Merge remote-tracking branch 'origin/master'
This commit is contained in:
commit
5fd744a68e
@ -28,7 +28,7 @@ curl http://localhost:50003/proxies
|
||||
|
||||
curl -X PUT "http://localhost:50003/proxies/%F0%9F%9A%80%E4%BB%A3%E7%90%86%E7%BA%BF%E8%B7%AF" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"name": "R6-1|美国-NF|BGP"}'
|
||||
-d '{"name": "R6-1|美国-NF"}'
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,2 +1,4 @@
|
||||
|
||||
保持动画风格,镜头固定不动,天空,海洋自然流动,人物时不时眨一下眼睛
|
||||
保持动画风格,镜头固定不动,天空,海洋自然流动,人物时不时眨一下眼睛
|
||||
|
||||
保持动画风格,镜头固定不动,只有咖啡的热气流动,其他都不动
|
||||
8
InterestingStuffs/gemini balance.md
Normal file
8
InterestingStuffs/gemini balance.md
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
DATABASE_TYPE=sqlite
|
||||
SQLITE_DATABASE=default_db
|
||||
API_KEYS=["AIzaSyC9DWwXIbAjfhTTHNwCRAIckuZWRFzqYhA","AIzaSyAnULu8WrFeKeOpW2SoJdqXGu4FrDcyB2I","AIzaSyAK8ko3NwsHx_c3RqM6thyB47FCMv5EfT8"]
|
||||
ALLOWED_TOKENS=["gyz"]
|
||||
TZ=Asia/Shanghai
|
||||
|
||||
https://pnmpltbivcyq.ap-northeast-1.clawcloudrun.com
|
||||
@ -1269,10 +1269,10 @@ $$
|
||||
v_{6}=\left({\frac{v_{1}}{v_{0}}}\right)^{6}\,v_{0}=\left({\frac{4}{5}}\right)^{6}\,(0.20)=0.0524\,i n\quad[0.1331\;c m]
|
||||
$$
|
||||
|
||||
## Overcritically-Damped Systems
|
||||
## Overcritically-Damped Systems过阻尼系统
|
||||
|
||||
Although it is very unusual under normal conditions to have overcriticallydamped structural systems, they do sometimes occur as mechanical systems; therefore, it is useful to carry out the response analysis of an overcritically-damped system to make this presentation complete. In this case having $\xi\equiv c/c_{c}>1$ , it is convenient to write Eq. (2-39) in the form
|
||||
|
||||
尽管在正常条件下出现过临界阻尼结构系统非常罕见,但它们有时确实作为机械系统出现;因此,进行过临界阻尼系统的响应分析对于使本次论述完整是有益的。在这种阻尼比 $\xi\equiv c/c_{c}>1$ 的情况下,将方程 (2-39) 写成以下形式是方便的。
|
||||
$$
|
||||
s_{1,2}=-\xi\omega\pm\omega\sqrt{\xi^{2}-1}=-\xi\omega\pm\hat{\omega}
|
||||
$$
|
||||
@ -1284,13 +1284,13 @@ $$
|
||||
$$
|
||||
|
||||
Substituting the two values of $s$ given by Eq. (2-60) into Eq. (2-21) and simplifying leads eventually to
|
||||
|
||||
将由式 (2-60) 给出的 $s$ 的两个值代入式 (2-21) 并进行简化,最终可得
|
||||
$$
|
||||
v(t)=[A\,\sinh\hat{\omega}t+B\,\cosh\hat{\omega}t]\,\,\exp(-\xi\omega t)
|
||||
$$
|
||||
|
||||
in which the real constants $A$ and $B$ can be evaluated using the initial conditions $v(0)$ and $\dot{v}(0)$ . It is easily shown from the form of Eq. (2-62) that the response of an overcritically-damped system is similar to the motion of a critically-damped system as shown in Fig. 2-9; however, the asymptotic return to the zero-displacement position is slower depending upon the amount of damping.
|
||||
|
||||
其中实常数 $A$ 和 $B$ 可以利用初始条件 $v(0)$ 和 $\dot{v}(0)$ 来确定。从方程 (2-62) 的形式可以很容易地看出,过阻尼系统的响应与临界阻尼系统的运动相似,如图 2-9 所示;然而,渐近返回到零位移位置的速度会变慢,这取决于阻尼量。
|
||||
# PROBLEMS
|
||||
|
||||
2-1. The weight $W$ of the building of Fig. E2-1 is $200\,k i p s$ and the building is set into free vibration by releasing it (at time $t=0$ ) from a displacement of $1.20\;i n$ . If the maximum displacement on the return swing is $0.86\;i n$ at time $t=0.64~s e c$ , determine:
|
||||
@ -1328,7 +1328,7 @@ $$
|
||||
v_{c}(t)=A\,\cos\omega t+B\,\sin\omega t
|
||||
$$
|
||||
|
||||
### Particular Solution
|
||||
### Particular Solution 特解
|
||||
|
||||
The general solution must also include the particular solution which depends upon the form of dynamic loading. In this case of harmonic loading, it is reasonable to assume that the corresponding motion is harmonic and in phase with the loading; thus, the particular solution is
|
||||
通解还必须包括特解,该特解取决于动载荷的形式。在简谐载荷的情况下,合理假设相应的运动是简谐的并与载荷同相;因此,特解为
|
||||
@ -1380,78 +1380,80 @@ where $p_{o}/k\,=\,v_{\mathrm{st}}$ is the displacement which would be produced
|
||||
其中,$p_{o}/k\,=\,v_{\mathrm{st}}$ 是由静载荷 $p_{o}$ 产生的位移,而 $1/(1-\beta^{2})$ 是表示简谐载荷放大效应的放大系数 (MF)。在该方程中,$\sin{\overline{{\omega}}}t$ 表示施加载荷频率下的响应分量;它被称为稳态响应,并与载荷直接相关。此外,$\beta\sin\omega t$ 是固有振动频率下的响应分量,并且是由初始条件控制的自由振动效应。由于在实际情况中,阻尼最终会使最后一项消失,因此它被称为瞬态响应。然而,对于这个假设的无阻尼系统,这一项不会衰减,而是会无限期地持续下去。
|
||||
|
||||
Response Ratio — A convenient measure of the influence of dynamic loading is provided by the ratio of the dynamic displacement response to the displacement produced by static application of load $p_{o}$ , i.e.,
|
||||
|
||||
响应比 — 衡量动载荷影响的一个便捷方法是,动位移响应与载荷 $p_{o}$ 静态作用下产生的位移之比,即:
|
||||
$$
|
||||
R(t)\equiv{\frac{v(t)}{v_{\mathrm{st}}}}={\frac{v(t)}{p_{o}/k}}
|
||||
$$
|
||||
|
||||
From Eq. (3-10) it is evident that the response ratio resulting from the sine-wave loading of an undamped system starting from rest is
|
||||
|
||||
从式(3-10)可知,无阻尼系统从静止状态开始,在正弦波载荷作用下产生的响应比为
|
||||
$$
|
||||
R(t)=\left[{\frac{1}{1-\beta^{2}}}\right]\left(\sin\overline{{\omega}}t-\beta\sin\omega t\right)
|
||||
$$
|
||||
|
||||
It is informative to examine this response behavior in more detail by reference to Fig. 3-1. Figure $3{-}1a$ represents the steady-state component of response while Fig. 3- $1b$ represents the so-called transient response. In this example, it is assumed that $\beta\,=\,2/3$ , that is, the applied loading frequency is two-thirds of the free-vibration frequency. The total response $R(t)$ , i.e., the sum of both types of response, is shown in Fig. $3.1c$ . Two points are of interest: (1) the tendency for the two components to get in phase and then out of phase again, causing a “beating” effect in the total response; and (2) the zero slope of total response at time $t=0$ , showing that the initial velocity of the transient response is just sufficient to cancel the initial velocity of the steady-state response; thus, it satisfies the specified initial condition $\dot{v}(0)=0$ .
|
||||
|
||||
参照图3-1,详细考察这种响应行为很有意义。图3-1a表示响应的稳态分量,而图3-1b表示所谓的瞬态响应。在本例中,假设$\beta\,=\,2/3$,即施加的载荷频率是自由振动频率的三分之二。总响应$R(t)$,即两种响应之和,显示在图3.1c中。有两点值得关注:(1) 两个分量趋于同相然后再次异相的趋势,导致总响应中出现“拍频”效应;(2) 总响应在$t=0$时刻的零斜率,表明瞬态响应的初始速度恰好足以抵消稳态响应的初始速度;因此,它满足了指定的初始条件$\dot{v}(0)=0$。
|
||||

|
||||
FIGURE 3-1 Response ratio produced by sine wave excitation starting from at-rest initial conditions: (a) steady state; $(b)$ transient; $(c)$ total $R(t)$ .
|
||||
|
||||
图3-1 从静止初始条件开始的正弦波激励产生的响应比:(a) 稳态;(b) 瞬态;(c) 总 $R(t)$。
|
||||
# 3-2 SYSTEM WITH VISCOUS DAMPING
|
||||
|
||||
Returning to the equation of motion including viscous damping, Eq. (3-1), dividing by $m$ , and noting that $c/m=2\,\xi\,\omega$ leads to
|
||||
|
||||
回到包含黏性阻尼的运动方程,式 (3-1),除以 $m$,并注意到 $c/m=2\,\xi\,\omega$,可得
|
||||
$$
|
||||
\ddot{v}(t)+2\,\xi\,\omega\,\dot{v}(t)+\omega^{2}\,v(t)=\frac{p_{\scriptscriptstyle o}}{m}\,\sin\overline{{\omega}}t
|
||||
$$
|
||||
|
||||
The complementary solution of this equation is the damped free-vibration response given by Eq. (2-48), i.e.,
|
||||
|
||||
该方程的齐次解是阻尼自由振动响应,由式 (2-48) 给出,即
|
||||
$$
|
||||
v_{c}(t)=\left[A\,\cos\omega_{D}t+B\,\sin\omega_{D}t\right]\;\exp(-\xi\,\omega\,t)
|
||||
$$
|
||||
|
||||
The particular solution to Eq. (3-13) is of the form
|
||||
|
||||
方程 (3-13) 的特解形式为
|
||||
$$
|
||||
v_{p}(t)=G_{1}\,\cos{\varpi t}+G_{2}\,\sin{\overline{{\omega}}t}
|
||||
v_{p}(t)=G_{1}\,\cos{\overline{{\omega}}t}+G_{2}\,\sin{\overline{{\omega}}t}
|
||||
$$
|
||||
|
||||
in which the cosine term is required as well as the sine term because, in general, the response of a damped system is not in phase with the loading.
|
||||
在其中,需要余弦项以及正弦项,因为通常情况下,阻尼系统的响应与载荷不同相位。
|
||||
|
||||
Substituting Eq. (3-15) into Eq. (3-13) and separating the multiples of $\cos{\overline{{\omega t}}}$ from the multiples of $\sin{\overline{{\omega}}}t$ leads to
|
||||
|
||||
将式(3-15)代入式(3-13),并分离$\cos{\overline{{\omega t}}}$的倍数项与$\sin{\overline{{\omega}}}t$的倍数项,可得
|
||||
$$
|
||||
\begin{array}{r l}&{\left[-G_{1}\,\overline{{\omega}}^{2}+G_{2}\,\overline{{\omega}}\left(2\xi\omega\right)+G_{1}\,\omega^{2}\right]\;\cos\overline{{\omega}}t}\\ &{\qquad\qquad\qquad+\left[-G_{2}\,\overline{{\omega}}^{2}-G_{1}\,\overline{{\omega}}\left(2\xi\omega\right)+G_{2}\,\omega^{2}-\frac{p_{o}}{m}\right]\;\sin\overline{{\omega}}t=0}\end{array}
|
||||
$$
|
||||
|
||||
In order to satisfy this equation for all values of $t$ , it is necessary that each of the two square bracket quantities equal zero; thus, one obtains
|
||||
|
||||
为了使该方程对所有 $t$ 值都成立,必须使两个方括号内的量都等于零;因此,得到
|
||||
$$
|
||||
\begin{array}{l}{{G_{1}\left(1-\beta^{2}\right)+G_{2}\left(2\xi\beta\right)=0}}\\ {{{}}}\\ {{G_{2}\left(1-\beta^{2}\right)-G_{1}\left(2\xi\beta\right)=\frac{p_{o}}{k}}}\end{array}
|
||||
$$
|
||||
|
||||
in which $\beta$ is the frequency ratio given by Eq. (3-7). Solving these two equations simultaneously yields
|
||||
|
||||
其中 $\beta$ 是由式 (3-7) 给出的频率比。同时求解这两个方程得到
|
||||
$$
|
||||
\begin{array}{l}{G_{1}=\displaystyle\frac{p_{o}}{k}\left[\frac{-2\xi\beta}{(1-\beta^{2})^{2}+(2\xi\beta)^{2}}\right]}\\ {G_{2}=\displaystyle\frac{p_{o}}{k}\left[\frac{1-\beta^{2}}{(1-\beta^{2})^{2}+(2\xi\beta)^{2}}\right]}\end{array}
|
||||
$$
|
||||
|
||||
Introducing these expressions into Eq. (3-15) and combining the result with the complementary solution of Eq. (3-14), the total response is obtained in the form
|
||||
|
||||
将这些表达式代入式(3-15),并将结果与式(3-14)的互补解结合,得到总响应,其形式为
|
||||
$$
|
||||
\begin{array}{l}{{\displaystyle v(t)=\left[A\,\cos\omega_{D}t+B\,\sin\omega_{D}t\right]\,\,\exp(-\xi\omega t)}}\\ {{\displaystyle\qquad+\,\frac{p_{o}}{k}\biggl[\frac{1}{(1-\beta^{2})^{2}+(2\xi\beta)^{2}}\biggr]\,\,\Big[(1-\beta^{2})\,\sin\overline{{\omega}}t-2\xi\beta\,\cos\overline{{\omega}}t\Big]}}\end{array}
|
||||
$$
|
||||
|
||||
The first term on the right hand side of this equation represents the transient response, which damps out in accordance with $\exp(-\xi\omega t)$ , while the second term represents the steady-state harmonic response, which will continue indefinitely. The constants $A$ and $B$ can be evaluated for any given initial conditions, $v(0)$ and $\dot{v}(0)$ . However, since the transient response damps out quickly, it is usually of little interest; therefore, the evaluation of constants $A$ and $B$ will not be pursued here.
|
||||
该方程右侧的第一项代表瞬态响应,它根据 $\exp(-\xi\omega t)$ 衰减,而第二项代表稳态谐波响应,它将无限期地持续下去。常数 $A$ 和 $B$ 可以根据任何给定的初始条件 $v(0)$ 和 $\dot{v}(0)$ 进行评估。然而,由于瞬态响应衰减很快,它通常很少受到关注;因此,本文将不讨论常数 $A$ 和 $B$ 的评估。
|
||||
|
||||
Steady-State Harmonic Response — Of great interest, however, is the steadystate harmonic response given by the second term of Eq. (3-19)
|
||||
|
||||
Steady-State Harmonic Response — Of great interest, however, is the steady-state harmonic response given by the second term of Eq. (3-19)
|
||||
稳态谐波响应 — 然而,非常令人感兴趣的是由式 (3-19) 的第二项给出的稳态谐波响应。
|
||||
$$
|
||||
v_{p}(t)=\frac{p_{o}}{k}\,\left[\frac{1}{(1-\beta^{2})^{2}+(2\xi\beta)^{2}}\right]\,\left[(1-\beta^{2})\,\sin\overline{{\omega}}t-2\xi\beta\,\cos\overline{{\omega}}t\right]
|
||||
$$
|
||||
|
||||
This steady-state displacement behavior can be interpreted easily by plotting two corresponding rotating vectors in the complex plane as shown in Fig. 3-2, where their components along the real axis are identical to the two terms in Eq. (3-20). The real component of the resultant vector, $-\rho\,i\,\exp[i(\overline{{\omega}}t-\theta)]$ , gives the steady-state response in the form
|
||||
|
||||
这种稳态位移行为可以通过在复平面中绘制两个对应的旋转矢量(如图3-2所示)来轻松解释,其中它们沿实轴的分量与式(3-20)中的两项相同。合成矢量 $-\rho\,i\,\exp[i(\overline{{\omega}}t-\theta)]$ 的实部给出了形式为...的稳态响应
|
||||
$$
|
||||
v_{p}(t)=\rho\,\sin(\overline{{\omega}}t-\theta)
|
||||
$$
|
||||
@ -1467,41 +1469,41 @@ $$
|
||||
FIGURE 3-2 Steady-state displacement response.
|
||||
|
||||
and a phase angle, $\theta$ , by which the response lags behind the applied loading
|
||||
|
||||
以及一个相位角 $\theta$,响应滞后于施加的载荷
|
||||
$$
|
||||
\theta=\tan^{-1}\left[\frac{2\xi\beta}{1-\beta^{2}}\right]
|
||||
$$
|
||||
|
||||
It should be understood that this phase angle is limited to the range $0<\theta<180^{\circ}$ .
|
||||
|
||||
应当理解,该相位角限于$0<\theta<180^{\circ}$的范围。
|
||||
The ratio of the resultant harmonic response amplitude to the static displacement which would be produced by the force $p_{o}$ will be called the dynamic magnification factor $D$ ; thus
|
||||
|
||||
合成谐波响应幅值与由力 $p_{o}$ 产生的静位移的比值将被称为动力放大系数 ;因此
|
||||
$$
|
||||
D\equiv\frac{\rho}{p_{o}/k}=\left[(1-\beta^{2})^{2}+(2\xi\beta)^{2}\right]^{-1/2}
|
||||
$$
|
||||
|
||||
It is seen that both the dynamic magnification factor $D$ and the phase angle $\theta$ vary with the frequency ratio $\beta$ and the damping ratio $\xi$ . Plots of $D$ vs. $\beta$ and $\theta$ vs. $\beta$ are shown in Figs. 3-3 and 3-4, respectively, for discrete values of damping ratio, $\xi$ .
|
||||
|
||||
At this point it is instructive to solve for the steady-state harmonic response once again using an exponential form of solution. Consider the general case of harmonic
|
||||
可以看出,动放大系数 $D$ 和相角 $\theta$ 都随频率比 $\beta$ 和阻尼比 $\xi$ 的变化而变化。图3-3和图3-4分别给出了不同离散阻尼比 $\xi$ 值下的 $D-\beta$ 关系图和 $\theta-\beta$ 关系图。
|
||||
|
||||

|
||||
|
||||
loading expressed in exponential form:
|
||||
|
||||
At this point it is instructive to solve for the steady-state harmonic response once again using an exponential form of solution. Consider the general case of harmonic loading expressed in exponential form:
|
||||
此时,再次使用指数形式的解来求解稳态谐波响应是很有启发性的。考虑以指数形式表示的谐波载荷的一般情形:
|
||||
$$
|
||||
\ddot{v}(t)+2\,\xi\,\omega\,\dot{v}(t)+\omega^{2}\,v(t)=\frac{p_{o}}{m}\;\exp[i\left(\overline{{\omega}}t+\phi\right)]
|
||||
$$
|
||||
|
||||
where $\phi$ is an arbitrary phase angle in the harmonic loading function. In dealing with completely general harmonic loads, especially for the case of periodic loading where the excitation is expressed as a series of harmonic terms, it is essential to define the input phase angle for each harmonic; however, this usually is accomplished most conveniently by expressing the input in complex number form rather than by amplitude and phase angle. In this chapter only a single harmonic loading term will be considered; therefore, its phase angle is arbitrarily taken to be zero for simplicity, so it need not be included in the loading expression.
|
||||
其中$\phi$是谐波载荷函数中的一个任意相位角。在处理完全一般的谐波载荷时,特别是对于激励表示为一系列谐波项的周期性载荷情况,定义每个谐波的输入相位角至关重要;然而,这通常通过将输入表示为复数形式而不是通过幅值和相位角来最方便地实现。在本章中,将只考虑一个单独的谐波载荷项;因此,为了简化,其相位角被任意地取为零,所以它不需要包含在载荷表达式中。
|
||||
|
||||
The particular solution of Eq. (3-25) and its first and second time derivatives are
|
||||
|
||||
Eq. (3-25) 的特解及其一阶和二阶时间导数是
|
||||
$$
|
||||
\begin{array}{l}{{v_{p}(t)=G\,\exp(i\overline{{{\omega}}}t)}}\\ {{\ }}\\ {{\dot{v}_{p}(t)=i\,\overline{{{\omega}}}\,G\,\exp(i\overline{{{\omega}}}t)}}\\ {{\ }}\\ {{\ddot{v}_{p}(t)=-\overline{{{\omega}}}^{2}\,G\,\exp(i\overline{{{\omega}}}t)}}\end{array}
|
||||
$$
|
||||
|
||||
where $G$ is a complex constant. To evaluate $G$ , substitute Eqs. (3-26) into Eq. (3-25), cancel out the quantity $\exp(i{\overline{{\omega}}}t)$ common to each term, substitute $k/\omega^{2}$ for $m$ and $\beta$ for $\overline{{\omega}}/\omega$ , and solve for $G$ yielding
|
||||
|
||||
其中 $G$ 是一个复常数。为求解 $G$,将式 (3-26) 代入式 (3-25),消去各项共有的量 $\exp(i{\overline{{\omega}}}t)$,将 $k/\omega^{2}$ 代替 $m$,将 $\beta$ 代替 $\overline{{\omega}}/\omega$,并求解 $G$,得到
|
||||
$$
|
||||
G=\frac{p_{o}}{k}\left[\frac{1}{\left(1-\beta^{2}\right)+i\left(2\xi\beta\right)}\right]=\frac{p_{o}}{k}\left[\frac{(1-\beta^{2})-i\left(2\xi\beta\right)}{(1-\beta^{2})^{2}+(2\xi\beta)^{2}}\right]
|
||||
$$
|
||||
|
||||
362
多体+耦合求解器/输出量及输出与bladed对比.md
Normal file
362
多体+耦合求解器/输出量及输出与bladed对比.md
Normal file
@ -0,0 +1,362 @@
|
||||
|
||||
fast
|
||||
|
||||
# bladed 大类对比
|
||||
|
||||
|
||||
| | Bladed | 子输出数 | FAST | 大类 | 子输出 | 15/23 |
|
||||
| --- | ------------------------------------- | ----------- | ------------------------------------------------- | --- | --- | ----- |
|
||||
| 1 | Control variables | 8 | | | | 65.2% |
|
||||
| 2 | Drive train variables | 14 | | | | |
|
||||
| 3 | Generator variables | 14 | shaft motions | 1 | | ED |
|
||||
| 4 | Summary information | 10 | | | | 13/23 |
|
||||
| 5 | Pitch system | 3 | pitch motions | 2 | | 56.5% |
|
||||
| 6 | Blade 1 Aerodynamic information | 24*stations | aerodyn | 3 | | |
|
||||
| 7 | Partial derivatives | 14 | | | | |
|
||||
| 8 | Environmental information | 9 | aerodyn | 4 | | |
|
||||
| 9 | Blade 1 Loads: Principal axes | 8*stations | Blade 1 Local Span Loads | 5 | | |
|
||||
| 10 | Blade 1 Deflections | 12*stations | tip motions/ local span motions | 6 | | |
|
||||
| 11 | Hub loads: rotating GL coordinates | 32 | Blade 1 Root Loads | 7 | | |
|
||||
| 12 | Hub loads: fixed frame GL coordinates | 8 | Blade 1 Root Loads | 8 | | |
|
||||
| 13 | Yaw bearing loads GL coordinates | 8 | | | | |
|
||||
| 14 | Tower loads GL coordinates | 8*stations | Tower-Top / Yaw Bearing Loads / Local Tower Loads | 9 | | |
|
||||
| 15 | Nacelle motion | 18 | Tower-Top / Yaw Bearing Motions | 10 | | |
|
||||
| 16 | Blade 1 Absolute motion | 3*stations | | | | |
|
||||
| 17 | Blade 1 Loads: Root axes | 8*stations | Blade 1 Local Span Loads | 11 | | |
|
||||
| 18 | Water particle kinematics | 4*stations | | | | |
|
||||
| 19 | Tower deflections | 6*stations | Local Tower Motions | 12 | | |
|
||||
| 20 | Tower velocities | 6*stations | Local Tower Motions | 13 | | |
|
||||
| 21 | Tower accelerations | 6*stations | Local Tower Motions | 14 | | |
|
||||
| 22 | Blade 1 Loads: Aerodynamic axes | 8*stations | | | | |
|
||||
| 23 | Foundation loads | 6 | Tower Base Loads | 15 | | |
|
||||
| | | 最小237 | | | | |
|
||||
|
||||
|
||||
# 具体项目对比
|
||||
|
||||
### Control variables
|
||||
|
||||
| | Bladed | FAST | steay_op |
|
||||
| --- | ---------------------------------------- | ---- | -------- |
|
||||
| 1 | Demanded power [W] | | 无值--0 |
|
||||
| 2 | Measured power [W] | | |
|
||||
| 3 | Demanded generator speed [rad/s] | | |
|
||||
| 4 | Measured generator speed [rad/s] | | |
|
||||
| 5 | Nominal pitch angle [rad] | | |
|
||||
| 6 | Demanded generator torque [Nm] | | |
|
||||
| 7 | Nominal wind speed at hub position [m/s] | | |
|
||||
| 8 | Measured shaft power [W] | | |
|
||||
|
||||
### Drive train variables
|
||||
|
||||
| | Bladed | FAST | steay_op |
|
||||
| --- | -------------------------------- | ---- | -------- |
|
||||
| 1 | Rotor speed [rad/s] | | |
|
||||
| 2 | Rotor azimuth angle [rad] | | |
|
||||
| 3 | Gearbox speed (LSS side) [rad/s] | | |
|
||||
| 4 | LSS Twist [rad] | | |
|
||||
| 5 | LSS rate of twist [rad/s] | | 无值--0 |
|
||||
| 6 | Brake speed [rad/s] | | |
|
||||
| 7 | Generator speed [rad/s] | | |
|
||||
| 8 | Generator azimuth angle [rad] | | 无值--0 |
|
||||
| 9 | LSS torque [Nm] | | |
|
||||
| 10 | HSS torque [Nm] | | |
|
||||
| 11 | Brake applied torque [Nm] | | 无值--0 |
|
||||
| 12 | Brake reaction torque [Nm] | | 无值--0 |
|
||||
| 13 | Mechanical loss torque [Nm] | | 无值--0 |
|
||||
| 14 | Generator air-gap torque [Nm] | | |
|
||||
|
||||
### generator variables --- shaft motions
|
||||
|
||||
| | Bladed | FAST | |
|
||||
| --- | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | --- |
|
||||
| 1 | rotor speed[rad/s] | LSSTipVxa (rpm) | √ |
|
||||
| 2 | Rotor azimuth angle [rad] | LSSTipPxa (deg) | √ |
|
||||
| | | LSSTipAxa Rotor azimuth angular acceleration (deg/s^2) | |
|
||||
| 3 | Gearbox speed (LSS side) [rad/s] | LSSGagVxa? Low-speed shaft strain gage angular speed (on the gearbox side of the low-speed shaft) | ? |
|
||||
| | | LSSGagPxa Low-speed shaft strain gage **azimuth angle** (position) (on the gearbox side of the low-speed shaft) | |
|
||||
| | | LSSGagAxa Low-speed shaft strain gage **angular acceleration** (on the gearbox side of the low-speed shaft) | |
|
||||
| 4 | LSS Twist [rad] | | × |
|
||||
| 5 | LSS rate of twist [rad/s] | | × |
|
||||
| 6 | Brake speed [rad/s] | | × |
|
||||
| 7 | Generator speed [rad/s] | HSShftV Angular speed of the high-speed shaft and generator (rpm) | ? |
|
||||
| | | HSShftA **Angular acceleration** of the high-speed shaft and generator(deg/s^2) | |
|
||||
| 8 | Generator azimuth angle [rad] | | |
|
||||
| 9 | LSS torque [Nm] | | |
|
||||
| 10 | HSS torque [Nm] | HSShftTq High-speed shaft torque (this is constant along the shaft) | ? |
|
||||
| 11 | Brake applied torque [Nm] | | |
|
||||
| 12 | Brake reaction torque [Nm] | | |
|
||||
| 13 | Mechanical loss torque [Nm] | | |
|
||||
| 14 | Generator air-gap torque [Nm] | | |
|
||||
|
||||
### Summary information
|
||||
|
||||
| | Bladed | FAST | steay_op |
|
||||
| --- | --------------------------------- | ---- | ----------------------------------- |
|
||||
| 1 | Time from start of simulation [s] | | |
|
||||
| 2 | Time from start of output [s] | | |
|
||||
| 3 | Hub wind speed magnitude [m/s] | | |
|
||||
| 4 | Rotor speed [rad/s] | | |
|
||||
| 5 | Electrical power [W] | | = Control variables. measured power |
|
||||
| 6 | Yaw misalignment [rad] | | |
|
||||
| 7 | Mean pitch angle [rad] | | |
|
||||
| 8 | Blade tip to tower centre [m] | | |
|
||||
| 9 | Blade tip to tower surface [m] | | |
|
||||
| 10 | Tip to tower closest approach [m] | | |
|
||||
|
||||
### pitch system --- pitch motions
|
||||
|
||||
| | Bladed | FAST | |
|
||||
| --- | ----------- | --------- | --- |
|
||||
| 1 | pitch angle | PtchPMzc1 | √ |
|
||||
| 2 | pitch angle | PtchPMzc2 | √ |
|
||||
| 3 | pitch angle | PtchPMzc3 | √ |
|
||||
|
||||
### Blade aerodynamic information
|
||||
|
||||
### Partial derivatives
|
||||
|
||||
| | Bladed | FAST | steay_op |
|
||||
| --- | -------------------------------------------------------------------- | ---- | -------- |
|
||||
| 1 | Nominal wind speed at hub position [m/s] | | |
|
||||
| 2 | Partial derivative of torque with respect to wind speed [(Nm)/(m/s)] | | |
|
||||
| 3 | Partial derivative of torque with respect to pitch angle [Nm/rad] | | |
|
||||
| 4 | Partial derivative of torque with respect to rotor speed [Nms/rad] | | |
|
||||
| 5 | Partial derivative of thrust with respect to wind speed [N/(m/s)] | | |
|
||||
| 6 | Partial derivative of thrust with respect to pitch angle [N/rad] | | |
|
||||
| 7 | Partial derivative of thrust with respect to rotor speed [N/(rad/s)] | | |
|
||||
| 8 | Partial derivative of power with respect to wind speed [Ws/m] | | |
|
||||
| 9 | Partial derivative of power with respect to pitch angle [W/rad] | | |
|
||||
| 10 | Partial derivative of power with respect to rotor speed [Ws/rad] | | |
|
||||
| 11 | Partial derivative of My with respect to horizontal shear [(Nm)s] | | |
|
||||
| 12 | Partial derivative of My with respect to vertical shear [(Nm)s] | | |
|
||||
| 13 | Partial derivative of Mz with respect to horizontal shear [(Nm)s] | | |
|
||||
| 14 | Partial derivative of Mz with respect to vertical shear [(Nm)s] | | |
|
||||
|
||||
### Environmental information
|
||||
|
||||
### blade loads:Principal axes --- Blade 1 Local Span Loads
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | --------------------------------- | -------------------------------------------------------------- | --- | -------- |
|
||||
| | Blade 1 Mx (Principal axes) [Nm] | Spn1MLxb1 Blade 1 local edgewise moment at span station 1 | ? | xb1-axis |
|
||||
| | Blade 1 My (Principal axes) [Nm] | Spn1MLyb1 Blade 1 local flapwise moment at span station 1 | ? | yb1-axis |
|
||||
| | Blade 1 Mxy (Principal axes) [Nm] | | × | |
|
||||
| | Blade 1 Mz (Principal axes) [Nm] | Spn1MLzb1 Blade 1 local pitching moment at span station 1 | ? | zb1-axis |
|
||||
| | Blade 1 Fx (Principal axes) [N] | Spn1FLxb1 Blade 1 local flapwise shear force at span station 1 | ? | xb1-axis |
|
||||
| | Blade 1 Fy (Principal axes) [N] | Spn1FLyb1 Blade 1 local edgewise shear force at span station 1 | ? | yb1-axis |
|
||||
| | Blade 1 Fxy (Principal axes) [N] | | × | |
|
||||
| | Blade 1 Fz (Principal axes) [N] | Spn1FLzb1 Blade 1 local axial force at span station 1 | ? | zb1-axis |
|
||||
| | Blade 1 Mx (root axes) [Nm] | | | |
|
||||
| | Blade 1 My (root axes) [Nm] | | | |
|
||||
| | Blade 1 Mxy (root axes) [Nm] | | | |
|
||||
| | Blade 1 Mz (root axes) [Nm] | | | |
|
||||
| | Blade 1 Fx (root axes) [N] | | | |
|
||||
| | Blade 1 Fy (root axes) [N] | | | |
|
||||
| | Blade 1 Fxy (root axes) [N] | | | |
|
||||
| | Blade 1 Fz (root axes) [N] | | | |
|
||||
|
||||
### Blade deflections --- tip motions / local span motions
|
||||
|
||||
| Bladed | FAST | |
|
||||
| ------------------------------------------ | ----------------------------------- | --- |
|
||||
| x deflection(perpendicular to rotor plane) | tipdxc1 out of plane tip deflection | |
|
||||
| y deflection(in rotor plane) | tipdyc1 in plane | |
|
||||
| z deflection(in rotor plane) | tipdzc1 axial tip | |
|
||||
| rotation about x(plane) | × in ADAMS | |
|
||||
| rotation about y(plane) | × in ADAMS | |
|
||||
| rotation about z(plane) | × in ADAMS | |
|
||||
| x deflection(blade root axes) | | |
|
||||
| y deflection(blade root axes) | | |
|
||||
| z deflection(blade root axes) | | |
|
||||
| rotation about x(blade root axes) | × in ADAMS | |
|
||||
| rotation about y(blade root axes) | × in ADAMS | |
|
||||
| rotation about z(blade root axes) | × in ADAMS | |
|
||||
| | TipALxb1 tipflapwise tip acc | |
|
||||
| | TipALyb1 edgewise tip acc | |
|
||||
| | TipALzb1 axial tip acc | |
|
||||
| | Spn1ALxb1 span flapwise acc | |
|
||||
| | Spn1ALyb1 span edgewise acc | |
|
||||
| | Spn1ALzb1 span axial acc | |
|
||||
| | Spn1TDxb1 span flapwise def | |
|
||||
| | Spn1TDyb1 span edgewise def | |
|
||||
| | Spn1TDzb1 span axial def | |
|
||||
|
||||
### Hub loads rotating gl coordinates --- Blade 1 Root Loads
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | --------------------- | --------------------------------------------------------------------------------------------------------------------------- | --- | --------------------- |
|
||||
| 1 | Rotating hub Mx [Nm] | LSShftMxa Low-speed shaft torque (this is constant along the shaft and is equivalent to the rotor torque) | ? | |
|
||||
| 2 | Rotating hub My [Nm] | LSSTipMya Rotating low-speed shaft bending moment at the shaft tip (teeter pin for 2-blader, apex of rotation for 3-blader) | ? | |
|
||||
| 3 | Rotating hub Mz [Nm] | LSSTipMza Rotating low-speed shaft bending moment at the shaft tip (teeter pin for 2-blader, apex of rotation for 3-blader) | ? | |
|
||||
| 4 | Rotating hub Myz [Nm] | | × | |
|
||||
| 5 | Rotating hub Fx [N] | LSShftFxa Low-speed shaft thrust force (this is constant along the shaft and is equivalent to the rotor thrust force) | ? | |
|
||||
| 6 | Rotating hub Fy [N] | LSShftFya Rotating low-speed shaft shear force (this is constant along the shaft) | ? | |
|
||||
| 7 | Rotating hub Fz [N] | LSShftFza Rotating low-speed shaft shear force (this is constant along the shaft) | ? | |
|
||||
| 8 | Rotating hub Fyz [N] | | × | |
|
||||
| 9 | Blade root 1 Mx [Nm] | RootMxc1 Blade 1 in-plane moment (i.e., the moment caused by in-plane forces) at the blade root | ? | xc1-axis |
|
||||
| 10 | Blade root 1 My [Nm] | RootMyc1 Blade 1 out-of-plane moment (i.e., the moment caused by out-of-plane forces) at the blade root | ? | yc1-axis |
|
||||
| 11 | Blade root 1 Mxy [Nm] | | × | |
|
||||
| 12 | Blade root 1 Mz [Nm] | RootMzc1 Blade 1 pitching moment at the blade root | ? | zc1-axis and zb1-axis |
|
||||
| | | RootMxb1 Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade root | ? | xb1-axis |
|
||||
| | | RootMyb1 Blade 1 flapwise moment (i.e., the moment caused by flapwise forces) at the blade root | ? | yb1-axis |
|
||||
| 13 | Blade root 1 Fx [N] | RootFxc1 Blade 1 out-of-plane shear force at the blade root | ? | xc1-axis |
|
||||
| 14 | Blade root 1 Fy [N] | RootFyc1 Blade 1 in-plane shear force at the blade root | ? | yc1-axis |
|
||||
| 15 | Blade root 1 Fxy [N] | | × | |
|
||||
| 16 | Blade root 1 Fz [N] | RootFzc1 Blade 1 axial force at the blade root | ? | zc1-axis and zb1-axis |
|
||||
| | | RootFxb1 Blade 1 flapwise shear force at the blade root | ? | xb1-axis |
|
||||
| | | RootFyb1 Blade 1 edgewise shear force at the blade root | ? | yb1-axis |
|
||||
| 17 | Blade root 2 Mx [Nm] | | | |
|
||||
| 18 | Blade root 2 My [Nm] | | | |
|
||||
| 19 | Blade root 2 Mxy [Nm] | | | |
|
||||
| 20 | Blade root 2 Mz [Nm] | | | |
|
||||
| 21 | Blade root 2 Fx [N] | | | |
|
||||
| 22 | Blade root 2 Fy [N] | | | |
|
||||
| 23 | Blade root 2 Fxy [N] | | | |
|
||||
| 24 | Blade root 2 Fz [N] | | | |
|
||||
| 25 | Blade root 3 Mx [Nm] | | | |
|
||||
| 26 | Blade root 3 My [Nm] | | | |
|
||||
| 27 | Blade root 3 Mxy [Nm] | | | |
|
||||
| 28 | Blade root 3 Mz [Nm] | | | |
|
||||
| 29 | Blade root 3 Fx [N] | | | |
|
||||
| 30 | Blade root 3 Fy [N] | | | |
|
||||
| 31 | Blade root 3 Fxy [N] | | | |
|
||||
| 32 | Blade root 3 Fz [N] | | | |
|
||||
|
||||
|
||||
### Hub loads: fixed frame gl coordinates
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------ | --- | --- |
|
||||
| 1 | Stationary hub Mx [Nm] | | ? | |
|
||||
| 2 | Stationary hub My [Nm] | LSSTipMys Nonrotating low-speed shaft bending moment at the shaft tip (teeter pin for 2-blader, apex of rotation for 3-blader) | | |
|
||||
| 3 | Stationary hub Mz [Nm] | LSSTipMzs Nonrotating low-speed shaft bending moment at the shaft tip (teeter pin for 2-blader, apex of rotation for 3-blader) | | |
|
||||
| 4 | Stationary hub Myz [Nm] | | | |
|
||||
| 5 | Stationary hub Fx [N] | | | |
|
||||
| 6 | Stationary hub Fy [N] | LSShftFys Nonrotating low-speed shaft shear force (this is constant along the shaft) | | |
|
||||
| 7 | Stationary hub Fz [N] | LSShftFzs Nonrotating low-speed shaft shear force (this is constant along the shaft) | | |
|
||||
| 8 | Stationary hub Fxy [N] | | | |
|
||||
|
||||
### Yaw bearing loads GL coordinates --- Tower-Top / Yaw Bearing Loads
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | -------------------- | ----------------------------------------------------------------------- | --- | --------------- |
|
||||
| 1 | Yaw bearing Mx [Nm] | YawBrMxn Rotating (with nacelle) tower-top / yaw bearing roll moment | ? | xn-axis |
|
||||
| 2 | Yaw bearing My [Nm] | YawBrMyn Rotating (with nacelle) tower-top / yaw bearing pitch moment | ? | yn-axis |
|
||||
| 3 | Yaw bearing Mxy [Nm] | | | |
|
||||
| 4 | Yaw bearing Mz [Nm] | YawBrMzn Tower-top / yaw bearing yaw moment | ? | zn- and zp-axes |
|
||||
| | | YawBrMxp Nonrotating tower-top / yaw bearing roll moment | | xp-axis |
|
||||
| | | YawBrMyp Nonrotating tower-top / yaw bearing pitch moment | | yp-axis |
|
||||
| 5 | Yaw bearing Fx [N] | YawBrFxn Rotating (with nacelle) tower-top / yaw bearing shear force | ? | xn-axis |
|
||||
| 6 | Yaw bearing Fy [N] | YawBrFyn Rotating (with nacelle) tower-top / yaw bearing shear force | ? | yn-axis |
|
||||
| 7 | Yaw bearing Fxy [N] | | | |
|
||||
| 8 | Yaw bearing Fz [N] | YawBrFzn Tower-top / yaw bearing axial force | ? | zn- and zp-axes |
|
||||
| | | YawBrFxp Tower-top / yaw bearing fore-aft (nonrotating) shear force | | xp-axis |
|
||||
| | | YawBrFyp Tower-top / yaw bearing side-to-side (nonrotating) shear force | | yp-axis |
|
||||
|
||||
|
||||
### Tower loads gl coordinates --- Tower-Top / Yaw Bearing Loads / Local Tower Loads
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | -------------- | ------------------------------------------------------------------- | --- | ------- |
|
||||
| 1 | Tower Mx [Nm] | TwHt1MLxt Local tower roll (or side-to-side) moment of tower gage 1 | ? | xt-axis |
|
||||
| 2 | Tower My [Nm] | TwHt1MLyt Local tower pitching (or fore-aft) moment of tower gage 1 | ? | yt-axis |
|
||||
| 3 | Tower Mxy [Nm] | | | |
|
||||
| 4 | Tower Mz [Nm] | TwHt1MLzt Local tower yaw (or torsional) moment of tower gage 1 | ? | zt-axis |
|
||||
| 5 | Tower Fx [N] | TwHt1FLxt Local tower roll (or side-to-side) force of tower gage 1 | ? | xt-axis |
|
||||
| 6 | Tower Fy [N] | TwHt1FLyt Local tower pitching (or fore-aft) force of tower gage 1 | ? | yt-axis |
|
||||
| 7 | Tower Fxy [N] | | | |
|
||||
| 8 | Tower Fz [N] | TwHt1FLzt Local tower yaw (or torsional) force of tower gage 1 | ? | zt-axis |
|
||||
|
||||
|
||||
### nacelle motion --- Tower-Top / Yaw Bearing Motions
|
||||
|
||||
| | Bladed | FAST | |
|
||||
| --- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ |
|
||||
| 1 | Nacelle fore-aft displacement [m] | TwrTpTDxi Tower-top / yaw bearing fore-aft (translational) deflection (relative to the undeflected position) **including all platform motions** | ? including all platform motions? nacelle = tower-top? |
|
||||
| 2 | Nacelle side-side displacement [m] | TwrTpTDyi | ? |
|
||||
| 3 | Nacelle vertical displacement [m] | TwrTpTDzi | ? |
|
||||
| | | YawBrTDxp Tower-top / yaw bearing fore-aft (translational) deflection (relative to the undeflected position) | ? =YawBrTDxt? |
|
||||
| | | YawBrTDyp | ? =YawBrTDyt? |
|
||||
| | | YawBrTDzp | ? =YawBrTDzt? |
|
||||
| 4 | Nacelle roll angle [rad] | YawBrRDxt | × in ADAMS |
|
||||
| 5 | Nacelle nod angle [rad] | YawBrRDyt | × in ADAMS |
|
||||
| 6 | Nacelle yaw displacement [rad] | YawBrRDzt | × in ADAMS |
|
||||
| 7 | Nacelle fore-aft velocity [m/s] | YawBrTVxp Tower-top / yaw bearing fore-aft (translational) velocity (absolute) | ? nacelle = tower-top? |
|
||||
| 8 | Nacelle side-side velocity [m/s] | YawBrTVyp | ? |
|
||||
| 9 | Nacelle vertical velocity [m/s] | YawBrTVzp | ? |
|
||||
| 10 | Nacelle roll velocity [rad/s] | YawBrRVxp Tower-top / yaw bearing angular (rotational) roll velocity (absolute) | ? |
|
||||
| 11 | Nacelle nod velocity [rad/s] | YawBrRVyp Tower-top / yaw bearing angular (rotational) pitch velocity (absolute) | ? |
|
||||
| 12 | Nacelle yaw velocity [rad/s] | YawBrRVzp | × in ADAMS |
|
||||
| | | YawBrTAxp Tower-top / yaw bearing fore-aft (translational) **acceleration** (absolute) | |
|
||||
| 13 | Nacelle fore-aft acceleration [m/s^2] | | |
|
||||
| 14 | Nacelle side-side acceleration [m/s^2] | YawBrTAyp | ? |
|
||||
| 15 | Nacelle vertical acceleration [m/s^2] | YawBrTAzp | ? |
|
||||
| 16 | Nacelle roll acceleration [rad/s^2] | YawBrRAxp | × in ADAMS |
|
||||
| 17 | Nacelle nod acceleration [rad/s^2] | YawBrRAtyp | × in ADAMS |
|
||||
| 18 | Nacelle yaw acceleration [rad/s^2] | YawBrRAzp | × in ADAMS |
|
||||
|
||||
|
||||
### Blade 1 absolute motion
|
||||
|
||||
|
||||
### blade loads:root axes --- Blade 1 Local Span Loads
|
||||
|
||||
|
||||
### Water particle kinematics
|
||||
|
||||
|
||||
|
||||
### Tower deflections / Tower velocities / Tower accelerations --- Local Tower Motions
|
||||
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | -------------------------------------------- | ---------------------------------------------------------------------------------------------------------------- | --------------- | ---------------------------------------------------------------------------------------------------- |
|
||||
| 1 | Tower x-deflection [m] | TwHt1TDxt Local tower fore-aft (translational) deflection (relative to the undeflected position) of tower gage 1 | ? x = fore-aft? | TwHt1TPxi xi-component of the translational position (relative to the inertia frame) of tower gage 1 |
|
||||
| 2 | Tower y-deflection [m] | TwHt1TDyt | ? | TwHt1TPyi |
|
||||
| 3 | Tower z-deflection [m] | TwHt1TDzt | ? | TwHt1TPzi |
|
||||
| 4 | Tower rotation about x [rad] | TwHt1RDxt | × in ADAMS | TwHt1RPxi xi-component of the rotational position (relative to the inertia frame) of tower gage 1 |
|
||||
| 5 | Tower rotation about y [rad] | TwHt1RDyt | × in ADAMS | TwHt1RPyi |
|
||||
| 6 | Tower rotation about z [rad] | TwHt1RDzt | × in ADAMS | TwHt1RPzi |
|
||||
| 7 | Tower x-velocity [m/s] | | × | |
|
||||
| 8 | Tower y-velocity [m/s] | | × | |
|
||||
| 9 | Tower z-velocity [m/s] | | × | |
|
||||
| 10 | Tower angular velocity about x [rad/s] | | × | |
|
||||
| 11 | Tower angular velocity about y [rad/s] | | × | |
|
||||
| 12 | Tower angular velocity about z [rad/s] | | × | |
|
||||
| 13 | Tower x-acceleration [m/s^2] | TwHt1ALxt Local tower fore-aft (translational) acceleration (absolute) of tower gage 1 | ? x = fore-aft? | |
|
||||
| 14 | Tower y-acceleration [m/s^2] | TwHt1ALyt | ? x = fore-aft? | |
|
||||
| 15 | Tower z-acceleration [m/s^2] | TwHt1ALzt | ? x = fore-aft? | |
|
||||
| 16 | Tower angular acceleration about x [rad/s^2] | | × | |
|
||||
| 17 | Tower angular acceleration about y [rad/s^2] | | × | |
|
||||
| 18 | Tower angular acceleration about z [rad/s^2] | | × | |
|
||||
|
||||
|
||||
|
||||
### blade loads:Aerodynamic axes
|
||||
|
||||
### Foundation loads --- Tower Base Loads
|
||||
|
||||
| | Bladed | FAST | | |
|
||||
| --- | ------------------ | -------------------------------------------------------------------------------------------------- | --- | ------- |
|
||||
| 1 | Foundation Mx [Nm] | TwrBsMxt Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) | ? | xt-axis |
|
||||
| 2 | Foundation My [Nm] | TwrBsMyt Tower base pitching (or fore-aft) moment (i.e., the moment caused by fore-aft forces) | ? | yt-axis |
|
||||
| 3 | Foundation Mz [Nm] | TwrBsMzt Tower base yaw (or torsional) moment | ? | zt-axis |
|
||||
| 4 | Foundation Fx [N] | TwrBsFxt Tower base fore-aft shear force | ? | xt-axis |
|
||||
| 5 | Foundation Fy [N] | TwrBsFyt Tower base side-to-side shear force | ? | yt-axis |
|
||||
| 6 | Foundation Fz [N] | TwrBsFzt Tower base axial force | ? | zt-axis |
|
||||
| | | | | |
|
||||
|
||||
|
||||
### Shaft Strain Gage Loads?
|
||||
|
||||
### High-Speed Shaft Loads?
|
||||
|
||||
Rotor-Furl Bearing Loads pass
|
||||
|
||||
Tail-Furl Bearing Loads pass
|
||||
|
||||
Platform Motions
|
||||
|
||||
Internal Degrees of Freedom
|
||||
|
||||
@ -4,9 +4,9 @@
|
||||
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:\n多体模块完善 线性化模块开发\n### 每周盘点一下它们\n\n\n关键结果:多体动力学建模原理、建模方法、线性化原理掌握 (9/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)\n关键结果:目标工况测试、稳态工况对比 (5/10)","x":-76,"y":-803,"width":456,"height":457},
|
||||
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
|
||||
{"id":"82708a439812fdc7","type":"text","text":"# 10月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
|
||||
{"id":"505acb3e6b119076","type":"text","text":"# 9月已完成\n\nP1 湍流 气动 多体 控制联调 done\n- 5mw 通了\n\t- 纯叶片变形\n\t- 纯塔架变形\n\t- 叶片+塔架变形 ","x":-700,"y":134,"width":440,"height":560},
|
||||
{"id":"505acb3e6b119076","type":"text","text":"# 9月已完成\n\nP1 湍流 气动 多体 控制联调 done\n- 5mw 通了\n\t- 纯叶片变形\n\t- 纯塔架变形\n\t- 叶片+塔架变形 \n","x":-700,"y":134,"width":440,"height":560},
|
||||
{"id":"30cb7486dc4e224c","type":"text","text":"# 11月已完成\n\n\n\n","x":260,"y":134,"width":440,"height":560},
|
||||
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 气动、多体、控制、水动联调\nP2 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持\n- 更换湍流风\n- dll 32位兼容 - 江\n\nP2 停机工况等调试\n\nP1 bladed对比--稳态运行载荷,产出报告\n- 模态对比 两种描述方法不同,bladed方向更多,x y z deflection, x y z rotation,不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n- 气动新版本稳态跑通 done\n- 如何输出 \n\t- 输出从ed_calcoutput拆分\n- 稳态变形量对比\n- 所有输出量\n\nP1 稳态工况前端对接\n- 是否拆分成单独的bin,等待气动完成后开始\n- 如何接收参数 配置文件 \n\nP1 专利\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457},
|
||||
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 气动、多体、控制、水动联调\nP2 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持\n- 更换湍流风\n- dll 32位兼容 - 江\n\nP2 停机工况等调试\n\nP1 bladed对比--稳态运行载荷,产出报告\n- 模态对比 两种描述方法不同,bladed方向更多,x y z deflection, x y z rotation,不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n- 气动新版本稳态跑通 done\n- 如何输出 \n\t- 输出从ed_calcoutput拆分 done\n- 稳态变形量对比\n- 所有输出量梳理,对比\n- 编写输出量\n\nP1 稳态工况前端对接\n- 是否拆分成单独的bin,等待气动完成后开始\n- 如何接收参数 配置文件 \n\nP1 专利\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457},
|
||||
{"id":"86ab96a25a3bf82e","type":"text","text":" 湍流风+ 控制的联调,bladed也算一个算例\n- 加水动的联调\n- 8月份底完成这两个\n- 9月份完成停机等工况测试\n- 10月份明阳实际机型测试","x":580,"y":-803,"width":480,"height":220},
|
||||
{"id":"e355f33c92cf18ea","type":"text","text":"9月份定常计算对接前端\n非定常测试完也对接前端","x":580,"y":-500,"width":480,"height":100},
|
||||
{"id":"859e6853b7f1b92b","type":"text","text":"年底考核:\n专利\n线性化模块","x":1200,"y":-803,"width":320,"height":110}
|
||||
|
||||
BIN
工作总结/周报/周报96-郭翼泽.docx
Normal file
BIN
工作总结/周报/周报96-郭翼泽.docx
Normal file
Binary file not shown.
@ -10,3 +10,4 @@
|
||||
| 华瑞 | 结婚 | 800 |
|
||||
| 朱钰龙 | 结婚 | 800 |
|
||||
| 许建强 | 结婚 | 800 |
|
||||
| 白雪峰 | 结婚 | |
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user