diff --git a/InterestingStuffs/交易系统/架构.canvas b/InterestingStuffs/交易系统/架构.canvas index 7e741c0..3fbf795 100644 --- a/InterestingStuffs/交易系统/架构.canvas +++ b/InterestingStuffs/交易系统/架构.canvas @@ -9,13 +9,20 @@ {"id":"9ac780ab8e6b0995","type":"text","text":"单个标的 两年 mysql {code}表\n每日最新追加","x":540,"y":380,"width":250,"height":100}, {"id":"9eaa6f04dcf05226","type":"text","text":"class turtle 准备数据","x":170,"y":920,"width":250,"height":50}, {"id":"4d88d50956995c5c","type":"text","text":"class Turtle_on_time","x":580,"y":915,"width":250,"height":60}, - {"id":"3dc3fc3a8007b525","x":260,"y":640,"width":250,"height":60,"type":"text","text":"获取实时数据,仅用来判断"} + {"id":"3dc3fc3a8007b525","type":"text","text":"获取实时数据,仅用来判断","x":260,"y":640,"width":250,"height":60}, + {"id":"46280e783fc464cc","x":830,"y":550,"width":250,"height":60,"type":"text","text":"买出/买入"}, + {"id":"f56929c1932b177f","x":1200,"y":457,"width":250,"height":60,"type":"text","text":"send_email()"}, + {"id":"71c674c78f469276","x":1200,"y":550,"width":250,"height":60,"type":"text","text":"等待回复"}, + {"id":"564cb83a55900bb9","x":1202,"y":645,"width":250,"height":60,"type":"text","text":"记录价格"} ], "edges":[ {"id":"c35374c532b0eeff","fromNode":"0b73f4540fbacbef","fromSide":"right","toNode":"6d7e97110fbb9fe3","toSide":"left"}, {"id":"ea95de7df4aecf5a","fromNode":"6d7e97110fbb9fe3","fromSide":"right","toNode":"be8785f5c0ab6e70","toSide":"left"}, {"id":"06c6defefd6e745a","fromNode":"6d7e97110fbb9fe3","fromSide":"bottom","toNode":"842b08dd71af6d2e","toSide":"top"}, {"id":"9c80b8410a03208e","fromNode":"842b08dd71af6d2e","fromSide":"bottom","toNode":"ccedc7c8493efa72","toSide":"top"}, - {"id":"aedfd6cb63d28d1d","fromNode":"be8785f5c0ab6e70","fromSide":"right","toNode":"9ac780ab8e6b0995","toSide":"left"} + {"id":"aedfd6cb63d28d1d","fromNode":"be8785f5c0ab6e70","fromSide":"right","toNode":"9ac780ab8e6b0995","toSide":"left"}, + {"id":"1a7d49aa65061e88","fromNode":"f56929c1932b177f","fromSide":"bottom","toNode":"71c674c78f469276","toSide":"top"}, + {"id":"5fe491f7948445cd","fromNode":"71c674c78f469276","fromSide":"bottom","toNode":"564cb83a55900bb9","toSide":"top"}, + {"id":"bac795506eca56c6","fromNode":"46280e783fc464cc","fromSide":"right","toNode":"f56929c1932b177f","toSide":"top"} ] } \ No newline at end of file diff --git a/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md b/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md index bfda9d7..ad1f4ec 100644 --- a/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md +++ b/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md @@ -9841,13 +9841,13 @@ $$ 令初始时积分常数为零,即与巴肯思条件(9.1.14)一致。因此就小变形情形而言,两种浮动坐标系完全等同。 -最常用的浮动坐标系为刚体模态坐标系。由于变形体整体不受约束,成为典型的半正定系统。应用模态分析方法时,必存在零特征根,对应于变形体的刚体运动。将 $P$ 点的相对位移 $\boldsymbol{\ u}$ 利用模态 $\psi_{j}\left(\,x\,,y\,,z\,\right)$ $j=1\,,2\,,\cdots$ $n$ )展开为 +**最常用的浮动坐标系为刚体模态坐标系**。由于变形体整体不受约束,成为典型的半正定系统。应用模态分析方法时,必存在零特征根,对应于变形体的刚体运动。将 $P$ 点的**相对位移** $\boldsymbol{\ u}$ 利用模态 $\psi_{j}\left(\,x\,,y\,,z\,\right)$ $j=1\,,2\,,\cdots$ $n$ )展开为 $$ \pmb{u}~=~\sum_{j\mathop{=}1}^{n}\pmb{\psi}_{j}(\textit{x},y,z)\,q_{j}(\textit{t}) $$ -式中 $,q_{j}(\mathbf{\theta}_{t})\left(j=1,2\dots,n\right)$ 为模态坐标,令其中 $j=1\,,2\,,3$ 对应于变形体的刚体平移 ${\ensuremath{\mathbf{\phi}}}_{j}=4\{,5\,,6$ 对应于变形体的刚体转动, $j\geqslant7$ 的模态表示变形体的弹性变形。前6阶模态函数 $\pmb{\psi}_{j}(\,x\,,y\,,z\,)\left(\,j=1\,,2\,,\cdots,6\,\right)$ 可利用浮动坐标系 $(\mathbf{\nabla}O\,,\underline{{e}}\,)$ 的基矢量 $\pmb{e}_{k}(\textit{k}=1\,,2\,,3\,)$ 表示为 +式中 $,q_{j}(\mathbf{t})\left(j=1,2\dots,n\right)$ 为**模态坐标**,令其中 $j=1\,,2\,,3$ 对应于变形体的刚体平移 ${j}=4\,,5\,,6$ 对应于变形体的刚体转动, $j\geqslant7$ 的模态表示变形体的弹性变形。前6阶模态函数 $\pmb{\psi}_{j}(\,x\,,y\,,z\,)\left(\,j=1\,,2\,,\cdots,6\,\right)$ 可利用浮动坐标系 $(\mathbf{\nabla}O\,,\underline{{e}}\,)$ 的基矢量 $\pmb{e}_{k}(\textit{k}=1\,,2\,,3\,)$ 表示为 $$ \left.\begin{array}{c c l}{{\pmb{\psi}_{1}\,=\,e_{1}\,,}}&{{\pmb{\psi}_{4}\,=\,y e_{3}\,-\,z e_{2}}}\\ {{\pmb{\psi}_{2}\,=\,e_{2}\,,}}&{{\pmb{\psi}_{5}\,=\,z e_{1}\,-\,x e_{3}}}\\ {{\pmb{\psi}_{3}\,=\,e_{3}\,,}}&{{\pmb{\psi}_{6}\,=\,x e_{2}\,-\,y e_{1}}}\end{array}\right\} @@ -9873,11 +9873,11 @@ $$ 即变形体的刚体运动相对浮动坐标系的移动和转动均等于零。从而证明,刚体模态坐标系完全等同于巴肯思坐标系。换言之,巴肯思坐标系的运动就是变形体的刚体运动。 -以上对浮动坐标系理论分析中涉及的坐标系很难直接用于实践。对于实际的变形体问题,常将浮动坐标系理解为未变形时的刚体状态。具体而言,可将某个半固定在变形体上与未变形时的物体重合的坐标系作为浮动坐标系。例如,对于梁状变形体,可将两端支点的连线作为浮动坐标系的坐标轴。在小变形假设的前提下,可将变形体的运动设想为浮动坐标系的刚体运动与相对此坐标系的变形运动的合成。 +以上对浮动坐标系理论分析中涉及的坐标系很难直接用于实践。**对于实际的变形体问题,常将浮动坐标系理解为未变形时的刚体状态**。具体而言,可将某个半固定在变形体上与未变形时的物体重合的坐标系作为浮动坐标系。例如,**对于梁状变形体,可将两端支点的连线作为浮动坐标系的坐标轴。在小变形假设的前提下,可将变形体的运动设想为浮动坐标系的刚体运动与相对此坐标系的变形运动的合成。** # 9.1.2质量矩阵与刚度矩阵 -将多体系统中第i柔性分体仍记作 $B_{i}$ ,为简化符号,在讨论单个变形体时,略去各物理量所属物体的序号i。以质心为基点 $o$ 选择浮动坐标系 $(\,O,\underline{{e}}\,)$ 。如上所述,变形体中任意点 $P$ 的运动可分解为浮动坐标系的牵连运动和相对浮动坐标系的变形运动的叠加。利用式(9.1.1)表示 $P$ 点相对惯性参考系 $(\mathbf{\nabla}O_{0}\,,\underline{{e}}^{(0)}$ >的矢径 $_r$ ,对 $t$ 求导计算 $P$ 点的速度(图9.2) +将多体系统中第i柔性分体仍记作 $B_{i}$ ,为简化符号,在讨论单个变形体时,略去各物理量所属物体的序号i。以质心为基点 $O$ 选择浮动坐标系 $(\,O,\underline{{e}}\,)$ 。如上所述,**变形体中任意点 $P$ 的运动可分解为浮动坐标系的牵连运动和相对浮动坐标系的变形运动的叠加**。利用式(9.1.1)表示 $P$ 点相对惯性参考系 $(\mathbf{\nabla}O_{0}\,,\underline{{e}}^{(0)})$ 的矢径 $r$ ,对 $t$ 求导计算 $P$ 点的速度(图9.2) $$ \dot{\pmb r}\ =\ \dot{\pmb r}_{0}\ +\ \pmb\omega\times\pmb\rho\ +\ \dot{\pmb u}