
|
||||
vQDVJ7Di0deaug115uvzKemuuBLUC03SLsrs0DR5yO1ih2dBS61XELejmhtD1TNKw9ERoKNiB9n7pj7KG5vOPPCLx5nIT0Rduk5S5R6z1lViHSM+sf47fZR3Yz74KMTFPBexY0HRwhz/AWq9GuidpxUvWsVzPn6OIuolub08UZrOzcbH3guUikeTuVeUjRDPEEAAMYjK4lYsQIAxodFz15sdRoxgFtFzvnn/wuGBaC8ycrJv6pgWdJPyNqRC1EZw
|
||||
|
||||
cLLkGv0XiJGr0Pk5j0ttMlvS0F8zPQHUFsS4yZsvT08628nS/Qg3tKA6EH3+MdlxvbUvLo6t7oo2hlr6LWBJ5jT1HH/lPXhfF3ZuvSALiwFmwj4STNhI/1CQYMDto7AdHwjcHDEZOjM1oiuDGuZ06rd5kyNBgWQ+iH+b4Mw7u1JzR1GF3MKeZJI1sFgrxm1AkTXmbwCMCaRwqkWBw+rDVBdIo9socyLV5pOTWEhYo/bXohtZfsL5XPmx3tNXkZvS
|
||||
|
||||
9n9jDZVNvo6i5QOsALILmwSPPJE803+5A3wZgAiSD1qKQmaeFPPQnKIHSBLwPEeJNplILXJqlIspRdwC/hM/ET0jCewsOued8/Jx51zg4XW5P9ArBBVYBmkT3Ir1IhWZCS87aJsS4wCkGO3HGfhSbrUgiL+9rSum0Xpk9vdF0AL2Pm1QtJMCFEwsRiHUUhEeshraxv/GGZQ5wWrN+FId1FT0EvA4MQN3n6vN8ur7KFHUSELSTn0vFw6coUamFv9g
|
||||
|
||||
jvnQuMbRfC4wOFlEL18nGz2zY15IAE2fcyRGwyb60BbF8+tkSlTcV7A6Oqmv9o7LQ1mzEZQaHM7Kt2szzApULhNnGbNSeydzt9MbIJz0X6bhzEfGiMw/DZYE1GIX6aAECUAjEcQW3YR6UQCPCEVsoAMMyJsG16O94BmC2I58B12AXlItyTWQ/UuBtaLTvmDRPLucgixdBDhTtCav7DbxEHbWw4nMZ1GQFUxOBeS82LQVue4YXTW3ZeZ+nd6+jx5N
|
||||
|
||||
jneYVutLGI6ziiflr3GZ5P2UHEgBYHASLGNDgil8oBe+qeFWoAmyYZbQYQjHhukIFrjwnnTXN3ecTWM6pjILgMEFtWAgcyi3kFxdzBQXmiPUbougsEpmIF0jy8Mjd7Pt4f/89oSPfHQfM0ubKbBJGOqjvq1WvGySrV3U5Fsxl/fTaD63xqh8/fanmjvEXLPMR+M3XiiGwKjEOom1x9oA3HudBLDOEXwVUNSUDHnO99WfBFEI6vOjucZ8w95yTzrP
|
||||
|
||||
nIL2EmbGvXjR6vzZUnCAtaRa2iyiFsZTQrL/UzdnCx04SPew43IIWE2nBaqi04WImLTLbpvO3zucERU5mi+Yfn/At+/qIw8xfM92C0H5fPLwYGo+rBroLkrHZTA7eYmo7EQOsySVtu+xNlA9/pygTdggOg5KDywSXgZFPX8L4cquWTM+ce86PFoczJvHjIg5Bfnc7HF7KLmFHMLOWBZgQ98K0lM++VnmRD1pDzC21FCL+nnLKM2ubcC+R+8FZQ5y
|
||||
|
||||
oTwL2ehiYP0g4zLAXos1MRd8C0LBxj9XRSHtVsabmY9eE1FjwRoZvMxPrl861O/ipd5nPJ3sJfbTe5FkBZHznjC33caS7c5R1ADpeng5k1xegY3XFiQt+XNh7ITUbwIdyAneQSdhNBmbgfvQNEQSRsUOgN5PsCceXrNF5sLbCq8sKp8kWi4BF4o5fESmu3Ohfdk+fJ42zF/mvWYrUB8JfgCdpww20LrEFkC5oWN55wLoYhL53BueN0xxKjLmXpDL
|
||||
|
||||
qms2djHgZYrlOyCnXvCncaxTsxZxmkfeGZH2InNe/Pg0rizs/KueP2xevLXyxusp+b81CkiWdOKX8J3LmqSXPm3pfRZjpbYi8LQSSvEuL2agSdbk59z3FTxz7j+Yjhfc+rg91ldEjY5Jf2duza+sFFm6CpY6VFhsbymJpL6L0QXp1o1hse0lztGhJqYrO1xd8i3GfIx61CBZGO7/hZVp7wdlEQ+0c+X6EgY6SMyanpnZNCCEioU0SxFh8Z1ykmI4
|
||||
|
||||
vLBcfHiEZqoBQhmTLOJadni675l1zayHzZpFZzfkIZFqdRh+hzVgnRfOC8CQUodiyn+/O5LoeCzkfWhY2myNv251rdsxOhvjtE2G3ksW/xuU6P5xsjvY6VQt9vty86VxvsjXAgJqOPBjF3rcGNW+cJGEJiBUhIuLsgAh5hBDqrwDxdE8y2F0vzeiWVIs/GXvHuxBkkzZgWcosWBd4KWltRsVadZlL3WzVvzoIotlsGCXZwtV/Ff8+uZ9gxsZyR0U
|
||||
|
||||
43NT7W/o/az6mjaNMOZOayZ5TBlLoPq8X34cMQfcwRzIzeyDX4lu5regYKlgXxY2GI/mSpr/k6Zsg2pAJnHtHKl2v4wPPdn5qBysP4RnPjHqHx/VszynszLUSMrKav6jVL17tiInFLrTjjNE7yLz+m+kvxsb20KylqAwcvHyShcJ314vs3TdGPVpmXU4pFY6bRiV2hnnmEotgxYt8yiloXAS0WZK7CnIRC+OZv9DVVmXXPWoZKmYGG2feR7i1vkh
|
||||
|
||||
RCWUBvFmoL+yGZwvPGGnDIW+hcLXZCn8WGPN2/ohTZAdut7fcPgI0elZHXUwTXcK1+PPmenY5IQuu+rMWI0jgBfQpjNZpIjEOpJaDOADEBoWaM3WQV1o2R9gFsWqgwXBRLqWC6Aa2cxIxNK8ojdoXoYsreOP89Bx5hT2KXYEsfCssC9hplGyh+8wRzX0cj7eZAPBE5yXGSPtW2vIx6xioddfSTwGw+er2ppY+ahRjdCbbxXv16eGh64zE3aOp0LL
|
||||
|
||||
sOKZBYr5LzwX3uPfqYBiE/F2/WZ2BBXSPDEuAKQEbQex/yUpi8cdvebOTMHTA6nflWtMH886il916QnrZRSHrvN45qZ5XT3XmigtQRe00zU1B7cvFb/x5f5MvmMBJclL8aXOzDIpqTSxq6oMtEPr2RMo8C+vuBLSAlwtrTElNUfrNrABm2xAG78DhFGbES30lwOgRGW21oTUfxQHAge5lIjggVMJK3aA3XiQgZDvguw08Xq6eDrxpMjn6WUnVYiZ
|
||||
|
||||
WSyFulDxrfr/rMaRbU3XpJ/ZzPPmjz2MMZD6JYavNxDmbMMxNGoQy6M7T8SBWmqVNy43wS5FeB8Z7uH9cFqEISSZd3OGxHEcvqiESJ0yyZh5Ch4UmNvPcC1yY1box9jBPmIdQcgIDGnniU1ACDAx5xNACFULXMaP2rybYouriY/S5rZ8Z1vGWQEuZBZSSInmp0LxlncyPAQbyo7ilsKFkfUoQPTsyniZrRQ/KME5sDim/p0cznFgPzwURAIsXvsM
|
||||
|
||||
sdoO1dLFhS60XWmbCg7/il5zv67cQMbVKrUxZY8kDRrdO4M4qJ7fX8l8ejkjHgaOXiDdi2cSOJ6Mr8TTLITPiwtEqYq4MsKPf72kFkkyCF3Xj4OnfPMQhet832l2jSbXnTbxiXqEy8IZmeLAaWxMtu+bR09c2+6gXBBRWXl1NcRALsQs486X6aMJnleo6bFnYDmGLrIsEdOtORwY6KpByCqmkj/rSQWhiwuJzVjdUvaFLz8VRkyzRMGjlUv7f3iH
|
||||
|
||||
rH8jkTWEoEGYOyKwDWsUuYpgZ7i5bAebEkb9lq6ppaWAUskiNbcxDqWsACjZXgDJEFbGRoSTPA5wBLMEd4XHAOwkt9L9rCFktGEe2OPv5uWLdvjxvlStD9S7A56bLqMWXwhq/ne8keCaVhPd7wnaupiC9tnF4MLYPmzdjS8vAcdfYgx5SrTSL1/EMv40NzGj6YYnvst+Vt+U55FnLGUrnNV6kZcf4+Ilyl5vh01dLcxf5njYxN3oDPt7hCzfgASl
|
||||
|
||||
cvAvAGrGeL2lTDp84cRvJF7a5IYtDZanCZwCnF+snndRNZRY2CzYx0dLeKWC8P8CQ1JOW3C0DiPsffBFvBHs8llvELpjQzkUFxbEY5G5y+LZGTOTPABfoI7HfcemWKTDONT8deHjrht32gVTGSlQD2Qhd00iADaSmp2WA+JsHUaluPzwLmnB3qX3NS3hgCajFAAVcisvBGANxArQkDB0c2YEZCJQJU5SYLa9G8ricZaVo12l/jgquWrfOJOfLMbq
|
||||
|
||||
U+HTbBToHPlWc0i3jl5ELBOWl9OV43KEKrMedThGxGyEvJRmfApl8fCF+0Q91ZzDnMU3h4c1o7sA55zscsiQVq3D5E7y/87zdLeuUzl9azLcieo2RhY3g8UemPz2mj2nlnhJTczSUggNG6j34UrWbyyxeZ/DBxWXJCE0mNsE81FhG2ZJi/nGvxJTKTESisGhxd8QPypY9w1yRu9zYlz/11/mLPc3mF/0jUgX3XZ+4ZBy7v+NMcJqnB96DYBKLsHn
|
||||
|
||||
GKot+sHhK73LB4wXJhqSFMRCiy/plSC5nRt/c1zpos5yCMrFQbZtX90CW9csYWYNyxFlxwjvvKUoDI1XUbeOw1w42qkgwt0BcVIwwF+JTI9GXwVORNJ+aqQliGQOczwtX8ORs86BvhNu5mKsus0oejsvl62VPDSkNFMpaZLq/ongrkeWrwvR5cT+WMMHpGE1GmTnpmPqaFdGbMK4iLR6FLUDpAMhuouxJND0jBSxcwCy2F0DjcBWjNMIFYxS2hR9
|
||||
|
||||
YL6FnzWOFBa7sy9vT2Jg0UpnZHTwTjUaeo8DCgnrcuoRaV2J88vvzjAWk6UcEc66bEx501FXMsMtUmT3xhdzDwr/OWfIuCFefjbKYCKDnOmIdRh52GAJw8NgAsJmGLo35stVXqZT/GFAAnrObyfzY26lweLLYWFKPqFYHXL1x36zOOXyJMQRcUc5F5ju9V8MP1izKnf3Z48Zo5ShBWmMRqapy7nF/7cU2q8HPEhZJ6EODchLR2y0kGOHtV5YKuw6
|
||||
|
||||
zMHd+uEkEeZMSBJ5XdM3CD0sCFq5leM2pQOd4iOXM7mdmOeel2rLMVaMy68ad3/LwLdzsWCC0piNIhbDo8GNMiRBTOUAOLB++b1lmJz1oWdrUpFbufBoV/cTfijxstYpeEy3ue0DLBhXRjMAsaQcFEoJLdLp63VKEZmnsZ3ltSMhcU35NkFYPpZY58xzdGmtUHw2215eVh2XGNnLpXMtV1ui5A+4Ol6anMbapqd3aXfpjyL3+j6JHpiIGnXyZt0z
|
||||
|
||||
ApmDxA2wwCi0mx3gwLvRixQR8O9GiU0f+58PITQvHozrYcWhiWuELhRN4syAtc1wQQ4sRrGsW32Bu7ud2FqvLE36KrN2EZmyy65th9acrYMzDECcYzQodIO82h7cSPFdMVspl4mLAz7+sONOu2U5TYPOh81S9MWypcnpZeFsUDvhWUcmuK0SI10YCajO+SOOH1ChCIEMTfhEPSBi8RtpM4cPVaxQr1dnrsAl2BKIyrlhYL5JXMyoScY9AIwp9SLk
|
||||
|
||||
2XEQu15e0iyiF/x93wq8TS0MFcIwUsEaqXy1eStXmhJ+ttl3Rlp/Gq4tNkxp00hY1vD+qXIYO3prFY70l2UrfcH3NPApYh1MI2SVALPVP8Z0LNLaMBZyORXBlMPY2iPQC1sV3fz4WhDWpigRc2DXxpwl2QW53MpNvSc53ZxOL21C+UFCziUIAD5qVUaZAbKzhqaQ4VVF1LLS6WfGMRyY8S5ZEmtFRuGSG3q7OVlXG/XrlN7nEJYo2POsszFvGz9J
|
||||
|
||||
SRyuNooXycnx9/LYAcDbqVAOLC4sBFm4jmgY2RJwfV/PhTLhwjSS4ACxVC21b2p2rzWqH1+A7eqyNbaF00rtwhzSup4zYjofRsqz9JWa8uiZfxy1k5vUz6OnwCxvJmnS4bSqTzAdwPStS7Fhrj+U6iBQsHLbUnmbkIVcZh/LMBrT3YHct2/q244R9qYbS+3IWIgq1kxwHLLwWAIkoCzTmOkJjlCvxwGQCEABoFPO3dkAJRds4j4zE387661a0kBW
|
||||
|
||||
/Hgklaiw6wa3TcaRXyrUoWa0k/URl0L3qnz/Pkmcv8ymZvwVJ5Ssbg5YdcRIAiS1A+MXxvOB1ndYy2Vp+FFfSLvWuy23qZ7m/mBi+G3iHAOJQPlebT/OXnr2XMHKcgKSvZl6TWBH+8tlB2B4ZtZ5A68gyIYNH8bsefDXedBmlXLMnKVZjlkbUiN54psMMu/UujPeNOkYR3hXjUuyldLqCLltusIisNpm7rHavvgAUx96D5wP3IbuMlVB+vaD91gi
|
||||
|
||||
iOGlaJtCrltxTV4oxE75lepPazyu1zSsWkYsqxZd88QFt3z05nzZrbZMgHOs6usDli4SZExpenC1YVzBLT1B4Yx1UfVxW+JjazrOWiWF54O6iZG5/9L7ejRF4HWfRUdv6n7LEbnvEthCZek0frWErXxWnotmZcwsvexy8Q9fNCfMmapzZbdg/gw9oh+aWkABcsSMyAC1bN6ts4Gle1Q7E2OR1+rHUitK6Cb0tsNTIrDJXSRNMlcHC5dRnNJc6JfQ
|
||||
|
||||
utVvCdiyQGQoRBXe2OakSAnS8VxGzs2sey0ayr00eiHLTL5Kzskk3xqp0cAB+XxAZWK3jgldMnneI/Nt2Rm6VEQROwwa1FyQhHNbqzMJmL7WPxHMaj+zHyLSCOsswUCXMmGQXYJXS8vGPRqygFdQKYnkaOVCGUKwpF9jV41W9iukVd+YQ0nI4rhtnh0ubBfCyzc8qKm4WNZmQmFdJyxVEhWKvrZO8uakWV3rtVkNzMgqpF6OFZCjdP6vWVgG77Is
|
||||
|
||||
cnVltYyS0BR1n6tJgaaNkqxxR5hzapwUSt4U2PuZyieIR+1tSaKOEzyOgcATnqpx6FpNlUH/i1aFrMr8NWSKuTVfm0/iJ7y9DsHUCu6FbCy2jxvFLNVm5v3vGEt6gPZkrYnmYvyJE1esaOCMG1de6TjrMF/O01ddFmn+teCkoNzqo70RvW1ze2aWlO05Zbovsep39I8QqDb21FeWNCPhgBx8CCJyGW1fFxczV3XGbuHOf3I61kzjR9c5NNhmCwt2
|
||||
|
||||
bKU0pVpwIru/52erCgEd6PgU2c00bgUlb5FxeValstjLa9HOImyadmC1mV/E4aI04iiX7hGvTtJ7RSM1WryuVWfmqyiFsujEax0X0mcR5ww1J0psFVHKctcMYXUv958pz9pHV+NjWfuy0+p9SrJAbuCtwle+KwIa/dL1kTpfPvhmKSyI4j0l34t39GBgcefZ8LIiBIUmo5PbRVHY4bdR+JHOb2wQEZLxFkOOlJB7VjnnOHWUVg7QrPAFLtSsBbjF
|
||||
|
||||
ZK44PeS8QLHnFgKElACTWbgO5hI5SAp5LYHvQGMyVVNgAnfXWnnBhq2CF231edWSyAF1c26nJ+rHLu8DB0u5BZLK2cVssr59HflK+Vh2LODXMbduOx9irsVcJ4wupcWabdXuKMlaMISzAkmz+BcsKatkkoDsyGcl8JiN7GZG9HqPMYx2mVmqySx0MT4e8SxllkKzg9XxHaEMLqq5cy6ErX8KxuY0ixp7ow16Ur26HNvPgQAcsnHltITEOpmxntBC
|
||||
|
||||
yAGWgmHUrF7sDW7rFZQM52vlRk1gAEtfpb1Q/5VvMrV+7zOYXlbNQ7NVvZzN5XevMMMcgy7WpCLolAWSNh98XADY4l+YzDdhbmhUpZuSwFZtgrnBXqJ1zoeaeToqBkpkEKZ4PuIpaKyvVwQBgNKePCwir5y+T7cOzBzS3GuDQJgqxel1H1+X0XJgTUa3kJVYW0gxEkc9AlO3gNFgphlo5SSXe0v1fCLPhV4kryCLqeA5le/q4FVjsA2sLS+qhVYb
|
||||
|
||||
k+FVzaLuyXBwuzfpqagmBWuwzxHhgVcKKDjFS5w2Lton/4NHYEBGZw06rRvBWJTYaaOQoc45ouOuDSmI5QevaDq6ZwajkvG2dPok0V0hNRgZceMQcMgJcCcPLIgMBIeeg0GCNSzMJWCi1JQa4moCskleDEsRVr+wiNX0nWNuQ9U0Olk4rWX7bStzxYJyz3ZhXtD/pfB6jsjEnnmOVMgny7N4txpcwEVOArirg7GjHPsUeayflLcPLlOKHClINar0
|
||||
|
||||
edlzipTzWReGdSbHZe81nZBYVnlL6kNKTibn82ChyGLEKEDu1VwVGC8wFhtCOpkq62WsvukiEOrzTRoBKTyOssrnIhS+bmGIiwtaMgDt9NFryLXyVp7coAGOL8niAMRpAiy0adNzICVmyAHv1oYbH1a/U3HcMlrOoWOG2rdElvDyradaWMAaKKkACtIEr+Y9GHhmU6NKIC8qyNV7VYAnAySsKODNK1NVniEFuSKKueqZCyzqRvQrCcXI6HYBF3NB
|
||||
|
||||
jaaU1lxMI4LTcZ5k1OFyqLpzXmGPHmmO04Vp1TLIpWC3NIP3cqSeF2O+uzD3Cv2CMdy15mrU2/kcDKt8mRz8SdlrnLKycUGv7qXXg2oTRYpiXbyabIPqQRlqvdgW0Brf5kwMNndR61qBBkY8IEHpKM9aypqnjFCLG0En3gow+V3Vqez1RDQ4NAwOW/iHZyljE2bvp2ALIxUfgZ0kDp+XLVY4sqYjqIlgXLfSWfPEiPWs4xgEX5A8y14DSsvGQURx
|
||||
|
||||
lcKU5VghDkdmf4RsNVvcro1XbfV+VdzK4XV9IrZ5XWCkkScRixk1pdzEVX6/M8+eUc+XRquIMlY/QtIvvD5fdgdbLNZG0dik3Ens2m1nl+yL0h8nhwcweUUw5nNmlD9cE4NYPy6uxjFWPeSLstp4IPJZIo0bhLDXM7OC5bLhZWlxUrv5Gi9I6j3rxNoR80RsQhyLHvFXuDOlwIIxGZWc6tY2pSo/nV2aAzbXMyOyikgS8WVs/zXEHaKtes1QYFrB
|
||||
|
||||
Gh2Hsk4djDbVhTinxJQEY7XzKNo7DZZEe5i9OPOsMR2aUzyq2kg7m+3ssaRaP2PXSwgOyH+oUmkOvUaYIHdRvVD5DF8sXlD1eTbDAEj39k0gUGE4Yq3C8gwymdvlUWJFEYtpUxCc1ppRQdmbN+sf34y5kj8J4tiQPPvhKjk2StfuR2wHxlmrMsIM9O1zxrjVW+nN1ZftSAhV38jBArRH4oTABOA3lL3oNwxrkEl4FzQcDo4RosTXwdxNur5a2lpd
|
||||
|
||||
jc9d6wfkUMZji0A17IrEXmuuArqHwwuoYVXc726x3JiXB1bLo18prt2ZSCt7VeMa5//LWdqqWHHkCSNuM9GDF9dyq9r7OwUKi/re7Khrg+XU2t72ZdsTb7UrL/nXwYEc1aS7b4dcmLnsQJqMhbwnnKXiVbo2IARiZaL2jcJFbdNSZd7icOgsHU6+emnZadzQk8MTVeGyw050AaVpWtkvgRaICz213QI2G6Gx0NIEAi+rydLR6fwFHC2daFww9QCw
|
||||
|
||||
MK/z+QWdgfnNSDa9Pd+S6Qd0nEtSY/kuoZYYsqGwYDmtNw6x+8pgDRW5CUnOvdaYDJzupdb7fSPT8zBk0x8+zeUGal23PTVXbX6EAu54HLumm1Q1c09awMH8EdG3wFF6Be+mcAIEuibg55mHACnWcK7WZzOsFTugS6aqyOoQX904+aWdw7Fn5a8eVwONFp6vVXa5f6U4Z1irrasWCgR55IzoWP49Xkypy5EQwwkg66lxh6gZzRJhXsmY6jYLRhmL
|
||||
|
||||
kJDoH0NVwdM1DJ7+YDTmyYt1vog3SSjZxrudySQOiZs+a34F1WTpDq8eud4ZJ6xmvKU9F6mPitQ7sd3pPelt9ggn8VElv2qTa8Z46WornHYvumYPEEvevgQ72nd/xhw2FtBuoRvtMQgPOwhrqJQPFhXv+r/VhMSIpZ889bi0nGUdQjys6dZxc6Nll8K2hXdcvK1cb4xgVm55n6F5r2RlniSGRKtLlwvkAQwQ9b741D13ojtUW8EvO1fSGO4emHze
|
||||
|
||||
yrl71Ad0fGVlTSKDhgK+KvmJL/ExKwACT99qpC2y4yDa0Rqic6B9a6HrNrKfcdEJ3QFoMmndPNvTjpZSDRnLoptAxNcduN/gielhYPEWyMsRldLqEzrCaj8MQIvV+JB5dKPUfCmEOX5VJgWZWfWLVvZSoMWkitkZvXVK917TrlJXzl2jfsfHh21wZTmTWUYt15ZUyKtdZRGXVlhsqCvvwK2h8a4r+tWRnLNlcua8Xprb9L7gOyPktedi+BAMrj0Z
|
||||
|
||||
Xd/xJxFUAB5oGSdSMRmpxpIvS1pOgA6Ji78O0t0d0nwIJcYqYCaa90oI1dlq1xqwpxpdWRMvl1eUa3u0OKoZ+0VbRLJPtfb4MzWBmtxO+vCQH8I0XpwtTU0G8GsaiLV85oG6quDWX09JWLQQQGYODYwIhlDHYxz0woFTDB8gVTtWuNElfB3O33efFgnQN+sy1aK6476kOtsZmp4vhGdxy9eV+vrXBQAkjAtwCnMD1m/OK2XIpI/DJOa6lVg1CaH1
|
||||
|
||||
h9j0uctiz3iovtTyWGG1sJbp062+ruD4e778unqZHk0zUV8jD5t3yORdejq8601/rEoGuK6ioA01pnTXKwgVd8tothxwCD/W2L1FMB7uupFH0FB1S8Ab8zX4Csa0ZomJil1GrazWHIOIDbtKy+Ef7RbO7SiCJOhky7gBLo48Ox+bplNZa6+e9SbzKGW+q3n1tr1SYyi3TVWnIz5R1yzbS++igb9VGcVadm0MvR01n3Nu6HA6DgZvGo6DlvCEuEAY
|
||||
|
||||
+BMbOSETK/ZZwH1kxwPxkaSC0UQOJroA34w7JRa9S/olp5mqX6yAHV9fyC+YF1WrYUKCAoP1jqOMeaMCNCwHufU5clrwJtV7TjaH0UUwsmZnHZa2oB2LR6mgvQwu5KcgM/015Znh5PUDcrM63+8PdrmmlhJ3nqGS3bbUWyo+1tjCoyDKaLXciTcGT18CmeXUCG8HFxKLeMKVBg/pYiG2il42o8enFYt0lYUa2XVxkrB/WTOuJWJk2Wa2O+Qk6icN
|
||||
|
||||
46WD8ATHehsrqrXwYoCQb/3bglldprB7SONeoZ5xVeXcPzExGn+tiStKUmwN6WCgqBMeRXADD4RTRFOwqoBD5Amh3+ADhVoQbkW9GrgEVY0wxDioYoww2sXOjDeScwSRtYLKvXQstq9YMTawSiKU+GFGAUt+nJrTshC/YURRO+uc7Ac62TV9xL6ZkGBs4Kr5ZlPJxwbic7qMN9kaaGzEckvE2EIwqb3BjraBrkKgK8Y46uVppHjdtGIfDcog3V+t
|
||||
|
||||
4wob0L8N1KLLbXOwvxDrag0Bl9uzIGWjOs9ecP6435xdJi55bkTMAKwvYeCUTMnfWP8o95ZZc+F2jNTVNWa82yhq9Vj6B0fI+5m0RXY8sjgWj5z6TTpmo3OjrvF44q5zprWgnSlJolq0EBHRhASheAUeR8ujNYSRZBGBzZkiBS1GKpG36MD4bIQ28utgfAgGws1rfrPqX5a19la2Juk1mvrXbWsmuRVapcFTDTY+Q9g/8xDtcpKvjxiZeTdWtqsb
|
||||
|
||||
SxnZt6VnNR2S7UIO/Wr+0sLM0iLbonfpOzjsFY1B7dXl4ZLs0aQ7pIHaLpDXUberPcOTlYjqxfWwUwcvGRIiHArRQNHvedQwxNyuK+ZNv6t063D2HlJJeuhxfSNFp1ikrJ5XdmPJXWV60rVkEbnsmg+0f81uMk1W8bY9wUDgvenim2A5ZnTzJzk6gubrLEHqb1z/pdzk0RtAlfeoxmlrA+IJm+pMEvo+q3ER++LroRH4sQ6g6QLhIbvszuBt70EI
|
||||
|
||||
FASEZDP1KYbhxYt7QekZCINlfrT3Wwk1NMCdG1INuWrivXo4tyeeBG+K1lWrcCXeCm6bFXGRP9OuD5gRxwuOSAUBM11qvDIuHGbWzjY/mXeR+mW0B61gGBdrK0+JZrWTySX7+sdHpVk9Vlt7jExX4Ju+HUuG7zGp9C3ig6RGvCQkGBDPFsOAqhknruMPjdtd52trRpWdQVYqjqagjcEDYi+EV31djd+6zsl30bw7h5smXaVkfMg4YbajoLqv4oUG
|
||||
|
||||
AmwMR5JwbHVwJtQgvQwc9SveNcA7G9P05YYeuCu6B612L9WlBZqDo05ht/LRY2WL5rjDYcxDqNDO8pMoPIZAnCiZDl/me0LiGfZCuxzy3tBgxwSuXzfNUTfKI37SLZyqC6gIufXuFdbv104rXI2wMvWzuAxjtsbvAU3KMDN+lSjIHxN8drCOZMuw1FZh3bxZ1Mk2AKADV4EawtT+u0WwY46I+4x7sOJftSineikHUNoPxtVsYP14ajzuHwIDBkZm
|
||||
|
||||
K552a81OdgqvaD4L/cRaYKV0ZZpKBUrUZT3p2l/pN943JBv7FafGyyN/iQjE2f2vbkfdC/7BG0w1lt80zmuWcRDjirpKU7Dwxs5Dd8my/Rx0To9XOQPbfv+bSsx+7T5Q2wLEPadZrTfF4Ejd8XcuO3hf6iwWacW0veES8DkBHDdkf8sRW3DguDLP1c1Y0MbCibPlW7xtSNYPIPZOIRuj7qgRvdjffG6CN87twazxch4lP+oDUcbe6GjmqxigfKty
|
||||
|
||||
xUVpkTAk2/JvRjbuM4w6h4ztQ7IStzMes2eI+7K94p7ZusIWLNqw45jVe0bn37E1OdSFZ/5jsbFZEBpNXxYKG8TYg4GSzGGwY09dGK3BN4GtqPXJJW2NuyMxcsXJLIkrsjPBmt/iQwV/VsQ5D6htIsBtxhNRksUoVNDCSCQG9AN4BcriUMqs0iaZrFq/es0ybc0WIcVB9FubOFuNQgUiJ/aGftdrk2k5uqb3THhZOaCil/enpmSMtfhHbIIqujSl
|
||||
|
||||
VcfWrwhZepsnaaK03sBgP5FWnasUgB2/TYnRHervXXtgnXuYlYB+mieDJZM311b1Id06CoP6bvbtZzlhq2B9WnyjEZsbSfJ0BieVm4ypA7+kIyQ/3/6ubei7N5CNu0d3ZtDxy/SF7N402kzN8TrSAdE66wZXdDOyQA5veXImo6NQLmWSug+6y9/22cAZje3wm6NjfCUoOkowcRsyb3w3iGM94CAiHRN+3dPe7FF2TDZ/Q9MNuarsw2ZfowRZsrfy
|
||||
|
||||
0cHrziJQy5K7FtXE9N5urvk3Yr27xewtXcltsWSE2aCOtzYzDeZdac18VbiqX31vDq9NNgGt5WzLBBKlckmSqhtMAvxx+rQIidH2vhIFeQkNXtGOcIAWc/T5xZLyEqaQ4Pjcqm9eQ7ILf1njivWlf9S4oNzZrDfXdIvMwaROMmoLgDuy17AtHyMFHY5Z7rWU4365usiZFg5HBquLwEnVR3ULuD476BuQhyoawFFfiZ969m1nwrbDWDZv5fVfVXIF
|
||||
|
||||
3f8KsFZIiZZ18AGEVkRWtcweHgESQraBxgrlrdbXVE1NcRom1nN8Y4FfnYxmuWrgG/GZneb+/WkBuH9Z9kw0++8AorF8mLbIfpCttiy+bLMDr5vCFgbm7Ye7hLWB9ABlzefT1eEluNpeDa0Hpq2syS/cI+XFMx61YNTTdyCcjh4iAsgX42ATUY7ln3UDGQMtRvqy9eqN8DDqbK8pzc2kOasen4SjltfrdzhDWoHTezm3J+oAjMR5vuun+bRq/rls
|
||||
|
||||
Ebl02dot+Cue2EkoZBL/arYU6Q3lYAdkNuBrN83EGv/EfN057Vp3r/p6l2uhQfp64wfbqNDHiy32CwYUfVoU2BTsQqJM2lJZwgwv+s2LAYmRM0cFdH/QMVklGnDTEI0diay1SEtpNzYZWE+u/zanVVMVmzzu/4+ZZpADJQQYc1QAEci0xw/FnqcmAV3q9M0WmwtLzfjTSbULmb5hYcBMnPNp1N9e/Ob1xGc8NOueya68ELGQ64SaGCslF6VbN8O2
|
||||
|
||||
QBHlzFt6NcsW0JN7hNyinMhUfetZJfZXXetsPB0iWv4qdMyhVBNl8imXElOtbQWTKmkmLKlWV4Pwdwcpf5Zw9LTpzHz2ddYwxvyXb5tSw73rk/JcBmWUBmrmtYah9WuTPhUiz187m+16tlscYolU52DXkznfSiF2/Zp9mO304G5NC6yaaeWdp0wct42xUK0TPUs/xM9eoINkD11LITr/LYkC0pN/ubZP4+FuWnQmo/d7Sn09mjWGgRW1i4H4BHVA
|
||||
|
||||
t0Y3hg3dZTo8VJBebyuWwk3T4pKW1ZN3mbEC6ZPNI9omy2V1zkbf3WcismdY1i3wK+kMogy7QalTycJGg2OWb51yAu2CBZZY/+lQ6luw7CeuPNMX3Z0ajlb5nmNxu0ccpC2uMeHrE1GvlIMdHkbAGm5bWQtlRag16i/Xjb4KJr7AnK0HyLfHzbSM8ZDpS3rJsspASPUXBlArTE2Nmt1LeUG8nF45FIiZeAO4RXam6FFXwe5RW65uULZh6xC8ldRM
|
||||
|
||||
0G0AMFbuxDdrh+o9UOHBivYjOVm0MsIXmkvqgzlZeeZMQa0yXmIG79gHI6yBbVdligbGWqh5P7HJzBTPZxjFUSW5q3sBb/ShrNt8joXX+L760zzaTA/LyYsmcYS2JsLTWw4N2+LPC3PyNIsFh0hNRmLgKWsrcBZuQqAKUhciQXih3eiVtEOZoQQprgpU2FVsWTe5m2Ut2LT1U2xsuTxfZG515olbzE3Kut+jYXi6IC1QsdjpjvxHkfnHMyQOHYGq
|
||||
|
||||
iksvPTbHs69NqhbYOHxiNJ7LvTWb2yVTEAy51vAmdBKzgLQhd7HbMlU9RaoGy5gZH1YNHc2hQeV9qD/Bbvsnm53GENyyhLvhTehZnLqtePfA1rWzqCh/8WK3rHAqrcpum6N2QbGq2hZuNscCU6LNhBLGqLZ4x5vkrmwb3bWMGWmJxsKSwoW/St7pbAsH3ZH+lYa6XSFsepZEXz42hufOHZF1s6pvjmIdTfy1KQqlMRMccAkqAqM1JaCE2sBBgkGn
|
||||
|
||||
zcXvDYKW0YR9WYJxHLJsPrZxWwq49gMX7XhZ2ard3m9qthvr+KmZgOi2aqqdbNDPiutmedWG9aUE5OtpVh7XDdZsargmje+7VNLkhLlZuxn3T5eEx6NlMLyJ3YiAJyFeuNvub2a3l+OfkbzW2xA7agAH1kiAZAD/eOV+RzS3BhBbLe+XXXUAJkRzXGXvMvLzfLk5nNozMVRHyHHZBdK62K17WjErW9SMFeNKQkO5Q/QWDJ8mIAgub86eUWubEY3z
|
||||
|
||||
Vv5DbKaSwR/g9dPXSwXcTKzEe+phErSrnugv2pH4W7+pr4JdcY5fid1GSmPmKf1N9vgRrFiVNlAIQQ/0waK205vS9frW8qtijbrcQzGwZRdfG6dNmzbH431evgjYDU89WidyxRApuWJ0L8tSrQDpbdnWvNtgbbtI5UU20zPFm6Bsl2vna5eM7g2sa3lbW06ds9XpytD5HNiysXMeNaa/hg9prWa272NdNbxtlZx2uNUDAOj6pnt4RGdggiEi4N9B
|
||||
|
||||
nZhS5QC6l9ALhm3C8sOUH3okqt7FbHW61H6AZeMS2fJ10LZiW/2v9jeDS/0Cq2FGiLUuUrDdSUDUCD6DlhXx1tN0e421Yt6ljuS7qauxIN7yfISq9zbiLiMMDjtgJfrNvNzqG0kM3hfxR9XEEFfl3iTN7KQebOG3/GjmLVAm+NO4yA98b8Vc/qlCridw2IB1HmmJVvKqW34oslyjKE8919aTZG2eZtoqe1hZp8z0bcQ2cUsJDY16+OlvJr0E52xX
|
||||
|
||||
0SZvE+D8ObwnG2XptdLdJq24lo29vXM18PC+rg/g3CqR9zcNHZZwAvqG2XCvkDKJyQUt7Lo+dTYEo6g5jFMPZpIomkXaMS9ba9GlNqlCcMOAotyHThXWNcs9cqyo0dttDT2yWtVssTfqWxBl+GW+FhKqmhkl1drgUaosHm3upsNbbZ2+l57mzjstfZtlbNfm21tuaN9cWAfXk3rqed5ZoY9Qjj7nOVyq7/T4FnHpPCKuaMNc1PbQDmwobVQ3tWHW
|
||||
|
||||
pMzaym1ikDjCtC/lgLzMLaVpjQFt1M5JXVXooGwzkVPbgc2LPMmpdhVo0N3dblIoDfDR9jTg13LQPyWAARbTGLFkoBc7IybeMHyDD55bL41tt7rQpG2G1uPrf27b1Sk/z2knt5sIDewW0oNhvrEmXIMtxIhvkLWBITlTXowxvKtfe4CBto8V/k3llt2YZhK2Tes+1KA7QOVegZTQfik7YWE5yw5vAnrJ01Ao8fDoNj7GsRTZo69oClbrc5sclE8d
|
||||
|
||||
v7/Un9BZuwyxbevEyxcZpvVtid8fWc2sRlYcssn19TtbLS5lKReqnVGIpbch0OpUpj4Y2b7uhJ9tc6W32ZvS9d2K5ANqcJzzXWA5GWYJW9Zt4+jtm3covZ5NyFor7UZEy6mm8Uz615abLN3QbIE3Wds4JZvI9smoGDxhmYP69wcIidzK3393f6SIkrfyE+gzxhuV1aymIEtpr+a3kpvRl3zXnd49JbiW+Zl8CAoB2c7ONqYG1U1s4jInm5h02xCC
|
||||
|
||||
FRokQJ0Yi4MjIMbbYLy6NiiQbivVnRtFdbOg8LQAWbBnW31sniZZFYZiHSsAwr+gzzAbEQL6TLCAANEczMVRbH25sNjA7Ow2sDs9jvbXc7tkcY+nLASEDwcDW6Cuv1DSfqoCma2sCEbKGx6LKinsmF1PIXHUfK5JTALmp71VaoBmyGB0rVgdXTG2BRzEszlfLlznU7tUtnjpdxlFZ/uDLE7SQtZhsLi1xOyVzce2mm1xZoIuiWGle9eYbvpXC4uH
|
||||
|
||||
o9Zu69I2JMxtvcLYm26KVsKpE1GRBF1xmkNsDoAKelC51YLCOFZRAqSOIryNHChC17a4E9bixygq83FmttMfxE1QWttbYEWO1t67a7W6xN9XTwpwbhD47D/G4mQSFR/gbF9p0rYn2+9NzYVXP69Z0wwYTY7Hs+qrr4zYz2JdvLlT7tuLN+Jj0H3xtZz3QcN/urZF7OO109fPdrEd+Pa80HfatJnq8a+hNsSV0XW1dmFHYnaBZqolNHzr1fwESUg8
|
||||
|
||||
rZqygUlfQPwFBDZmazPWTmg6OXf0uHTqKkwa6UnbVS3ewvIxdqW/rt5QbRuWI1h26k+PQmoqNVO2wDsSW7YsW4F5m/rb/nebUIyZWTsgB9Ubj5S34WvauxiXjpJw99IW3G3vpEF24ht+0I36QLxmiicbKC6IEQG2ezpg6C2jleS/AUfa/tr0JMQ8cSK0ilxo7ssWfjvT6c2CO6Gjo7GlG59PANcjoQWpDSEsmZFrQaDYjvJGGFZNZC3frQULfXeF
|
||||
|
||||
O11vRCbKTgF9PpT9QEdoXLUntMVXA7YJO06rZEN6GGtTsznQ/ha5pp3bveRu3oUCAjm5gASQixuBHcCkXCiounO2X8fXjDqA1HYVy8cjJsb/SaFCLNHZdG7nR7WFM3q0v2xDbji/ENz8biQ2sCtAs35IIvyRslbvyddO+ik62MztidbfYcLmt9Tb3i3op8HDE/dYx5EZL+PJsdgXWkYGEP7o9cfBfPe+M7/23ilMIMxV84Te5U713qSUYjUdi7Zd
|
||||
|
||||
6+UtW63gjROTtJ05GyrydOxdgOUmupVU+fpm8twGb3tslk03ERleuSDDfS0PlCfWkm5nS8yrUeX4lsZJZnK3NNmYrdepubiP9SBUzqPM8KBWQKyi4IP3tnWw3KYTp2FVvxOcAZm2N/GZLdmgssQHb8U6YlglzZ2231TVInWQogSNWgrfm6pWjCpdBY9ts1bE7XYa6xjaBXXxoBdtqx2W31M5pd6+GemHbJZkIBATUeSIK2l0gAFAL6uOTdCR1LwM
|
||||
|
||||
GYiRV5CUBsCYVy/PN+VbVE21Cub9aK69dCkEItU2tFvoFZ0WzLUuVSKSb5tClZguuVLJ2YMtgXR9v9UAoWyGIwEZWeDfLM4voQ/q8twxtY5CpH31YaP2wh/Amp6x6h6N+bf92zLxy1bV0XD4PhtdVwbulhqI/0GEP5o21Q/jPUx2WYYrnSFOTDv6zB/Ln+9NW14MHQ1+zcLrNdbzDMBhNY5QG26Dt2KbfvXUyYXVaIZjSLEHbjNWN1tnHZPq4968
|
||||
|
||||
aI8WbORATUfbQOmYn/6ZKCIvWc3DVvtIAaK5jd0ihPMyZrW8v1x7rGIm6kCKLd0SyMN+itiPayyWAnfWi7X1kE7PR36lsslYkHd0A8tygvnRtqaUWUsvrVgfAQbnrkv2FaRs8rNy99OaiUeu9NoTk9O82p5bPXESuj9EeQB+d1ia4UT7uwTAFnfnKpfZZRTss3LoxDrYcjlojb4g21dvQXZAOwQe/FbW83CVtJ6ccm13ZmW0qg2/cwsMcKybCnT6
|
||||
|
||||
g0jJyCyhXdZXJJB+fdWKz4eveoYAGZRZl2Fr1XpRVB/vBmSGastF7LagttL7p1kyie6jDPQX82sobbd6LhCCcA/S5RUBsikDcFaw5HGjfUCSuPteli4MNz+rpm3DpsgVoewzJ0Q8TgDW5DuTqZJWzL9SkzGOKbtg7xGBY+kNzHR9ewVCKdXfoOBe4mS7M03HaOD0fyXa7+v9dck3SEtImJcPdLpd6rcm28jvNbYzLgj6mOriwFnuy1MKoosta85R
|
||||
|
||||
vKh9AD9wwoBUeidMrbM2tEvXCsy+J74cLMhRwTysXLpgwvBd+QbNxG6+vd7eQG3eVsYz6RoPxwZymHbVRCeCLsNmAfz3Lxt21L50NzBNSFgkN6dHozepDOYfZ2n339nX4evJNuXdik3Cxtqdp56xla5CZzZlLfCk+kgSP+AJpoce9RNrViJqDJLV8VFgF5DWr5nDjCs3Z4urorIiys0bYuu8jp7kbJnX6KvfCpM+g30FWIoDzCOxf3vpu7uGFipk
|
||||
|
||||
x2mUYfXY8622dhvNHomENXhTYlYJFNhDu0scF9u+5YogAfXe+Nx1WkpudBZSfbv+JKS+i8zcDI8mAszO/ckAIoM7V53IIE87FF754cC3KJu9xoOTLtt8jb7r1lf09AkJux3trIrxK3jOsy/Wiq9ylQhg0gd6gIv1iQZZqc6ybsd68BuW3Y1ayplhAtbQW4hkqho+K+6NvQEo02ilKql3ZrQOdgQrcVmKWFIMCEAIG4bWUSRlUnqfhwg08HwULxX4
|
||||
|
||||
WoauQ5n/2xjd0gtiq0wSptIwSlK262Rz8jWC5t79ZmGzgtkzri1XwR0gdG0/Yghta+/HwiQrPyYZu1bdwwbTcinmnV6e5tUHXFhLh2yx8MSucVGBylw/lnOXPil99LaKcUm8nrDibDx0Ukux6WyR+odw13QykCsZoo5KllGbXgXJiv+beneS81Xclie38ai8EZzBYTNqbDaSWVUs0qf9u8pGvH01ptrTaY8ktIoDoVB8zQAgrp48lKvCHpwf+XBA
|
||||
|
||||
36vbFerAAmdfxMq3w1bv8ZcypvjGsnbPp2Kdt+nY165ZZidLA3ap0hxqAGLjCGd7SKRmQJuV3cyBbbdvTpSN76p3uOeFE6QOj+bZN6dZsD1Pec8NGszZjOnjZtI9dNm1fp82bhAb5bGBTcdXUiYm2bkekXP14ZeB9Y7N/2ja+3FHvwYrdmycS1hmVWK2+mGPf/jXBu7UbZMnH14Y7mZSWBYIi4RTRmnKkAAmwNoQaFx+Z6dflLSYka5ltpPDITGW
|
||||
|
||||
0wuVmjlVmRvObGC2YHNZ3c7W/919Wrfe2AxhaUEN9OJQnUqtmb97ucPdbo5yRlubHPHhnkoTbvHdDunubX1GRbVrLJqAPygKK+GQJRHB+pS7thjIFeilp2pNO4VYOmW49zG7N1UYOR7bbS9RrdmiYm825BuZ3cUa6rFq67nmdAevQiW8AdpRPxB1XB9YvRKYPu1XdgUrE2EfpPnMofm7fpom9zv7XQMBA3fm1rN5Ud0z3gttYjZvA53tPAM2IB7m
|
||||
|
||||
F0iJv/H6BAh5CVRObhujsGq00Zkq74+bzOAz3Z/UJwyEqzKHirNs7nZO23udhqbtCE+gic0IyCtFCjGyN7dsEL3Pd7k+O12J7jW2NwuDHMyFeERhhbsy3ShufTe5/fMsxUJ7C2GQPAvZh/UHNyKTPIMkZC4B3/eDTRXm4krpvRrGmDioqIraaRBD3G217KWxu7Pd457ro3gIvqLaquw09mq7fJ26ruJxa4jMXY6XQkFwE1GNkO60NoWXp7bz2mbu
|
||||
|
||||
LhcLtVRF/GzIz3f9UOLdg2wn50whZWHPOsUOptWxM2h4zgVn6v34zY+K2ypJ1b8yqglvoLMfU6EtyBZ4S3aev+7YQfZM22DdsS279ud3d0dl70NoI5wAs2W7/PE3PwROeI9pBNObJyIcFeU90gtXHSSHsNZG1im8kipbbdbgsvnPeoq7+1q57fxF8i2KBhQoCP4hiTwC7uiNueXro3MZ8prtL3MDvLpYL7ZT3U+lagnkMYUDCGW+ipIQLDPHxlsK
|
||||
|
||||
hsmWz5W6ZbL7jmAuOOegsjwFxZb3a72AsWuLT213Ny1tpnqmFsFbtWHTFtS2xxZ39luf+0OW4sekt+Mb3H8tnLZLDT7MAlYk4MRCN3NKCSXctzPtDy2iZvsTpeWyZ62Jo+ticBClau+W6Vq35bPy3Vj3YqsBW1wtu+zwt27bae8G7qOmOLJ6yBd/o4jAGF2u+XG8AMi2xdPtrmzq3tdjFbQ4Z6n6mvax3mAI/G7IdbsyNWvaoq6ZZ7o7/3XtmvZD
|
||||
|
||||
qaQLJmV664lDxyzLxZiezJZfp7jc2RXu1aRedU9pvdJ2I6lA5SRq5WwyBt97YL2s9s/mdnVvLBX8wX+MbVnk0W98k1s2oojw7Xhti6YZHYa9+NNChEVbukPbNe1GigdL6q3Fau0ba723vN5AbiDmITviByvyg12B5txOwNcpXvfPcRv2pWT3NmEJsdPNC2i2mlSVjb2Alvkuqmzcz13Pdgwm6eMxzLUe3Bt6GTPq3j7UGXoBbYGt7dt79GM3ukse
|
||||
|
||||
iE/qN2AlnBG82nUbWiS8YdzEtIUHm7seyKTW0u2UU96a3kWOk6ZNzO3dmUryr3p1CCESWxEHVGuu+eJiaI7Jm7rGEqXWuHZmFCKrDm8q/uVqe7q73H9oZuA3e/wubjVHTHX1sIXegOxjV8EbfbWMPvGum/IDU/TeWijgMzY0veve1eWvMp/oLznW9FukLUutqi1K63TJ5SXYTs5NNod7Ad3FgL4HKA5F9HVdYygAnvr3oWvDbfrBxiYIBgdHQWd3
|
||||
|
||||
Kwndxo7pn3VbtwffXmzi9gIrMQ2qHswJfRq5Tt1gl/xVNj5adlyHT+RcShezyaf2SnYRTTUIPp7v26dssNaqg2zSF5A6dg3Vx2Aro8c8ldpVz3ujs1b7yAIyMy17ZMTNxcFG8zUJmBh7MPRNexIPvVgFriDB99d72oGR8Alkuo207uwrbUB3ittIXeD1tygKyOuOLk8jrxFcImGKNztOF2qp4HiS8++KNyjhoj2ZRsoMwRVmrhkjJIm310MO0unq
|
||||
|
||||
/r222138apNuZrdyOzWZs4kfLpzQ4epXwFIqTNHUtjFs8Aw8VZQPLUYHR0YhDPvctbxhUMUDF7Rz3vHsWbcLA7wAM57e73ddt0bdBOypkQSIBlwdHgf3mpDLzh+7YrdWXntQde9e/od317HvWQD3ClcMbj9RvBJ3fSpru9zZmu1g+nuGjwAp6HWhy9EIF4YBI/g72ERHjynfrggCQxwZn5Ivv1aI0Mrdk175n3FvsgiLy2yjVmz7RN2alv9hdXu3
|
||||
|
||||
w4cFN29jmnBWOBde+lbcVlQxAXPv4fcZuz697irhh3wbtPneiVevtuz1zRChNuZfQEewUMes7XZ3THq2esG28Y8sT6I235/U5HYi+4g9s4k/Lx1R7Py1eDLUAK5eOEIor47ACCsvadtej7psIfvwLcGGzq4IX7ZD3louK9e605uW9y7ysXvRsk3dQ+3u0TdQS3yZ0h7XQ1SBnFzrMCLKLbtnffeeyZ+h9tvD2Eyg9TKNtZrNxxGr1KeYG3fY+FoD
|
||||
|
||||
t4c7I5s1LvO9ZJ4BZsiHbCt0oduhf0IBaYsB0glIdGMoK5DaCB2XJtOi9F0xkdmcS/fUxh5jz3W9Vgh/dy+7EB1trsIxLXvbneR++V1oJ7V123w4H7wn/IsEHH7AlbBDSXloz+wR9rP7c27F6Vc7Z3lB849gWfO3edtajZC27M20S2LNwRdqqpphPlEQZZal0Fw+BVWChcxHI1TrXeAZKOJUc2o8Y4Rvb2W33XqbwtEva2t7XbwGXarvZ3b1u3w4
|
||||
|
||||
bKu2id2didHLjUBg1cOMnE31fuH3bsK68V3fLeqSHdt3hN0e2t1kobXh2M4U9Rs925jNhx5yZ2/dvozYD21Wi1GbdsjM+0aT1RHeHtl2ryESaQO4MJj29+TPnb4dESw24zf2dtDN3D+ys309vpKNeddP5ia6rwk/y6TeS2RkhpepyAOn4JisoASkitiDszak6dpvGffnxYy9Yf7Fn2+AiLgdKPPZN9ZrqP3vLsvhE3BhRbIEgrTjEEOtWyRzOHGK
|
||||
|
||||
AHN73qFsNzU0HeX9tjxL33cGUc7RQw/t3enLzb138UqwAQBxvt54JW+22oY77Zdu3vtgND6Y2L9s0pZFzcF9pfbZ+2Kwn2J1TmPzaq/byU39MZ9hKJXoRkdoD1SEnG5NIk80PT7IiVHZmg+hLvZUK9L1/5wyd2idvh9L/qxuEcA71V3IDtmsY2+xdNmWptXFMeNPUBOAin9p679lynp3Hffv2qd99f7dL2uyHvZr4JjGw2UNBB2wdtaDpQPiQdnE
|
||||
|
||||
7xwS5C3PzaIu97tinu1B39TYrktq6bQd6lJjB2lXv8/p19WEVmvWTU51gJSUulJAzDMkAIPF4xzPO3dugH9zL7mN2kgdVPZTu0XVnozjVTEPvBceQ+yvd0m78f2fvPBBNcZO5tibwh+U1pxHHBas0CSKoHmv2e+se/Vz2xVWP0rZh2AY1s5baB94d4Nj7pHRJtKnfVGw4d3elSx2ElMsg1DA7Yt/HpxcXUAc6QqBB5iY/rhpF3PbMH2d4lTa1k8d
|
||||
|
||||
YR3wWsGt2hBxjNlUh0R2j22kk15XVmGkSb78StH1dA600l+Vv/pY+M6QMSTcTDcrhuAhWBSEHuffdOgnJQb8OXcqxFL+DtXerGOfbWhAyaWiLA9kMGID+trRGhoPHJA8bWwuB+8e7R2f/scjb/+zP9nO7AOg88nfPFcsLN7JyRtshk/tr/Y1+8T9rX7Ql36J21fq7LcHx2qrtFmBV3Y9ZBLfgO+E9gJbsLWY9O0hWepiH9sQagTMMIqYnRho4474
|
||||
|
||||
XWUC1nWYgAE6eBi0v6g1T74AEVgrG7bOIQ2AoACaQe4yWCi9teNI2bxv2XYb266d4bLVGaegQAnf8e9Xl5e7Rc2Zfu4INYzXpVWCz/arD03T700jNgZpr7Ie7ukbKje4C7KGzE7OEWXaNXeqY8Hid6kGPoHBm5EnfYB8lQiPh/WN7jJjSLxiOKtJJ6maR37Nucd9dZSYaZrnw36RvT0Aqmy0dhrtsopuTtCg/bWyKDg97s/3eRveKv+/VxcDMz0P
|
||||
|
||||
RWQUSnaA27tivRrRP3BM0qWPdXbHSmM9c7LlTsZp1AU5X9jU7HgPPM3anY3B7qdw/78z36fsFmgwEhLUHzef7lqRRQ5rGuZKgMQAD8BFgfvGTtGxp1qibvcxeQfN7bGGx6dl9bSH2dbsZOacm+3GbPNXJQ7hOZaRvbk7KFzq8oPoAeuJdt23jewXjCZ2dx2Pp2wB7bAA0HJ8S1TtIIw/8yxiyUbTbjczvRWfzO24JxR58p2t/vnafos8HMAGBOY2
|
||||
|
||||
oujm9egWVrqgzZDZ34PNh8eC/i2dhMLirKJyWd/q3S31ty6+EJ7ezuyTf7Oyw2o/75j2TcE8vHwCCYsJoAdQbyFz3gJDzk93C0wiwOynuK3ah+wyUB8HOW2CysI/YibqEZsMHl5WIwdKNajB+eJuLpIdERTuZaTDYV6yuMH9X2z52VA4VB29m1taipadqWAwY4hhRdoUDaimxyE0Xb7e1x2zhbphC+n4R9dzAZmpkS+dz77dupnfge2ErPi7zFQ+
|
||||
|
||||
LuBJa4u4Jd9i71Z2leiiXbd2+JdzPtkl3PAcywZsBz49GVV8l3Pbs/lZF2x8LR0lKQbdk2JQ9k23T9spTolsXRAc3KqAEI4QQiYDAfy6U+goADEIXVAoum16N5qHRu4UtoKIC0glFu0TZQW8bxv47MjbF7vVLb7C0MZ4ubAxtFAzXXE0+GDescRLW56yuXna2qyHRf0tR93yZ2+LeI+xGnQadoa2gN1yfaV6M1R4atQiWfrsRkqp0+xFgU93EX5j
|
||||
|
||||
nLQ89Ww1XaQ1c0Q7TXHmcDnoED0Fk/lGsJtNBEJQFtrAqwQJdwguGalX7mFTT2VtRjkRMNg+ZO8UR3abid39pvVQ/M29M6kLU1n3Xwe2fZyB7L24NZiBc9P6FCFLQx8MxIFCZYOfRE1aJLE3oQEZ593Q2hsfZIXROixqd/n3ZcaJjb5c0wFh9zvn20xtAMeXWw7VqE9EM23V3YtYxh09DZAemzGzHvYjekC6NRufz02SzYTJGp/tZIAJX8Weh1AB
|
||||
|
||||
hEDZuHxQPTbNPL7DhNg/tG2QSw8rb3X5euYduH7Uv9TZLWQOUeN2fdK+z9Dr0Lz1a/eUGiWrK5SVX+mLEhQYfxJCRO9SlqY7xw3IFnQtYdi4mG197+8XFsHRjr764Meqb6WYa6v2nHfBex1p9ULYJHO2ATUa96C1fBsID0ZXFCCnh8IUK44dURdLB9PMw4TI7ZdsQbHXL95OHXZUW24+tkdGd2CXvyOaJe5HQibovlrtjjIJVFO71m7Y+JRB4TtT
|
||||
|
||||
g7rWOVMyfb5xm0wstFLtpQe0xfl3W3FhaAVIUuwo90T74m3+snErI/jSlDomHs12fcOvIEhuwyIJUrBlZtqBElDFdG2Z8HQueAJXTX9TUS0dG8jQ1427LsdUoaklVD5BbL0OgukheYah0Cdzy70v2DgddcFqKHvilKq6cWxQ4lwnbTGgd/ibF6wSp0RXdgB1025ubHc3E1Xqw/TCDIXSCbfK3zYu9fZ1G7JGwB6B0Po0hvoToQM8g7+W7PsdNiJf
|
||||
|
||||
GPRumY03wMq364dJ52XO8sixtrSTW+YZp3aXtrAZwWbn0PzpvfQ7yBwfNjHF8YZ7tuBXaaRWaWFjbpq2tqvzWPbxtbdne1U1co7P9RDAiX3HUa7ExGhSkfJb/MZZ3V/LQt35NvwTb1G1eltus1PS84TsPDFJGhnQoVeHqUYisgNVJn0NnLrLJ58yVuw6baz/V59Vbo39OsFbb2B5GDvuHfDg8Ft6RcuuL3dA6Lo21i0hNsUjO89t+yQa40GVs3SJ
|
||||
|
||||
ek83nRUukfnPmk0lJZyBOV0pTU5XMymAPXUWHF1/wdB7rrNLGLBMANhcMXeNox5Gy9xZWo7KCZ2HdI3r4ekI9vh8dM5tbvAAorh8hfhC13Djy7Mf2vLtqxYucEZOjqhVJH6uujBLRGvVZ7SHpSwpxvA9QVm5q1rzrY5Clg3/Cbj3SNdw9p1ldbsW8I72U6lN4RxOBG8ugJHW12dyFvaQD0xwkeqer9VFEjuel7wPeyt6apKq6aDporHXizWuJI6d
|
||||
|
||||
w/jJhJHao3x2N+oZyR0/lvJH+DN4Yt1Ffj9ZoZ/U7JZkcTlahflC9S1vXWsdgRUA6wiStmaXMg5PqUC4jqk05VokF1mHt4OC8V+VeUWzVDh0LBPEdgdwGefh72N0sTH/MWbi5ZIKEIKKustvWabQYNwyJq3XSQZUgmbA1JMreYB4CRv2rXpLM+2SoMKxfUNlwb14hc7PRkI5mmFZRZMUqBBP5R538UKCEl/dK1G+yiF9dZO9cKgSQrcOzNuAwUTz
|
||||
|
||||
d7D/mH/inWFMizaalOhCB+sOpJNpVmJpDDaDsfyK3k2oOv4AlcsEzRxWHCFyVYeYKqnHRzRxNT732HfvWqLC2zW9MmHiwEtIb+V0phoA0nvCyUwrHanqNQfHpsNVDxk2rx43g+gK7YSjmHZfWTyuNxdakAaeABrUCWaEeKQ7oR1lMZRG3eBKAxGoRxxfrAPc0cyPDvK6A+nW24izyZzLnAXuNFIqGybk+fmkXb/1lgctzbVCGt+N9aKKVmyjdtm/
|
||||
|
||||
e+0jDyGrmH6yluP0xuOghoKIPV2lH2Yy84nu91djn7PV2ao/lOwP+mdDxHnGLOoB1oS571zQVoMr1hVwipNR00YIdukXW4rCP7ZlPrIAEL4HYQUsiIGh0XpNgInctXtTYRLwO8PISj0Tehwg3Yc9I/bh3Vwe+HS+B5AcKDZQ+/RtrgoNvRkDbKODV+1StsEiwKlBtnso8XhJyjsXDvfWi3MEKrmO0T3eyuYin79Ifdr87pVhizDXi3XnpTLdVR3D
|
||||
|
||||
N1njawr0+1LhZ0e+4tzrmkLW0lXDTf5NKwt+vp3eq/+ksQz520jwJ82Hs24P4aSuOW2p6/EHBSXI1tLqqRMTGau2L35KUq2tvcxUtv20X1yp2AFvYjLihylm63G4MxrcaYnO+e756eJ7VbAREfaT1EfR+2o3Spj22IfEw4waaUpQA5nmnaRRMnP7wqB5bEhZzHMNIVWCL0K8AL0HvV6/9u+o8+O0TsNsHbp3Lq2+PbG/VH9sKrpiPe4dx/f7h1+t
|
||||
|
||||
65tzxk6SMsI6aRUIca+QsDW9GvIcg0ycBD5m74IsTHMrLeIS/wmz576T3oJvs4r6uwWNsRHRY2ji4CrfkCzy6M3WST1Lw2bsBuguKnaXaojYiPXaMdNzPTMWkbt42C8Umlc5h+X13/83GqtzuZA+te/u9xQH5iPGNumTKBSoP2b+HQwsrfjL9o2G7gNxr7Kw0p4c2mLTR2rNhhdW4Pe6tfA++k5ra6xp1HyL7XyY5Iad/NiyrQ52fvV6jakS+kLe
|
||||
|
||||
uusIM+tIn/iX1fZpU4w+f1JACHsGRW7FF+X91yOpevXCrzILL1hjH7Y3xhtpwyK+2gVwWHtD2yvv7Jfzu/sfIygcs7x2GnwQWJBwjx+jvN0OIrVA/9+dYusA9H93OXngI5OG7Q2r7trcNdodfVfmI3iN3NoFQBc8ANAEvQdSAPAICvxCQBWABqQg8MX37xk2DwZXw4hxWPgQMHRqGF7ugRd5O77D//7H4Oytusldy0qR2mSJVnXnQXYwXHh+O18o
|
||||
|
||||
QqKC+T3Q/v92ymsl87k0O2D7JI5QPs0VgG7qJaYFn/FvfXS6jDEHbxWp9su7fLffnutUJxAbWuGcXdfXf1O4Z7V5n6GukfcaNjQtpowXcKT40w7YCaMht3f8DLJBHBT0LiEP8VIulHPUjjAItVRSN0B9zjpUdCsfW4r0OCVjl3VX4atdu7vZMSxc9mirdr24qylCsEDt3sSvQwhSsL4NnkmU+UDp6jIE38XLrqcGhy1A+MmNH7/21CBfdSUhOCht
|
||||
|
||||
HZ0QGM3VHTOxenGp5KAOADkMOdlxuOSsYt7QXTJ4l9O1a6yYjs6+vM9OCprfEUxmtaemxOOqCv8Xz1oe2RodHFPd2iswPYO7KIFltGpb3YXr3VDg2lTxrX+NFmgVuII7Bu2WwcLbWmOoAvCNieEpsAOQA4SMw4ZaygASgBYT7m6ZawUWsLMsx6HFsKlj2Pq5MoeJWa+ddoZHASmFDuaChN8Mgbd64LYx6rJG11zULAUdYbvUOchtAkQMcxDj/5dW
|
||||
|
||||
RmPiuEXd2y4Qy6xbKA7Rb4H11KXSj0he9HoHwPZPA8EnfDDrbHRxm1sd2Ua/JcnZk/NcWO0puXiC+44a9FoArNxEiiqzNfeOYOPsIBEIxBb83Adh7Kt947zYO5aVQXeAO8ddlYLsDrysc1+ZtKxxj2f7hu3n1bNHE1tCONldAwPTpdjedrHW83V2AoNLbFQd3A/qrN96tw9s0OFYN1HuRh5xF9eHTg2fcP2hGmK+OLQ5erHTopQbKQBnlJU9R0PL
|
||||
|
||||
i8UhzEJJoU84fob7qXK2VAHYkO8wUxtVMh3qEdvg9LK/7D3vbqWlbwyLpgLbkAC6dqo9btDu4Xc2G7+6FQWwWOgQ2tHvhVrQR0whlcsvfra02I2V6t1Ubi4OIKGEee6aUjjrVVYM2pQm7Y9vEOldmU+5TkS8QY4yfQrO/edZjAABFIREEA8oQQgDjLJ2rMfISpBLG+j4bLsF2fvJI/bexza9+qb7yP/YKGagrqk08eDCMI3Q6i1kL/h0Jjp7bAWO
|
||||
|
||||
7s3vituB7Gd0Yj0YSBXMpXqAza6RwPjlBPP3s8rb4i2CRsFzEOoYGCi49K4g8wktboW9X9bwMAwXgdXOthDGRfQdNw4VW2VdjPHFwy0geb6IGR0/DyX7TUOgbPEvYuK+vjzUBCp4+McJrCbnVrUHjNCPREAhSnd0O9kcFxH1d3DKu9ONO3iKlq2bm8aa0e5S0wHUh1zPbtBPBcvkRDUedzF3v+cm504glO3i+CKgdB8kgAiCmixZKe8jR56gHSOi
|
||||
|
||||
Ue9xqmnvcjo67+qaEfssY/xey8j3c7H2PkCe0IUC+Q9aMTDGAnAmy+kzixO8mAmCahOGvsHiTvHPyV297GwsEWNB/IRY1Q56xrOcsgyW7Q94McbxRHbTa5MHLySImJpsmIgp57qSaE4UE1Qw4wV7kg5myM0xgWVx1wq1y775ynMeq9eGRybZr1m8c80Qtq0FIWzwpv2+bV2NPJ36ESJzpD6zyrzZ2utVDs/82B6tgLoeWB0fBIkGrfb9/MLw72/c
|
||||
|
||||
B5YG3wHew9UAN8AXCjiqBhABkAHIgAHBVgAMAEqsGggHYmzIAD3pnE7OnKWsEQAqaAIP3pAHVADrlnyglxPiUD2IBuJ/oAV4YxxbHifXE/nABEISBqHxPnidfE7uJzcuX4nWQAXicAk65wUCT8HQXxOObk6inBJy8T9usWlwYSdfE5whDihpMAeKGPEMFAARJ+kAJEnDiHRUPC0AOJxtWp4nwJOvifJIapQ56QfxDXIAMSdSUEFPkpseTYS/AKSe
|
||||
|
||||
8zR1IMUUT1wYqgKSdeEHi1vDoU9GsoBp4Z6gFnWPSADPAPnTqHkaI9oxwIAHknySorsDVXk0cLIQDKEH1gDifaANT7GgAJPA9AACAAvwERAAaQCknUJPTRR6gHxSPcGcknAoASADIoacQ+iT3UnZ0F5wDzrG4gCE4EgAWV5u0C8zWzCsEAVhQ5pP6EhJ4HQQNnTRSgygAeQAAAApoPjpEinAF6T6gAztQAACUuoAMeRBdhqwODgMko7pORiC+k4j
|
||||
|
||||
J3uKEkA/pOIACqk/xJ6mgUEnDmi4ADYIM4AHsKDLUGPJswAvQWGcEngTIANpOfwCIBC6AK4W6h4A2ldifUPGEAN3vE9YRohVSd2AEkqZtgSQiA2k6YbTYBYOgNpPdYQ/htuDYIMYAPjMTZt8pOPGUbVrJAAYANknJCBQVlmuFRkJ2ToVGJRdCECTqHAAK7wQpI95hgAB+4BAQEAAA===
|
||||
```
|
||||
%%
|
File diff suppressed because it is too large
Load Diff
@ -11,19 +11,22 @@
|
||||
{"id":"67a07cb33040e073","type":"text","text":"线加速度 求法","x":510,"y":700,"width":250,"height":60},
|
||||
{"id":"eeb7df4b945bff86","type":"text","text":"各个部件inertia dyadic求法","x":155,"y":820,"width":250,"height":60},
|
||||
{"id":"931f7a20403882f5","type":"text","text":"塔架、叶片的GAF GIF求法","x":155,"y":940,"width":250,"height":60},
|
||||
{"id":"9ba9cf03738bfda2","type":"text","text":"Sympy优势:\n- linear acc、angular acc内置方法\n- GIF求解,按照公式,清晰明了\n\n劣势:\n- 不支持柔性体\n- 主动力没有好办法","x":155,"y":1060,"width":355,"height":240},
|
||||
{"id":"9ba9cf03738bfda2","type":"text","text":"Sympy优势:\n- linear acc、angular acc内置方法\n- GIF求解,按照公式,清晰明了\n\n劣势:\n- 不支持柔性体\n- 主动力没有好办法,主动力都比较复杂,普遍问题","x":155,"y":1060,"width":355,"height":260},
|
||||
{"id":"869b7f96937e4202","type":"text","text":"低速轴、高速轴、发电机、摩擦力等求法","x":510,"y":820,"width":250,"height":60},
|
||||
{"id":"690b6cebbb1e52ad","x":840,"y":700,"width":250,"height":60,"type":"text","text":"是否正确?"},
|
||||
{"id":"50d5c2753f1f2ec3","x":840,"y":790,"width":250,"height":90,"type":"text","text":"广义主动力还可以怎么求?yaw、低速轴、高速轴"},
|
||||
{"id":"9fc02c3e78a69a7a","x":510,"y":940,"width":250,"height":60,"type":"text","text":"坐标系定义好之后,原点无所谓,有方向即可"},
|
||||
{"id":"f13fc730aad4e78c","x":840,"y":940,"width":250,"height":180,"type":"text","text":" 偏速度$\\pmb{v}_{\\nu}^{(\\,r\\,)}$ 或 $\\pmb{\\omega}_{i}^{(\\prime)}$ 是将**标量形式的广义速率**赋予**方向性的矢量系数**。从具体算例可以看出, $\\pmb{v}_{\\nu}^{(r)}$ 或 $\\pmb{\\omega}_{i}^{(r)}$ 实际上就是某些基矢量或基矢量的线性组合。"},
|
||||
{"id":"01e5d049c040e822","x":840,"y":1180,"width":250,"height":220,"type":"text","text":"所谓偏速度 $\\pmb{v}_{\\nu}^{(\\textrm{r})}\\left(\\,r=1\\,,2\\,,\\cdots,f\\right)$ 实际上是某些特定的基矢量或基矢量的线性组合,因此,广义主动力或广义惯性力就是系统内全部主动力或惯性力沿这些特定基矢量方向的投影。"},
|
||||
{"id":"8867bfcfd58ae90b","x":1180,"y":940,"width":250,"height":120,"type":"text","text":"对于完整系统,凯恩方法中的广义主动力 ${\\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ 。 "}
|
||||
{"id":"690b6cebbb1e52ad","type":"text","text":"是否正确?","x":840,"y":700,"width":250,"height":60},
|
||||
{"id":"50d5c2753f1f2ec3","type":"text","text":"广义主动力还可以怎么求?yaw、低速轴、高速轴","x":840,"y":790,"width":250,"height":90},
|
||||
{"id":"9fc02c3e78a69a7a","type":"text","text":"坐标系定义好之后,原点无所谓,有方向即可 但是是与刚体固接的","x":510,"y":940,"width":250,"height":87},
|
||||
{"id":"f13fc730aad4e78c","type":"text","text":" 偏速度$\\pmb{v}_{\\nu}^{(\\,r\\,)}$ 或 $\\pmb{\\omega}_{i}^{(\\prime)}$ 是将**标量形式的广义速率**赋予**方向性的矢量系数**。从具体算例可以看出, $\\pmb{v}_{\\nu}^{(r)}$ 或 $\\pmb{\\omega}_{i}^{(r)}$ 实际上就是某些基矢量或基矢量的线性组合。","x":840,"y":940,"width":250,"height":180},
|
||||
{"id":"01e5d049c040e822","type":"text","text":"所谓偏速度 $\\pmb{v}_{\\nu}^{(\\textrm{r})}\\left(\\,r=1\\,,2\\,,\\cdots,f\\right)$ 实际上是某些特定的基矢量或基矢量的线性组合,因此,广义主动力或广义惯性力就是系统内全部主动力或惯性力沿这些特定基矢量方向的投影。","x":840,"y":1180,"width":250,"height":220},
|
||||
{"id":"8867bfcfd58ae90b","type":"text","text":"对于完整系统,凯恩方法中的广义主动力 ${\\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ 。 ","x":1180,"y":940,"width":250,"height":120},
|
||||
{"id":"bff8e414fcb04560","x":240,"y":620,"width":444,"height":60,"type":"text","text":"速度、角速度 = 偏速度/偏角速度 * 广义速率 + remain项 对时间t求导"}
|
||||
],
|
||||
"edges":[
|
||||
{"id":"f33ddf845b3a3ff4","fromNode":"330ceae2327436f1","fromSide":"bottom","toNode":"04fa17192ff0596c","toSide":"top"},
|
||||
{"id":"79d807d4f3d87b22","fromNode":"330ceae2327436f1","fromSide":"bottom","toNode":"c574d94bf9b233b4","toSide":"top"},
|
||||
{"id":"bf83f26700707236","fromNode":"04fa17192ff0596c","fromSide":"bottom","toNode":"4fb6c3b08416426b","toSide":"top"},
|
||||
{"id":"1fbe796a55334bb8","fromNode":"c574d94bf9b233b4","fromSide":"bottom","toNode":"027a3e957d393870","toSide":"top"}
|
||||
{"id":"1fbe796a55334bb8","fromNode":"c574d94bf9b233b4","fromSide":"bottom","toNode":"027a3e957d393870","toSide":"top"},
|
||||
{"id":"b459ccd830673d18","fromNode":"bff8e414fcb04560","fromSide":"bottom","toNode":"a300bc21279fb24f","toSide":"top"},
|
||||
{"id":"552e74cb8e56c73d","fromNode":"bff8e414fcb04560","fromSide":"bottom","toNode":"67a07cb33040e073","toSide":"top"}
|
||||
]
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user