vault backup: 2025-04-15 16:53:12

This commit is contained in:
yz 2025-04-15 16:53:13 +08:00
parent 25c5cf713a
commit 8e18d5e689
6 changed files with 2400 additions and 2116 deletions

View File

View File

@ -2318,17 +2318,22 @@ $$
The motion that results when forces act on a material system depends not only on the forces, but also on the constitution of the system. In particular, the manner in which mass is distributed throughout a system generally affects the behavior of the system. For example, suppose that a rod is supported at one end by a fixed horizontal pin and that a relatively heavy particle is attached at a point of the rod, so that together the rod and the particle form a pendulum. The frequency of the oscillations that ensue when the pendulum is released from rest after having been displaced from the vertical depends on the location of the particle along the rod, that is, on the manner in which mass is distributed throughout the pendulum.
For the purpose of certain analyses, it is unnecessary to know in detail how mass is distributed throughout each of the bodies forming a system; all one needs to know for each body is the location of the mass center, as well as the values of six quantities called inertia scalars. The subject of mass center location is considered in Secs. 3.1 and 3.2. Products of inertia and moments of inertia, which are inertia scalars, are defined in Sec. 3.3 in terms of quantities called inertia vectors. Sections 3.4-3.7 deal with the evaluation of inertia scalars, in which connection inertia matrices and inertia dyadics are discussed. A special kind of moment of inertia, called a principal moment of inertia, is introduced in Sec. 3.8. The chapter concludes with an examination of the relationship between principal moments of inertia, on the one hand, and maximum and minimum moments of inertia, on the Other hand.
**For the purpose of certain analyses, it is unnecessary to know in detail how mass is distributed throughout each of the bodies forming a system; all one needs to know for each body is the location of the mass center, as well as the values of six quantities called inertia scalars**. The subject of mass center location is considered in Secs. 3.1 and 3.2. Products of inertia and moments of inertia, which are inertia scalars, are defined in Sec. 3.3 in terms of quantities called inertia vectors. Sections 3.4-3.7 deal with the evaluation of inertia scalars, in which connection inertia matrices and inertia dyadics are discussed. A special kind of moment of inertia, called a principal moment of inertia, is introduced in Sec. 3.8. The chapter concludes with an examination of the relationship between principal moments of inertia, on the one hand, and maximum and minimum moments of inertia, on the Other hand.
当力作用于一个物质系统时,产生的运动不仅取决于这些力,也取决于系统的构成。特别是,质量在系统中的分布方式通常会影响系统的行为。例如,假设一根杆在一端由一个固定的水平销支撑,并且在杆的某个点上连接了一个相对较重的粒子,使得杆和粒子共同构成一个单摆。当单摆从垂直位置偏离后释放,产生的振荡频率取决于粒子沿杆的位置,也就是说,取决于质量在单摆中的分布方式。
为了某些分析的目的不必详细了解构成系统的每个物体的质量分布情况对于每个物体只需要知道其质量中心的位置以及六个称为惯性标量的数值即可。质量中心的位置将在第3.1和3.2节中进行讨论。惯性标量的惯性矩和惯性积将在第3.3节中用惯性矢量的概念来定义。第3.4-3.7节讨论惯性标量的计算其中涉及惯性矩阵和惯性二阶张量。一种特殊的惯性矩称为主惯性矩将在第3.8节中介绍。本章最后将考察主惯性矩与最大和最小惯性矩之间的关系。
# 3.1 MASS CENTER
$\boldsymbol{s}$ is a set of partiles $P_{1},...,P_{v}$ of masses $m_{1},\ldots,m_{\nu}$ respetivly,there exists a unique point $s^{*}$ such that
If $S$ is a set of particles $P_{1},...,P_{v}$ of masses $m_{1},\ldots,m_{\nu}$ respectively, there exists a unique point $S^{*}$ such that
如果 $S$ 是由粒子 $P_{1},...,P_{v}$ 组成的集合,它们的质量分别为 $m_{1},\ldots,m_{\nu}$,那么存在一个唯一的点 $S^{*}$,使得
$$
\sum_{i=1}^{\nu}\,m_{i}\mathbf{r}_{i}=0
$$
where $\mathbf{r}_{i}$ is the position vector from $s^{*}$ to $P_{i}\;(i=1,\ldots,\nu).\;S^{*},$ , called the mass center of S, can be located as follows. Let $^o$ be any point whatsoever, and let $\pmb{{\mathsf{p}}_{i}}$ be the position vector from $^o$ to $P_{i}\;(i=1,\ldots,\nu)$ Then $\mathfrak{p}^{\ast}$ , the position vector from $^o$ to $s^{*}$ , is given by
where $\mathbf{r}_{i}$ is the position vector from $S^{*}$ to $P_{i}\;(i=1,\ldots,\nu).\;S^{*},$ , called the mass center of S, can be located as follows. Let $O$ be any point whatsoever, and let ${{\mathsf{p}}_{i}}$ be the position vector from $O$ to $P_{i}\;(i=1,\ldots,\nu)$ Then ${{\mathsf{p}}_{i}}$ , the position vector from $O$ to $S^{*}$ , is given by
其中 $\mathbf{r}_{i}$ 是从 $S^{*}$ 到 $P_{i}\;(i=1,\ldots,\nu)$ 的位置向量。$S^{*}$,称为 S 的质心,其位置可以如下确定。令 $O$ 为任意一点,并且 ${\mathsf{p}}_{i}$ 是从 $O$ 到 $P_{i}\;(i=1,\ldots,\nu)$ 的位置向量。那么 ${\mathsf{p}}_{i}$,即从 $O$ 到 $S^{*}$ 的位置向量,由
$$
\mathbf{p}^{*}={\frac{\displaystyle\sum_{i=1}^{\nu}m_{i}\mathbf{p}_{i}}{\displaystyle\sum_{i=1}^{\nu}m_{i}}}

View File

@ -9696,17 +9696,17 @@ $$
# 第九章 柔性多体系统动力学
当多体系统中物体变形对运动的影响不容忽略时,必须采用柔性多体模型替代多刚体模型。与多刚体系统相比,柔性多体系统建模的主要问题是如何描述变形体的位形。在小变形假设的前提下,浮动坐标系方法将物体的运动视为浮动坐标系的大范围运动与小弹性变形的叠加。用多刚体系统动力学方法描述大范围运动,同时采用瑞利一里茨法、模态分析法或有限单元法实现小变形的离散化。对于大变形问题,则必须在惯性坐标系中直接描述变形体的位形,如近年提出的绝对节点坐标方法。本章首先介绍浮动坐标系的基本概念,叙述基于瑞利一里茨法及有限单元法的浮动坐标系方法。最后叙述绝对节点坐标方法。
当多体系统中物体变形对运动的影响不容忽略时,必须采用柔性多体模型替代多刚体模型。与多刚体系统相比,**柔性多体系统建模的主要问题是如何描述变形体的位形****在小变形假设的前提下,浮动坐标系方法将物体的运动视为浮动坐标系的大范围运动与小弹性变形的叠加****用多刚体系统动力学方法描述大范围运动,同时采用瑞利一里茨法、模态分析法或有限单元法实现小变形的离散化**。对于大变形问题,则必须在惯性坐标系中直接描述变形体的位形,如近年提出的绝对节点坐标方法。本章首先介绍浮动坐标系的基本概念,叙述基于瑞利一里茨法及有限单元法的浮动坐标系方法。最后叙述绝对节点坐标方法。
# 9.1 浮动坐标系方法
# 9.1.1 浮动坐标系
第一章中对刚体运动学的分析是利用与刚体固结的参考坐标系,即刚体的连体基确定刚体的位置和姿态。变形体与刚体的情况不同,由于变形体在运动过程中各质点之间有相对位移,以致任何参考系都不可能与变形体完全固结。为确定变形体的位置和姿态,仍需要建立适当的参考坐标系。但这坐标系不可能与变形体固结,而只是“浮动”在变形体内,称为浮动坐标系。以浮动坐标系为参考系,可将变形体的实际运动理解为浮动坐标系的大范围刚体运动与相对浮动坐标系的变形运动的合成。
第一章中对刚体运动学的分析是利用与刚体固结的参考坐标系,即刚体的连体基确定刚体的位置和姿态。**变形体与刚体的情况不同,由于变形体在运动过程中各质点之间有相对位移,以致任何参考系都不可能与变形体完全固结。为确定变形体的位置和姿态,仍需要建立适当的参考坐标系。但这坐标系不可能与变形体固结,而只是“浮动”在变形体内,称为浮动坐标系**。以浮动坐标系为参考系,可将变形体的实际运动理解为浮动坐标系的大范围刚体运动与相对浮动坐标系的变形运动的合成。
浮动坐标系有多种选取方法。选取的原则是要使所建立的动力学方程尽量避免大范围刚体运动与弹性小变形运动的耦合,有利于对变形体运动的数值计算。
设变形体内任意点 $P$ 在变形前的位置为 $\boldsymbol{P}_{0}$ $\pmb{\rho}$ 和 ${\pmb\rho}_{0}$ 分别为 $P$ 和 $\boldsymbol{P}_{0}$ 相对变形体内任选的参考点 $o$ 的矢径, $\pmb{u}$ 为 $P$ 点的位移矢量, $_r$ 和 $r_{0}$ 为 $P$ 和$o$ 相对惯性参考系中固定点 $O_{0}$ 的矢径图9.1
设变形体内任意点 $P$ 在变形前的位置为 $\boldsymbol{P}_{0}$ $\pmb{\rho}$ 和 ${\pmb\rho}_{0}$ 分别为 $P$ 和 $\boldsymbol{P}_{0}$ 相对变形体内任选的参考点 $O$ 的矢径, $\pmb{u}$ 为 $P$ 点的位移矢量, $r$ 和 $r_{0}$ 为 $P$ 和$O$ 相对惯性参考系中固定点 $O_{0}$ 的矢径图9.1
![](images/c3a2b4a0373ef750c1e3814eaf31a8d14437497156fd6d6b9f6cddcf46e89f8a.jpg)
图9.1变形体
@ -9714,16 +9714,16 @@ $$
则有
$$
{\textbf{\em r}}=\,{\pmb r}_{0}\,+\,{\pmb\rho}\,,\quad{\pmb\rho}\,=\,{\pmb\rho}_{0}\,+\,{\pmb u}
{{r}}=\,{\pmb r}_{0}\,+\,{\pmb\rho}\,,\quad{\pmb\rho}\,=\,{\pmb\rho}_{0}\,+\,{\pmb u}
$$
柔性体相对 $o$ 点的动量矩为
柔性体相对 $O$ 点的动量矩为
$$
L\;=\;\int\!\pmb{\rho}\,\times\,\dot{r}\,\mathrm{d}m\;=\;\int\!\pmb{\rho}\,\times\,\left(\,\dot{r}_{\!\!\!0}\;+\frac{}{}\dot{\pmb{\rho}}\,\right)\mathrm{d}m
L\;=\;\int\!\pmb{\rho}\,\times\,\dot{r}\,\mathrm{d}m\;=\;\int\!\pmb{\rho}\,\times\,\left(\,\dot{{\pmb r}_{0}}\,+\,\dot{{\pmb\rho}}\,\right)\mathrm{d}m
$$
在变形体内建立以 $o$ 为基点的浮动坐标系 $(\,O\,,\underline{{e}}\,)$ ,设此坐标系的转动角速度为 $\omega$ ,将式9.1.2)中 $\dot{\pmb\rho}$ 的求导过程改为相对浮动坐标系进行,利用式(1.2.23)表示为
在变形体内建立以$O$为基点的浮动坐标系 $(\,O\,,\underline{{e}}\,)$ ,设此坐标系的转动角速度为 $\omega$ ,将式9.1.2)中 $\dot{\pmb\rho}$ 的求导过程改为相对浮动坐标系进行,利用式(1.2.23)表示为
$$
\dot{\pmb{\rho}}\ =\ \stackrel{\circ}{\pmb{\rho}}\ +\ \pmb{\omega}\times\pmb{\rho}
@ -9732,25 +9732,25 @@ $$
空心点表示浮动坐标系中的相对导数。将上式代人式9.1.2且利用式A.4.9)化作
$$
L~=~J\cdot\omega\,+\,\left(\int\!\rho\mathrm{d}m\right)\times\dot{r}_{\!\circ}~+\,\int\!\rho\,\times\,\!\rho\mathrm{d}m
L~=~J\cdot\omega\,+\,\left(\int\!\rho\mathrm{d}m\right)\times\dot{r}_{0}~+\,\int\!\rho\,\times\,\!\stackrel{\circ}\rho\mathrm{d}m
$$
其中, $\boldsymbol{J}$ 为变形体相对 $o$ 点的惯量张量
其中, $\boldsymbol{J}$ 为变形体相对$O$点的惯量张量
$$
J\,=\,\int(\rho^{2}E\,-\,\pmb{\rho}\pmb{\rho})\,\mathrm{d}m
$$
与刚体不同变形体的惯量张量J并非常值而是随物体的变形而改变。如将0 点选择为变形体的质心,则满足
与刚体不同,变形体的惯量张量 $\boldsymbol{J}$ 并非常值,而是随物体的变形而改变。如将$O$点选择为变形体的质心,则满足
$$
\int\!\!\pmb{\rho}\mathrm{d}m\ =\ \int\!\!\pmb{\rho}_{0}\mathrm{d}m\ =\ \int\!\!\pmb{u}\,\mathrm{d}m\ =\ \mathbf{0}
$$
变形体的质心在变形前后视为同一0点,但并非变形体内确定的物质点。将式(9.1.6)代人式(9.1.4),简化为
变形体的质心在变形前后视为同一$O$点,但并非变形体内确定的物质点。将式(9.1.6)代人式(9.1.4),简化为
$$
\textbf{\em L}=J\cdot\omega\,+\,\int_{\rho}\times\mathring{\rho}\,\mathrm{d}m
{L}=J\cdot\omega\,+\,\int{\rho}\times\mathring{\rho}\,\mathrm{d}m
$$
1889年梯塞朗Tisserand提出浮动坐标系的建立方法是令式9.1.7)右边第二项等于零
@ -9759,7 +9759,7 @@ $$
\int\!\!\pmb{\rho}\times\mathring{\pmb{\rho}}\,\mathrm{d}m\;=\;\mathbf{0}
$$
于是变形体的动量矩有与刚体相同的计算公式L=J·∞。用此方法定义的浮动坐标系称为梯塞朗坐标系其位置由式9.1.8的3个投影式确定。利用梯塞朗坐标系计算的变形体相对运动的动能为最小值。为证明此结论令相对运动动能的变分为零
于是变形体的动量矩有与刚体相同的计算公式${L}=J\cdot\omega$。用此方法定义的浮动坐标系称为梯塞朗坐标系其位置由式9.1.8的3个投影式确定。利用梯塞朗坐标系计算的变形体相对运动的动能为最小值。为证明此结论令相对运动动能的变分为零
$$
\delta\Big(\frac{1}{2}\!\!\int\!\!\bar{\pmb{\rho}}\,\cdot\,\bar{\pmb{\rho}}\,\mathrm{d}m\Big)\,=\,\int\!\!\bar{\pmb{\rho}}\,\cdot\,\delta\bar{\pmb{\rho}}\,\mathrm{d}m\,\,=\,0

View File

@ -13,6 +13,8 @@ tags: [excalidraw]
Q1 yaw 主动力为何如此计算?
由控制计算,作为一个外力直接施加 ^enHSE5Ed
刚体platform 机舱 高速轴 轮毂 ^fklhUVEK
## Embedded Files
c0166535889251fc00499757c5d32377c8fd6767: [[Pasted Image 20250120103502_252.png]]
@ -2047,14 +2049,400 @@ tBg+fkSmDDh6TbFsfPj9coql8lHh7lYP09pUg9y23f8pTYjACOjCKBDggtuM6o95lY8AEBnqEBni9bAQ
XA87BjtVt0GNwMHltSMfXgI+iAfLqqCZN0uRSeUhXA/sH800vYUcA3zMlv9pR62/3fet/bagOwtqsobim6ddKlg6dSu9t+7Th4Mnr0aefKO7095HzmJ0+/t6OVHByINFnK5oP2bK7XZSSqV9cj6pbXzjpcSWyBpSVIYKZS5tpu6PWRw9QJBjSsEmojp5Tg8arFOGd7CIOteoifnuilZaJpk0/1I0CwALDoNVAw+YGwx87G0BFUIYotvF0B+TLpgb
sE7BaTKoPdJ772jrf7SWWjl9QiquX1ffp6g5QevwVz9RZb3QFXZrImBDzmqTLOmpcwe3SMVQUiKnzwCJrqPw7xvOAIwJ5QAVbyAACx/1AA//0KACoAEAANxygAAKpUAANlKgAAuOUAAKrygAAgzUAACbWgABC6MAAOnegAB8f4AADocAEAAIyugABy40AAGxKHCHAAAw/4AAHXlaEOAAAA5QAAVHKAADRNahDgAAXt0AAKXGgABe00AAAVKpSBKA
sE7BaTKoPdJ772jrf7SWWjl9QiquX1ffp6g5QevwVz9RZb3QFXZrImBDzmqTLOmpcwcGWZ88Aia6j8O8bzgCMCeUAFW8gAAsf9QAP/9CgAqABAADccoAACqVAADZSoAALjlAACq8oAAIM1AAAm1oAAQujAADp3oAAfH+AAA6HABAACMroAAcuNAABsSmwhwAAMP+AAB15ahDgAAAOUAAFRygAA0TUoQ4AAF7dAAClxoAAXtNAAAFSqUgSgAP1ZcE
A/VnwQz48zYAxCHSEMUIZoQwwhlhDHCGeEP8IeEQ2IhyRDsiGFEMqIY0QyjgTgAjSIWOjSFATAI4hxbo38BimgyICyIM/BnsmcIBcCBPgH+RbDoFsA2CD3AC+IdOMImgb0AuoA9ABZAGyLq6AZsyg7hGQBwgCzAAQAHRD9lAxLb6IZIQ5QAIxDdCGmENsIa4Q7whwRDIiH2EMSIekQ/IhpRDaiHNEOA4G5RDuPcIAziG73gnrHkiGDZDDAfuA8sD
M+PM2AIQh4hDZCGqEN0IaYQ2whrhDvCHBEMiIfEQ9IhuRDSiG1EMo4E4AI0iFjo0hQEwD2IcW6N/AYpoMiAsiDPwZ7JnCAXAgT4B/kWw6BbANgg9wA3iHTjCJoG9ALqAPQAWQBsi6ugGbMoO4RkAcIAswAEAC0Q/ZQMS2uiGiEOUAAMQzQhhhDLCGOEPcIf4Q0Ih1hDYiHJEOyIYUQyoh9RDgOBuUQ7j3CAI4hu94J6x5Ihg2QwwLGJJX8JKqlcg
b4DvYeqAG+ALhRxVAwgAyADkQADgqwAGACVWDQQDsTZkAB70xkNnTlLWCIAVNAEH70gDqgDBZSDsyZDxKB7EAzIf0AK8MY4tiyHpkPzgAiEJA1DZDyyGtkNzIZuXLshrIAKyGDkNc4KOQ+DoLZDHNydRTnIZWQ+3WLS4NyGtkM4QiyAO4h5UASikBkMbVqWQ8chx5DjiHC8TIyDohSUAD5DmyH0gCpIbCQ/4h4IADGquQAPIdmQ4KfJTY8mwl+BQ
fgafg7ghu+q8wRT0wMalmVFbeJRS2pJ3VSABIwIN7xIZEqUCxjRvqsbZv55D9YBjIlB38SWpgzcuqldxf7U30DsPDABkex1S+pIyIIvxxniS6si1GaCGAHDFUFIin3yFDhMN6lEg4IZSQ4AALCVAADK8vghnwAJ4Aa9SkAH0AKgAQAAXOaAAEYg1AAgAANrMAAPgJgAAXeNQAIAAO3jAABD1hoh4iQz8HygBXIZuQ0Owe5DjyHXkMfIZ+Q/8hoFD
odQ1rM4IU+nuAACgAoamQ3sh9IAXhB4tbw6FPRrKAaeGeoBZ1j0gAzwIk4Ljpi4YgSCBDH/IAShikAySoNgBK7ET2OcHEfyqKCCgADYBKLm1oNAASeB6AAEABfgIiAA0gCKGrkOmij1APike4MkKGBQAkAF+Qy4h5lDoqGzoLzgHnWNxAEJwJAAsrzdoF5mtmFYIArCh5UP0JCTwOggbOmilBlAA8gAAABTQfHSJFOAI1D1ABnagAAEpdQAY8iC7
ziGsgCF4mRkCeQKHMtxgcEqsuVDIDXqLIAriHlQBKKU8Q0YEkJDviHggAMat1AIEh8wABAAiUNhIde9pEhqIAJ6xYkNOEHiQ/4AJJDoKGJADgoduQ8EUxkA0KG3kNfId+Q4Ch3UAbGIlPoY8lYACihkbEdSGh9SNIdzaPnEbTYXRRa5j24FIAKUdEcAqsp+gDpgHQPY0hTRw4+AfixZhnGwdxs1A0i/JPYMwHFOg0lPLax4376T3GAfv/QDex/9L
DVgcHAZJR9UMjEFNQw6hvcUJIBzUMQAF5Q4Ch+xApyGHNFwAGwQZwAPYUGWoMeTZgBegsM4JPAmQAVUM/gEQCF0AVwt1DwBtK9IeoeMIAbveJ6wjRC8obsAJJUzbAkhEBtJ0w2mwCwdAbSe6wh/DbcGwQYwAfGYmzb2UMYTDCAMEATbAc6AZ1hhFCU+rBMBqwoKyzXCoyELQ0KjEouhCBJ1DgAFd4IUke8wwAA/cAgICAAA=
J7rp2OsBm/N/ev14KHpBYlLewOQ0Cje28cLs3u3ZbplxT7C67RxcslIOMQM0escAhQ4vqH/Y57NM9jjsAmhSeWCSbAxf3xWJu62oDN8HJSDiQACaMNbSNo0wEMrwv63anIDoHm4IlBdCQgW32iWxGLMUa3awgNR9D3hMQwMcMv9L+aB6oZD2hlFPhcLKQSAHR2qfRU3e8BD/mqJgNQIcf/Q6exSSX4kGQJbIRK2GMUDuBZ5oXUO+czdQ74PQTNbM
roLGWcKOKW+MmCJm47lS13vtviQh3FFZYjTg+4phJV2WI0pKOB9TyiXW9NFA9cq1Zm4kBKuZx6lTQ7m0fyUmABk1KoDQLiN7gdR02W1c9B3ALuQVD25EAVbkBGhrFT0uRGQHaAKMJSpjVnXuFca+hr+pqGjANM+scg62hiEDDZ7jz2ZKheAoMnFEGRrIML0qXqxMgOhnQK9t4eHRW/phDpoO6HOLcrSGXQ3DvUnO9YKpXkBgoOvprwYe+kBXO1YT
QjY4iwMyckkiSNSJjZS79N3I6cvuzwDfaxXkiLapKCAehykUpr0wXHIAK/+hUiZgAhQqkJlJEHOAMTQoB11YB594loffkPhoctDJWp+hTfDhwju8YQQNFv4wX1JHsYfeMB1T9TkHdAgtbNn7QL6HxS6DVMqxAevEHLkY6DDYqVYMPqtRD3U5UR+xRC6Kua9t2wRgjXQ6yqN7/xZZDy9rhdq5bmnTb7qVXD0UVI1MjXdI566+3iQEeQL7QejDePoG
RQCgGWyRZpNBgNmqI3DirUwCa0ERZ+fwx+MMryXb9qRcgYgL6GxMN+fjWJgm3FLJt+7HYPKfuqfWCBh/9EIGUL2/KQ3vJbeYQpsUL69guQCLzVphtNYsGGzeQh7oJ6RrO6Qtf07KTE25JxUW0auXmzaMq+nzFN7PkaEFNhM0g/EnsQQFKXMZJ3OKarVhGvPXy3Z8oDJRGZSku0IDMgYeCGr9+usrmdGz3sDadXan4pxzrHnqfhKGiU7pcdDP0jtF
XiQAz1rSsDzDZxI0UiRMw6nCaZfXia8iRQbRYRpZNHZR/Na1r91b3oe6aI+hyLD7JZRMOAjHEw98O7vdply9QMdQfiTSYB6b9Zf6ZL0doYydP/mPHtu+ornRmelDEYVhhRy9t4y7A2HufXULzWuh5E6Ct1iiqs3TJK7/eDWHSD6XAf0WH2sHGwDAgNsPB8ICPVoAMTa/NxGYZi1AVgZb4IdUHAAzd2xesayMXYZQMF2G+AR6XKLktFh27DsWHKcZ
misByWFuzx9677nj03QfXAwph4K9vUd7SlapHyrl/OQiKZgoCsM2SEOQwtWB6goOH2wMgwf1Iakva3GLI8J9UN4NBxrBPDcxH/9UEkkTry9hZuo3po9k68lFKQdkXtSoGVstsKuYHxp+Dk/Y5m+u0cl0Ns6QpATOdH/O4zdd9auZlmjtPktkyET1kqljn1jvhA+piBjicsr0kfRulctu5E9LmHwIDA50K6NnSNHDZX51YJjeNzUm3hGS2D0E5KB8
ulXUD5dIZ1iUBzsM5tksdLc0Mg4JVcacPvodqFhOM91h6X6S4Mk/rLgxIGhmDPUGEG01NXeme30fJiXBDRgZ8kABw4Lh11DwuGNVCptrM3SWo+Ad5f9JIUvu2hyW8Qjflzj8rnUMPUXMfJi5yBE3Mjxj4pP1UQh0PiGURdTx3eywlMgGB76R1WHnhavEJpKURIkCJV3M60lCJrkdvZ3FB+JLDkw22FO/sbpE81tGqqeSnGZPxqBupJ3OmYMYk5kG
RPPimqsPSFSkSvarYdeSDzagPDgkyy9RcJzMFTQuG0Q9nS47AXgC2ZuhIIC9lUA48NR7gTw3+Ww3eIIpOgTh9M1XezIJ7DVRa0h2vYYYLa8EcBIGb6RCh9zFNTjRbHcumqTOq2A4fpKvbeIWkfBqJ1bn1rvPSPIzPBKFj023XvvQHdgRqvRwnNC91TNq7niaaqU94Y6phEjWoMSBP+kN+uLKZWZDWxGw2n88zZBJK3P0BVLAAXm061tiO7E2F1fv
jhQCuhOOcvK5eZg3QvDqKbVEVVXS8oOZ3oKg0hkPtYDlk1zo34Ys0BVNCeGE2MdR4wW1lfu0AGdZFF0oKWcoBi/UdGuI4+hxr/ThYaEwzVQKnDN2HCCyp4YtHi+q/SpDo6xgMQIZbQ3nhx/94t7jkULTmSJt7Bn+96jJWOLPWrC+sgRrsaD1Z7Fai4ZEA5SirDJfWGlA5dEMRWFOMW9t8B83zYNYzcKTM89SGfaxeVIDYeP8PIRpoI9qJGYbcJxN
MrrKAp2lXsg3ANMM1ZToRxpCrhpNUOOnAmJH0hiVUKfVb2xQfSsyvLGo6dUjCrCOgIZa7bcup0dJf7HO17tAl+m/k/TssS7AmxSYz1qFPGTTDleHB0PXXEK4EZ+gIjDU7xI0XOpAWfM0q8yMRGGvmjET7WLeIYaIyRHP4qV7pcsbVxVAMUOh+HhZA19qKfSHDdXIpCiMYWHu4IYR4qY7RAbswVEYVKg5KuwZmXrv0P2QdXA+XBtnDVLhw+CxH2vw
WMujjWp34DXJs7AFw9KQIXD2y0iNgm1oPYYfWw7ZzR7lIMxgcZUath4iAJKlFiNM9S2MBuPGpCtX4QiAiOGuQXKSF/hr0FdiMsBVmQY5IMSCNKU8jmIcnRfQahzOhvl9CpXFgbAQ8m+yOtyyHKeEh8FYzdENVgt7NZHQX9VmX+X0Rz4jVeGUxpOSH7mTcUn7tlQHmF0c/vKvuZdVg9o2c+1ivIAqYBCRw3AfWlYeJe8H3aOPw5AM8sE8A4NgFAMV
yNGkOaJG1MyuGnt2XU4OBVi1j7dg1ofSmQrG4mIQEGzM1NEdJI/FY2RNW5TDhAFtVoPaP2K0kt1gPiOYaC+I5FFZOo/MGp23OFKr0TuvZt9lV7G8NJErDpbH6xSFlNj1bVZhJ9PTB3Yc9XuGqMM+4bisPuhkQ2yMRhyZMIDSENwwmEA+jsNqASoCPYFyNVEjpgR0SPKEXt2UlFHEjldS8SP4m0a7VTBnQ9RJGi/13LqkvdnkkKyINdFakHH2+PQ6
+lqK8+tnUP9EZgw9dcdaELJGPHkmFp2/WERlhdcH9rw53CKbI7/EmxdaVaKEbxEeIgIioQUj5QAQ8439Q5eK+8P4AgwRjnDBvuttAwgWUj5Mw66rvMJz8npc8bV7wa19ioeXNJkjqm/J3QbOIPExrPXTxB+p9zcymYxj7tkWS1amfWAbZdjwWkZdBr4RwDoZH6m/0Oz0oI3fgvzIL3jnJmmLos7s+RprSM0LeSPgQE2HRIvAUjEOpbNABjRvQjxG
c3ZaK7psBhcGD4MAkZ4dgtyGED6Ef1gg0cBcjpFzOEAqkdxI+qRhoQFpMpMONoeJI9SugsjcEjALDMeQmuKWR7Vt+bj/qCxkAqdQPervw3hH9pqXkaBGDRKnTueWMOF2sz0Mwyg/B8jkGd0yn+lPmhixR/DwH5HiTXBnzmsgORiQAE2MEpLKgH0WZIADNIZ2Dl2BNbOswXZoXD2s5HIoDzkdDtT38kTDvqA8gEAHi6XawHE1Dl0HnsNnNotQ91Bx
/9sL7m5la2lgyUrUiZ2jzkkAr9oerI9ph6647EATkPIQZGMplC2x5NtbumlkvJc+TDk4lSiFjMH4HNO8RRxSiJJQh7MAOmE3EgEiwBf1TndeKPoADD4PUKRTmxKBuVYCKTEqfzS+sy/YHg/77FjnIwfuOCjQ3zzkyIUfTI8hRloJS08rl3zIcpXbTByjd7XbI6FZ4FZanFidp9OujnsmzVGViPSRy0jjJHsiqBukEzc3UtG5k2bxAEFJu3XhBs8C
WAO6kGihlCtjtWuw+Nye79L1QPokI9fB31NB4gxPWuhC/I3T9IKjT4ACEBpkSanNGOdvCKGt/FAuWPpaBy0EmhI+ZoKPN4Fgo3JRy5ou5w0yPVoanCZoe34dMF6Y7VKfurPbYRuTD/6HjQPWvsdFcVOD9gr116kbLunxxQoOpwgVpHfUB/qhYPYbekH+LgH5cVr/IovZ9RuLNsTQuyOEvp7I5+R+0IoB7FfAZXj3YIHUkvW6eAfN5awkTEtoSDsJ
ySLH4Oxeq5cHeh7LDGJH7dmObB2o2qRvaj3qqu/HqUdAI7pOrSjb2GVMi+NXeRndAls9Syj6LwQ9lXbKZRhkjAxGgSw7bGoo50enptq8GAfUSpo9zW4Bwq+/1GMANb3KBo3Du/LmoNG9FAZXl2AD/w/yUgbg51Cr3SwhHlYRtcA+F5V3uYuV+omRhUj5jiuFl9lFSo7tR84jEAjtSO0Ft1I/lRlZDO77HVKR+G1Yvah8lxcRYh2S00aqo/TRsEqS
kS8F1Cps6dHFBvN1SuyzTlfrJIeiru3stFAjfMratOpBjVO4kxuWL+8l2/tzUU0OpQOXdTOKOjPrAGNHXCaj2g84SMPRj6CKuocboVgA0hDzKToRrjBlNkJAk1qOyUZ/w5tcRSjjhI4U1gCIO7a0dEAj25awCNE0YgI2X+iqN/Ak5O7ZkQJKUEKmfW4xxS0iNgcfWeRR9+cduZANWYvpbI6x4xTtdiSUUY2JL1VcYO9AeaipV3nkLqu9XFU4Fd4P
re31Z3urCLuh61g4dHfyNCgGlyFzRUWNhFEeijVIk/yA1uxpCyZsiiOzKkB2MsBob57a41aPY0ZUo607LWjrXadaM0ruwo7/27lKIOHXgJswfHYVPgG1OFpjG6PXbDtzJUIZEDgj7qR5OfPdyR03XZROFrSvoHKpqbaBm97143d5gXgtCgDlRzP2mJ8aQymg2scaTMRvmj/ZbN15NWJ+SBNR/YwrDwcn2mbHjcmSUeSRI1id1hjACnbkvAouwv24
WxSCoRWudtR/VDaVGcaNfhuRCUCBrPDGv6UsMuwfBA8aBvL9KNkkpQsVgyaeMutE1e77iDjm0YvI/PNDqttXryh3cStMKV80otFDJihGNUMJEY8thhGDpFA+1glmVCI/vAVia/2jKQBtFG6dZZqePenABosJc3FIAJgAQtDPF6moPykfoCIqR5gF1+ZlyPc0IKqOmLaI8NsdtD6EkYaI4sh/Mj0LKCvFESGMTcVBV357SBRgnHCDzTJwxkCGD1Zi
qTjQZRA4W6Zz0ad7VQ1a4ZD2OxY78gKAJooPHdzzYORI2XgkTGEoDOJ2mOMEx5hyNg0XzKhtFxSSNDKUyF3dEJZm2MNwRIx80Qu6G2GrXdyWMhNRlool6DCkIuWIqFKrKFJW3uAnSJoFynfb1eqseCVGNqMJ4a0iJuCJSjOdH8/3GvvuPcXBrcjjKaDD2x/HsWCkmgZy8rqOU2cXK/WNnsCvDdNGayNk6iqErwxsqdY96QFnsHqItVUU+ijB2zKS
XfhrNvesc7m11Fq40NDUdH6Ksx429uigJqNbj2QUT/BJbEzwllAB360YaCU7cbOGLqSaFVIP2I+tRrvqjTHK0OqkcNQ7Xsv5NG4RX+2jAeZw8LegK9YEGeoOU/t+UnwgMIEuqKISCwpwslGr2+6BD9GDUL3YBCJdMx/BdDHj7aNvxKPAawRsJjezGXtpIrKyXsx+iatZLroLKK0P8zT1GzZVF28DH2y417NjretgjlWyZ+VgluBg51GiKNYwze6N
ntMotb6esN+SZT9zVrd3A7tSpYIj1v6+xYcyqR3csOzRpPdH2jVfvp5Y2OavidwrHvKO80d8o5+R2IIou6WRATUc7qK4BEBIRApXgxeiGi4HAgGpCIW97L3I0a0rfgx4fYhDGVaPXYazozlRUgmxFg6xxH0caI3TBr/tpf6SaO6/pRslvLTIkaAi2z26rD2xO4xmDGnjGn1iN/omgwY2+8JlkT0Q1A2ICqUqQyENroHPEYAxst/vu0qQly97vZ5E
3ojY4tBlbDPuHXkib9vEEIiUDK8/NKvZWEhw2UhxlKoAGYkAEq/FTJ9HRBzVjZX8tAIEMe3o4D8zhALTivIKrkdeYwm+gg0W1SQmMsyBjYJnhrpj9paiW2x/E/+gn8ae83d760qg2y8kChQc8jHjG8Mx+6m8Y6/Rm/+59bgM4iSITYVqbRYukCjs8GxxIryJ/Ql3DbxCULVXlLSHgsXL3e49TBzYt6LHJdWxhJjgQUvlignNiKDWxxJj7U6hPTxM
Yz5tuxw9jCx6CGErsdTPpexvZJyT7ccHiQBthsxHBioE1GC8B3b0kmQIME/8iBdaBQGbET7m+hG2dmrG1X4FsZ1Y0WxvI5rcUDWM+bUC6coidyhdRHPmO3/vSbcXR6OtL4RkbqstS3VOI8oZjnwyR1I/TOdY5ybB6sK6QBU3CAbq9ZNB9kjV6clt2XYosYUgPYUpdBG3KnTEaqJbMR8CA8K0IcNC0dzaPwpVd6ZABJXR9aT02KxwzzQq6hxnEi6L
BRZagfQjPCimYwZuG42aBxn8KhrGIOPVaBAgYzh8F9TsGaGO3Eddg7etLCQnVSWqA/QfLhECpOhMeSoe2MusbwzIBmSXBaxSiMluyMWlNnGqR9nchBq3sphDo2qcTP0E1HoviMN1RmI6IOSI3MtK2hNFFYaKwdHq9rvapN26MfRo0KsoZEO0BZxDgcdB+fQB+2DiWGqGMggbk47nh35jQ4lzJWKBih3EJAEZB0I7JsGmQAQMBCxsyjRWGdOMk4iD
g1Rxr7N1P8Mb1SBMQuX0e+tJNQH8oO/vpyY5+R61gP5Hd/y4kL/LvMtHZmbnDSUA9AA2MKXiJoANqzZ8E3sD0XaNRYTjFeyk8Nicf842UWi2ZBdGhB0bvtZwwpx3QIVEsM30PNyetlCBVEyK9RwERjMYtoxMx5zY577bSNfWqitdlizkpgGd0HmM/3HgzKbCU22IbpcESPrZsEZ672Ff8D2g4VKITDeIo5ANfTzi+10saSvf4iwkDCfzEclnMogp
mex4WDY9GpCMT0fAgDbDDXoE1HE3JZiivDdVy/ZmJTtTS79ACvANggGqDbfzmaKAca3o4sub7Z5RHe9CVEcBgkLU9ihprHrGMn0awo5BkwCul2ksQA6lWDDdy1NMg/iYtOPYcbwzF9BW89MX9e9XmbqxTlI+6emhWrSPBbcY+nZhi2njC5q4H7YnLmPVmGtL2Yj6iOPhgd7A3cLEi1zNLM+2Gmw4PRenS2x3SxK80of0gfoOWrZjbia+1jkRH2qR
29CajlmD1BnNIls1NW0EncyCRApQiUvzxEThni9sBRScMf3i84+6shSj3XHlKNAsqgvaXwcld2VHj11JAbqrSkBmWph5zQTF4AkS6bO4DBqiIUMF2zca4Y57Mmmh7cHBPXoCudIxFmzG9Jyx//1Ygbsddo+ko98UGl2HI7p5fhupfTR6P98XlZv0UNUOeuPjmGK/SOYPoDI2HLXw6qOH0hZzzIJohVNSvdmhIOeqZqUDAJuPSbyhBCQ8qK0b0Y8r
RvS5m66jGOIIQDurSKiKxyPHcqOSXtsY9nk8BgLy1seJ3tWeZOlohDwGL6kCMpcaBwwNmJs4jxDMwncgfWQah/OfJ7Asko7Sns6sW1kw72SlC2qPI5GPY6Exg+1jNI5qmDYc1dc0Qr+jjTyF+O1saX4/8TIXhrmSOYxa0KPAfH4sXxm4CVfGM/yTjjso7TRRmiu8MAtJv47DQqBjNHGYGM53MiVoubCajc8RruzJPST9t8Et88+f1OUBpgGIDhBR
13tDU148I++CE4wghtV5ivY/8NsZrHuNKitXeGit6+N6HrLAzuR4NZmAQ9P6p4TPPWIgPcpw6k8dBYccEQThx/OsmyjGf4Z0rz+br00gT14HvcNbfFJYBNR3TYOmwMV194XsYZuDHwABEACJLgvw5ncjR0oGpfG9eMV8bAzLjOavjfMMwSXSsZzLvWxiS9Mvb33Uf83uAdq416ggZha8YR4I1JHuEhujvfGUCN4Zjf2Q6BtSVEsyvvUzULzfqqQ3
kDY/HXZaf5zndd9YtppW/GD2N3ep/NHuxrdjKLHhfUH+qbyRiw72WvSVjBOnsbtRfT83cRzF8mBFT/rWKYjnNbjFebFcO2cM3YyexywTz/HQaF+CcX412Bj/Rg2Hgkl3KAcEwEJwwOg7sohOiJpjY1H4gKOJtS45whCYFgBNR5Au3NxIrbbsGiID/LPxIhGQRDInAFXo3tBjby2rGoeNHEY1tFAJ+Hj1asZnX9cZ0nfs+w0DdDGKmqu9EkiVPpTf
plNGGJmFsgv2LgJmdyOHHn6QNTP+3SMe4JEqozzMNzBowfWveigTcdwSFgTUZMVbImy6u8y0O5aIFwFdO2gIJqfqUJN17QcfRNBR0tDgmGjiPcWsqE2cR/cWDuKEBOlgeSA9xBlATzBrBgnRqD95qZOk8jtPJzGrdCatI99cYYjBHHxcM76QsXQr6yXdmXHNv1rMZ6PfHx6Yd0A7O+aI/waw7HxxHD5wxkcOPG3T4/AmtmduehCBTRkMXmYJGek4
oqBRIgPXtd7dVCDejhbHoeNTiEzo6s60gghF6jX1xAdXdSvkYQTNhHm0NnUfsI7xpZr8eJSu+oDAzQ4zfR7jsdRB76OKCZ8Ix9JXO2eE6ZcF2ksYRXmvEpdlnLMPncicj/dkxhNDPuHnqgEiegTRNRoZcuFk3OWGanwQOovERsBgAoUok9ldoZTFW3hlR03xXcbNh44o4aR56j9WR2ZU3rQ2Cy46jMmHTqNa/vOo00J1W5zkbCPw+xN8lQ5bebwo
AZGf09CY+kurUAdj1lHKm3iZoB9Zoq/g1aztMWNB91do3Bm92japqqk3Sds65rLB/ZViddn9JImLXAf+CkETlNSfN5LAAfgL+oGWFhFNBKD/ACFdsRceSdvrrtIw68Y21OFmIbZJWpK0Ogxm0yOlAvOjx8cjhOW8cD7REur1mMCAhl31wLB2OCVZ09FcNlTlRhgPTOwlB6slxoHROk9ueHEQurCD3v7iancsa7E/yxy7jxsrOnQD0auSATUhKpnX
Tg6Or/okAFJufLao4LhgB3sNnFps4H4eg6oS8T9YrBRSucfQj9FZZnwxJArQycR9Iwh+hfQQH0dIsB8x2yDDbHCW2JUubY7AyyURGOxjhC1gSdslPgew4JFGbQMJYybE/aJsQZo5y7BPT3psw0OJ9v9IOdeO3QEojg6LYKAlV9rxp1yNLZjZAxo1e4LR6VEyAYaTW+XRkUa8jGLTOAHcPMoASBgLIoYeJRSlopiTQrgIa4nUDib0bKWbsJznY0iy
9xPU7si5d6HMERRImvmPmoYaE2lh8vyYM9PYlqiXzXWzxPWlaTpvBg/rEwSnkB6qjzYnbz1jFIQCcIxriTojGeJPiMcgkw7Wi4SBNFKSg2+HA/eQuUtoYropVKOiBZSa7QuvSSonSGAqibXWQpRrlw+1VueJXQrMcOFojcj1hGyJO/odrPWSJqiTRq7ZMl69210exyTLsjaUfiwk4iTjV8u7Tj+KZg9h6Ya2ZfPUqzDZbA4hMk9Cp4LOxqJjPs8M
JbrL02zMEJ7fjJPQoS0pMf32GkxzJjlkSru6fTwEk8JO9AAFABpg5UArw9fLBPPQRepxDDlfjmfpveoyD2FhTAgZieTyFmJy5oNhwM8yd4DzEwiPK/9FxHtE340cLo4TRiiTlqHyRNbgeu7UimX4kTRyLJq6zGFwKi+p8TdknPePh+sDNRQR5ZjbNG3mlMNuWKfxfRhtQJHNd2eAYmulzcKoAyADEpVNlGEcFs4DPQzo9zjHTzh4w5rMRxasyDMp
PcQRWuZAJvCTu4n3rgVsaIk/TQyxjNMHEBMnCeQEzbxiCDMKq6GDUNiA1W/I4oQaa8PRUtSasdfhxvhj5U6MCPa5NYo56KeJVLH7RO39UYRvQQ0PDhn9G7P2SFqandsqwU90Xa4M2EBpJYw3hsrZmhbZsOmS3QTtYOpj9DLHhsMID0JY+zi15p/BHVW6dif6k92JjGTcwq5eZt4ZovZOh3qTo2Gar3TofjnRLx6adPcNgIDtoEDqcOqca03QRiMj
9hAkIo7bcN9eMHl3CYSZ4/AH+bjZxDHtjiDlTr4S8vKDjHySOIMiCf0PU2xwzEQ+1ttWOBmzcPVJsbdPpxop2QYZlGQ8J58TRF7qCMwGqvA1A9Djd5sc4LlMEby4xRh0mTAX6IdQMwyASt6NXd6Ce9j0aaABfAAUCCMWLKE62GUGtMCAbUC00HbQGClwKtzEy++aoTuoG9pMLIYb46IJpb1zbHBt24op98GZAxJlux8MzY/rHV7bdJlsTCfanROi
SMnw9I+7ON9mSWbWO/uD46Zx/0DEYnhKkKNgapTVgFKSo+9XpazeTlA63Mexi+y6wUVZUVlzAmBb4QCkY1Xm5SbGNPlJ52TiaSK51Bcde/SFx2TjsmHDRP6SaaE/dB6ONHIJW9iSyZpfn9s6yprEnLaPsSYC7RrJsGFT56wYObks+EzlxmDOMw7CuOSEeK4+HPIu92pMKJC5UL4MF0ADdg38U1ZTbAE1fb662WesyDbZMyiyIY6PYiuT3Mn+WSma
z6427JnKjB0mreOnCZt40zBvwVI1wDbzwqteI3cIcw4jYm7ROtSdhY7bRibClLqLIlRydMwyrBkaJAMa8A27MpGE/d6kTtg/6X4mJXpO456us7jqfyLuOUf2rhS5/auFEZ7id4ULoe471OqatPYGWm5oQseANBYPGYgjqe/55AjWMIPDHCARkqWTWPXp2xBlFNmThDVSLlsBCCnMTIsbwnp4D+n3jxs7UeJwWTSAmemMiyfdg+z61ruA0H2az0CR
bJXDsAZUyKrQ5Mk8YPg8xfaEtG5hKePs2pEU3A/BnjG6kGePdLGZ48J6mhdbPGRH2Jas5431XbG93U732188faPTcfDiGQvHLcYGFoMU0l9NZZiaQErbUgDgANO3GOxVWAmpwOLAhfovROthEDr5JOy5lLkxKqbEjB8nD95HyclFEp/M3jOZGrGMeyaFk6eJkWTI+7tN0BHCn6lNyl3amxoBBXNSZfk3dJm2jUpaN4Ms2KodcHxwKDJnLFx279o9
JdHTLMBFHHdi6AiczfpPShPj9DqClNSeCT4+MJ4aT66NrMGDlx3YLLBJMAdLRxDY8UALYuILNYTzMmB+1OKZLk/bJvYiQU5oRL21ndehaTHUTHPL65PJYcbk6lhyqTVEmq4ODBM6U8Ly/ulhi4i9jHCGfk7ZJ2JTejaZmM3eiH46PxkfjnRDdBOrKeWCcVu6CWz0nHMnyQeb2nPxqBYLknp/CHNO9lggpjfj+8HjlNmet3w/7xj19KI6T+PKX2F8
atbM/jrPyXBP38av43IEu/jFDLZcNoTwf43rquxdqmwegBmlzVmU2sdOwEfC7Dwr0UsUaKgOX4Ygi5VCtKcUkxXxmmIXxIulN/BndegIJnHNa77YONF0Yqk9pR8kTY3KZNmsGtU4/2qzvuT9gyarRKfmU2HJ2bdnrGCubH5pbcfrkrQT8wTx+PTRILhU9ox2WAc9AhZXKdMEycOlITfknp/BH+uZjv0Iuahq0BOVNweucE/mvTFBHEj3BMg2K9Y9
/JrwTCGifBOqaN8kyYJidFVsMRVMNrIVzhEJq6AaqmWuGxCfME/4J+IT/Imed4UY2FQOYOEIgVLIv6AMHW8Hf5vQ5mqsExBFLv04E8mR7zj+rHsRPafH3XV+GkBDMHGSwPFifCXdbx4PWMCB3j2PTMhXuYWDyDPeyacT3IirI+Mx8yj6rklpJtSabkYVS3K9TXqoPYc2Jqhnz8/Sxkwz1/Vsid6cTCsp6e53y90EOy2Y8ZAMgDlKUGhsMYQbyvbT
rZkD5ami1ODSecwynxpcl4hM5CMQ6kpAPSKASgL+ti2KCOoN8Obyndg02AFAps3sL4A6p/Rj7qyKKx7CYAI1dGnaBBgHjxNdQeJo1wUdvCwGNEewcZtADTx8fuCzxl7hPVUdMYKDEpbjdwJnkXXca4RZAsqel4MmDnWrsPSvcAenfjwCmqI4Gcbz3brevbjFPzyMFeRJvU9upu9TI8zo4Mi+vsPT4i05TJMmiuNEQYFE+L6zz9u8Bn2N6EnP/I50
/KhHKyJ8C89Uq5UWFTAAL3KVxNyka/w5dh5KjBvHX0N3YcYFZqRiXtp8mLeMGgaG440JxTj7aGvA0IwlMPUFuG9uKuhfJ5QpMhY88YU2WJf8N1N/yMyhWA49vIfxG0DnGT3PrdxzHDBKy9BGkzVuBk7XasYTPlGMJLiQDisFMJiHUt/VjFiCGTdtslbBPsRgA0pI6fRNMq8AfSNrvaExqzIJGjN/hgxj+8mq0P70dHUwetIsT6GmfmMVwZG44Bhx
hCyjgJFS842ZBXdRmA4F54V1OW0cz6UhB1sTb9G/5mLqu9KEqQ4U9GfrbMMfrPao45pvvRFnHXvBgka1gBNR+poy7BZNw5s2Y6UjjQdUNlIerQIxDrYdPi2XMZPI/WxKkdh43MB/YTeInkNORrDU09dBjTTdxHh3DXEhuzap2epFUIEh61OdWVPJVRt3jWANzNPhyepU/96y9T3vGvP3UV00HaGaz99RyqPpNs6XRY27R999oekvRMW2uzUzBDFD
NEUnFZS5MdvEGIjc7aEdHWDrpPWruc1+QZcpNFrNCdThKg2II/u+YWGy0M7CbcU0ppl5jr5qaEEJac6g1N+kujKmQwX5XzMdza92sO8idCW8AxFHkE8TqkjTD1ZCYVWUYs00Ox74TDazij23CK+zRlIGMFZBlXVYDkIzWrOQuH+oimL8Ofkel4+5hx9eVWBGvz2gIMdIlwRBgcbI+wBONzTIps8tejb8HPOOOqZVo0ipgRoF2QEUGBLsgnQ4GiBt
dcmJ1PLaYQ46tpj7D5s0IWYrxDzzbKw08ol/wTNPzcYtTm2BkYj5wGooMnqYlaTa64nTU5KzP0tfQp02Du8eTrh09xHO0f7JSC28VjXGnBROymGWdrntCajgy4+8JioFnFpuoNvCeJRwdA55PanEjRni9WRxScMjHXwsD74bjZzqnaFNInBYnru3RbTL2H4OMujsQ4xzhwdSN4ZUGrH7zm9rLoUTEcynd/Q2kaAfare5PBS/6HaOH5r9Q4vWmCGa
AL/43tgl9E17R/0TMIbfaMg5ycbcvU/2jY4nDVPdYxjIR3LH/hCXxqyi6OgG1TZoQRSoUoELatqOzKjkFaFyFI9FyNDqY2kxqJwGCBYmnfVK6c0ozipqdTe7R8n1Cqlwypbm9jkd2kTZYzxTGTPrpuJ4hOnnhOl8Xe7RQ2i8p3dHKmnl6f9PbDJ/AjA4mvxPu/os/RkS0NjHGmWdMTPspFIZqToAWAAZsDVAH/MAVYJeO3vQtgCDytd7cvOIuTyo
mq4jcbKxE3Lp2scKmnbyGJ6eVbSrpy1j06mgb2ZYdpGIwCvxVw6CDBS2Iusk4TxizEukAXxNBCaLwRCu2MJn4mf6NbKr/o1J7F3TKpckIWHBKAk5ccm/THDTpqngSb+U1r6gFT06gMAz0LIY6XqLJ0tIRAkxzESHwhEr+FwAjyiziwwhlH0y4pqcQoHGB0xanCn0zSm8hjCWHEdMsKcOk2wpzQUlSFFfZdbF1Y5Pc30m1nkbm2CKZ/CAXpjiT8AT
F4PcSYIM7xJogz/EnuyMv6dQkNLtNFdDA7EADW8REEeRIM5uiCa6gB6ANbUecmVJcqmVSyDd6guWZzJ1gEK5HTGMDTXMY+/vUiTWKnypMYacok00JkO9/AketiAbG10+GSEfMVnZ89PX8EL0w9Jzrpl9qQA6BMaD0tqpzZeETHPJMeSYNw15J8QBGEtNDMIZqo2oFJ2gRtCt0mOzRwsMzexyjDqkHa41OmCFdC9BME4yvGc2I7j2SfvYo7zdeMG7
hBrif+ZKA4HCT60mdxOx6cKk5WY4iTlxHSpMDcZZw0lp4bjVLhfZU/j3pCgwoVEl2sx+SAr+RtE1aR3AzI97mG20Ua6k7ren9TcngcoMZGaFY6IfZnTsRGiX3rYHKchkAKrB5jsUHyCzzpht2IDtYtr0+VaRKB9zOHp1eIkenSLkMZBoU1R6eXT20m2J67Sek49JhptDF+r6YMRcfJE+/exhCBtVWjmOSLkpiSEzMgmXKt9N4CZwM4oZ9Ajlvtdl
PNZIQeV9J96TknbeqPrGaxY0AcmTtf0mf1m0LAJY5u0n5tIMm7bXL/rJY2VsiljOS60IPDiraeTDJuljpzqqP28seLPgQ2o+D0/GUH7sschw58oCOOmMmcwWWTy7zul2omTBDQsoPQDxFY3KO6MDQ0nbDO7/n8UC0ABBI+ekcJB6AG98nzLCr2V0E3DzZ4qoLMAZhSTY+mVaNqifwk1tJ43jIl7aiP8ybQ/fAZi+TR0m/VN7keerShQIfYx+80SV
jFBvICHJhYzu+nFZOqKeVkyRxy/lZHHKOPM0fI4xffbWTH6n40M87z9SuI/T4lWelZdoA6ZgNFQFetckBp4KVD6cAvBTELCT7MmcTPbifVE1C2XmJtrLUNP97qW0+ARlHT06njn06jTbDN3x/tV0irdkKtK3JUwbppQzSynvBPSqfkfatx2PduG445OJBvmPTUHMzjwNLp5OfqZ53sk9DnEq89ctrPQUJQNVYL/IAFhs8XpSYTjISQRf0DBz/DMq
mYIk7nPRrt/VKwjN1CcG45EZzDTI3HdKM2VuhTl84UMkux8DPKHCAeo2PW7mDh2nFjMDyeyU79m7Ljv2a5/2Wtq6NVMAno1t7HbY14+lelidXSrB/eFTwrgWEeDLiUO4ymZKSaFAbFZk5J3ShTQ3yoOSL8kjM/iZg5tl26keO1CeUXREZz79zcnFOO8vsUktXCEHsVJ9jp5zeADINgZnfThun7pOWmZzUZ/JmzTuLCA+Pd/pF8Qzx7ZlB6DduNAK
eXbSAp1S+l+L1mUQKddXXSEpANl5m+xMa23gUzUQ+9T8/qB5l2ma+nU9x9BTCZQSlOcadb03j6H0aWCD7AA7GFYADAgEIg42BcIQvILFqPnJnoDsKL4VPYmfvueXJv7qXZp2+4MKZPk30Z9CjeZHUeNN8bgkR1OS7SPHRczbt9Tv9tLoY3Yx5RlzPmmeEU12mnn+5PGEP4SKdWpeRZ5i+MimaePqPpi2gopiXDTpnFaY6evMeUep1spePtUA3sfq
PHd3Br7N/PHoYUaCY+fkYpueDAf6xeOcLrIM+KB1CQTJzyklVAEY6DSyC0YVmkCKLK30a/EIYBAxEun2DNhmb3ky04gczmomvFNxAZ8U5ipr1T6mmJzPDGaok/L2lRtBWxIHhZyteI9hORU5ssnAjnzGZXMxaZuFjCSmXEki8aDFZQ6oPjToH8WEFXsjFWzSnLB2Smq77bMLjOSJfYo91PcilP0CC/My3puH9GNDnbbbGCYOs4Wj9CIL8MiCqgHo
ABJuZcTPQHm7BsGZGQBwZnCTM2meDOXqGjM3Xx0czv17dJOQIcnMyNx/Wj6OnIWwyArJntnowOobiJqa35meZM7Gp2et7niHSPqEP2qYyp4fjU+SmVNbKZhw86mGCxpXTZ+NmYfn43qp1ITktqBuGr8fOUwfp93GRhmVwETvJ94Qd2Q/jACiO6EPKYV1jL48/jbynvlP1/wM0T8p9xFXynAcaZIPHE+gAVkBumx6uPx7zCpvU5f6OuCCkEjppEgs
672shQmlm8rPaWfdWYVZ6MgvBmaIX4iYxUwLJ4kTgxmLWMtEa64PRaFvuPwQ5A2DQdRMlVFPPTN0mmTOrmbiU+rOq+6Gjz1BOKT3pU8XCuN+OgnmVOdEP0E47CwwTQoSlVOOCckWPwCSazvKmfaW+ws0KdSzNGzCzBFrOWurFU/GUgc9kqnu8NKoP94QthhlGaxSh8ksuJps+dSwkxXNnnHnQqxEcc8p3mzbjzdVPMIX1U8069rTVwGElSoIG4ML
lQ6HUfYB+wjOKAY6eygeIA0oBgdHAhn7U+XxtozM2nSxaNID+9o3y4kznTHSTMlid9U0JjEpOyiMnqDNWcjWWly1TaHPS8dNRqfWvqW4kPdOWLaNMkpOr6c3bfWd2e6nTkPFKfbel7TAjdCKcOEGt2QSc8U1l5lejwhNuktSXuQw0q9bNhKXZsNOrlVHxlCNwaGdL0IQrQU8pCk6l02Gt0N9pqf4yHxl7jE1HNx4uaH/cn2AHBBlIB/3ibGC96EK
Y/9yJ2GegOk4zC09tNVisK1ztbMTBmW2Ak2ytjzlqNTOTXq1M/Pp4GzDvafv2yXqO4IYmG6cQYjv9jnfmI04yJiijveUwcwJFryxeI7aGmKEKPM1aB3mw000r8oT99CCOr8aHkWy/Om5CqnB/ymcPCjUdfHbjrlGUFObnN0fUYw5HW8uG3d7XKdvHdsg4W+xQ8r7PpVMhMyCR8CAVuj6TEFMb409EQdGYbAA7+rkLmsYs4kKAAGwyDNhTZ2TkerZ
snD8eHmAXR6bh4zFpgNt7AZomlxmbHM98xsyzmmnojP/MdS0uGIF40Q6C8Faw/FvdMlxyNTqXGWDmxmAvfR7ZiD1dh707OKsvr00rB53TV7pXU3S6QM4xDnN0h35SVA7J11+LSAs5AlCQnTP3OtMGdBNRl3AAM868rGYwduqZsRXAQxNf2QG8RveUPpwBzCqhycONtuYQEnhl1TMOmEq4t+tn03f+5PTK2np1PWsZqara5JhyHp4xA5cBCpjDCo/
bTo9mm6OavMifRRpyPV0ezIx2druK0xcZqfDOA7db24bJlPZSIF8xb6aM20hidRLQ/g2kxV7779MNaeHReQJ2tTrNGJF6N2k8084oOF+86hLq4XO2ZUfHIhlChnaamMmsqwcDrxuTTsGnirWGMchvIBGdKj21o8pQI6coY0jp7UzqumVMiansu0gOCD9YB76I4JAwFbgXbZ7BznNBNHKqCaayaQOhJoaGHzM6rBK/savxnIzd0k2TJKjpNyQi0GM
+isqDcMLquMiWnqjOzpe6TNK7obEqP7h8i0HgFbk4jADtGF7wafBP7wpTw5inaAPkRiBCGqH9iNbCb4TOdGyRzNTIsFKJ+RIATZBjt1SWGTqMkiabk+ZZipqXQQ+k51iiive524dBhWolDjFOb74/biRswrZbnMmkTuXVWmnRuhAX8a319VyudROdHYp9Dnq5U+JOVxrg/H2z78TOnm8/qkszuhz8jcR1kDITUYDcC8qowAATtLSBHgGkADaMZho
dwwUECzB0/w0A5+TTIJq3FNOQGacEzAgn9v1nx1NG2Z9U5fJ4PW0CRkF3/tQd4+IUVEyMn5STSXOaUE+IkULq5sbrK7S437nomE/p9BNyBm27Uoc0wak18zzeGXuMgEu3rT1Grn+0T614ME9GWFcyxhz9pGq5lVZMAlPVXpsgjeS65q5yls9yfyZ7ZjoLIxKiv8b1k2W0SQAYwAeVZi72jkSS9c2EML908Bcuyh7dAUaPMtdnACrouZOIzNGX+80
Wd/67JXQzw8uB7PDYXH0Z1JmapcCMydgJcndGcrPMidstwceMQCbbHqNAUC+I5wmDGpCNngH1GZ3upv6xpbDUcn9qlwyZ+DjkvF6x+j7lIWBIuDPQRhpyjx39V8MVAalU1W/HN+HxSKLMcVL6ssm5saN7lG6qoKduneTSLRI2OQ9VjJOkrn5grfAC6rxSKVHlsHJqR7p0foYbG+BCuIwmo+O3JugiDBDmN5vMqQmNcw5wAiIT72C3PVqJqh3iFEW
mFjUWufapdNMaLOqcc3mM9Ak2cyxW7Zz+ondnPDKdxU+X5NbJfSdGkBY/DdRK1bDpydMrXeO9sbFqd88WvDVPtOun21JRFcPhtGxMkKTzYU3tFsG7Y7NtiVbos3MUa/k6zZ7a9qCSmbHY+EOLj/bcxpfTSG34UDD8jk80kjDgz7GZaQDy+aTTcrQtndTx/0zWQMDmiLfB+5GHhz4WuvZCrOhtaOj19nqYODrtdohGukWmFitA7yoLn5noOyXDybR
URYkMpEBFckPyOCelMpZfVGGrmuImGmv4mPvCayvRELR5zxzpXLuNNIsGno7v+Ph48uBfGmi2jZVhNnPoaJqn9F4LYCZkymySFww7nwtN12ZBNZDpmdIE5xxEgzD30A4dRhtDeomBjMpvt1o5TwpfV7ASdELFeusA5cixVy1UbPCNQYd0c4/R9w4TJ92rMtQKYo/VjNujgLnAaMSse1nWMMfsjXwS5SSJUX8eRlavagVTQUJhf5GbCF8pLkatA4T
XOpurNc78qjoUCxYfExpSlXYrH/bFtcjm4OMKOZ1M3u0WVYsRmAjjj4T3A+9afb4hAICePOWYTvLY/I3TSd7ijafduFTbhW5OTKARxIA42HK48VxAI9KF8sEApCCFeCy0JoDzcsKAhjt3jI/kILzzCp5wBO2+vAM6s5qTzOlThzOAoLbs0wBjuz4XnMnNcFHTZnrXNqg6FgY20H2IqOO1YPdzNkmzpPMHsMc8Xp5AtcDC4cM/CcT45LiwpT2bnmL
72Zxn/bCuoFz/Kc+1il1HmY4mx3NohIcg6nrsC3UMxdE16ArwzQ6O+A8MXLRyCjmXwa7PeeYa8wPaprzzfoWvNHq2NfaDnXMIoXnsVOiGZGUwc5t6hxdTw+gh4Hw/aSSLjcwY8GRNYOauc3x8KuwQi8atPPGeVHU5pxC1gIdbNOWpJjc2qXLGzFyrdbVUrLjfoxtVu2EtmkcM+4YCaK957nIE1GxXSnWxziPQASykRYVBHCBuElJEX9OcWNXnNhM
CYaWc+HK37AQU5mvO+nAC4+M0d7zIhnEzNiGdvWpN0bVkbaZpHhejpJjlTsH4QuWn93NFNr5g2l5tn9U3DVO4eePyM+e2ktZtOiqyl5tOKPVa2l7TXFHND7PsdQQQ2Z02EzgAcAMCGEldAlWD942vcUSOhYYMI1NpvJF1izvYn6mmYQN0ZmqYHLLBDP2ueoY0Mp2hj3PndAgpgaF1FDVO61yW70BE8bnnhdS5pkTygJgoimboQ/o94oIj6zHwZny
lwISWXgj+JT+nvG2s6bgfQbdBjju3m9eJegTdtqygR8B42cUpg+pSFMYPtMtog0rIKMASJg0xTht1VGLmAvM/nDZ8yEZkqT7UGCaP1Cc+8yu5g5z0wGEflK3GYDBZMy657HBILiYObm41GpjFyD781zNuWYmzffOx515l0HyN5tKwbreW7o1zomV/2NudBZEsJcEjrE1E+zoZBmWkXifqcwwB7RgoBjLaAO5z8D5rAi/ONttLSPvJzFzgXmEp0ha
j6U5uR/FzGH7CXNCYzxiFCBjwstQIhBWY6K92Et1UXz43nhQxPCeUMzd6QAO+DmdWHr4dX4/snaaz2nLsS3syt7E6nEwEzJa9p/O7oYCaKq53f8xrCsYhZXmMWFAAWpoaehMxTnXssYsstXD2KLnRHPAOY/lXqhg/z5fmZHMv9o587X5rnzX3mefMVibl1bY0QryD+rEUz5sgEhJ35t3jDzHXLPvybTpa+C9puFravEX7qer0XIvFiRSobUH2rm3
yvfzZtPBmDcbinAhpbfQeYq8ddB8ITM1qcY83Rx28QwgWZWMQ6lTxWgAqoAVXEMPZFhSZQk0AGcANIALD7pAHjdgdZHfz4Dr4LNl+exc8sauF1eLmAbOKedPo5BksykDY60tJx3IstHuUpisDPYn/Pb6ZMoK0Z5bl/+65CkZmWElZN2n3j9v7MvNb4ZNbQx5++z/NGMy4FedgfHAAATI/igiaLv2rq5aMACx2PW8VoU6Bfio2b57YTeSL2jNfEhZ
83aEjKjrPKmFNbOYGUzs5wGzzo6F9OReZALeTG5BwFqc7u2TYPQRHTG3Mz26QDtMEpgazE3nPLdgw6NmPJVseNRfBzg9gQXAXFSMcvEBCJxYC0qA6MROxsqQiNjHKpRBTbwEu9Mi+Lmxni9/dhonMPoeL8xR69aTlrnJ3P3YeuDX4W1Cz8nmMKNLIaU8/FY+w8Cfxmuzg4R+wwsoO7gt/Y9tN+ucDUF8Rq8SWCGpvOg7vCJfyaEfz8OHB/MckeJ7
jl56QjpXHpWChBeGIanoBn20Lj8xTRKmPAFoAE0wAfkATgfgNjw6i52JzcjqFgsTuZt8+pMmhB3Kn92PbsYICwmZuBzyWnXgjzTN3ND92M5F4H1cYJv5SoYP75sezDJZCpJGeYrXSsZ7VhaxmDqkoPuqKTMAo/T1wTF2PW/oao8SYp+++KkSd4Ng2SE3CF6ITzdST2YXVJ8k0LZrxoJRwSbPKqbjPRevWELFgnSdNDLCFC2LZh5gllQxQtTWa6fq
evKULpNmZQsXDzlC/yFnpzPh7QROfkbEqLyF0Wz0oXGOMfc2cLTOWt22ao9EpUDAGYAGWUHvT2Y73OPb+dBC3MF4q10enFgtQhfUk1/SQU1vin9pPHCbJM4gZpqUS1ATpORtvUcmSlY2jg6rrHAL4RB81357BzTTIQ75XBf9o0n5jczX9H4z1xvz25ONZj6l8TRR8k6RJbbgTZtkLWHzP6GIeeltbm2rU218bb7OSBaCC2n67MLz9nd/w54COoAd
QR5OvXrJGxv62jnrtQPtSPX73ON1MeSCwz535Vv+GEnNWuda8zURq7dUF8riOlwcdc6BB+Bzw7goEit8d62CaSh/ppU9/yKPDT2Q2RRvTzULGV/h+Qcl804B+J9CH9DB06Z3Bw3up4bsITReuH4QfDMWn2sbm4DH9i5jmtPNo+53XJ4HcWIZKTzPC7H5uMd8fm3KOlKXHITxR9IW1mkNqBtACJKGkillEOzgaFnH3q77fRB0waegXUgvEMZwC0YF
vQDVJ7Di0deaug115uvzKemuuBLUC03SLsrs0DR5yO1ih2dBS61XELejmhtD1TNKw9ERoKNiB9n7pj7KG5vOPPCLx5nIT0Rduk5S5R6z1lViHSM+sf47fZR3Yz74KMTFPBexY0HRwhz/AWq9GuidpxUvWsVzPn6OIuolub08UZrOzcbH3guUikeTuVeUjRDPEEAAMYjK4lYsQIAxodFz15sdRoxgFtFzvnn/wuGBaC8ycrJv6pgWdJPyNqRC1EZw
cLLkGv0XiJGr0Pk5j0ttMlvS0F8zPQHUFsS4yZsvT08628nS/Qg3tKA6EH3+MdlxvbUvLo6t7oo2hlr6LWBJ5jT1HH/lPXhfF3ZuvSALiwFmwj4STNhI/1CQYMDto7AdHwjcHDEZOjM1oiuDGuZ06rd5kyNBgWQ+iH+b4Mw7u1JzR1GF3MKeZJI1sFgrxm1AkTXmbwCMCaRwqkWBw+rDVBdIo9socyLV5pOTWEhYo/bXohtZfsL5XPmx3tNXkZvS
9n9jDZVNvo6i5QOsALILmwSPPJE803+5A3wZgAiSD1qKQmaeFPPQnKIHSBLwPEeJNplILXJqlIspRdwC/hM/ET0jCewsOued8/Jx51zg4XW5P9ArBBVYBmkT3Ir1IhWZCS87aJsS4wCkGO3HGfhSbrUgiL+9rSum0Xpk9vdF0AL2Pm1QtJMCFEwsRiHUUhEeshraxv/GGZQ5wWrN+FId1FT0EvA4MQN3n6vN8ur7KFHUSELSTn0vFw6coUamFv9g
jvnQuMbRfC4wOFlEL18nGz2zY15IAE2fcyRGwyb60BbF8+tkSlTcV7A6Oqmv9o7LQ1mzEZQaHM7Kt2szzApULhNnGbNSeydzt9MbIJz0X6bhzEfGiMw/DZYE1GIX6aAECUAjEcQW3YR6UQCPCEVsoAMMyJsG16O94BmC2I58B12AXlItyTWQ/UuBtaLTvmDRPLucgixdBDhTtCav7DbxEHbWw4nMZ1GQFUxOBeS82LQVue4YXTW3ZeZ+nd6+jx5N
jneYVutLGI6ziiflr3GZ5P2UHEgBYHASLGNDgil8oBe+qeFWoAmyYZbQYQjHhukIFrjwnnTXN3ecTWM6pjILgMEFtWAgcyi3kFxdzBQXmiPUbougsEpmIF0jy8Mjd7Pt4f/89oSPfHQfM0ubKbBJGOqjvq1WvGySrV3U5Fsxl/fTaD63xqh8/fanmjvEXLPMR+M3XiiGwKjEOom1x9oA3HudBLDOEXwVUNSUDHnO99WfBFEI6vOjucZ8w95yTzrP
nIL2EmbGvXjR6vzZUnCAtaRa2iyiFsZTQrL/UzdnCx04SPew43IIWE2nBaqi04WImLTLbpvO3zucERU5mi+Yfn/At+/qIw8xfM92C0H5fPLwYGo+rBroLkrHZTA7eYmo7EQOsySVtu+xNlA9/pygTdggOg5KDywSXgZFPX8L4cquWTM+ce86PFoczJvHjIg5Bfnc7HF7KLmFHMLOWBZgQ98K0lM++VnmRD1pDzC21FCL+nnLKM2ubcC+R+8FZQ5y
oTwL2ehiYP0g4zLAXos1MRd8C0LBxj9XRSHtVsabmY9eE1FjwRoZvMxPrl861O/ipd5nPJ3sJfbTe5FkBZHznjC33caS7c5R1ADpeng5k1xegY3XFiQt+XNh7ITUbwIdyAneQSdhNBmbgfvQNEQSRsUOgN5PsCceXrNF5sLbCq8sKp8kWi4BF4o5fESmu3Ohfdk+fJ42zF/mvWYrUB8JfgCdpww20LrEFkC5oWN55wLoYhL53BueN0xxKjLmXpDL
qms2djHgZYrlOyCnXvCncaxTsxZxmkfeGZH2InNe/Pg0rizs/KueP2xevLXyxusp+b81CkiWdOKX8J3LmqSXPm3pfRZjpbYi8LQSSvEuL2agSdbk59z3FTxz7j+Yjhfc+rg91ldEjY5Jf2duza+sFFm6CpY6VFhsbymJpL6L0QXp1o1hse0lztGhJqYrO1xd8i3GfIx61CBZGO7/hZVp7wdlEQ+0c+X6EgY6SMyanpnZNCCEioU0SxFh8Z1ykmI4
vLBcfHiEZqoBQhmTLOJadni675l1zayHzZpFZzfkIZFqdRh+hzVgnRfOC8CQUodiyn+/O5LoeCzkfWhY2myNv251rdsxOhvjtE2G3ksW/xuU6P5xsjvY6VQt9vty86VxvsjXAgJqOPBjF3rcGNW+cJGEJiBUhIuLsgAh5hBDqrwDxdE8y2F0vzeiWVIs/GXvHuxBkkzZgWcosWBd4KWltRsVadZlL3WzVvzoIotlsGCXZwtV/Ff8+uZ9gxsZyR0U
43NT7W/o/az6mjaNMOZOayZ5TBlLoPq8X34cMQfcwRzIzeyDX4lu5regYKlgXxY2GI/mSpr/k6Zsg2pAJnHtHKl2v4wPPdn5qBysP4RnPjHqHx/VszynszLUSMrKav6jVL17tiInFLrTjjNE7yLz+m+kvxsb20KylqAwcvHyShcJ314vs3TdGPVpmXU4pFY6bRiV2hnnmEotgxYt8yiloXAS0WZK7CnIRC+OZv9DVVmXXPWoZKmYGG2feR7i1vkh
RCWUBvFmoL+yGZwvPGGnDIW+hcLXZCn8WGPN2/ohTZAdut7fcPgI0elZHXUwTXcK1+PPmenY5IQuu+rMWI0jgBfQpjNZpIjEOpJaDOADEBoWaM3WQV1o2R9gFsWqgwXBRLqWC6Aa2cxIxNK8ojdoXoYsreOP89Bx5hT2KXYEsfCssC9hplGyh+8wRzX0cj7eZAPBE5yXGSPtW2vIx6xioddfSTwGw+er2ppY+ahRjdCbbxXv16eGh64zE3aOp0LL
sOKZBYr5LzwX3uPfqYBiE/F2/WZ2BBXSPDEuAKQEbQex/yUpi8cdvebOTMHTA6nflWtMH886il916QnrZRSHrvN45qZ5XT3XmigtQRe00zU1B7cvFb/x5f5MvmMBJclL8aXOzDIpqTSxq6oMtEPr2RMo8C+vuBLSAlwtrTElNUfrNrABm2xAG78DhFGbES30lwOgRGW21oTUfxQHAge5lIjggVMJK3aA3XiQgZDvguw08Xq6eDrxpMjn6WUnVYiZ
WSyFulDxrfr/rMaRbU3XpJ/ZzPPmjz2MMZD6JYavNxDmbMMxNGoQy6M7T8SBWmqVNy43wS5FeB8Z7uH9cFqEISSZd3OGxHEcvqiESJ0yyZh5Ch4UmNvPcC1yY1box9jBPmIdQcgIDGnniU1ACDAx5xNACFULXMaP2rybYouriY/S5rZ8Z1vGWQEuZBZSSInmp0LxlncyPAQbyo7ilsKFkfUoQPTsyniZrRQ/KME5sDim/p0cznFgPzwURAIsXvsM
sdoO1dLFhS60XWmbCg7/il5zv67cQMbVKrUxZY8kDRrdO4M4qJ7fX8l8ejkjHgaOXiDdi2cSOJ6Mr8TTLITPiwtEqYq4MsKPf72kFkkyCF3Xj4OnfPMQhet832l2jSbXnTbxiXqEy8IZmeLAaWxMtu+bR09c2+6gXBBRWXl1NcRALsQs486X6aMJnleo6bFnYDmGLrIsEdOtORwY6KpByCqmkj/rSQWhiwuJzVjdUvaFLz8VRkyzRMGjlUv7f3iH
rH8jkTWEoEGYOyKwDWsUuYpgZ7i5bAebEkb9lq6ppaWAUskiNbcxDqWsACjZXgDJEFbGRoSTPA5wBLMEd4XHAOwkt9L9rCFktGEe2OPv5uWLdvjxvlStD9S7A56bLqMWXwhq/ne8keCaVhPd7wnaupiC9tnF4MLYPmzdjS8vAcdfYgx5SrTSL1/EMv40NzGj6YYnvst+Vt+U55FnLGUrnNV6kZcf4+Ilyl5vh01dLcxf5njYxN3oDPt7hCzfgASl
cvAvAGrGeL2lTDp84cRvJF7a5IYtDZanCZwCnF+snndRNZRY2CzYx0dLeKWC8P8CQ1JOW3C0DiPsffBFvBHs8llvELpjQzkUFxbEY5G5y+LZGTOTPABfoI7HfcemWKTDONT8deHjrht32gVTGSlQD2Qhd00iADaSmp2WA+JsHUaluPzwLmnB3qX3NS3hgCajFAAVcisvBGANxArQkDB0c2YEZCJQJU5SYLa9G8ricZaVo12l/jgquWrfOJOfLMbq
U+HTbBToHPlWc0i3jl5ELBOWl9OV43KEKrMedThGxGyEvJRmfApl8fCF+0Q91ZzDnMU3h4c1o7sA55zscsiQVq3D5E7y/87zdLeuUzl9azLcieo2RhY3g8UemPz2mj2nlnhJTczSUggNG6j34UrWbyyxeZ/DBxWXJCE0mNsE81FhG2ZJi/nGvxJTKTESisGhxd8QPypY9w1yRu9zYlz/11/mLPc3mF/0jUgX3XZ+4ZBy7v+NMcJqnB96DYBKLsHn
GKot+sHhK73LB4wXJhqSFMRCiy/plSC5nRt/c1zpos5yCMrFQbZtX90CW9csYWYNyxFlxwjvvKUoDI1XUbeOw1w42qkgwt0BcVIwwF+JTI9GXwVORNJ+aqQliGQOczwtX8ORs86BvhNu5mKsus0oejsvl62VPDSkNFMpaZLq/ongrkeWrwvR5cT+WMMHpGE1GmTnpmPqaFdGbMK4iLR6FLUDpAMhuouxJND0jBSxcwCy2F0DjcBWjNMIFYxS2hR9
YL6FnzWOFBa7sy9vT2Jg0UpnZHTwTjUaeo8DCgnrcuoRaV2J88vvzjAWk6UcEc66bEx501FXMsMtUmT3xhdzDwr/OWfIuCFefjbKYCKDnOmIdRh52GAJw8NgAsJmGLo35stVXqZT/GFAAnrObyfzY26lweLLYWFKPqFYHXL1x36zOOXyJMQRcUc5F5ju9V8MP1izKnf3Z48Zo5ShBWmMRqapy7nF/7cU2q8HPEhZJ6EODchLR2y0kGOHtV5YKuw6
zMHd+uEkEeZMSBJ5XdM3CD0sCFq5leM2pQOd4iOXM7mdmOeel2rLMVaMy68ad3/LwLdzsWCC0piNIhbDo8GNMiRBTOUAOLB++b1lmJz1oWdrUpFbufBoV/cTfijxstYpeEy3ue0DLBhXRjMAsaQcFEoJLdLp63VKEZmnsZ3ltSMhcU35NkFYPpZY58xzdGmtUHw2215eVh2XGNnLpXMtV1ui5A+4Ol6anMbapqd3aXfpjyL3+j6JHpiIGnXyZt0z
ApmDxA2wwCi0mx3gwLvRixQR8O9GiU0f+58PITQvHozrYcWhiWuELhRN4syAtc1wQQ4sRrGsW32Bu7ud2FqvLE36KrN2EZmyy65th9acrYMzDECcYzQodIO82h7cSPFdMVspl4mLAz7+sONOu2U5TYPOh81S9MWypcnpZeFsUDvhWUcmuK0SI10YCajO+SOOH1ChCIEMTfhEPSBi8RtpM4cPVaxQr1dnrsAl2BKIyrlhYL5JXMyoScY9AIwp9SLk
2XEQu15e0iyiF/x93wq8TS0MFcIwUsEaqXy1eStXmhJ+ttl3Rlp/Gq4tNkxp00hY1vD+qXIYO3prFY70l2UrfcH3NPApYh1MI2SVALPVP8Z0LNLaMBZyORXBlMPY2iPQC1sV3fz4WhDWpigRc2DXxpwl2QW53MpNvSc53ZxOL21C+UFCziUIAD5qVUaZAbKzhqaQ4VVF1LLS6WfGMRyY8S5ZEmtFRuGSG3q7OVlXG/XrlN7nEJYo2POsszFvGz9J
SRyuNooXycnx9/LYAcDbqVAOLC4sBFm4jmgY2RJwfV/PhTLhwjSS4ACxVC21b2p2rzWqH1+A7eqyNbaF00rtwhzSup4zYjofRsqz9JWa8uiZfxy1k5vUz6OnwCxvJmnS4bSqTzAdwPStS7Fhrj+U6iBQsHLbUnmbkIVcZh/LMBrT3YHct2/q244R9qYbS+3IWIgq1kxwHLLwWAIkoCzTmOkJjlCvxwGQCEABoFPO3dkAJRds4j4zE387661a0kBW
/Hgklaiw6wa3TcaRXyrUoWa0k/URl0L3qnz/Pkmcv8ymZvwVJ5Ssbg5YdcRIAiS1A+MXxvOB1ndYy2Vp+FFfSLvWuy23qZ7m/mBi+G3iHAOJQPlebT/OXnr2XMHKcgKSvZl6TWBH+8tlB2B4ZtZ5A68gyIYNH8bsefDXedBmlXLMnKVZjlkbUiN54psMMu/UujPeNOkYR3hXjUuyldLqCLltusIisNpm7rHavvgAUx96D5wP3IbuMlVB+vaD91gi
iOGlaJtCrltxTV4oxE75lepPazyu1zSsWkYsqxZd88QFt3z05nzZrbZMgHOs6usDli4SZExpenC1YVzBLT1B4Yx1UfVxW+JjazrOWiWF54O6iZG5/9L7ejRF4HWfRUdv6n7LEbnvEthCZek0frWErXxWnotmZcwsvexy8Q9fNCfMmapzZbdg/gw9oh+aWkABcsSMyAC1bN6ts4Gle1Q7E2OR1+rHUitK6Cb0tsNTIrDJXSRNMlcHC5dRnNJc6JfQ
utVvCdiyQGQoRBXe2OakSAnS8VxGzs2sey0ayr00eiHLTL5Kzskk3xqp0cAB+XxAZWK3jgldMnneI/Nt2Rm6VEQROwwa1FyQhHNbqzMJmL7WPxHMaj+zHyLSCOsswUCXMmGQXYJXS8vGPRqygFdQKYnkaOVCGUKwpF9jV41W9iukVd+YQ0nI4rhtnh0ubBfCyzc8qKm4WNZmQmFdJyxVEhWKvrZO8uakWV3rtVkNzMgqpF6OFZCjdP6vWVgG77Is
cnVltYyS0BR1n6tJgaaNkqxxR5hzapwUSt4U2PuZyieIR+1tSaKOEzyOgcATnqpx6FpNlUH/i1aFrMr8NWSKuTVfm0/iJ7y9DsHUCu6FbCy2jxvFLNVm5v3vGEt6gPZkrYnmYvyJE1esaOCMG1de6TjrMF/O01ddFmn+teCkoNzqo70RvW1ze2aWlO05Zbovsep39I8QqDb21FeWNCPhgBx8CCJyGW1fFxczV3XGbuHOf3I61kzjR9c5NNhmCwt2
bKU0pVpwIru/52erCgEd6PgU2c00bgUlb5FxeValstjLa9HOImyadmC1mV/E4aI04iiX7hGvTtJ7RSM1WryuVWfmqyiFsujEax0X0mcR5ww1J0psFVHKctcMYXUv958pz9pHV+NjWfuy0+p9SrJAbuCtwle+KwIa/dL1kTpfPvhmKSyI4j0l34t39GBgcefZ8LIiBIUmo5PbRVHY4bdR+JHOb2wQEZLxFkOOlJB7VjnnOHWUVg7QrPAFLtSsBbjF
ZK44PeS8QLHnFgKElACTWbgO5hI5SAp5LYHvQGMyVVNgAnfXWnnBhq2CF231edWSyAF1c26nJ+rHLu8DB0u5BZLK2cVssr59HflK+Vh2LODXMbduOx9irsVcJ4wupcWabdXuKMlaMISzAkmz+BcsKatkkoDsyGcl8JiN7GZG9HqPMYx2mVmqySx0MT4e8SxllkKzg9XxHaEMLqq5cy6ErX8KxuY0ixp7ow16Ur26HNvPgQAcsnHltITEOpmxntBC
yAGWgmHUrF7sDW7rFZQM52vlRk1gAEtfpb1Q/5VvMrV+7zOYXlbNQ7NVvZzN5XevMMMcgy7WpCLolAWSNh98XADY4l+YzDdhbmhUpZuSwFZtgrnBXqJ1zoeaeToqBkpkEKZ4PuIpaKyvVwQBgNKePCwir5y+T7cOzBzS3GuDQJgqxel1H1+X0XJgTUa3kJVYW0gxEkc9AlO3gNFgphlo5SSXe0v1fCLPhV4kryCLqeA5le/q4FVjsA2sLS+qhVYb
k+FVzaLuyXBwuzfpqagmBWuwzxHhgVcKKDjFS5w2Lton/4NHYEBGZw06rRvBWJTYaaOQoc45ouOuDSmI5QevaDq6ZwajkvG2dPok0V0hNRgZceMQcMgJcCcPLIgMBIeeg0GCNSzMJWCi1JQa4moCskleDEsRVr+wiNX0nWNuQ9U0Olk4rWX7bStzxYJyz3ZhXtD/pfB6jsjEnnmOVMgny7N4txpcwEVOArirg7GjHPsUeayflLcPLlOKHClINar0
edlzipTzWReGdSbHZe81nZBYVnlL6kNKTibn82ChyGLEKEDu1VwVGC8wFhtCOpkq62WsvukiEOrzTRoBKTyOssrnIhS+bmGIiwtaMgDt9NFryLXyVp7coAGOL8niAMRpAiy0adNzICVmyAHv1oYbH1a/U3HcMlrOoWOG2rdElvDyradaWMAaKKkACtIEr+Y9GHhmU6NKIC8qyNV7VYAnAySsKODNK1NVniEFuSKKueqZCyzqRvQrCcXI6HYBF3NB
jaaU1lxMI4LTcZ5k1OFyqLpzXmGPHmmO04Vp1TLIpWC3NIP3cqSeF2O+uzD3Cv2CMdy15mrU2/kcDKt8mRz8SdlrnLKycUGv7qXXg2oTRYpiXbyabIPqQRlqvdgW0Brf5kwMNndR61qBBkY8IEHpKM9aypqnjFCLG0En3gow+V3Vqez1RDQ4NAwOW/iHZyljE2bvp2ALIxUfgZ0kDp+XLVY4sqYjqIlgXLfSWfPEiPWs4xgEX5A8y14DSsvGQURx
lcKU5VghDkdmf4RsNVvcro1XbfV+VdzK4XV9IrZ5XWCkkScRixk1pdzEVX6/M8+eUc+XRquIMlY/QtIvvD5fdgdbLNZG0dik3Ens2m1nl+yL0h8nhwcweUUw5nNmlD9cE4NYPy6uxjFWPeSLstp4IPJZIo0bhLDXM7OC5bLhZWlxUrv5Gi9I6j3rxNoR80RsQhyLHvFXuDOlwIIxGZWc6tY2pSo/nV2aAzbXMyOyikgS8WVs/zXEHaKtes1QYFrB
Gh2Hsk4djDbVhTinxJQEY7XzKNo7DZZEe5i9OPOsMR2aUzyq2kg7m+3ssaRaP2PXSwgOyH+oUmkOvUaYIHdRvVD5DF8sXlD1eTbDAEj39k0gUGE4Yq3C8gwymdvlUWJFEYtpUxCc1ppRQdmbN+sf34y5kj8J4tiQPPvhKjk2StfuR2wHxlmrMsIM9O1zxrjVW+nN1ZftSAhV38jBArRH4oTABOA3lL3oNwxrkEl4FzQcDo4RosTXwdxNur5a2lpd
jc9d6wfkUMZji0A17IrEXmuuArqHwwuoYVXc726x3JiXB1bLo18prt2ZSCt7VeMa5//LWdqqWHHkCSNuM9GDF9dyq9r7OwUKi/re7Khrg+XU2t72ZdsTb7UrL/nXwYEc1aS7b4dcmLnsQJqMhbwnnKXiVbo2IARiZaL2jcJFbdNSZd7icOgsHU6+emnZadzQk8MTVeGyw050AaVpWtkvgRaICz213QI2G6Gx0NIEAi+rydLR6fwFHC2daFww9QCw
MK/z+QWdgfnNSDa9Pd+S6Qd0nEtSY/kuoZYYsqGwYDmtNw6x+8pgDRW5CUnOvdaYDJzupdb7fSPT8zBk0x8+zeUGal23PTVXbX6EAu54HLumm1Q1c09awMH8EdG3wFF6Be+mcAIEuibg55mHACnWcK7WZzOsFTugS6aqyOoQX904+aWdw7Fn5a8eVwONFp6vVXa5f6U4Z1irrasWCgR55IzoWP49Xkypy5EQwwkg66lxh6gZzRJhXsmY6jYLRhmL
kJDoH0NVwdM1DJ7+YDTmyYt1vog3SSjZxrudySQOiZs+a34F1WTpDq8eud4ZJ6xmvKU9F6mPitQ7sd3pPelt9ggn8VElv2qTa8Z46WornHYvumYPEEvevgQ72nd/xhw2FtBuoRvtMQgPOwhrqJQPFhXv+r/VhMSIpZ889bi0nGUdQjys6dZxc6Nll8K2hXdcvK1cb4xgVm55n6F5r2RlniSGRKtLlwvkAQwQ9b741D13ojtUW8EvO1fSGO4emHze
yrl71Ad0fGVlTSKDhgK+KvmJL/ExKwACT99qpC2y4yDa0Rqic6B9a6HrNrKfcdEJ3QFoMmndPNvTjpZSDRnLoptAxNcduN/gielhYPEWyMsRldLqEzrCaj8MQIvV+JB5dKPUfCmEOX5VJgWZWfWLVvZSoMWkitkZvXVK917TrlJXzl2jfsfHh21wZTmTWUYt15ZUyKtdZRGXVlhsqCvvwK2h8a4r+tWRnLNlcua8Xprb9L7gOyPktedi+BAMrj0Z
Xd/xJxFUAB5oGSdSMRmpxpIvS1pOgA6Ji78O0t0d0nwIJcYqYCaa90oI1dlq1xqwpxpdWRMvl1eUa3u0OKoZ+0VbRLJPtfb4MzWBmtxO+vCQH8I0XpwtTU0G8GsaiLV85oG6quDWX09JWLQQQGYODYwIhlDHYxz0woFTDB8gVTtWuNElfB3O33efFgnQN+sy1aK6476kOtsZmp4vhGdxy9eV+vrXBQAkjAtwCnMD1m/OK2XIpI/DJOa6lVg1CaH1
h9j0uctiz3iovtTyWGG1sJbp062+ruD4e778unqZHk0zUV8jD5t3yORdejq8601/rEoGuK6ioA01pnTXKwgVd8tothxwCD/W2L1FMB7uupFH0FB1S8Ab8zX4Csa0ZomJil1GrazWHIOIDbtKy+Ef7RbO7SiCJOhky7gBLo48Ox+bplNZa6+e9SbzKGW+q3n1tr1SYyi3TVWnIz5R1yzbS++igb9VGcVadm0MvR01n3Nu6HA6DgZvGo6DlvCEuEAY
+BMbOSETK/ZZwH1kxwPxkaSC0UQOJroA34w7JRa9S/olp5mqX6yAHV9fyC+YF1WrYUKCAoP1jqOMeaMCNCwHufU5clrwJtV7TjaH0UUwsmZnHZa2oB2LR6mgvQwu5KcgM/015Znh5PUDcrM63+8PdrmmlhJ3nqGS3bbUWyo+1tjCoyDKaLXciTcGT18CmeXUCG8HFxKLeMKVBg/pYiG2il42o8enFYt0lYUa2XVxkrB/WTOuJWJk2Wa2O+Qk6icN
46WD8ATHehsrqrXwYoCQb/3bglldprB7SONeoZ5xVeXcPzExGn+tiStKUmwN6WCgqBMeRXADD4RTRFOwqoBD5Amh3+ADhVoQbkW9GrgEVY0wxDioYoww2sXOjDeScwSRtYLKvXQstq9YMTawSiKU+GFGAUt+nJrTshC/YURRO+uc7Ac62TV9xL6ZkGBs4Kr5ZlPJxwbic7qMN9kaaGzEckvE2EIwqb3BjraBrkKgK8Y46uVppHjdtGIfDcog3V+t
4wob0L8N1KLLbXOwvxDrag0Bl9uzIGWjOs9ecP6435xdJi55bkTMAKwvYeCUTMnfWP8o95ZZc+F2jNTVNWa82yhq9Vj6B0fI+5m0RXY8sjgWj5z6TTpmo3OjrvF44q5zprWgnSlJolq0EBHRhASheAUeR8ujNYSRZBGBzZkiBS1GKpG36MD4bIQ28utgfAgGws1rfrPqX5a19la2Juk1mvrXbWsmuRVapcFTDTY+Q9g/8xDtcpKvjxiZeTdWtqsb
SxnZt6VnNR2S7UIO/Wr+0sLM0iLbonfpOzjsFY1B7dXl4ZLs0aQ7pIHaLpDXUberPcOTlYjqxfWwUwcvGRIiHArRQNHvedQwxNyuK+ZNv6t063D2HlJJeuhxfSNFp1ikrJ5XdmPJXWV60rVkEbnsmg+0f81uMk1W8bY9wUDgvenim2A5ZnTzJzk6gubrLEHqb1z/pdzk0RtAlfeoxmlrA+IJm+pMEvo+q3ER++LroRH4sQ6g6QLhIbvszuBt70EI
FASEZDP1KYbhxYt7QekZCINlfrT3Wwk1NMCdG1INuWrivXo4tyeeBG+K1lWrcCXeCm6bFXGRP9OuD5gRxwuOSAUBM11qvDIuHGbWzjY/mXeR+mW0B61gGBdrK0+JZrWTySX7+sdHpVk9Vlt7jExX4Ju+HUuG7zGp9C3ig6RGvCQkGBDPFsOAqhknruMPjdtd52trRpWdQVYqjqagjcEDYi+EV31djd+6zsl30bw7h5smXaVkfMg4YbajoLqv4oUG
AmwMR5JwbHVwJtQgvQwc9SveNcA7G9P05YYeuCu6B612L9WlBZqDo05ht/LRY2WL5rjDYcxDqNDO8pMoPIZAnCiZDl/me0LiGfZCuxzy3tBgxwSuXzfNUTfKI37SLZyqC6gIufXuFdbv104rXI2wMvWzuAxjtsbvAU3KMDN+lSjIHxN8drCOZMuw1FZh3bxZ1Mk2AKADV4EawtT+u0WwY46I+4x7sOJftSineikHUNoPxtVsYP14ajzuHwIDBkZm
K552a81OdgqvaD4L/cRaYKV0ZZpKBUrUZT3p2l/pN943JBv7FafGyyN/iQjE2f2vbkfdC/7BG0w1lt80zmuWcRDjirpKU7Dwxs5Dd8my/Rx0To9XOQPbfv+bSsx+7T5Q2wLEPadZrTfF4Ejd8XcuO3hf6iwWacW0veES8DkBHDdkf8sRW3DguDLP1c1Y0MbCibPlW7xtSNYPIPZOIRuj7qgRvdjffG6CN87twazxch4lP+oDUcbe6GjmqxigfKty
xUVpkTAk2/JvRjbuM4w6h4ztQ7IStzMes2eI+7K94p7ZusIWLNqw45jVe0bn37E1OdSFZ/5jsbFZEBpNXxYKG8TYg4GSzGGwY09dGK3BN4GtqPXJJW2NuyMxcsXJLIkrsjPBmt/iQwV/VsQ5D6htIsBtxhNRksUoVNDCSCQG9AN4BcriUMqs0iaZrFq/es0ybc0WIcVB9FubOFuNQgUiJ/aGftdrk2k5uqb3THhZOaCil/enpmSMtfhHbIIqujSl
VcfWrwhZepsnaaK03sBgP5FWnasUgB2/TYnRHervXXtgnXuYlYB+mieDJZM311b1Id06CoP6bvbtZzlhq2B9WnyjEZsbSfJ0BieVm4ypA7+kIyQ/3/6ubei7N5CNu0d3ZtDxy/SF7N402kzN8TrSAdE66wZXdDOyQA5veXImo6NQLmWSug+6y9/22cAZje3wm6NjfCUoOkowcRsyb3w3iGM94CAiHRN+3dPe7FF2TDZ/Q9MNuarsw2ZfowRZsrfy
0cHrziJQy5K7FtXE9N5urvk3Yr27xewtXcltsWSE2aCOtzYzDeZdac18VbiqX31vDq9NNgGt5WzLBBKlckmSqhtMAvxx+rQIidH2vhIFeQkNXtGOcIAWc/T5xZLyEqaQ4Pjcqm9eQ7ILf1njivWlf9S4oNzZrDfXdIvMwaROMmoLgDuy17AtHyMFHY5Z7rWU4365usiZFg5HBquLwEnVR3ULuD476BuQhyoawFFfiZ969m1nwrbDWDZv5fVfVXIF
3f8KsFZIiZZ18AGEVkRWtcweHgESQraBxgrlrdbXVE1NcRom1nN8Y4FfnYxmuWrgG/GZneb+/WkBuH9Z9kw0++8AorF8mLbIfpCttiy+bLMDr5vCFgbm7Ye7hLWB9ABlzefT1eEluNpeDa0Hpq2syS/cI+XFMx61YNTTdyCcjh4iAsgX42ATUY7ln3UDGQMtRvqy9eqN8DDqbK8pzc2kOasen4SjltfrdzhDWoHTezm3J+oAjMR5vuun+bRq/rls
Ebl02dot+Cue2EkoZBL/arYU6Q3lYAdkNuBrN83EGv/EfN057Vp3r/p6l2uhQfp64wfbqNDHiy32CwYUfVoU2BTsQqJM2lJZwgwv+s2LAYmRM0cFdH/QMVklGnDTEI0diay1SEtpNzYZWE+u/zanVVMVmzzu/4+ZZpADJQQYc1QAEci0xw/FnqcmAV3q9M0WmwtLzfjTSbULmb5hYcBMnPNp1N9e/Ob1xGc8NOueya68ELGQ64SaGCslF6VbN8O2
QBHlzFt6NcsW0JN7hNyinMhUfetZJfZXXetsPB0iWv4qdMyhVBNl8imXElOtbQWTKmkmLKlWV4Pwdwcpf5Zw9LTpzHz2ddYwxvyXb5tSw73rk/JcBmWUBmrmtYah9WuTPhUiz187m+16tlscYolU52DXkznfSiF2/Zp9mO304G5NC6yaaeWdp0wct42xUK0TPUs/xM9eoINkD11LITr/LYkC0pN/ubZP4+FuWnQmo/d7Sn09mjWGgRW1i4H4BHVA
t0Y3hg3dZTo8VJBebyuWwk3T4pKW1ZN3mbEC6ZPNI9omy2V1zkbf3WcismdY1i3wK+kMogy7QalTycJGg2OWb51yAu2CBZZY/+lQ6luw7CeuPNMX3Z0ajlb5nmNxu0ccpC2uMeHrE1GvlIMdHkbAGm5bWQtlRag16i/Xjb4KJr7AnK0HyLfHzbSM8ZDpS3rJsspASPUXBlArTE2Nmt1LeUG8nF45FIiZeAO4RXam6FFXwe5RW65uULZh6xC8ldRM
0G0AMFbuxDdrh+o9UOHBivYjOVm0MsIXmkvqgzlZeeZMQa0yXmIG79gHI6yBbVdligbGWqh5P7HJzBTPZxjFUSW5q3sBb/ShrNt8joXX+L760zzaTA/LyYsmcYS2JsLTWw4N2+LPC3PyNIsFh0hNRmLgKWsrcBZuQqAKUhciQXih3eiVtEOZoQQprgpU2FVsWTe5m2Ut2LT1U2xsuTxfZG515olbzE3Kut+jYXi6IC1QsdjpjvxHkfnHMyQOHYGq
iksvPTbHs69NqhbYOHxiNJ7LvTWb2yVTEAy51vAmdBKzgLQhd7HbMlU9RaoGy5gZH1YNHc2hQeV9qD/Bbvsnm53GENyyhLvhTehZnLqtePfA1rWzqCh/8WK3rHAqrcpum6N2QbGq2hZuNscCU6LNhBLGqLZ4x5vkrmwb3bWMGWmJxsKSwoW/St7pbAsH3ZH+lYa6XSFsepZEXz42hufOHZF1s6pvjmIdTfy1KQqlMRMccAkqAqM1JaCE2sBBgkGn
zcXvDYKW0YR9WYJxHLJsPrZxWwq49gMX7XhZ2ard3m9qthvr+KmZgOi2aqqdbNDPiutmedWG9aUE5OtpVh7XDdZsargmje+7VNLkhLlZuxn3T5eEx6NlMLyJ3YiAJyFeuNvub2a3l+OfkbzW2xA7agAH1kiAZAD/eOV+RzS3BhBbLe+XXXUAJkRzXGXvMvLzfLk5nNozMVRHyHHZBdK62K17WjErW9SMFeNKQkO5Q/QWDJ8mIAgub86eUWubEY3z
Vv5DbKaSwR/g9dPXSwXcTKzEe+phErSrnugv2pH4W7+pr4JdcY5fid1GSmPmKf1N9vgRrFiVNlAIQQ/0waK205vS9frW8qtijbrcQzGwZRdfG6dNmzbH431evgjYDU89WidyxRApuWJ0L8tSrQDpbdnWvNtgbbtI5UU20zPFm6Bsl2vna5eM7g2sa3lbW06ds9XpytD5HNiysXMeNaa/hg9prWa272NdNbxtlZx2uNUDAOj6pnt4RGdggiEi4N9B
nZhS5QC6l9ALhm3C8sOUH3okqt7FbHW61H6AZeMS2fJ10LZiW/2v9jeDS/0Cq2FGiLUuUrDdSUDUCD6DlhXx1tN0e421Yt6ljuS7qauxIN7yfISq9zbiLiMMDjtgJfrNvNzqG0kM3hfxR9XEEFfl3iTN7KQebOG3/GjmLVAm+NO4yA98b8Vc/qlCridw2IB1HmmJVvKqW34oslyjKE8919aTZG2eZtoqe1hZp8z0bcQ2cUsJDY16+OlvJr0E52xX
0SZvE+D8ObwnG2XptdLdJq24lo29vXM18PC+rg/g3CqR9zcNHZZwAvqG2XCvkDKJyQUt7Lo+dTYEo6g5jFMPZpIomkXaMS9ba9GlNqlCcMOAotyHThXWNcs9cqyo0dttDT2yWtVssTfqWxBl+GW+FhKqmhkl1drgUaosHm3upsNbbZ2+l57mzjstfZtlbNfm21tuaN9cWAfXk3rqed5ZoY9Qjj7nOVyq7/T4FnHpPCKuaMNc1PbQDmwobVQ3tWHW
pMzaym1ikDjCtC/lgLzMLaVpjQFt1M5JXVXooGwzkVPbgc2LPMmpdhVo0N3dblIoDfDR9jTg13LQPyWAARbTGLFkoBc7IybeMHyDD55bL41tt7rQpG2G1uPrf27b1Sk/z2knt5sIDewW0oNhvrEmXIMtxIhvkLWBITlTXowxvKtfe4CBto8V/k3llt2YZhK2Tes+1KA7QOVegZTQfik7YWE5yw5vAnrJ01Ao8fDoNj7GsRTZo69oClbrc5sclE8d
v7/Un9BZuwyxbevEyxcZpvVtid8fWc2sRlYcssn19TtbLS5lKReqnVGIpbch0OpUpj4Y2b7uhJ9tc6W32ZvS9d2K5ANqcJzzXWA5GWYJW9Zt4+jtm3covZ5NyFor7UZEy6mm8Uz615abLN3QbIE3Wds4JZvI9smoGDxhmYP69wcIidzK3393f6SIkrfyE+gzxhuV1aymIEtpr+a3kpvRl3zXnd49JbiW+Zl8CAoB2c7ONqYG1U1s4jInm5h02xCC
FRokQJ0Yi4MjIMbbYLy6NiiQbivVnRtFdbOg8LQAWbBnW31sniZZFYZiHSsAwr+gzzAbEQL6TLCAANEczMVRbH25sNjA7Ow2sDs9jvbXc7tkcY+nLASEDwcDW6Cuv1DSfqoCma2sCEbKGx6LKinsmF1PIXHUfK5JTALmp71VaoBmyGB0rVgdXTG2BRzEszlfLlznU7tUtnjpdxlFZ/uDLE7SQtZhsLi1xOyVzce2mm1xZoIuiWGle9eYbvpXC4uH
o9Zu69I2JMxtvcLYm26KVsKpE1GRBF1xmkNsDoAKelC51YLCOFZRAqSOIryNHChC17a4E9bixygq83FmttMfxE1QWttbYEWO1t67a7W6xN9XTwpwbhD47D/G4mQSFR/gbF9p0rYn2+9NzYVXP69Z0wwYTY7Hs+qrr4zYz2JdvLlT7tuLN+Jj0H3xtZz3QcN/urZF7OO109fPdrEd+Pa80HfatJnq8a+hNsSV0XW1dmFHYnaBZqolNHzr1fwESUg8
rZqygUlfQPwFBDZmazPWTmg6OXf0uHTqKkwa6UnbVS3ewvIxdqW/rt5QbRuWI1h26k+PQmoqNVO2wDsSW7YsW4F5m/rb/nebUIyZWTsgB9Ubj5S34WvauxiXjpJw99IW3G3vpEF24ht+0I36QLxmiicbKC6IEQG2ezpg6C2jleS/AUfa/tr0JMQ8cSK0ilxo7ssWfjvT6c2CO6Gjo7GlG59PANcjoQWpDSEsmZFrQaDYjvJGGFZNZC3frQULfXeF
O11vRCbKTgF9PpT9QEdoXLUntMVXA7YJO06rZEN6GGtTsznQ/ha5pp3bveRu3oUCAjm5gASQixuBHcCkXCiounO2X8fXjDqA1HYVy8cjJsb/SaFCLNHZdG7nR7WFM3q0v2xDbji/ENz8biQ2sCtAs35IIvyRslbvyddO+ik62MztidbfYcLmt9Tb3i3op8HDE/dYx5EZL+PJsdgXWkYGEP7o9cfBfPe+M7/23ilMIMxV84Te5U713qSUYjUdi7Zd
6+UtW63gjROTtJ05GyrydOxdgOUmupVU+fpm8twGb3tslk03ERleuSDDfS0PlCfWkm5nS8yrUeX4lsZJZnK3NNmYrdepubiP9SBUzqPM8KBWQKyi4IP3tnWw3KYTp2FVvxOcAZm2N/GZLdmgssQHb8U6YlglzZ2231TVInWQogSNWgrfm6pWjCpdBY9ts1bE7XYa6xjaBXXxoBdtqx2W31M5pd6+GemHbJZkIBATUeSIK2l0gAFAL6uOTdCR1LwM
GYiRV5CUBsCYVy/PN+VbVE21Cub9aK69dCkEItU2tFvoFZ0WzLUuVSKSb5tClZguuVLJ2YMtgXR9v9UAoWyGIwEZWeDfLM4voQ/q8twxtY5CpH31YaP2wh/Amp6x6h6N+bf92zLxy1bV0XD4PhtdVwbulhqI/0GEP5o21Q/jPUx2WYYrnSFOTDv6zB/Ln+9NW14MHQ1+zcLrNdbzDMBhNY5QG26Dt2KbfvXUyYXVaIZjSLEHbjNWN1tnHZPq4968
aI8WbORATUfbQOmYn/6ZKCIvWc3DVvtIAaK5jd0ihPMyZrW8v1x7rGIm6kCKLd0SyMN+itiPayyWAnfWi7X1kE7PR36lsslYkHd0A8tygvnRtqaUWUsvrVgfAQbnrkv2FaRs8rNy99OaiUeu9NoTk9O82p5bPXESuj9EeQB+d1ia4UT7uwTAFnfnKpfZZRTss3LoxDrYcjlojb4g21dvQXZAOwQe/FbW83CVtJ6ccm13ZmW0qg2/cwsMcKybCnT6
g0jJyCyhXdZXJJB+fdWKz4eveoYAGZRZl2Fr1XpRVB/vBmSGastF7LagttL7p1kyie6jDPQX82sobbd6LhCCcA/S5RUBsikDcFaw5HGjfUCSuPteli4MNz+rpm3DpsgVoewzJ0Q8TgDW5DuTqZJWzL9SkzGOKbtg7xGBY+kNzHR9ewVCKdXfoOBe4mS7M03HaOD0fyXa7+v9dck3SEtImJcPdLpd6rcm28jvNbYzLgj6mOriwFnuy1MKoosta85R
vKh9AD9wwoBUeidMrbM2tEvXCsy+J74cLMhRwTysXLpgwvBd+QbNxG6+vd7eQG3eVsYz6RoPxwZymHbVRCeCLsNmAfz3Lxt21L50NzBNSFgkN6dHozepDOYfZ2n339nX4evJNuXdik3Cxtqdp56xla5CZzZlLfCk+kgSP+AJpoce9RNrViJqDJLV8VFgF5DWr5nDjCs3Z4urorIiys0bYuu8jp7kbJnX6KvfCpM+g30FWIoDzCOxf3vpu7uGFipk
x2mUYfXY8622dhvNHomENXhTYlYJFNhDu0scF9u+5YogAfXe+Nx1WkpudBZSfbv+JKS+i8zcDI8mAszO/ckAIoM7V53IIE87FF754cC3KJu9xoOTLtt8jb7r1lf09AkJux3trIrxK3jOsy/Wiq9ylQhg0gd6gIv1iQZZqc6ybsd68BuW3Y1ayplhAtbQW4hkqho+K+6NvQEo02ilKql3ZrQOdgQrcVmKWFIMCEAIG4bWUSRlUnqfhwg08HwULxX4
WoauQ5n/2xjd0gtiq0wSptIwSlK262Rz8jWC5t79ZmGzgtkzri1XwR0gdG0/Yghta+/HwiQrPyYZu1bdwwbTcinmnV6e5tUHXFhLh2yx8MSucVGBylw/lnOXPil99LaKcUm8nrDibDx0Ukux6WyR+odw13QykCsZoo5KllGbXgXJiv+beneS81Xclie38ai8EZzBYTNqbDaSWVUs0qf9u8pGvH01ptrTaY8ktIoDoVB8zQAgrp48lKvCHpwf+XBA
36vbFerAAmdfxMq3w1bv8ZcypvjGsnbPp2Kdt+nY165ZZidLA3ap0hxqAGLjCGd7SKRmQJuV3cyBbbdvTpSN76p3uOeFE6QOj+bZN6dZsD1Pec8NGszZjOnjZtI9dNm1fp82bhAb5bGBTcdXUiYm2bkekXP14ZeB9Y7N/2ja+3FHvwYrdmycS1hmVWK2+mGPf/jXBu7UbZMnH14Y7mZSWBYIi4RTRmnKkAAmwNoQaFx+Z6dflLSYka5ltpPDITGW
0wuVmjlVmRvObGC2YHNZ3c7W/919Wrfe2AxhaUEN9OJQnUqtmb97ucPdbo5yRlubHPHhnkoTbvHdDunubX1GRbVrLJqAPygKK+GQJRHB+pS7thjIFeilp2pNO4VYOmW49zG7N1UYOR7bbS9RrdmiYm825BuZ3cUa6rFq67nmdAevQiW8AdpRPxB1XB9YvRKYPu1XdgUrE2EfpPnMofm7fpom9zv7XQMBA3fm1rN5Ud0z3gttYjZvA53tPAM2IB7m
F0iJv/H6BAh5CVRObhujsGq00Zkq74+bzOAz3Z/UJwyEqzKHirNs7nZO23udhqbtCE+gic0IyCtFCjGyN7dsEL3Pd7k+O12J7jW2NwuDHMyFeERhhbsy3ShufTe5/fMsxUJ7C2GQPAvZh/UHNyKTPIMkZC4B3/eDTRXm4krpvRrGmDioqIraaRBD3G217KWxu7Pd457ro3gIvqLaquw09mq7fJ26ruJxa4jMXY6XQkFwE1GNkO60NoWXp7bz2mbu
LhcLtVRF/GzIz3f9UOLdg2wn50whZWHPOsUOptWxM2h4zgVn6v34zY+K2ypJ1b8yqglvoLMfU6EtyBZ4S3aev+7YQfZM22DdsS279ud3d0dl70NoI5wAs2W7/PE3PwROeI9pBNObJyIcFeU90gtXHSSHsNZG1im8kipbbdbgsvnPeoq7+1q57fxF8i2KBhQoCP4hiTwC7uiNueXro3MZ8prtL3MDvLpYL7ZT3U+lagnkMYUDCGW+ipIQLDPHxlsK
hsmWz5W6ZbL7jmAuOOegsjwFxZb3a72AsWuLT213Ny1tpnqmFsFbtWHTFtS2xxZ39luf+0OW4sekt+Mb3H8tnLZLDT7MAlYk4MRCN3NKCSXctzPtDy2iZvsTpeWyZ62Jo+ticBClau+W6Vq35bPy3Vj3YqsBW1wtu+zwt27bae8G7qOmOLJ6yBd/o4jAGF2u+XG8AMi2xdPtrmzq3tdjFbQ4Z6n6mvax3mAI/G7IdbsyNWvaoq6ZZ7o7/3XtmvZD
qaQLJmV664lDxyzLxZiezJZfp7jc2RXu1aRedU9pvdJ2I6lA5SRq5WwyBt97YL2s9s/mdnVvLBX8wX+MbVnk0W98k1s2oojw7Xhti6YZHYa9+NNChEVbukPbNe1GigdL6q3Fau0ba723vN5AbiDmITviByvyg12B5txOwNcpXvfPcRv2pWT3NmEJsdPNC2i2mlSVjb2Alvkuqmzcz13Pdgwm6eMxzLUe3Bt6GTPq3j7UGXoBbYGt7dt79GM3ukse
iE/qN2AlnBG82nUbWiS8YdzEtIUHm7seyKTW0u2UU96a3kWOk6ZNzO3dmUryr3p1CCESWxEHVGuu+eJiaI7Jm7rGEqXWuHZmFCKrDm8q/uVqe7q73H9oZuA3e/wubjVHTHX1sIXegOxjV8EbfbWMPvGum/IDU/TeWijgMzY0veve1eWvMp/oLznW9FukLUutqi1K63TJ5SXYTs5NNod7Ad3FgL4HKA5F9HVdYygAnvr3oWvDbfrBxiYIBgdHQWd3
Kwndxo7pn3VbtwffXmzi9gIrMQ2qHswJfRq5Tt1gl/xVNj5adlyHT+RcShezyaf2SnYRTTUIPp7v26dssNaqg2zSF5A6dg3Vx2Aro8c8ldpVz3ujs1b7yAIyMy17ZMTNxcFG8zUJmBh7MPRNexIPvVgFriDB99d72oGR8Alkuo207uwrbUB3ittIXeD1tygKyOuOLk8jrxFcImGKNztOF2qp4HiS8++KNyjhoj2ZRsoMwRVmrhkjJIm310MO0unq
/r222138apNuZrdyOzWZs4kfLpzQ4epXwFIqTNHUtjFs8Aw8VZQPLUYHR0YhDPvctbxhUMUDF7Rz3vHsWbcLA7wAM57e73ddt0bdBOypkQSIBlwdHgf3mpDLzh+7YrdWXntQde9e/od317HvWQD3ClcMbj9RvBJ3fSpru9zZmu1g+nuGjwAp6HWhy9EIF4YBI/g72ERHjynfrggCQxwZn5Ivv1aI0Mrdk175n3FvsgiLy2yjVmz7RN2alv9hdXu3
w4cFN29jmnBWOBde+lbcVlQxAXPv4fcZuz697irhh3wbtPneiVevtuz1zRChNuZfQEewUMes7XZ3THq2esG28Y8sT6I235/U5HYi+4g9s4k/Lx1R7Py1eDLUAK5eOEIor47ACCsvadtej7psIfvwLcGGzq4IX7ZD3louK9e605uW9y7ysXvRsk3dQ+3u0TdQS3yZ0h7XQ1SBnFzrMCLKLbtnffeeyZ+h9tvD2Eyg9TKNtZrNxxGr1KeYG3fY+FoD
t4c7I5s1LvO9ZJ4BZsiHbCt0oduhf0IBaYsB0glIdGMoK5DaCB2XJtOi9F0xkdmcS/fUxh5jz3W9Vgh/dy+7EB1trsIxLXvbneR++V1oJ7V123w4H7wn/IsEHH7AlbBDSXloz+wR9rP7c27F6Vc7Z3lB849gWfO3edtajZC27M20S2LNwRdqqpphPlEQZZal0Fw+BVWChcxHI1TrXeAZKOJUc2o8Y4Rvb2W33XqbwtEva2t7XbwGXarvZ3b1u3w4
bKu2id2didHLjUBg1cOMnE31fuH3bsK68V3fLeqSHdt3hN0e2t1kobXh2M4U9Rs925jNhx5yZ2/dvozYD21Wi1GbdsjM+0aT1RHeHtl2ryESaQO4MJj29+TPnb4dESw24zf2dtDN3D+ys309vpKNeddP5ia6rwk/y6TeS2RkhpepyAOn4JisoASkitiDszak6dpvGffnxYy9Yf7Fn2+AiLgdKPPZN9ZrqP3vLsvhE3BhRbIEgrTjEEOtWyRzOHGK
AHN73qFsNzU0HeX9tjxL33cGUc7RQw/t3enLzb138UqwAQBxvt54JW+22oY77Zdu3vtgND6Y2L9s0pZFzcF9pfbZ+2Kwn2J1TmPzaq/byU39MZ9hKJXoRkdoD1SEnG5NIk80PT7IiVHZmg+hLvZUK9L1/5wyd2idvh9L/qxuEcA71V3IDtmsY2+xdNmWptXFMeNPUBOAin9p679lynp3Hffv2qd99f7dL2uyHvZr4JjGw2UNBB2wdtaDpQPiQdnE
7xwS5C3PzaIu97tinu1B39TYrktq6bQd6lJjB2lXv8/p19WEVmvWTU51gJSUulJAzDMkAIPF4xzPO3dugH9zL7mN2kgdVPZTu0XVnozjVTEPvBceQ+yvd0m78f2fvPBBNcZO5tibwh+U1pxHHBas0CSKoHmv2e+se/Vz2xVWP0rZh2AY1s5baB94d4Nj7pHRJtKnfVGw4d3elSx2ElMsg1DA7Yt/HpxcXUAc6QqBB5iY/rhpF3PbMH2d4lTa1k8d
YR3wWsGt2hBxjNlUh0R2j22kk15XVmGkSb78StH1dA600l+Vv/pY+M6QMSTcTDcrhuAhWBSEHuffdOgnJQb8OXcqxFL+DtXerGOfbWhAyaWiLA9kMGID+trRGhoPHJA8bWwuB+8e7R2f/scjb/+zP9nO7AOg88nfPFcsLN7JyRtshk/tr/Y1+8T9rX7Ql36J21fq7LcHx2qrtFmBV3Y9ZBLfgO+E9gJbsLWY9O0hWepiH9sQagTMMIqYnRho4474
XWUC1nWYgAE6eBi0v6g1T74AEVgrG7bOIQ2AoACaQe4yWCi9teNI2bxv2XYb266d4bLVGaegQAnf8e9Xl5e7Rc2Zfu4INYzXpVWCz/arD03T700jNgZpr7Ie7ukbKje4C7KGzE7OEWXaNXeqY8Hid6kGPoHBm5EnfYB8lQiPh/WN7jJjSLxiOKtJJ6maR37Nucd9dZSYaZrnw36RvT0Aqmy0dhrtsopuTtCg/bWyKDg97s/3eRveKv+/VxcDMz0P
RWQUSnaA27tivRrRP3BM0qWPdXbHSmM9c7LlTsZp1AU5X9jU7HgPPM3anY3B7qdw/78z36fsFmgwEhLUHzef7lqRRQ5rGuZKgMQAD8BFgfvGTtGxp1qibvcxeQfN7bGGx6dl9bSH2dbsZOacm+3GbPNXJQ7hOZaRvbk7KFzq8oPoAeuJdt23jewXjCZ2dx2Pp2wB7bAA0HJ8S1TtIIw/8yxiyUbTbjczvRWfzO24JxR58p2t/vnafos8HMAGBOY2
oujm9egWVrqgzZDZ34PNh8eC/i2dhMLirKJyWd/q3S31ty6+EJ7ezuyTf7Oyw2o/75j2TcE8vHwCCYsJoAdQbyFz3gJDzk93C0wiwOynuK3ah+wyUB8HOW2CysI/YibqEZsMHl5WIwdKNajB+eJuLpIdERTuZaTDYV6yuMH9X2z52VA4VB29m1taipadqWAwY4hhRdoUDaimxyE0Xb7e1x2zhbphC+n4R9dzAZmpkS+dz77dupnfge2ErPi7zFQ+
LuBJa4u4Jd9i71Z2leiiXbd2+JdzPtkl3PAcywZsBz49GVV8l3Pbs/lZF2x8LR0lKQbdk2JQ9k23T9spTolsXRAc3KqAEI4QQiYDAfy6U+goADEIXVAoum16N5qHRu4UtoKIC0glFu0TZQW8bxv47MjbF7vVLb7C0MZ4ubAxtFAzXXE0+GDescRLW56yuXna2qyHRf0tR93yZ2+LeI+xGnQadoa2gN1yfaV6M1R4atQiWfrsRkqp0+xFgU93EX5j
nLQ89Ww1XaQ1c0Q7TXHmcDnoED0Fk/lGsJtNBEJQFtrAqwQJdwguGalX7mFTT2VtRjkRMNg+ZO8UR3abid39pvVQ/M29M6kLU1n3Xwe2fZyB7L24NZiBc9P6FCFLQx8MxIFCZYOfRE1aJLE3oQEZ593Q2hsfZIXROixqd/n3ZcaJjb5c0wFh9zvn20xtAMeXWw7VqE9EM23V3YtYxh09DZAemzGzHvYjekC6NRufz02SzYTJGp/tZIAJX8Weh1AB
hEDZuHxQPTbNPL7DhNg/tG2QSw8rb3X5euYduH7Uv9TZLWQOUeN2fdK+z9Dr0Lz1a/eUGiWrK5SVX+mLEhQYfxJCRO9SlqY7xw3IFnQtYdi4mG197+8XFsHRjr764Meqb6WYa6v2nHfBex1p9ULYJHO2ATUa96C1fBsID0ZXFCCnh8IUK44dURdLB9PMw4TI7ZdsQbHXL95OHXZUW24+tkdGd2CXvyOaJe5HQibovlrtjjIJVFO71m7Y+JRB4TtT
g7rWOVMyfb5xm0wstFLtpQe0xfl3W3FhaAVIUuwo90T74m3+snErI/jSlDomHs12fcOvIEhuwyIJUrBlZtqBElDFdG2Z8HQueAJXTX9TUS0dG8jQ1427LsdUoaklVD5BbL0OgukheYah0Cdzy70v2DgddcFqKHvilKq6cWxQ4lwnbTGgd/ibF6wSp0RXdgB1025ubHc3E1Xqw/TCDIXSCbfK3zYu9fZ1G7JGwB6B0Po0hvoToQM8g7+W7PsdNiJf
GPRumY03wMq364dJ52XO8sixtrSTW+YZp3aXtrAZwWbn0PzpvfQ7yBwfNjHF8YZ7tuBXaaRWaWFjbpq2tqvzWPbxtbdne1U1co7P9RDAiX3HUa7ExGhSkfJb/MZZ3V/LQt35NvwTb1G1eltus1PS84TsPDFJGhnQoVeHqUYisgNVJn0NnLrLJ58yVuw6baz/V59Vbo39OsFbb2B5GDvuHfDg8Ft6RcuuL3dA6Lo21i0hNsUjO89t+yQa40GVs3SJ
ek83nRUukfnPmk0lJZyBOV0pTU5XMymAPXUWHF1/wdB7rrNLGLBMANhcMXeNox5Gy9xZWo7KCZ2HdI3r4ekI9vh8dM5tbvAAorh8hfhC13Djy7Mf2vLtqxYucEZOjqhVJH6uujBLRGvVZ7SHpSwpxvA9QVm5q1rzrY5Clg3/Cbj3SNdw9p1ldbsW8I72U6lN4RxOBG8ugJHW12dyFvaQD0xwkeqer9VFEjuel7wPeyt6apKq6aDporHXizWuJI6d
w/jJhJHao3x2N+oZyR0/lvJH+DN4Yt1Ffj9ZoZ/U7JZkcTlahflC9S1vXWsdgRUA6wiStmaXMg5PqUC4jqk05VokF1mHt4OC8V+VeUWzVDh0LBPEdgdwGefh72N0sTH/MWbi5ZIKEIKKustvWabQYNwyJq3XSQZUgmbA1JMreYB4CRv2rXpLM+2SoMKxfUNlwb14hc7PRkI5mmFZRZMUqBBP5R538UKCEl/dK1G+yiF9dZO9cKgSQrcOzNuAwUTz
d7D/mH/inWFMizaalOhCB+sOpJNpVmJpDDaDsfyK3k2oOv4AlcsEzRxWHCFyVYeYKqnHRzRxNT732HfvWqLC2zW9MmHiwEtIb+V0phoA0nvCyUwrHanqNQfHpsNVDxk2rx43g+gK7YSjmHZfWTyuNxdakAaeABrUCWaEeKQ7oR1lMZRG3eBKAxGoRxxfrAPc0cyPDvK6A+nW24izyZzLnAXuNFIqGybk+fmkXb/1lgctzbVCGt+N9aKKVmyjdtm/
e+0jDyGrmH6yluP0xuOghoKIPV2lH2Yy84nu91djn7PV2ao/lOwP+mdDxHnGLOoB1oS571zQVoMr1hVwipNR00YIdukXW4rCP7ZlPrIAEL4HYQUsiIGh0XpNgInctXtTYRLwO8PISj0Tehwg3Yc9I/bh3Vwe+HS+B5AcKDZQ+/RtrgoNvRkDbKODV+1StsEiwKlBtnso8XhJyjsXDvfWi3MEKrmO0T3eyuYin79Ifdr87pVhizDXi3XnpTLdVR3D
N1njawr0+1LhZ0e+4tzrmkLW0lXDTf5NKwt+vp3eq/+ksQz520jwJ82Hs24P4aSuOW2p6/EHBSXI1tLqqRMTGau2L35KUq2tvcxUtv20X1yp2AFvYjLihylm63G4MxrcaYnO+e756eJ7VbAREfaT1EfR+2o3Spj22IfEw4waaUpQA5nmnaRRMnP7wqB5bEhZzHMNIVWCL0K8AL0HvV6/9u+o8+O0TsNsHbp3Lq2+PbG/VH9sKrpiPe4dx/f7h1+t
65tzxk6SMsI6aRUIca+QsDW9GvIcg0ycBD5m74IsTHMrLeIS/wmz576T3oJvs4r6uwWNsRHRY2ji4CrfkCzy6M3WST1Lw2bsBuguKnaXaojYiPXaMdNzPTMWkbt42C8Umlc5h+X13/83GqtzuZA+te/u9xQH5iPGNumTKBSoP2b+HQwsrfjL9o2G7gNxr7Kw0p4c2mLTR2rNhhdW4Pe6tfA++k5ra6xp1HyL7XyY5Iad/NiyrQ52fvV6jakS+kLe
uusIM+tIn/iX1fZpU4w+f1JACHsGRW7FF+X91yOpevXCrzILL1hjH7Y3xhtpwyK+2gVwWHtD2yvv7Jfzu/sfIygcs7x2GnwQWJBwjx+jvN0OIrVA/9+dYusA9H93OXngI5OG7Q2r7trcNdodfVfmI3iN3NoFQBc8ANAEvQdSAPAICvxCQBWABqQg8MX37xk2DwZXw4hxWPgQMHRqGF7ugRd5O77D//7H4Oytusldy0qR2mSJVnXnQXYwXHh+O18o
QqKC+T3Q/v92ymsl87k0O2D7JI5QPs0VgG7qJaYFn/FvfXS6jDEHbxWp9su7fLffnutUJxAbWuGcXdfXf1O4Z7V5n6GukfcaNjQtpowXcKT40w7YCaMht3f8DLJBHBT0LiEP8VIulHPUjjAItVRSN0B9zjpUdCsfW4r0OCVjl3VX4atdu7vZMSxc9mirdr24qylCsEDt3sSvQwhSsL4NnkmU+UDp6jIE38XLrqcGhy1A+MmNH7/21CBfdSUhOCht
HZ0QGM3VHTOxenGp5KAOADkMOdlxuOSsYt7QXTJ4l9O1a6yYjs6+vM9OCprfEUxmtaemxOOqCv8Xz1oe2RodHFPd2iswPYO7KIFltGpb3YXr3VDg2lTxrX+NFmgVuII7Bu2WwcLbWmOoAvCNieEpsAOQA4SMw4ZaygASgBYT7m6ZawUWsLMsx6HFsKlj2Pq5MoeJWa+ddoZHASmFDuaChN8Mgbd64LYx6rJG11zULAUdYbvUOchtAkQMcxDj/5dW
RmPiuEXd2y4Qy6xbKA7Rb4H11KXSj0he9HoHwPZPA8EnfDDrbHRxm1sd2Ua/JcnZk/NcWO0puXiC+44a9FoArNxEiiqzNfeOYOPsIBEIxBb83Adh7Kt947zYO5aVQXeAO8ddlYLsDrysc1+ZtKxxj2f7hu3n1bNHE1tCONldAwPTpdjedrHW83V2AoNLbFQd3A/qrN96tw9s0OFYN1HuRh5xF9eHTg2fcP2hGmK+OLQ5erHTopQbKQBnlJU9R0PL
i8UhzEJJoU84fob7qXK2VAHYkO8wUxtVMh3qEdvg9LK/7D3vbqWlbwyLpgLbkAC6dqo9btDu4Xc2G7+6FQWwWOgQ2tHvhVrQR0whlcsvfra02I2V6t1Ubi4OIKGEee6aUjjrVVYM2pQm7Y9vEOldmU+5TkS8QY4yfQrO/edZjAABFIREEA8oQQgDjLJ2rMfISpBLG+j4bLsF2fvJI/bexza9+qb7yP/YKGagrqk08eDCMI3Q6i1kL/h0Jjp7bAWO
7s3vituB7Gd0Yj0YSBXMpXqAza6RwPjlBPP3s8rb4i2CRsFzEOoYGCi49K4g8wktboW9X9bwMAwXgdXOthDGRfQdNw4VW2VdjPHFwy0geb6IGR0/DyX7TUOgbPEvYuK+vjzUBCp4+McJrCbnVrUHjNCPREAhSnd0O9kcFxH1d3DKu9ONO3iKlq2bm8aa0e5S0wHUh1zPbtBPBcvkRDUedzF3v+cm504glO3i+CKgdB8kgAiCmixZKe8jR56gHSOi
Ue9xqmnvcjo67+qaEfssY/xey8j3c7H2PkCe0IUC+Q9aMTDGAnAmy+kzixO8mAmCahOGvsHiTvHPyV297GwsEWNB/IRY1Q56xrOcsgyW7Q94McbxRHbTa5MHLySImJpsmIgp57qSaE4UE1Qw4wV7kg5myM0xgWVx1wq1y775ynMeq9eGRybZr1m8c80Qtq0FIWzwpv2+bV2NPJ36ESJzpD6zyrzZ2utVDs/82B6tgLoeWB0fBIkGrfb9/MLw72/c
B5YG3wHew9UAN8AXCjiqBhABkAHIgAHBVgAMAEqsGggHYmzIAD3pnE7OnKWsEQAqaAIP3pAHVADrlnyglxPiUD2IBuJ/oAV4YxxbHifXE/nABEISBqHxPnidfE7uJzcuX4nWQAXicAk65wUCT8HQXxOObk6inBJy8T9usWlwYSdfE5whDihpMAeKGPEMFAARJ+kAJEnDiHRUPC0AOJxtWp4nwJOvifJIapQ56QfxDXIAMSdSUEFPkpseTYS/AKSe
8zR1IMUUT1wYqgKSdeEHi1vDoU9GsoBp4Z6gFnWPSADPAPnTqHkaI9oxwIAHknySorsDVXk0cLIQDKEH1gDifaANT7GgAJPA9AACAAvwERAAaQCknUJPTRR6gHxSPcGcknAoASADIoacQ+iT3UnZ0F5wDzrG4gCE4EgAWV5u0C8zWzCsEAVhQ5pP6EhJ4HQQNnTRSgygAeQAAAApoPjpEinAF6T6gAztQAACUuoAMeRBdhqwODgMko7pORiC+k4j
J3uKEkA/pOIACqk/xJ6mgUEnDmi4ADYIM4AHsKDLUGPJswAvQWGcEngTIANpOfwCIBC6AK4W6h4A2ldifUPGEAN3vE9YRohVSd2AEkqZtgSQiA2k6YbTYBYOgNpPdYQ/htuDYIMYAPjMTZt8pOPGUbVrJAAYANknJCBQVlmuFRkJ2ToVGJRdCECTqHAAK7wQpI95hgAB+4BAQEAAA===
```
%%

View File

@ -11,19 +11,22 @@
{"id":"67a07cb33040e073","type":"text","text":"线加速度 求法","x":510,"y":700,"width":250,"height":60},
{"id":"eeb7df4b945bff86","type":"text","text":"各个部件inertia dyadic求法","x":155,"y":820,"width":250,"height":60},
{"id":"931f7a20403882f5","type":"text","text":"塔架、叶片的GAF GIF求法","x":155,"y":940,"width":250,"height":60},
{"id":"9ba9cf03738bfda2","type":"text","text":"Sympy优势\n- linear acc、angular acc内置方法\n- GIF求解按照公式清晰明了\n\n劣势\n- 不支持柔性体\n- 主动力没有好办法","x":155,"y":1060,"width":355,"height":240},
{"id":"9ba9cf03738bfda2","type":"text","text":"Sympy优势\n- linear acc、angular acc内置方法\n- GIF求解按照公式清晰明了\n\n劣势\n- 不支持柔性体\n- 主动力没有好办法,主动力都比较复杂,普遍问题","x":155,"y":1060,"width":355,"height":260},
{"id":"869b7f96937e4202","type":"text","text":"低速轴、高速轴、发电机、摩擦力等求法","x":510,"y":820,"width":250,"height":60},
{"id":"690b6cebbb1e52ad","x":840,"y":700,"width":250,"height":60,"type":"text","text":"是否正确?"},
{"id":"50d5c2753f1f2ec3","x":840,"y":790,"width":250,"height":90,"type":"text","text":"广义主动力还可以怎么求yaw、低速轴、高速轴"},
{"id":"9fc02c3e78a69a7a","x":510,"y":940,"width":250,"height":60,"type":"text","text":"坐标系定义好之后,原点无所谓,有方向即可"},
{"id":"f13fc730aad4e78c","x":840,"y":940,"width":250,"height":180,"type":"text","text":" 偏速度$\\pmb{v}_{\\nu}^{(\\,r\\,)}$ 或 $\\pmb{\\omega}_{i}^{(\\prime)}$ 是将**标量形式的广义速率**赋予**方向性的矢量系数**。从具体算例可以看出, $\\pmb{v}_{\\nu}^{(r)}$ 或 $\\pmb{\\omega}_{i}^{(r)}$ 实际上就是某些基矢量或基矢量的线性组合。"},
{"id":"01e5d049c040e822","x":840,"y":1180,"width":250,"height":220,"type":"text","text":"所谓偏速度 $\\pmb{v}_{\\nu}^{(\\textrm{r})}\\left(\\,r=1\\,,2\\,,\\cdots,f\\right)$ 实际上是某些特定的基矢量或基矢量的线性组合,因此,广义主动力或广义惯性力就是系统内全部主动力或惯性力沿这些特定基矢量方向的投影。"},
{"id":"8867bfcfd58ae90b","x":1180,"y":940,"width":250,"height":120,"type":"text","text":"对于完整系统,凯恩方法中的广义主动力 ${\\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ 。 "}
{"id":"690b6cebbb1e52ad","type":"text","text":"是否正确?","x":840,"y":700,"width":250,"height":60},
{"id":"50d5c2753f1f2ec3","type":"text","text":"广义主动力还可以怎么求yaw、低速轴、高速轴","x":840,"y":790,"width":250,"height":90},
{"id":"9fc02c3e78a69a7a","type":"text","text":"坐标系定义好之后,原点无所谓,有方向即可 但是是与刚体固接的","x":510,"y":940,"width":250,"height":87},
{"id":"f13fc730aad4e78c","type":"text","text":" 偏速度$\\pmb{v}_{\\nu}^{(\\,r\\,)}$ 或 $\\pmb{\\omega}_{i}^{(\\prime)}$ 是将**标量形式的广义速率**赋予**方向性的矢量系数**。从具体算例可以看出, $\\pmb{v}_{\\nu}^{(r)}$ 或 $\\pmb{\\omega}_{i}^{(r)}$ 实际上就是某些基矢量或基矢量的线性组合。","x":840,"y":940,"width":250,"height":180},
{"id":"01e5d049c040e822","type":"text","text":"所谓偏速度 $\\pmb{v}_{\\nu}^{(\\textrm{r})}\\left(\\,r=1\\,,2\\,,\\cdots,f\\right)$ 实际上是某些特定的基矢量或基矢量的线性组合,因此,广义主动力或广义惯性力就是系统内全部主动力或惯性力沿这些特定基矢量方向的投影。","x":840,"y":1180,"width":250,"height":220},
{"id":"8867bfcfd58ae90b","type":"text","text":"对于完整系统,凯恩方法中的广义主动力 ${\\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ 。 ","x":1180,"y":940,"width":250,"height":120},
{"id":"bff8e414fcb04560","x":240,"y":620,"width":444,"height":60,"type":"text","text":"速度、角速度 = 偏速度/偏角速度 * 广义速率 + remain项 对时间t求导"}
],
"edges":[
{"id":"f33ddf845b3a3ff4","fromNode":"330ceae2327436f1","fromSide":"bottom","toNode":"04fa17192ff0596c","toSide":"top"},
{"id":"79d807d4f3d87b22","fromNode":"330ceae2327436f1","fromSide":"bottom","toNode":"c574d94bf9b233b4","toSide":"top"},
{"id":"bf83f26700707236","fromNode":"04fa17192ff0596c","fromSide":"bottom","toNode":"4fb6c3b08416426b","toSide":"top"},
{"id":"1fbe796a55334bb8","fromNode":"c574d94bf9b233b4","fromSide":"bottom","toNode":"027a3e957d393870","toSide":"top"}
{"id":"1fbe796a55334bb8","fromNode":"c574d94bf9b233b4","fromSide":"bottom","toNode":"027a3e957d393870","toSide":"top"},
{"id":"b459ccd830673d18","fromNode":"bff8e414fcb04560","fromSide":"bottom","toNode":"a300bc21279fb24f","toSide":"top"},
{"id":"552e74cb8e56c73d","fromNode":"bff8e414fcb04560","fromSide":"bottom","toNode":"67a07cb33040e073","toSide":"top"}
]
}