vault backup: 2025-09-02 09:39:39

This commit is contained in:
yize 2025-09-02 09:39:40 +08:00
parent 96726e39bf
commit 6249c53a49

View File

@ -423,24 +423,24 @@ The first term in equation (27) shows the strong coupling between torsional moti
To avoid unnecessary complications, structural damping is not included in the derivation of the equations of motion, but a damping term e.g. viscus damping could easily be added to the equations describing the structural damping.
Extra degrees of freedom like tower, yaw motion or tilt can be included by introducing a new inertial frame, defining a transformation from the new inertial frame to the present inertial frame, and using this new transformation in the description of the energies before applying Hamiltons method. This will lead to extra equations for the each extra degree of freedom and to periodic coefficients (like the gravity term).
通过对比运动偏微分方程(方程(12)和(18))与 Hodges 和 Dowell 的方程3 发现引力项(方程(15)和(22))、俯仰作用项(方程(13a)和(20))以及涉及风轮转速变化的项(方程(17)和(24)是新引入的。另一方面Hodges 和 Dowell3 中的涉及翘曲效应的项在此处未包含,因为对于大多数应用,忽略该效应不会造成本质上的精度损失。3
将运动偏微分方程(方程 (12) 和 (18))与 Hodges 和 Dowell 的方程3进行比较可以发现重力项方程 (15) 和 (22))、变桨作用项(方程 (13a) 和 (20))以及涉及风轮转速变化的项(方程 (17) 和 (24)是新的。另一方面Hodges 和 Dowell3中涉及翘曲效应的项未包含在此处因为对于大多数应用而言在不损失基本精度的情况下可以忽略此效应。3
以下讨论中,将 $x$ 方向和 $y$ 方向分别称为摆振方向和挥舞方向,以帮助物理解释。可以看出,方程(12)中的惯性项将摆振和挥舞运动与叶片的扭转运动耦合在一起。耦合程度取决于弦的预扭角。方程(13)中的第一项表明,变桨角度的加速会激发摆振和挥舞运动,分别取决于挥舞和摆振变形。也就是说,一个挥舞变形的叶片的变桨角度加速会激发叶片的摆振运动。方程(14)中的积分项的第一项是与风轮转速相关的恢复力,称为离心刚度。引力效应(方程(15)和(22))被发现随 $\phi$ 角变化,正如预期。恢复力(方程(16))将弯曲运动与扭转运动耦合在一起。耦合程度取决于叶片的摆振和挥舞变形。风轮的加速会激发摆振和挥舞运动(方程(17)),激发程度取决于变桨角度。方程(18)中的惯性项将扭转运动与摆振和挥舞运动耦合在一起。与摆振和挥舞运动的耦合程度取决于弦的预扭角。方程(20)中的第一项显示了变桨加速度和扭转运动之间的强耦合。风轮加速度(方程(21))对扭转运动的影响取决于变桨角度和叶片的预扭角。弯曲运动通过弯曲刚度(方程(23))与扭转运动耦合在一起
下面的讨论中,$x\cdot$ 和 $y$ 方向将分别表示为摆振和挥舞方向,以帮助物理理解。方程 (12) 中的惯性项将叶片的摆振和挥舞运动与扭转运动耦合起来。耦合程度取决于弦的预扭。方程 (13) 中的第一项表明,变桨角度的加速度会根据挥舞和摆振变形分别激发摆振和挥舞运动。也就是说,挥舞变形叶片的变桨角度加速度会激发叶片的摆振运动。方程 (14) 积分中的第一项是取决于风轮转速的恢复力,称为离心刚度。重力效应(方程 (15) 和 (22))如预期般随 $\phi$ 角变化。恢复力(方程 (16))将弯曲运动与扭转运动耦合起来。耦合程度取决于叶片的摆振和挥舞变形。风轮的加速会激发摆振和挥舞运动(方程 (17)这种激发取决于变桨角度。方程 (18) 中的惯性项将扭转运动与摆振和挥舞运动耦合起。与摆振和挥舞运动的耦合程度取决于弦的预扭。方程 (20) 中的第一项显示了变桨加速度与扭转运动之间的强耦合。风轮加速度(方程 (21))对扭转运动的影响取决于变桨设置和叶片的预扭。弯曲运动通过弯曲刚度(方程 (23))与扭转运动耦合
方程(27)中的第一项显示了扭转运动和变桨运动之间的强耦合。方程(32)中的第一项显示了叶片变形对变桨惯性的影响,而方程(32)中的第二项显示了变形叶片的运动如何影响变桨方程。
方程 (27) 中的第一项显示了扭转运动与变桨运动之间的强耦合。方程 (32) 中的第一项显示了叶片变形对变桨惯量的影响,方程 (32) 中的第二项显示了变形叶片的运动如何影响变桨方程。
了避免不必要的复杂性,在推导运动方程时没有包含结构阻尼,但可以轻松地将例如粘性阻尼项添加到描述结构阻尼的方程中。
避免不必要的复杂性,运动方程的推导中未包含结构阻尼,但可以很容易地将阻尼项(例如粘性阻尼)添加到描述结构阻尼的方程中。
可以通过引入新的惯性系,定义从新的惯性系到当前惯性系的变换,并在应用 Hamilton 方法之前,将新的变换应用于能量描述,从而包含塔架、偏航运动或倾斜等额外的自由度。这将导致每个额外的自由度都有额外的方程,并且会产生周期系数(例如引力项)。
可以通过引入新的惯性坐标系,定义从新惯性坐标系到当前惯性坐标系的变换,并在应用哈密顿方法之前在能量描述中使用此新变换来包含额外的自由度,例如塔架、偏航运动或倾斜。这将导致每个额外自由度的额外方程和周期性系数(如重力项)。
# Application Example
In this section, a finite difference discretization of the blade model is used to compute the modes of natural vibrations of a particular $63\,\mathrm{m}$ blade.12 The frequencies and shapes of the natural modes of vibrations are compared to results from HAWCstab\*,13 showing good agreement. The modes are used as basic for an assumed mode discretization of the partial differential equations of motion, approximating them by three ordinary differential equations. The modes of natural vibrations of the assumed mode approximated model are compared with the previously derived modes, showing a reasonable agreement. To illustrate and test the pitch model, the assumed mode approximated model is used for time simulations of a rapid 2deg pitch change. The response is compared to $\mathrm{HAWC}2^{\dagger5,6}$ showing good agreement.
在本节中,采用有限差分离散化方法对叶片模型进行计算,以获得特定$63\,\mathrm{m}$叶片的固有振动模态。12 将计算得到的固有振动模态的频率和形状与HAWCstab\*13的结果进行比较结果吻合良好。这些模态被用作假设模态离散化方法的基础用于将运动的偏微分方程近似为三个常微分方程。假设模态近似模型的固有振动模态与先前推导出的模态进行比较结果显示出合理的吻合度。为了说明和测试变桨角度模型使用假设模态近似模型进行快速2°变桨角度的时间模拟。将响应与$\mathrm{HAWC}2^{\dagger5,6}$的结果进行比较,结果吻合良好
在本节中,叶片模型的有限差分离散被用于计算一个特定63米叶片的固有振动模态。12 固有振动模态的频率和形状与HAWCstab\*的结果进行了比较13显示出良好的一致性。这些模态被用作运动偏微分方程的假定模态离散的基础通过三个常微分方程对其进行近似。假定模态近似模型的固有振动模态与先前推导的模态进行了比较显示出合理的一致性。为了说明和测试变桨模型假定模态近似模型被用于快速2度变桨变化的时间模拟。响应与$\mathrm{HAWC}2^{\dagger5,6}$进行了比较,显示出良好的一致性
# Finite Difference Discretization
The spatial derivatives of an unforced and linearized version of the partial differential equations of motion (equations (12) and (18)) are approximated by a second-order finite difference approximation. The resulting approximating ordinary differential equations can be written as
无外力作用且线性化的运动偏微分方程(方程 (12) 和 (18))的空间导数,被近似为二阶有限差分近似。由此得到的近似常微分方程可以写成:
运动偏微分方程(方程 (12) 和 (18))的无强迫和线性化版本的空间导数,采用二阶有限差分近似。得到的近似常微分方程可以写成
$$
\hat{\mathbf{M}}\ddot{\tilde{\mathbf{q}}}+\tilde{\mathbf{D}}\ddot{\tilde{\mathbf{q}}}+\tilde{\mathbf{K}}\tilde{\mathbf{q}}=\mathbf{0}
@ -449,87 +449,85 @@ $$
where $\tilde{\textbf{M}}$ , $\tilde{\mathbf{D}}$ and $\tilde{\bf K}$ hold the constant coefficients from the discretization and $\tilde{\mathbf{q}}=[u_{I},\nu_{I},\theta_{I}$ , … $,u_{n},\nu_{n},\theta_{n}]$ holds the deformations at the $n$ discretization points. Equation (38) is a differential eigenvalue problem where the eigenvalues give the frequency and damping of natural vibrations of the blade and the corresponding eigenvectors give the shape of the natural vibrations.
Table I compares the six lowest eigenfrequencies for the blade with results from HAWCstab.13A good agreement is seen for all frequencies. Figure 2 shows the shape of first, second and sixth modes. The shapes are compared to results from HAWCstab showing a good agreement.
其中$\tilde{\textbf{M}}$ , $\tilde{\mathbf{D}}$ 和 $\tilde{\bf K}$ 分别代表离散化过程中的常数系数,而 $\tilde{\mathbf{q}}=[u_{I},\nu_{I},\theta_{I}$ , … $,u_{n},\nu_{n},\theta_{n}]$ 代表 $n$ 个离散点处的变形。方程 (38) 是一个微分特征值问题,其特征值给出叶片的固有频率和阻尼,而对应的特征向量则给出固有振动的模态形状。
其中 $\tilde{\textbf{M}}$、$\tilde{\mathbf{D}}$ 和 $\tilde{\bf K}$ 包含来自离散化的常数系数,而 $\tilde{\mathbf{q}}=[u_{1},\nu_{1},\theta_{1}$ , … $,u_{n},\nu_{n},\theta_{n}]$ 包含 $n$ 个离散点处的变形。方程 (38) 是一个微分特征值问题,其中特征值给出叶片固有振动的频率和阻尼,相应的特征向量给出固有振动的形状。
表 I 比较了叶片的前六个最低特征频率与 HAWCstab 的结果。可以看到,所有频率都表现出良好的吻合度。图 2 显示了第一、第二和第六模态的形状。这些形状与 HAWCstab 的结果进行比较,同样显示出良好的吻合度
表 I 比较了叶片的六个最低特征频率与 HAWCstab.13 的结果。所有频率都显示出良好的一致性。图 2 显示了第一、第二和第六模态的形状。这些形状与 HAWCstab 的结果进行了比较,显示出良好的一致性
# Assumed Mode Approximation
The partial differential equations of motion are transformed into three approximating ordinary differential equations by the assumed mode method.11,14 The time- and spatial-dependent state variables for the blade are approximated by one edgewise $u(s,\,t)=u_{s}(s)u_{t}(t)$ , one flapwise $\nu(s,\,t)=\nu_{s}(s)\nu_{t}(t)$ and one torsional $\theta(s,\,t)=\theta_{s}(s)\theta_{t}(t)$ mode. The mode shapes $(u_{s},\,\nu_{s},\,\theta_{s})$ are the edgewise, flapwise and torsional contents of the second, first and sixth modes, respectively (the first modes dominated by edgewise, flapwise and torsional motion). The time-dependent wight functions $(u_{t},\,\nu_{t},\,\theta_{t})$ are the new state variables of the system. The external forces on the blade are also split into a spatial part and a time-dependent part $f_{u}(s,\ t)=f_{u,s}(s)f_{u,t}(t),\ f_{\nu}(s,\ t)=f_{\nu,s}(s)f_{\nu,t}(t),\ f_{w}(s,\ t)=$ $f_{w,s}(s)f_{w,t}(t)$ and $M(s,t)=M_{s}(s)M_{t}(t).$ . The approximations are inserted into equations (12) and (18); the equations are wight by the corresponding spatial variable and integrated over the blade length, removing the spatial dependency.
运动偏微分方程通过假定模态法被转化为三个近似常微分方程。11,14 叶片的时空相关状态变量被一个摆振模态 $u(s,\,t)=u_{s}(s)u_{t}(t)$、一个挥舞模态 $\nu(s,\,t)=\nu_{s}(s)\nu_{t}(t)$ 和一个扭转模态 $\theta(s,\,t)=\theta_{s}(s)\theta_{t}(t)$ 近似。模态形状 $(u_{s},\,\nu_{s},\,\theta_{s})$ 分别是第二、第一和第六模态的摆振、挥舞和扭转分量(第一模态主要由摆振、挥舞和扭转运动主导)。时变加权函数 $(u_{t},\,\nu_{t},\,\theta_{t})$ 是系统新的状态变量。作用在叶片上的外部力也被分解为一个空间部分和一个时变部分 $f_{u}(s,\ t)=f_{u,s}(s)f_{u,t}(t),\ f_{\nu}(s,\ t)=f_{\nu,s}(s)f_{\nu,t}(t),\ f_{w}(s,\ t)=$ $f_{w,s}(s)f_{w,t}(t)$ 和 $M(s,t)=M_{s}(s)M_{t}(t)$。这些近似被代入方程 (12) 和 (18);这些方程通过相应的空间变量进行加权,并在叶片长度上积分,从而消除空间依赖性。
Table I. Frequencies for the first six natural modes of the test blade
表I. 测试叶片的头六个简正模态频率
<html><body><table><tr><td></td><td></td><td colspan="2">Finitedifference</td><td colspan="2">Assumedmode</td></tr><tr><td>Modenumber</td><td>HAWC freq. [Hz]</td><td>freq. [Hz]</td><td>%J!P</td><td>[ZH] ba</td><td>diff. %</td></tr><tr><td>1</td><td>0·69</td><td>0.70</td><td>1</td><td>0.63</td><td>7</td></tr><tr><td>2</td><td>1.08</td><td>1·14</td><td>6</td><td>1·04</td><td>4</td></tr><tr><td>3</td><td>1·96</td><td>1·97</td><td>1</td><td></td><td></td></tr><tr><td>4</td><td>3.97</td><td>4.05</td><td>2</td><td></td><td></td></tr><tr><td>5</td><td>4·51</td><td>4·55</td><td>1</td><td></td><td></td></tr><tr><td>6</td><td>7.83</td><td>7.79</td><td>1</td><td>7.97</td><td>2</td></tr></table></body></html>
<html><body><table><tr><td></td><td></td><td colspan="2">Finite difference</td><td colspan="2">Assumed mode</td></tr><tr><td>Mode number</td><td>HAWC freq. [Hz]</td><td>freq. [Hz]</td><td>diff.%</td><td>freq. [Hz]</td><td>diff. %</td></tr><tr><td>1</td><td>0·69</td><td>0.70</td><td>1</td><td>0.63</td><td>7</td></tr><tr><td>2</td><td>1.08</td><td>1·14</td><td>6</td><td>1·04</td><td>4</td></tr><tr><td>3</td><td>1·96</td><td>1·97</td><td>1</td><td></td><td></td></tr><tr><td>4</td><td>3.97</td><td>4.05</td><td>2</td><td></td><td></td></tr><tr><td>5</td><td>4·51</td><td>4·55</td><td>1</td><td></td><td></td></tr><tr><td>6</td><td>7.83</td><td>7.79</td><td>1</td><td>7.97</td><td>2</td></tr></table></body></html>
The results from HAWCstab,13 the finite difference approximation of the present model and for the assumed mode approximation. Both the frequencies and the relative difference to the HAWCstab results are given.
HAWCstab的计算结果13以及基于当前模型采用的有限差分近似和假设模态近似的结果。均给出了频率以及相对于HAWCstab结果的相对差异。
这些结果来自 HAWCstab,13、本模型的有限差分近似以及假定模态近似。给出了频率以及与 HAWCstab 结果的相对差异。
![](1c3ac9475d7dd6471757eb1a1259bcc67eedcad9326ef4a3690aa1ee45ebf50e.jpg)
Figure 2. Modes of natural vibrations computed by the finite difference approximated model - - and the assumed mode approximated model - compared to the modes computed by HAWCstab13 $\surd$ . (a) First mode, (b) second mode, (c) sixth mode
图 2. 有限差分逼近模型“– ”和假设模态逼近模型“”计算出的自然振动模态与HAWCstab13 √ 计算出的模态进行比较。(a) 第一模态,(b) 第二模态,(c) 第六模态
Figure 2. Modes of natural vibrations computed by the finite difference approximated model - - and the assumed mode approximated model - compared to the modes computed by HAWCstab13 ’○‘. (a) First mode, (b) second mode, (c) sixth mode
图2. 有限差分近似模型‘- -’和假定模态近似模型‘-计算得到的固有振动模态与HAWCstab13计算得到的模态的比较。(a) 一阶模态, (b) 二阶模态, (c) 六阶模态
The partial differential equations of motion are transformed into three approximating ordinary differential equations by the assumed mode method.11,14 The time- and spatial-dependent state variables for the blade are approximated by one edgewise $u(s,\,t)=u_{s}(s)u_{t}(t)$ , one flapwise $\nu(s,\,t)=\nu_{s}(s)\nu_{t}(t)$ and one torsional $\theta(s,\,t)=\theta_{s}(s)\theta_{t}(t)$ mode. The mode shapes $(u_{s},\,\nu_{s},\,\theta_{s})$ are the edgewise, flapwise and torsional contents of the second, first and sixth modes, respectively (the first modes dominated by edgewise, flapwise and torsional motion). The timedependent wight functions $(u_{t},\,\nu_{t},\,\theta_{t})$ are the new state variables of the system. The external forces on the blade are also split into a spatial part and a time-dependent part $f_{u}(s,\ t)=f_{u,s}(s)f_{u,t}(t),\ f_{\nu}(s,\ t)=f_{\nu,s}(s)f_{\nu,t}(t),\ f_{w}(s,\ t)=$ $f_{w,s}(s)f_{w,t}(t)$ and $M(s,t)=M_{s}(s)M_{t}(t).$ . The approximations are inserted into equations (12) and (18); the equations are wight by the corresponding spatial variable and integrated over the blade length, removing the spatial dependency.
采用模态法,将运动偏微分方程转化为三个近似常微分方程。<sup>11,14</sup> 叶片的时空相关状态变量,分别用一个摆振模态 $u(s,\,t)=u_{s}(s)u_{t}(t)$,一个挥舞模态 $\nu(s,\,t)=\nu_{s}(s)\nu_{t}(t)$ 和一个扭转模态 $\theta(s,\,t)=\theta_{s}(s)\theta_{t}(t)$ 近似表示。模态形状 $(u_{s},\,\nu_{s},\,\theta_{s})$ 分别为第二、第一和第六模态的摆振、挥舞和扭转分量(第一模态分别由摆振、挥舞和扭转运动主导)。随时间变化的权系数函数 $(u_{t},\,\nu_{t},\,\theta_{t})$ 是系统的新的状态变量。叶片上的外部力也被分解为空间部分和随时间变化的函数,分别为 $f_{u}(s,\ t)=f_{u,s}(s)f_{u,t}(t),\ f_{\nu}(s,\ t)=f_{\nu,s}(s)f_{\nu,t}(t),\ f_{w}(s,\ t)=$ $f_{w,s}(s)f_{w,t}(t)$ 和 $M(s,t)=M_{s}(s)M_{t}(t)$。将近似值代入方程 (12) 和 (18),并用对应的空间变量对这些方程进行权系数函数乘积并沿叶片长度进行积分,从而消除空间依赖性。
The ordinary differential equation of blade motion becomes
叶片运动的常微分方程变为:
$$
\begin{array}{r l}&{\mathbf{M}\ddot{\mathbf{q}}+2\mathbf{D}\big(\dot{\phi},\dot{\beta},\beta\big)\dot{\mathbf{q}}+\mathbf{K}\big(\dot{\phi},\dot{\beta},\beta\big)\mathbf{q}+\mathbf{L}\big(\ddot{\beta},\phi,\beta\big)\mathbf{q}+\mathbf{N}\big(\dot{\phi},\dot{\beta},\beta,\mathbf{q}\big)+\mathbf{F}_{e x t,1}\mathbf{q}f_{w,t}}\\ &{\quad=\mathbf{F}\big(\ddot{\beta},\ddot{\phi},\dot{\beta},\dot{\phi},\beta,\phi\big)+\mathbf{F}_{e x t,0}[f_{u,t}f_{\nu,t}f_{w,t}M_{t}]^{\mathrm{T}}}\end{array}
$$
$$
where $\mathbf{q}=[u_{t},\,\nu_{t},\,\theta_{t}]^{\mathrm{T}}$ and the rest of the terms are given in equation (50) in Appendix B. Inserting the expansions into equation (27), the integrals can be computed and the equation of pitch action becomes
其中 $\mathbf{q}=[u_{t},\,\nu_{t},\,\theta_{t}]^{\mathrm{T}}$,其余项见附录B中的公式(50)。将展开式代入公式(27),可以计算积分,变桨角度作用方程变为
其中 $\mathbf{q}=[u_{t},\,\nu_{t},\,\theta_{t}]^{\mathrm{T}}$,其余项在附录B的公式(50)中给出。将展开式代入公式(27),可以计算积分,变桨作用方程变为
$$
\begin{array}{r l}&{\big(I_{\beta,0}+I_{\beta,1}(\mathbf{q})\big)\ddot{\beta}+D_{\beta}(\dot{\mathbf{q}},\mathbf{q})\dot{\beta}=M_{p i t c h}+\big(\mathbf{M}_{e x t,0}+\mathbf{q}^{\mathrm{T}}\mathbf{M}_{e x t,1}\big)[f_{u,t}f_{\nu,t}M_{t}]^{\mathrm{T}}}\\ &{\quad+\,\mathbf{I}_{\beta,\mathbf{q}}\ddot{\mathbf{q}}+f_{\beta,\ddot{\mathbf{q}}}(\ddot{\mathbf{q}},\mathbf{q})+f_{\beta,\phi}\big(\ddot{\phi},\dot{\phi},\mathbf{q}\big)+f_{\beta,g r a v}(\mathbf{q})\sin(\phi)}\end{array}
$$
The individual terms are given in equation (51) in Appendix B. Inserting the expansions into equation (33) and computing the integrals, the equation of rotor position becomes
单个项的表达式见附录B中的公式(51)。将这些展开式代入公式(33)并计算积分后,风轮位置方程变为:
各项见附录 B 的方程 (51),将展开式代入方程 (33) 并计算积分后,风轮位置方程变为
$$
\begin{array}{r l}&{(J_{g c n}+I_{\phi})\ddot{\phi}+f_{\phi,g}(\phi,\beta,\mathbf{q})\!=T_{g c n}+f_{\phi,\mathbf{q}}(\ddot{\mathbf{q}},\beta)\!+I_{\phi,\beta}(\mathbf{q},\beta)\ddot{\beta}+f_{\phi,\beta}\big(\dot{\beta},\dot{\mathbf{q}},\beta,\mathbf{q}\big)}\\ &{\quad+\,\mathbf{f}_{e x t,0}(\beta)[f_{u,t}f_{\nu,t}f_{w,t}]^{\mathrm{T}}+f_{e x t,1}(\mathbf{q},\beta)f_{w,t}}\end{array}
$$
The individual terms are given in equation (52) in Appendix B. An unforced and linearized version of equation (39) gives a differential eigenvalue problem:
单个项的表达式见附录B中的公式(52)。公式(39)的一个未施加力和线性化的版本给出一个微分特征值问题:
各项在附录 B 的方程 (52) 中给出。方程 (39) 的无强迫和线性化版本得到一个微分特征值问题:
$$
\mathbf{M}_{l i n}{\ddot{\mathbf{q}}}+\mathbf{D}_{l i n}{\dot{\mathbf{q}}}+\mathbf{K}_{l i n}\mathbf{q}=\mathbf{0}
$$
where the eigenvalue gives the frequency of natural vibrations of the assumed mode approximated model, and the eigenvectors give the coupling of the assumed modes in the natural vibrations. The found frequencies are compared with the previously found frequencies in Table I showing a good agreement. Figure 2 shows the natural mode shapes together with the previously found mode shapes. The edgewise and flapwise contents of the first and second modes are seen to agree very well with previous results. The torsional contents of the first mode are seen to disagree slightly from the previous results. The torsional contents of the second mode are seen to disagree with the previous result, but the value of the torsional contents is small compared to the edgewise and flapwise contents, hence the error is acceptable. The edgewise and flapwise contents of the sixth mode (first torsional mode) are seen to disagree quite a lot with the previous results. This is because the edgewise and flapwise contents are dominated by higher order edgewise and flapwise motion, which cannot be captured by this low order model. The value of the edgewise and flapwise contents is, however, small compared to the torsional contents, hence the error is acceptable.
其中特征值给出了假设模态近似模型固有振动的频率而特征向量则给出了固有振动中模态之间的耦合关系。所求频率与表I中先前求得的频率进行比较结果吻合良好。图2显示了固有模态形状以及先前求得的模态形状。可以观察到第一和第二模态的摆振和挥舞分量与先前结果非常吻合。第一模态的扭转分量与先前结果略有差异。第二模态的扭转分量与先前结果存在差异但其扭转分量的数值相对于摆振和挥舞分量较小因此该误差是可以接受的。第六模态第一扭转模态的摆振和挥舞分量与先前结果存在较大差异。这是因为摆振和挥舞分量主要由高阶摆振和挥舞运动主导而该低阶模型无法捕捉到这些运动。然而摆振和挥舞分量的数值相对于扭转分量较小因此该误差是可以接受的。
其中特征值给出假设模态近似模型的固有振动频率特征向量给出假设模态在固有振动中的耦合。将所求频率与表I中先前求得的频率进行比较结果显示出良好的一致性。图2显示了固有模态振型以及先前求得的模态振型。第一和第二模态的摆振和挥舞含量与先前结果非常吻合。第一模态的扭转含量与先前结果略有不符。第二模态的扭转含量与先前结果不符但扭转含量的值与摆振和挥舞含量相比很小因此误差是可接受的。第六模态第一扭转模态的摆振和挥舞含量与先前结果存在较大差异。这是因为摆振和挥舞含量主要受高阶摆振和挥舞运动的影响而该低阶模型无法捕捉这些运动。然而摆振和挥舞含量的值与扭转含量相比很小因此误差是可接受的。
# Test Example
The pitch model is illustrated and tested by a numerical simulation where the rotor is rotating with a constant angular velocity $\dot{\Phi}$ rad $\mathrm{s}^{-1}$ , and at $70\,\mathrm{s}$ , a 2deg pitch change is imposed. The pitch change has a rise time of 0·2 s and $1\!\cdot\!5\%$ overshoot. No aerodynamic forces are included in this example. The pitch moment is computed by feeding (equation (40)) with the prescribed pitch action and the computed blade motion. The results from the simulations are compared with results from HAWC2\*,5,6 showing a good agreement.
Figure 3 shows the blade tip deflection and pitch moment from the present model and from HAWC2. The edgewise and flapwise motion are dominated by gravity, which is seen as the oscillations on the scale of 5s (corresponding to the rotor speed on $0.79\,\mathrm{rad\s^{-1}}$ ). A small excitation of the flapwise motion is seen at the pitch action at $70\,\mathrm{s}$ . The torsional motion of the blade is strongly excited by the pitch action at 70s. The pitch moment is high during the pitch action, and strongly effected by the torsional motion of the blade afterward. The flap motions agree very well for the two models. The amplitude of the flapwise motion on the scale of $5\,\mathrm{s}$ is a bit smaller for the present model than for HAWC2, and the excitation at $70\,\mathrm{s}$ is a bit more pronounced for the HAWC2 results, but still the two models agree well. The torsional motion agrees very well in amplitude, but there is a small disagreement in frequency. There is a good agreement between the pitch moment from the two models.
变桨角度模型通过数值模拟进行说明和测试,其中风轮以恒定角速度 $\dot{\Phi}$ rad $\mathrm{s}^{-1}$ 旋转,并在 $70\,\mathrm{s}$ 时施加了 2° 的变桨角度变化。该变桨角度变化具有 0·2 s 的上升时间和 $1\!\cdot\!5\%$ 的超调量。此示例中未包含任何空气动力学力。通过将规定的变桨动作和计算出的叶片运动输入到(方程 (40))中来计算俯仰力矩。模拟结果与 HAWC2\*,5,6 的结果进行比较,显示出良好的吻合度。
变桨模型通过数值模拟进行说明和测试,其中风轮以恒定角速度 $\dot{\Phi}$ rad $\mathrm{s}^{-1}$ 旋转,并在 $70\,\mathrm{s}$ 时施加 2 度变桨角度变化。该变桨角度变化具有 0.2 s 的上升时间和 $1.5\%$ 的超调量。本示例中不包括气动力。变桨力矩通过将预设的变桨动作和计算出的叶片运动输入(方程 (40))来计算。模拟结果与 HAWC2\*,5,6 的结果进行比较,显示出良好的一致性。
图 3 显示了本模型和 HAWC2 的叶尖变形和变桨力矩。摆振和挥舞运动主要受重力影响,表现为 5s 尺度的振荡(对应于 $0.79\,\mathrm{rad\s^{-1}}$ 的风轮转速)。在 $70\,\mathrm{s}$ 时的变桨动作处,观察到挥舞运动有小的激励。叶片的扭转运动在 70s 时的变桨动作下受到强烈激励。变桨力矩在变桨动作期间很高,并且随后受到叶片扭转运动的强烈影响。两种模型的挥舞运动吻合得非常好。本模型在 5s 尺度上的挥舞运动幅值略小于 HAWC2并且在 $70\,\mathrm{s}$ 处的激励对于 HAWC2 结果来说更为明显,但两种模型仍然吻合良好。扭转运动在幅值上吻合得非常好,但在频率上存在微小差异。两种模型的变桨力矩之间存在良好的一致性。
图 3 显示了本模型和 HAWC2 的叶片尖端变形和俯仰力矩。摆振和挥舞运动主要受重力影响,这在 5s 尺度上的振荡中可见(对应于风轮速度为 $0.79\,\mathrm{rad\s^{-1}}$ )。在 $70\,\mathrm{s}$ 时的变桨动作处观察到挥舞运动的小幅度激发。叶片的扭转运动在 70s 时的变桨动作处受到强烈激发。变桨动作期间俯仰力矩较高,此后受到叶片扭转运动的强烈影响。两个模型的挥舞运动非常吻合。在 5s 尺度上的挥舞运动幅度略小于本模型,而 HAWC2 的 $70\,\mathrm{s}$ 处的激发略有增强,但总体而言,两个模型仍然吻合良好。扭转运动的幅度吻合得非常好,但频率存在轻微差异。两个模型的俯仰力矩之间存在良好的吻合度。
![](3b76a1326c2c154063930df0ace9b75a3b81efe5ac90b1e77b700cfc654b46ca.jpg)
Figure 3. Tip deflection and pitch moment of a blade rotating with a constant speed of $2\pi$ and with a 2deg pitch change at $70s$ . - - - the present model, $\cdot\cdot^{\prime}H A W C2^{5,6}$
Figure 3. Tip deflection and pitch moment of a blade rotating with a constant speed of $2\pi$ and with a 2deg pitch change at $70s$ . - - - the present model,'-' $H A W C2^{5,6}$
# Discussion
The results from the finite difference discretized model show that the present model captures the fundamental properties of the blade as well as HAWCstab.13 The results from the assumed mode model show that even with only three ordinary differential equations, important basic properties of the blade can be described, and that the pitch blade interaction can be modeled very well.
The relative simple structure of the equations of motion (equation (39)) makes them suitable for qualitative analysis of interaction between pitch action and blade motion and/or fast simulation. The structure of equation (39) is similar to the structure of the equations of motion of a 2-D blade section model (as those used in Chaviaropoulos et al.1 and Block and Strganac2), therefore, the model has the same beneftis as the 2-D blade section model, but with a clear connection to the real turbine blade. The rotor position model (equation (41)) can be used to analyze how the motion of one blade effects the rotor speed, but more important, it can easily be extended with more blades, giving a coupling between the motion of the individual blades. The rotor position model is extended with more blades by adding one of each term in equation (52) for each blade involved. An improved description of the blade motion can be achieved if more mode shapes or coupled mode shapes are used. The drawback of this is a more complicated system, making analytical analysis and interpretation harder.
有限差分离散模型的结果表明本模型能够捕捉到叶片的根本特性与HAWCstab.13一致。假设模态模型的结果表明,即使仅使用三个常微分方程,就可以描述叶片的重要基本特性,并且可以很好地模拟变桨叶片相互作用。
运动方程相对简单的结构(方程(39))使其适用于定性分析变桨动作与叶片运动之间的相互作用和/或快速模拟。方程(39)的结构类似于二维叶片截面模型如Chaviaropoulos et al.1和Block and Strganac2所用的运动方程结构因此本模型具有与二维叶片截面模型相同的优势但与真实机组叶片具有明确的关联。风轮位置模型方程(41))可用于分析一个叶片的运动如何影响风轮转速,但更重要的是,它可以很容易地扩展到更多叶片,从而实现各个叶片运动之间的耦合。通过为每个参与叶片添加方程(52)中的每一项,可以扩展风轮位置模型以包含更多叶片。如果使用更多的模态或耦合模态,可以实现对叶片运动的改进描述。但缺点是系统会变得更加复杂,使得解析分析和解释更加困难。
有限差分离散模型的结果表明本模型能够捕捉叶片的基本特性与HAWCstab.13模型一样。假定模态模型的结果表明,即使只有三个常微分方程,也能描述叶片重要的基本特性,并且可以很好地模拟变桨叶片相互作用。运动方程(方程(39))相对简单的结构使其适用于变桨动作与叶片运动之间相互作用的定性分析和/或快速仿真。方程(39)的结构类似于二维叶片截面模型的运动方程如Chaviaropoulos 等人1和Block与Strganac2所使用的因此本模型具有与二维叶片截面模型相同的优点但与真实的机组叶片有明确的联系。风轮位置模型方程(41))可用于分析单个叶片的运动如何影响风轮转速,但更重要的是,它可以很容易地扩展到更多叶片,从而实现各个叶片运动之间的耦合。风轮位置模型通过为每个涉及的叶片添加方程(52)中的每个项来扩展到更多叶片。如果使用更多模态形状或耦合模态形状,可以实现对叶片运动的改进描述。这样做的缺点是系统变得更复杂,使得分析性分析和解释更加困难。
# Conclusion
This work extends the nonlinear partial differential equations of motion originally derived from Hodges and Dowell, taking pitch action, rotor speed variations and gravity into account. New equations are derived for the pitch action and rotor speed. Frequencies and shapes of natural vibrations of the blade are computed and compared to results from HAWCstab, showing a good agreement. The partial differential equations of motion are transformed into approximating ordinary differential equations of motion (equation (39)) by an assumed mode discretization. This model is suitable for basic analysis of interaction between pitch action and blade motion. The approximating ordinary differential equations of motion are used to simulate the response and pitch moment for a rotating turbine blade with a rapid 2deg pitch change. The results from the simulation are compared to the results from HAWC2, showing a good agreement.
This work is a part of a project on pitch blade interaction, and the model will be extended to include an aerodynamic model and be used for analysis of basic properties of pitch blade interaction.
本工作扩展了最初由 Hodges 和 Dowell 推导出的非线性偏微分运动方程,考虑了变桨角度作用、风轮转速变化和重力影响。针对变桨角度作用和风轮转速,导出了新的方程。计算了叶片的固有振动频率和形状,并与 HAWCstab 的结果进行了比较,结果吻合良好。通过假设模态离散化,将偏微分运动方程转化为近似的常微分运动方程(方程 (39))。该模型适用于变桨角度作用和叶片运动之间的基本相互作用分析。利用近似的常微分运动方程,模拟了风电机组叶片在快速 2° 变桨角度作用下的响应和俯仰力矩。模拟结果与 HAWC2 的结果进行了比较,结果吻合良好。
本工作是关于变桨叶片相互作用项目的一部分,该模型将进一步扩展,纳入气动模型,并用于分析变桨叶片相互作用的基本特性。
本工作扩展了最初由Hodges和Dowell推导的非线性偏微分运动方程其中考虑了变桨作用、风轮转速变化和重力。推导了用于变桨作用和风轮转速的新方程。计算了叶片固有振动的频率和形状并与HAWCstab的结果进行了比较结果吻合良好。通过假定模态离散化将偏微分运动方程转化为近似常微分运动方程方程(39)。该模型适用于变桨作用与叶片运动之间相互作用的基本分析。近似常微分运动方程用于模拟具有2度快速变桨变化的旋转机组叶片的响应和变桨力矩。模拟结果与HAWC2的结果进行了比较结果吻合良好。
本工作是关于变桨叶片相互作用项目的一部分,该模型将扩展以包含气动模型,并用于分析变桨叶片相互作用的基本特性。
# Acknowledgements
The author thanks Morten Hartvig Hansen, Risø National Laboratory for his inspiring ideas and helpful discussions related to this work. This work is founded partly by The Technical University of Denmark and Risø National Laboratory.