vault backup: 2025-01-24 09:55:06

This commit is contained in:
yz 2025-01-24 09:55:07 +08:00
parent 0ed461998d
commit 48e7e09b11
38 changed files with 2456 additions and 124 deletions

View File

@ -1,5 +1,6 @@
[
"copilot",
"obsidian-git",
"smart-connections"
"smart-connections",
"obsidian-excalidraw-plugin"
]

View File

@ -0,0 +1,789 @@
{
"folder": "Excalidraw",
"cropFolder": "",
"annotateFolder": "",
"embedUseExcalidrawFolder": false,
"templateFilePath": "Excalidraw/Template.excalidraw",
"scriptFolderPath": "Excalidraw/Scripts",
"fontAssetsPath": "Excalidraw/CJK Fonts",
"loadChineseFonts": false,
"loadJapaneseFonts": false,
"loadKoreanFonts": false,
"compress": true,
"decompressForMDView": false,
"onceOffCompressFlagReset": true,
"onceOffGPTVersionReset": true,
"autosave": true,
"autosaveIntervalDesktop": 60000,
"autosaveIntervalMobile": 30000,
"drawingFilenamePrefix": "Drawing ",
"drawingEmbedPrefixWithFilename": true,
"drawingFilnameEmbedPostfix": " ",
"drawingFilenameDateTime": "YYYY-MM-DD HH.mm.ss",
"useExcalidrawExtension": true,
"cropPrefix": "cropped_",
"annotatePrefix": "annotated_",
"annotatePreserveSize": false,
"previewImageType": "SVGIMG",
"renderingConcurrency": 3,
"allowImageCache": true,
"allowImageCacheInScene": true,
"displayExportedImageIfAvailable": false,
"previewMatchObsidianTheme": false,
"width": "400",
"height": "",
"overrideObsidianFontSize": false,
"dynamicStyling": "colorful",
"isLeftHanded": false,
"iframeMatchExcalidrawTheme": true,
"matchTheme": false,
"matchThemeAlways": false,
"matchThemeTrigger": false,
"defaultMode": "normal",
"defaultPenMode": "never",
"penModeDoubleTapEraser": true,
"penModeSingleFingerPanning": true,
"penModeCrosshairVisible": true,
"renderImageInMarkdownReadingMode": false,
"renderImageInHoverPreviewForMDNotes": false,
"renderImageInMarkdownToPDF": false,
"allowPinchZoom": false,
"allowWheelZoom": false,
"zoomToFitOnOpen": true,
"zoomToFitOnResize": true,
"zoomToFitMaxLevel": 2,
"linkPrefix": "📍",
"urlPrefix": "🌐",
"parseTODO": false,
"todo": "☐",
"done": "🗹",
"hoverPreviewWithoutCTRL": false,
"linkOpacity": 1,
"openInAdjacentPane": true,
"showSecondOrderLinks": true,
"focusOnFileTab": true,
"openInMainWorkspace": true,
"showLinkBrackets": true,
"allowCtrlClick": true,
"forceWrap": false,
"pageTransclusionCharLimit": 200,
"wordWrappingDefault": 0,
"removeTransclusionQuoteSigns": true,
"iframelyAllowed": true,
"pngExportScale": 1,
"exportWithTheme": true,
"exportWithBackground": true,
"exportPaddingSVG": 10,
"exportEmbedScene": false,
"keepInSync": false,
"autoexportSVG": false,
"autoexportPNG": false,
"autoExportLightAndDark": false,
"autoexportExcalidraw": false,
"embedType": "excalidraw",
"embedMarkdownCommentLinks": true,
"embedWikiLink": true,
"syncExcalidraw": false,
"experimentalFileType": false,
"experimentalFileTag": "✏️",
"experimentalLivePreview": true,
"fadeOutExcalidrawMarkup": false,
"loadPropertySuggestions": true,
"experimentalEnableFourthFont": false,
"experimantalFourthFont": "Virgil",
"addDummyTextElement": false,
"zoteroCompatibility": false,
"fieldSuggester": true,
"compatibilityMode": false,
"drawingOpenCount": 0,
"library": "deprecated",
"library2": {
"type": "excalidrawlib",
"version": 2,
"source": "https://github.com/zsviczian/obsidian-excalidraw-plugin/releases/tag/2.7.5",
"libraryItems": []
},
"imageElementNotice": true,
"mdSVGwidth": 500,
"mdSVGmaxHeight": 800,
"mdFont": "Virgil",
"mdFontColor": "Black",
"mdBorderColor": "Black",
"mdCSS": "",
"scriptEngineSettings": {},
"defaultTrayMode": true,
"previousRelease": "2.7.5",
"showReleaseNotes": true,
"showNewVersionNotification": true,
"latexBoilerplate": "\\color{blue}",
"taskboneEnabled": false,
"taskboneAPIkey": "",
"pinnedScripts": [],
"customPens": [
{
"type": "default",
"freedrawOnly": false,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": 0,
"penOptions": {
"highlighter": false,
"constantPressure": false,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 0.6,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "easeOutSine",
"start": {
"cap": true,
"taper": 0,
"easing": "linear"
},
"end": {
"cap": true,
"taper": 0,
"easing": "linear"
}
}
}
},
{
"type": "highlighter",
"freedrawOnly": true,
"strokeColor": "#FFC47C",
"backgroundColor": "#FFC47C",
"fillStyle": "solid",
"strokeWidth": 2,
"roughness": null,
"penOptions": {
"highlighter": true,
"constantPressure": true,
"hasOutline": true,
"outlineWidth": 4,
"options": {
"thinning": 1,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "linear",
"start": {
"taper": 0,
"cap": true,
"easing": "linear"
},
"end": {
"taper": 0,
"cap": true,
"easing": "linear"
}
}
}
},
{
"type": "finetip",
"freedrawOnly": false,
"strokeColor": "#3E6F8D",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0.5,
"roughness": 0,
"penOptions": {
"highlighter": false,
"hasOutline": false,
"outlineWidth": 1,
"constantPressure": true,
"options": {
"smoothing": 0.4,
"thinning": -0.5,
"streamline": 0.4,
"easing": "linear",
"start": {
"taper": 5,
"cap": false,
"easing": "linear"
},
"end": {
"taper": 5,
"cap": false,
"easing": "linear"
}
}
}
},
{
"type": "fountain",
"freedrawOnly": false,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 2,
"roughness": 0,
"penOptions": {
"highlighter": false,
"constantPressure": false,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"smoothing": 0.2,
"thinning": 0.6,
"streamline": 0.2,
"easing": "easeInOutSine",
"start": {
"taper": 150,
"cap": true,
"easing": "linear"
},
"end": {
"taper": 1,
"cap": true,
"easing": "linear"
}
}
}
},
{
"type": "marker",
"freedrawOnly": true,
"strokeColor": "#B83E3E",
"backgroundColor": "#FF7C7C",
"fillStyle": "dashed",
"strokeWidth": 2,
"roughness": 3,
"penOptions": {
"highlighter": false,
"constantPressure": true,
"hasOutline": true,
"outlineWidth": 4,
"options": {
"thinning": 1,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "linear",
"start": {
"taper": 0,
"cap": true,
"easing": "linear"
},
"end": {
"taper": 0,
"cap": true,
"easing": "linear"
}
}
}
},
{
"type": "thick-thin",
"freedrawOnly": true,
"strokeColor": "#CECDCC",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": null,
"penOptions": {
"highlighter": true,
"constantPressure": true,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 1,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "linear",
"start": {
"taper": 0,
"cap": true,
"easing": "linear"
},
"end": {
"cap": true,
"taper": true,
"easing": "linear"
}
}
}
},
{
"type": "thin-thick-thin",
"freedrawOnly": true,
"strokeColor": "#CECDCC",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": null,
"penOptions": {
"highlighter": true,
"constantPressure": true,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 1,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "linear",
"start": {
"cap": true,
"taper": true,
"easing": "linear"
},
"end": {
"cap": true,
"taper": true,
"easing": "linear"
}
}
}
},
{
"type": "default",
"freedrawOnly": false,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": 0,
"penOptions": {
"highlighter": false,
"constantPressure": false,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 0.6,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "easeOutSine",
"start": {
"cap": true,
"taper": 0,
"easing": "linear"
},
"end": {
"cap": true,
"taper": 0,
"easing": "linear"
}
}
}
},
{
"type": "default",
"freedrawOnly": false,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": 0,
"penOptions": {
"highlighter": false,
"constantPressure": false,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 0.6,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "easeOutSine",
"start": {
"cap": true,
"taper": 0,
"easing": "linear"
},
"end": {
"cap": true,
"taper": 0,
"easing": "linear"
}
}
}
},
{
"type": "default",
"freedrawOnly": false,
"strokeColor": "#000000",
"backgroundColor": "transparent",
"fillStyle": "hachure",
"strokeWidth": 0,
"roughness": 0,
"penOptions": {
"highlighter": false,
"constantPressure": false,
"hasOutline": false,
"outlineWidth": 1,
"options": {
"thinning": 0.6,
"smoothing": 0.5,
"streamline": 0.5,
"easing": "easeOutSine",
"start": {
"cap": true,
"taper": 0,
"easing": "linear"
},
"end": {
"cap": true,
"taper": 0,
"easing": "linear"
}
}
}
}
],
"numberOfCustomPens": 0,
"pdfScale": 4,
"pdfBorderBox": true,
"pdfFrame": false,
"pdfGapSize": 20,
"pdfGroupPages": false,
"pdfLockAfterImport": true,
"pdfNumColumns": 1,
"pdfNumRows": 1,
"pdfDirection": "right",
"pdfImportScale": 0.3,
"gridSettings": {
"DYNAMIC_COLOR": true,
"COLOR": "#000000",
"OPACITY": 50
},
"laserSettings": {
"DECAY_LENGTH": 50,
"DECAY_TIME": 1000,
"COLOR": "#ff0000"
},
"embeddableMarkdownDefaults": {
"useObsidianDefaults": false,
"backgroundMatchCanvas": false,
"backgroundMatchElement": true,
"backgroundColor": "#fff",
"backgroundOpacity": 60,
"borderMatchElement": true,
"borderColor": "#fff",
"borderOpacity": 0,
"filenameVisible": false
},
"markdownNodeOneClickEditing": false,
"canvasImmersiveEmbed": true,
"startupScriptPath": "",
"openAIAPIToken": "",
"openAIDefaultTextModel": "gpt-3.5-turbo-1106",
"openAIDefaultVisionModel": "gpt-4o",
"openAIDefaultImageGenerationModel": "dall-e-3",
"openAIURL": "https://api.openai.com/v1/chat/completions",
"openAIImageGenerationURL": "https://api.openai.com/v1/images/generations",
"openAIImageEditsURL": "https://api.openai.com/v1/images/edits",
"openAIImageVariationURL": "https://api.openai.com/v1/images/variations",
"modifierKeyConfig": {
"Mac": {
"LocalFileDragAction": {
"defaultAction": "image-import",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-import"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": true,
"meta_ctrl": false,
"result": "link"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-url"
},
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": true,
"meta_ctrl": false,
"result": "embeddable"
}
]
},
"WebBrowserDragAction": {
"defaultAction": "image-url",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-url"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": true,
"meta_ctrl": false,
"result": "link"
},
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": true,
"meta_ctrl": false,
"result": "embeddable"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-import"
}
]
},
"InternalDragAction": {
"defaultAction": "link",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "link"
},
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": true,
"result": "embeddable"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": true,
"result": "image-fullsize"
}
]
},
"LinkClickAction": {
"defaultAction": "new-tab",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "active-pane"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "new-tab"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": true,
"meta_ctrl": false,
"result": "new-pane"
},
{
"shift": true,
"ctrl_cmd": true,
"alt_opt": true,
"meta_ctrl": false,
"result": "popout-window"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": true,
"result": "md-properties"
}
]
}
},
"Win": {
"LocalFileDragAction": {
"defaultAction": "image-import",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-import"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "link"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-url"
},
{
"shift": true,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "embeddable"
}
]
},
"WebBrowserDragAction": {
"defaultAction": "image-url",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-url"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "link"
},
{
"shift": true,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "embeddable"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image-import"
}
]
},
"InternalDragAction": {
"defaultAction": "link",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "link"
},
{
"shift": true,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "embeddable"
},
{
"shift": true,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "image"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": true,
"meta_ctrl": false,
"result": "image-fullsize"
}
]
},
"LinkClickAction": {
"defaultAction": "new-tab",
"rules": [
{
"shift": false,
"ctrl_cmd": false,
"alt_opt": false,
"meta_ctrl": false,
"result": "active-pane"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": false,
"result": "new-tab"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": true,
"meta_ctrl": false,
"result": "new-pane"
},
{
"shift": true,
"ctrl_cmd": true,
"alt_opt": true,
"meta_ctrl": false,
"result": "popout-window"
},
{
"shift": false,
"ctrl_cmd": true,
"alt_opt": false,
"meta_ctrl": true,
"result": "md-properties"
}
]
}
}
},
"slidingPanesSupport": false,
"areaZoomLimit": 1,
"longPressDesktop": 500,
"longPressMobile": 500,
"doubleClickLinkOpenViewMode": true,
"isDebugMode": false,
"rank": "Bronze",
"modifierKeyOverrides": [
{
"modifiers": [
"Mod"
],
"key": "Enter"
},
{
"modifiers": [
"Mod"
],
"key": "k"
},
{
"modifiers": [
"Mod"
],
"key": "G"
}
],
"showSplashscreen": true
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,12 @@
{
"id": "obsidian-excalidraw-plugin",
"name": "Excalidraw",
"version": "2.7.5",
"minAppVersion": "1.1.6",
"description": "An Obsidian plugin to edit and view Excalidraw drawings",
"author": "Zsolt Viczian",
"authorUrl": "https://www.zsolt.blog",
"fundingUrl": "https://ko-fi.com/zsolt",
"helpUrl": "https://github.com/zsviczian/obsidian-excalidraw-plugin#readme",
"isDesktopOnly": false
}

File diff suppressed because one or more lines are too long

27
.obsidian/types.json vendored Normal file
View File

@ -0,0 +1,27 @@
{
"types": {
"aliases": "aliases",
"cssclasses": "multitext",
"tags": "tags",
"excalidraw-plugin": "text",
"excalidraw-export-transparent": "checkbox",
"excalidraw-mask": "checkbox",
"excalidraw-export-dark": "checkbox",
"excalidraw-export-padding": "number",
"excalidraw-export-pngscale": "number",
"excalidraw-export-embed-scene": "checkbox",
"excalidraw-link-prefix": "text",
"excalidraw-url-prefix": "text",
"excalidraw-link-brackets": "checkbox",
"excalidraw-onload-script": "text",
"excalidraw-linkbutton-opacity": "number",
"excalidraw-default-mode": "text",
"excalidraw-font": "text",
"excalidraw-font-color": "text",
"excalidraw-border-color": "text",
"excalidraw-css": "text",
"excalidraw-autoexport": "text",
"excalidraw-embeddable-theme": "text",
"excalidraw-open-md": "checkbox"
}
}

View File

@ -4,11 +4,39 @@
"type": "split",
"children": [
{
"id": "3b7c67f16ef1a64a",
"id": "ec0d65b5f47f4a2a",
"type": "tabs",
"children": [
{
"id": "585a4d130ed61c2d",
"id": "85d22a0ca1301b67",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "多体+耦合求解器/坐标系.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "坐标系"
}
},
{
"id": "aa4c94f200dee238",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "多体+耦合求解器/计算力和力矩.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "计算力和力矩"
}
},
{
"id": "60f9abb64e51146e",
"type": "leaf",
"state": {
"type": "markdown",
@ -22,21 +50,20 @@
}
},
{
"id": "ed403eb8f95f0215",
"id": "0f7e37da67e92e6a",
"type": "leaf",
"state": {
"type": "split-diff-view",
"type": "markdown",
"state": {
"aFile": ".obsidian/workspace.json",
"bFile": ".obsidian/workspace.json",
"aRef": ""
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
"mode": "source",
"source": false
},
"icon": "diff",
"title": "Diff: workspace.json"
"icon": "lucide-file",
"title": "Kane-dynamics-theory翻译"
}
}
],
"currentTab": 1
]
}
],
"direction": "vertical"
@ -67,7 +94,7 @@
"state": {
"type": "search",
"state": {
"query": "",
"query": "r_pc",
"matchingCase": false,
"explainSearch": false,
"collapseAll": false,
@ -92,7 +119,7 @@
}
],
"direction": "horizontal",
"width": 278.5
"width": 354.5
},
"right": {
"id": "de2dec4e906755e6",
@ -108,6 +135,7 @@
"state": {
"type": "backlink",
"state": {
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
@ -117,7 +145,7 @@
"unlinkedCollapsed": true
},
"icon": "links-coming-in",
"title": "反向链接"
"title": "Kane-Dynamics-Theory-Applications 的反向链接列表"
}
},
{
@ -126,11 +154,24 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
"linksCollapsed": false,
"unlinkedCollapsed": true
},
"icon": "links-going-out",
"title": "出链"
"title": "Kane-Dynamics-Theory-Applications 的出链列表"
}
},
{
"id": "974d410a4bde10bf",
"type": "leaf",
"state": {
"type": "pdf",
"state": {
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications_origin.pdf"
},
"icon": "lucide-file-text",
"title": "Kane-Dynamics-Theory-Applications_origin"
}
},
{
@ -152,10 +193,10 @@
"state": {
"type": "outline",
"state": {
"file": "多体求解器编写/多体+水动 platform+tower debug.md"
"file": "力学书籍/FASTLoads/auto/FASTLoads.md"
},
"icon": "lucide-list",
"title": "多体+水动 platform+tower debug 的大纲"
"title": "FASTLoads 的大纲"
}
},
{
@ -167,13 +208,33 @@
"icon": "git-pull-request",
"title": "Source Control"
}
},
{
"id": "162ba1965655cb5e",
"type": "leaf",
"state": {
"type": "smart-connections-view",
"state": {},
"icon": "lucide-file",
"title": "插件不再活动"
}
},
{
"id": "b55183b559c43c96",
"type": "leaf",
"state": {
"type": "copilot-chat-view",
"state": {},
"icon": "message-square",
"title": "Copilot"
}
}
],
"currentTab": 4
"currentTab": 5
}
],
"direction": "horizontal",
"width": 679.5
"width": 360.5
},
"left-ribbon": {
"hiddenItems": {
@ -185,60 +246,62 @@
"command-palette:打开命令面板": false,
"copilot:Open Copilot Chat": false,
"obsidian-git:Open Git source control": false,
"obsidian-excalidraw-plugin:新建绘图文件": false,
"smart-connections:Open: View Smart Connections": false,
"smart-connections:Open: Smart Chat Conversation": false
}
},
"active": "ed403eb8f95f0215",
"active": "8080c9209794d082",
"lastOpenFiles": [
"conflict-files-obsidian-git.md",
"多体求解器debug/多体+气动 yaw debug.md",
"多体+耦合求解器/计算力和力矩.md",
"Excalidraw/Drawing 2025-01-20 10.29.17.excalidraw.md",
"多体+耦合求解器/填充augmat.md",
"多体+耦合求解器/计算角度 大小 速度 偏加速度.md",
"多体+耦合求解器/坐标系.md",
"多体+耦合求解器/rust 经验.md",
"Pasted Image 20250122185202_369.png",
"多体+耦合求解器/images/Pasted image 20250123103848.png",
"多体+耦合求解器/images/Pasted image 20250123103518.png",
"Pasted Image 20250122184831_285.png",
"杂项/b450 mortar主板.md",
"多体+耦合求解器/理论框架.canvas",
"杂项",
"力学书籍/input/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).pdf",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_origin.pdf",
"力学书籍/结构动力学 (R. 克拉夫J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫J. 彭津) (Z-Library).pdf",
"力学书籍/结构动力学 (R. 克拉夫J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫J. 彭津) (Z-Library).md",
"力学书籍/FASTLoads/auto/FASTLoads.md",
"多体+耦合求解器/计算线速度 偏加速度.md",
"多体+耦合求解器/计算position.md",
"多体+耦合求解器/images/Pasted image 20250120155301.png",
"多体+耦合求解器/images/Pasted image 20250120144724.png",
"多体+耦合求解器/yaw.md",
"未命名.md",
"多体+耦合求解器/images/Pasted image 20250120142238.png",
"多体+耦合求解器/images/Pasted image 20250120141352.png",
"Pasted Image 20250120103502_252.png",
"Pasted Image 20250120110208_931.png",
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
"copilot-conversations/#_2.9_CONFIGURATION_CONSTRAINTS_The_configuration_of_a_set_S@20250114_160735.md",
"多体+耦合求解器/Kane方法.md",
"多体+耦合求解器/多体动力学交流.md",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_content_list.json",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_origin.pdf",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_model.json",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_middle.json",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).md",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_spans.pdf",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_layout.pdf",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/e01949185d74d494489307ffee162bcbbfb08bca34d939a9abd1a8a29b4d249f.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/561cdf3a076017e71010351bac3b474662fe9140c35debfd1e08b61066846760.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/b4cbe48d3256430e1ef457827859a1bc104189116f3d5bbcc1fadf49f320ecd0.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/93fa55b8aaeaf754305dc285fe39e33d290342ff4aada3e50b6e031c16e3ae1f.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/008e0da2890e6ed0c04420feb50ee4294e88f9daedd236686a33a82970606a5b.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/9f694a342b10250dcb45a19a5e4f24acff0e131cc405867e56c2767b1d440d56.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/a783e2c17d32eff5c3d571183cab47ea06d0e480d09e7e4ab872037c44ca5450.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/a76a7386cbde0bc5def46b94fcadc8b9af3933926df089fcc0a2e8616a0244d9.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/7b6d75432d24cf9ea87ece068da41f8ae731ee3eceaafd24326d1dfc45f1e52e.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/7c962f089b0ca7989a43f0e06df2f971685ab16be8d232203f5b826b9098db81.jpg",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)",
"多体+耦合求解器/理论框架.canvas",
"力学书籍/input/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).pdf",
"copilot-conversations/The_number_n_of_generalized_coordinates_of_a_set_S@20250115_092015.md",
"copilot-conversations/#_2.9_CONFIGURATION_CONSTRAINTS_The_configuration_of_a_set_S@20250114_160735.md",
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
"InterestingStuffs/剧自动化获取任务+下载素材+制作+上传/程序流程.canvas",
"多体+耦合求解器/动态数组调研.md",
"copilot-conversations/中文回复@20250113_144007.md",
"力学书籍/FASTCoordinateSystems/auto/FASTCoordinateSystems.md",
"力学书籍/FASTMotions/auto/FASTMotions.md",
"力学书籍/FASTKinematics/auto/FASTKinematics.md",
"力学书籍/FASTLoads/auto/FASTLoads.md",
"力学书籍/FASTKinetics/auto/FASTKinetics.md",
"力学书籍/Kinematically nonlinear finite element model of a horizontal axis wind turbine/auto/Kinematically nonlinear finite element model of a horizontal axis wind turbine. Part 2.md",
"多体调研/sci论文框架.canvas",
"Excalidraw",
"多体求解器debug/多体+水动 platform+tower debug.md",
"多体求解器debug/多体+气动 转速 debug.md",
"多体+耦合求解器/数据结构讨论.md",
"力学书籍/材料力学2第6版 (刘鸿文) (Z-Library)/auto/材料力学2第6版 (刘鸿文) (Z-Library).md",
"力学书籍/FASTLoads/auto/FASTLoads_origin.pdf",
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).md",
"力学书籍/材料力学I第6版 (刘鸿文) (Z-Library)/auto/材料力学I第6版 (刘鸿文) (Z-Library).md",
"力学书籍/结构动力学 (R. 克拉夫J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫J. 彭津) (Z-Library).md",
"力学书籍/理论力学Ⅰ(第8版) (哈尔滨工业大学理论力学教研室) (Z-Library)/auto/理论力学Ⅰ(第8版) (哈尔滨工业大学理论力学教研室) (Z-Library).md",
"力学书籍/结构力学Ⅰ(基础教程) (龙驭球、包世华、袁驷) (Z-Library)/auto/结构力学Ⅰ(基础教程) (龙驭球、包世华、袁驷) (Z-Library).md",
"力学书籍/理论力学II (哈尔滨工业大学理论力学教研室 编) (Z-Library)/auto/理论力学II (哈尔滨工业大学理论力学教研室 编) (Z-Library).md",
"InterestingStuffs/本地知识库+大模型/ollama 设置模型上下文大小.md"
"力学书籍/材料力学I第6版 (刘鸿文) (Z-Library)/auto/材料力学I第6版 (刘鸿文) (Z-Library).pdf",
"力学书籍/材料力学2第6版 (刘鸿文) (Z-Library)/auto/材料力学2第6版 (刘鸿文) (Z-Library).md",
"力学书籍/材料力学2第6版 (刘鸿文) (Z-Library)/auto/材料力学2第6版 (刘鸿文) (Z-Library).pdf",
"InterestingStuffs/杂项/清洁 Logitech 设备.md",
"多体+耦合求解器/25.1.16思路.canvas",
"InterestingStuffs/杂项",
"InterestingStuffs/未命名.md",
"多体+耦合求解器/思路.canvas",
"软件组工作",
"多体调研/sci论文框架.canvas",
"InterestingStuffs/剧自动化获取任务+下载素材+制作+上传/程序流程.canvas"
]
}

View File

@ -0,0 +1,806 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
# position ^WGE8EUn2
i = 1-12
i = 1, p.dofs.srt_ps[i-1] = 11
srt_ps // Sorted version of PS(), from smallest to largest DOF index
ps // Array of DOF indices to the active (enabled) DOFs/states
augmat [10, 10]
pmom_bnc_rt: 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-]
^Go680AnZ
## Embedded Files
aaafbef3a38cbef153740247e445222dcd248461: [[Pasted Image 20250120103502_252.png]]
fbeb81f661da648ae635aabc7ab952254c52421a: [[Pasted Image 20250122185202_369.png]]
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQB2bQBWGjoghH0EDihmbgBtcDBQMBKIEm4IAAUALQBmav0AcQBpQgAGAE4ASXokiiMAdQoAFgBNAH0qflLYRArCfWikachM
bmdhpOHtAEYktradg54ADk2kneGViBh1gDZ4k+1hnh4Lu53ajp2H2uuKEjqbi1Wo7bRtWpJJInV4vWp3WpXQqQSQIQjKaTcYa1NoJNp3fYwi5JHjxRHXazKYLcNrXZhQUhsADWCAAwmx8GxSBUGdZmHBcIFsqkSpBNLhsEzlIyhBxiOzOdyJLyOPzBVkoCLSgAzQj4fAAZVg1Ikgg8WoEDOZCAGgMk3D4yIg9MZLKNMBN6DN5WuMoxHHCuTQO2ub
AF2DUt2DB2u0uEcC6xCDqDyAF1rtryJlE9wOEJ9ddCHKsBVcDsLRAZXKA8xk3mC06wghiNwfrVTrUTp14tdGCx2Fw0IjaU6+6xOAA5ThiLHDGFtbGPQvMAAi6Sgze42oIYWummEcoAosFMtlk2nrkI4MRcBuW8GyWToZDhi8ktciBwmbn8/gP2xJU3NBt3wXdGyiKAhGTCBEDlItlArXVghzCRcDQ7VNAQbValwTtsEw7U9lqeJhjaHhhniBBXxJ
V5iGwYhyLOD4K2YdxxBTZEwBDTidmRdMnWwRk4B/fVCgAX2mYpSnKCQBkaQ8TkPABVDgeArWZ2OgLBNWuNY0A2eJEh2UljgOEESWuKNUGcEi4lJJI7hOeJLhOJIOlc/47VbA5kg6PyeHczokniCFuNFKQ0QxTU0DeCkOCpdiR3Cl1rQVLkKgAYh2BBsuyitxUlONZXlDl0uVchVQFIUdKdJDDWNTTvRbOkrRZW1iCBGKWtdBB3U9Z0OR9J0/UkGt
kzC0owwlSNvKS0oioTJN8n48LM1wbN71Qes/ydItiBLVDagrKtiDGkSduShAgNQT4Tm+U4TgRXsmHHQdeDuZ7+0nad2JOGFnJ2O6TmXNdgjvLcdwQPcD2IY8Mg1c8VtKK8b3Bh9iMhE54WxJ6nU/b80G2/9AM2kCwPCjdMGi9AMtQOA2FYKAB2OygABVtMyumGbUZmM04KADUIIx2J4ObIG1fmADF1r1Kz3ydSmoAAQSIZQ3ogYJtRq8K+yZ9wVf
RdWoDDCs9GyXAiyYFCtt/UNSHRIsCHZqnOfpxneadXAhGNgAlcIhfYhkhChvHLYACUizFg20N5xMk3bNogaoKBGTRiAAKQAK2cTQYHoE4jAAeUwABHWofaSIR1PgTTMyuzwpidPTrK+J53Icu5/IXDoSSRcKrOcFztA6OcR46HgcTnQ4+9KAEOvtGLh8+cf4i2UXDkM2KnVRdEo94XEvjJDpV5+KEYT2OKEppbrUtKpUadynLlidAqpROtL7+gCq
1WqxC9Xqj0jVBrNXAj1dqnVUC4nlslVqvUGoVCasdYQ/pAytlDOGGa0YxYQAWomRGGYswIGtkTXaxZm4QFwCkX0MMzqE1to2eu3A/IvFXh0O42CxzM2jJ9V6U4OAzmDAifYFxOwz0gIQVc65rpkxDuFfcxU4anhyMtS815bzXR2I+NeHxOxbA/EWAmNsGzhU5CTCGoFZGlHpkWZRaACiijAPYhxYsShtE4kjEoTjRQuLALiLGbwkiIjnMMPyOxj7
xHcSsRxnFfFRLALUBIww7hJLCZCQ4hxQR3EiZxLxJRB4xznPOZJ+wITEXiI6BxXE4htGch0L4bxIQBQcsMbJDjclgHyXcAkRxHJsL8ljHufwYmaOeFjUeEIDgUTeDwVpop2nOGqScZeoJR51MhF0uJottCH0Pu8M+PA9izM8TEhZzxj7JOMh0A4+JV6vjiYDbZPwFzkUeFsYpRzomVNOd8eptz16aPKdAhxlxh6uTOIZUiC5u4nA+fMuIPyV5rwO
ACrelSQXt3BSRSZ0L3F8WuHAQItYRDhHyJxXE+JETxAJHcVF3jHlkhhEs2lrjtlvDCYE4yQKWUggOI8TlUSD4gncouLlvjtmQjqavAVMdqXMrFW0IGIqBV4sbAsfM6jKiEuYMS8x5NSj4FCFAdk+h9BqDvJUNgNjzpx0KFJcRicfbpzXCXAYowVxwGwD7JWQhJa1HoMQfAOxC6aGrnMCQddmzkEbuFZuGwyIJHbJ8QGUJhFiJuOsIiw9XwT0BkcE
J8IKmzy8g+bQd1wkknnC8cihaUSR2pgFXYXxLii1BNCTR7lL6emwSlFkH9MqPzynuCUb8YZ9vKnyKqGo/76j6kA80N82rFsgckBdcDAEIOAUgvwo1UHBnQdNWAs1YwykWvg2qhDiH0PCntA66BcB3C3dWXdRiLqlCbJtQGIInIHPhDwrhN002cO+vw9ibzWGOWBrtSRYNpGQ2hgok8CMVFOhRuoj9WiXgfFIk5fRX5zrExZKTODTprFnlJW0mJPi
3EOI8Z8hx8Lbp3WxEcUWewa0lDBIxIpmwzJlJmTRqJ7Tth+QrW8LsGT9gdE2UvL4Cq5zdM6IiWFMSOjJFso8K5XZ2xxLuNoLpEIQovDYz0qEym0XwoXJsTY3wFwAyGZU1Tfk2gOXeMcTuHQzPAuE2CiiWKoUUXuQkx8ZEQo9wM8ZTzooQVEXshPdh+wQn3KSKWwGpEdiA1cl8LpESBM5OGbiUijlPg4jzRCNy9zVMuWCo5ZyUI5y8VyxRypwme6n
DE8itJUmYmvFLWFzsXZqUhJaY1uZlHNm6deCScyPGQqPWG6KWjcKZOIpeMizeoqwCnASK8Jyc40mGRpZFvJizlkuT8uZDZ3XKtNtW62pZ8R3JHY6Sdr4Kyy0XY+ldxt3xbt7Hu49mjKrwoEsDMS88ZKY41NCnK3EsJ2GStFbD0iE8lUQ4CgFGriP6WdlOPyiH7Z2xGaclj9sNm9g0pJ/1h4gMpX4+IndfEMPWVk4ckzppiriKI+VQtukaqDUbk1a
DwIurLGQANfSY1pqZDNgtVauhokSgSVtQnCoygoDNCZCuYYrMfZKSMBwOAFB8AwCZJUMOrJJbcmuBpCoEaG4VljZ2XTCrjIxZHvVyyGbETbIe/CR6j0R4488vPbgun9OdhHoZQ4YSFzXB3lFbgiQQno87CFMiZFcbhUpF21dY6H5P0HS/YdRU5R56/hO9UwoMz/1nRu+doDrTgIXsurlzpYG19NJu6h27aE3X3RGQ9WDj3xjwch1aF7NokOvWQ0s
8RH2nWfVPt9jDBFUpCqLcpf7OCtlb0BjgfCBE3Rog9pZn3r3QYQGjVAMj4NHkQ2RuxHiICoav5oznmHLjVdw4YpfYuAKEZF3xUtQfw4ia2cTiWox5zy0qR8TiBCSpWGEuWuQeC2HmxKEW2GQKT+lFmKV403jiW2GCjLQRFOEOFcjCSewY1+SRQ3kBTiWS0QL2HgKpQuCpT+ie0IIewhFfFk2RXSwILU2IPbC7GTQoJG2OUqQYPSwcj+nbAOFclJG
kxd0hH2E7GjwQJyygLANFCkPJ1kPXgUJ7BOT8XbChCCTOFCXCQ4N2BpRIiWScgOGJDiU6QU16XcyxgeCexMLeEBQhHcj8gezERZX8UCWxDqXkNTySCe3yS4xwJ41KXwJiSCySRSTqX2COCTSyXELo1FBiMKTiJKRBESMkNLVJFP2PhxAOTuiyK0NGy+QKx+EYkuAyKFSXBiWS3+nKLJDIkBjYS8NLVMN8NbgCJHnoOeGkOYO6TYJhWyPaW8OCjeD
8LLUCLGMYK2HCSmIg1xVqMgBByJUJXIzpQVQ00Zyx0+Gp2J2lQ32hyx1eDHiqNp2cRjhBFblRyePIld0U0eLpXInh05yuK7FJERH+LRx7g52+JZXRzYUuLR0ek+FxzZxcjeLpSOEhHJxhyBzfT5w1S1R1WAmIxMUNUlzNRl2AOpm2htRKDtTKETiZAAEU2BC5CAhB6BJAw4AAZOoegNgSoSQGAdkqAYYLga3GuW3QISNSgB3dYTnGOaEGpKlAkZj
T4T3fSS4bYeEc7URTuWbYPCBBomlerRAjJQ+SDcKePPeB5MkCeToFA5zfETtRKXPO+ftAvZ+ORYvd+Z08dSqSvbWHUGveBTvevGBMBJdKBVdDvL0LvYaZBHdWsNBJ0KaAfKyI4bBXBJaR/AhdaIhSfK9aSGfVCE4efXvX/Z0FfG6dyPYeUs/UoPfbyLfffH6VsdhT4fEQpEGKRIjCxW/WGe/WxFMJ/F/DRDDHgLDf3b/fDPGf/WDbskjMk8HbQ1x
CA/oxAg0pZI04rY+U05xFcxow0lok06TeAi5AKZA8pGo9AwTSjcYtc5o40rcnTApI09sRYn4VyKlLwwLBNdfULVQ5yfjHYnIpc4ZRIZY1nUcqES4dsT84ZJ4K0nENhVeO0i8sADAmA+5MPSTFQpZLYLsUzWYsbYZTCxTM+JgvCqIwHHYmCXEg4uxCHO0vlJnMJGEInCEsVUESlWVSnP6C4tig+GlSeTHaVbGHwplEnEgsS6VVJCVEEncqi1gfQdV
AXGi9iG/PGIkgwKXc1Mk61RXeOa9ROSoYgAYJIIwSQcYI0cYAANSUjgA4DDlZisoQDuAoEqFDVrnFPt10mlJInBE6B8PTxYQhPTVVP2D00uAMxqWYsMl1ObyOFKIQp7kCTKzKTjzrQdGWzk0eguEUzTWz0dIb17S9Pz0fnyg9NHWKvLx9N/mrxnUDKjODLfVgSbxpBXUKrXX6kQW7xQXjL3UTIwUHxuhjCdHTLPXH2zMvWMXzP2nIVwA6GLMXzzI
EHLL2DqWPkuGSQbO4G3MgD3wP1+k+E2BxE2qg1BkvxnL1TFBhkUSQ0zJQzUVfxHI+FUJrQ1gMUnJMWnK7MupgnnMOIkPAMoye2SOSQ+DSPSUyIgIGIaTCJxAVUiKezD3YTRPhGRrIjOHuSwO40KL4ye0q2Cn8mpUis7ExtiLbJxs3ie3iphESrMJSpiswK6UJEeEQP2FXgck0MvOgOBT8WtJE2SshFSu60yrOGyqODqTQNQqvLRV5tpoFsCQZsqS
oM03kxyolu2K5uBxUoXJ+PFtkp+PslkwpyuIxgXCErR1YtuMQIOS+Kx2cySRhLks1qxMUv5wQEF32NUoJP1Q0pNRJOIFl2FHl3wEpKKBV2VGUGwFBDaCMGwEkEPEIGcBLiZAAA12ThhtRWQU53KxT64o0pT9IykEgoRnI7o6tiIut+4vdksDkwlXhPhUDKjYrWxtgYtV44s7TEtt50q0BdD1iDtWCIMHTr52qy8spXSyrCpPTFQeRv5J0q9aoAz1
0gyhoQzG8wy2q163R6qBpGrIARpe8JpIAkzMEhq0yT1R87rxqNoPrprb0KElYFreqX06QVqAY+l7otq0AdqGAXoBx9rgRnNxaDSOyYNvrRcIB5E794YQCLx7rUZhz39Ry9gY8Jzg6CMLqIHSN+zck5jlyCKlazkECkCDgUC7ljCbzRzakCQFx20thrCiC/IJKyCQkj68lON8jybeNCkns4LECSJNgqy4sgjnsRbVa9bJa0LgVqlalWNApIiRGNg1
MrkiIsYsLDgqbW7AlYt4RO7K6HFnA+7JjB72CCGvNdhtH27dGEt9HcijGNiTGZiFtMTdjtb/qxU9a+LZSoTzb3jykklbbhK2VBk8cniQQQk/ivHE1TgrljayUXHnRsTlKhcvbZzCSJdNL/bA7yTfxQ7qSZJ0AEAw4lYAAhBoGAE4ZoZoUgEpxoIQMOKATOFcfAUgUYHO8NTy/O7ywu0iGOGzJh5zEES7Ku1UxA8EXZU/L4Eu5u4MLR9sKx+Le2ow
s0nu1AHEbZJySsq0mpFsvK+KHPUeyq8e0qodKeiqme70n+KdWqgBTq6Mrem0De1vHtDqudVe0oA+59I+iAE+wa1M4fK8S+gcrMm+9B0hGa0sEpp+usJassjRb4f8rpE6nWP+7fGKezWs1FxskDVsBusiL4ceUB868Bnsm62Bwch6xBv5D4GlGlNBl+qcsxfEtJqxP6uixc2JIGsx3I+YoY/w4+UYmJTglRwJNRxTAKaI3lxY4YgVkRxIK5ceDI14
Q4EkQJfokI4E8I+GtyNhsARzK5FzJ5ELMgyg8EJZFQiEEQt/TPBxPhzRaiIR7GYGxJUG1JdIjJH4VY6QiDOQuTduawkTNrOUiTToJQ81rFcGnwiiwC9pPunEcpFjTuGpKG1c04CnMJMeO6TmqW7mnQ8YoiGpG20cq5ZZp252gG0UFrUTYNvF2xkoBJHlMJCiXRZzVrAN1rIkcTWtuJRIHZ6lX4VzfCmNoVwQph4Qlh74e5OA7ArhhI8pBhjTNhcd
1LSd7rMEUGieBNkKKbEiZ1kiV18Gloz17rCbaZabNmhVZJU14862q5Uh25ERhtZeH4I4Bw884idV0wzVuGtR1dypdZ1PLZuQqlaeaI9d1w6o/pKZjF0UBtdazuXC+QzoPo7lvJKtoNrtzrTZXt4KR4dzSENPQ7VDjpO1gR4kfF5F+jOAx4QyF90hmpEEaI0jh1/YYRirUFdLHEX1rYMraI+V/ypV1jGiERy0gnG0pC/YAkJx8toCjpfjxVw4ZVtj
cie5OCsTxC4RfEaEDWnNrWlJnWllbsLiq404YkOJ945jZJU4q4kJfF5EyEgJhHK44yBnczlEqEIE+zjx0EX9/WllJNXzrx5NN5R23W0Lhzh4246EE4tzyE1eI2tnfpM28L9iuGxiynGLpnQnSLk2xlUJo4leMkLz8ldExHBJhSpS92lSwA9SjJv26XAOnS4OvJ8O9AeIA0fYQuZQZp3AVkXUYgJISoSoJSO4AYTAVkdp9AO3LppuaU0cxtR4ciDU
tNy4FU6yJNUte7IEvpYiZNp0OeCBciYeYh08+9ucUt2tXeamdFHzCFbFEJH+/Kkeh5segdN00oV+EvEqC59AFUK5he1aJeu5vetvUMkPNAcM9qyM3e95/e2Mw+/vU+/5kai+jM4F89Ca3Mqa8RAsu9Cb7vJ9Z+0s99bgMwvbQ4Gs3arF4EWx3+r6bFw/R6KK5616iRM6q/NSuRa6vssa5GSl9DJBj4cpBVel0s0xAA5ln67Bgz2TqjGCr5ZW+yVb
DeV8eXgxkG1ItJI9lCqRnlyh/c+8tor5Vu2w+rBwoBg5MDrGgovAzfE5E30kM3tPC4S34j05ZQqES19Q+EGDvJDXsGrXj1nX6Wgxqgv6QPFjA4QZZw+Y0I4JSwwyaI/3t1iGzJAQxo8pH5FBpUpPl1zX91yG9o0ovlbUyowGRyaIsPpjaO9eaPovzon4Cono/3K3sm3Aud9jTbM1hu1Qq1jQtX3Ijhmd9voo+d4j/UtN4JsLXNZwhtkrSPFttyEk
XcmlR6Kf9IpZZwuA85W9s81Alfyfi4ETMg3V+Y79iI4nA/tfo/6fzf4Wm9khm5ff4jof7G23zv7fk7u9p/1X4jz/k87/mQxE56YaGTkM4FWXZqeFiOfdH1gYRJAXdjsRDAAXv1/7DtKkvbBUqvEz6kNsqzhGAfoXkIPdo2MndpPJxtrGQhOuOZwhNlfColJsFPHik9jIGCcVWVA+3soxVadhOsJWJgcPAE6KdKBd/L5OBxypuEoOUAtAQ4mYECDW
BQgstrpzqK2tEk9rQRqx2xhQ0NWsNC/qvDxrDwDW3SdhMa0BgptGi1ONhAljoaSMQ+UWGRuyixidB08xERRv/1373tn+kgmwXwNfArx08pwMkL7w6TCtOBYrcIg1g8EcYLM3gkyKLD8EghqBT5Oga+QgzB9c2HGBthvg0w8dN2FweIeRGfL0C3yj0KmukPlJl1kcnOXVkowz5O9HCruKmpEOTzr50a/gjQV+y0Hw1L+L/ILLtxMh9ZasR5Hfo/yA
FU0GCPRIVOPDKztl7+gw07j/ysGpCuISeMZAzjhpTIdq7Da3rO1H4AUSB3WA+MfFXILEFwxBZwknnHjjxU8pkUcrUEoKcYAoYWcwc5ifAbZnA+NLTDsxCjl8bhf/O4cf0eHBQVCzhN4RMjXxkEEQOnJ/HsW1S0VQCRxQ4CEyYptkjq+XfzllmCR+cxUcOQJmjlwp5c2c/jSJrcWcjoivGJkNmpJTRwIdQQbOM4n9AojGcIcjfRVil1xA/B3MOXNH
AqmFQYjYcgtMzmzks6FYBRmSIUbcVNoO0guhkIrjyN2CccESZxOURSKeIbUSRtxTxrcV+LYj3iASVyE5zRyai9Ryo9yNWhpxnECOltKSsZEEosjZRNKdUVJQeDQlSR1xakWKJNE2iJ4QqM4DKNJAIheKtxO9glzOI0Mgx3Octok1do4kUmNXdJkakyYNdsmulMAEripKtcbgygLWEYAoBKQVwSQQgM0AnCaBtQbIHYEpANCNB5qIpMNFN06aSlum
1kUzsXUK6+ZP03zAeMvASAKsKhZdCeK9QO7N5VMwUFhAzi0xNsYOEUK7s91KBPcIeTpH7hAGOZPxJ6I6YqGXj+7z0/S4sIHm8xAQPMWqEPTek1R6jQ8uqMZHvF80R5/Nhq4UUamPh1AT5b6OPCFqhBXDQtHxcLTaKRFvYPQv6qAC7nT14RNle6PvCYQ5CJYc9vaV1BDDAxwYUsEGAvalponHKhw8MYLT6ky2vyQTfqNiGXngy5bhD4kefAPu6xqQ
BZ8JuwypEjUtaR5Ph7afBgROBHxsHgZBLYBtkgIUSHEg49TCONCiB56JHE0UFxOHGaZeJ2IfiahQSZQiwc7jVka5BC5Bc1kbkGUeyldFSUmMHKJnIWwgqxdfE5XJJlV2jGS8IG4uOMfV20py4X0LXAyhUFqArhGgmcNgAMDgDpx04E4fAMoBLgThCAh4TOMoGIDagEIVYjynnTrGzd9IabXyLmhpzwiNqa3QeO2ASDNouwZwLYAWkp4QB+xTCNTM
JIVSiTxx5pa7iAOZrgC2aUIB4MPVnGHN5xi4wvO6TOarjKq6430tOluY7iWIzVJ5hGR3qnjwonzZ+t81+Yplrx80VHrz3FgPi0Jd9WaoeDfGTTlq10EyFaNJCvU6yaAdKXtSAlH4kkOorsOBMwakseed4yAEOQQnaJAYUKUXrC3F77S5yOE9xnhJgILshCpBVLOSAoapszBNDfhj3HmEcsngphTYDCARDo0aUnfPIsP3iLbDdBQ4soiJNBB8STkI
g44iVJqRlTs2uvEoEJNhm5T4ZYkxGUVORms1UZHNCEfijcbssfi6hU0VcVpYIiiRwJLxlyO9F8U9JkY5Jp7RjE+06uWlUkhZIpJ6Vlc1kiQMoC6D4ABSAwE4KQFqCswBY7JZwM0GcCVBx4dwOkpNwgDTdQpMadYKOTgIUR1qFERglljilQVdgtdeEvCIeB4zwomU6OG30hnYg00BU7yAlWQ501BaitacfswKovcjmb3ZcV9zXFz1mpNzE8fcyPHr
1weLeLqcvQaqw9Kw8PC8f1QPRDTz6I+NHnA2vo5l3xN6WapLFmkMtLoGiLsHe1fAi9Rw1PNAP+I2k4tBE48B6D/TZ6dlOZUE6BkojGnP5+erYJ6iu2wT4x3x10klrdNgYLC5ebvCfgb03JG96MSA1wTclHKSt9e65A8g+RHaBtO2HWOcK304Yj8HZcSZjqoIo4RY3er/G3twTeky0XZ/NLjgrXRnWCNhdsworvPyyXykq18spKTJIzkzYRkJJmcV
1ZTEjmZJOVVqGPxw6J5RQTJUd4lZmVcPa0I1Jj9RMnEkExTXSyQLNTFCyvQHUCgMHBKYrhmAlQJkDsDpLjAoAlQIwPEE0DslcAasjWdGlKCxoAkPuS5EOJyrORjZr4bZPhy1LHwy51spdCIJ6SQd3I0HNKpOODD/SnkKOa0mVO+YzjIEc4sqCVSXGnMVxpeRqUHJqqL06qMcmHruPDmLpI5kPB5qHJB59Txol4lOQC1PRHT1ZE0guVNNLCNB85xP
FauJ2mK/ijgDZABmgBSKaJEOe0weVz2gltybFJ0ruYLxpyvBLp2PDWF9WbnYTh5HLUeQRLP7tDf2urB3pnyTQXAc+4/ReXeUnnrCwA8nMJD0gJB5DsQA/CIaMjf4JFUBAkvJBP2v4Zs2aETDCs8SSSOQW22IToQROcBStVCTmCEHS1gqPJ2EUinEDIoXkhE+WgYkZWilAoBFwKBIHJdBTHnQ0FigyuZZ3z2DPAeilwOpIqSSSJ91lMy6VkMoLRJY
9ltdfNEcoeDozJJX83JKyJ1YPZfGdKTsJ+iUleMwiyIpnL5kCSxN/lTka0T8syz8iscpEcpNpKYpDYIqOk9iU/gq5u1YFeJTCSyzFy+0eZjXPmbkzQVh0MFEATOIQCsrsllA8QbMY0BXB0keA1QVmPoGUDDAlIHQdkk4qCm50JSdC1YOsFIgJJmkhmCVCEkCSt4B4D2Z4NSLRqOiOUMzXgDJnD7MZ08bGURQnhigdEmZPHUiMFCmwVT5FVUxRQuL
9kqKA56iivJosB7aLgeccl5vuKjlQ9upYcuHueP6kWKj0KPNOe3LWigt7FT4++rgDDjOLYWJPNaevh+CbB1pFcgDF4s2npZRyG8VAgEviVQNeyME9uWEvRjUsqigrExO9TmmxKMJnPVlndIpkVtgKj08fjH0obNLj+uaKpbpPWWpsJ5rRIpS4KGEPst5EMimnb3QFnIU85vGIeCOPkEyasTPH4IZA2yfBWUpEuTJPB/RhCGlojB/rMKAGbJqka5Y
VQNlw6V85V1fSPkqu6zCYv+Z5c7lup+Tyqa+rAzZMlnqTuY2MpxZzFusXWACH2myQgi2VHLJIuwgKeeYOofnv9Nkfic4skmcjHUJ4I8aZW0NeyEDVqU7GpafKKKHJTlEGrViVLrZVJYNWw4iAhucZUUpJMI55bsEUmGiPltE0ulEwkooj2KAlZLmRuEIUb+KtGrLu+QtH44DhhI4Sqxq1EfKsYmXSnBE042GdEC/kamfE3kr6TUVwuIyR+CxVZMU
F/M5MfpWkiJwjAowbAMoDpJwBNcMgHYErEzikBSAh4IwFZSgB0l/V7KjpiFK5UQBY0mqvTAEyUnHw2aq3J0APCWTggl2DwFtL7n/E2ybo07WpfBtbxOzZmoKaEL5khSarRyOq7tLAle4T0jV09fVU1LNX+kLVbU1dDaqMX6LXmdeOOWYoTLhRBprqm8aNJsWeqs5uanOaWC6ABqYlQa/eDjm/Qqdy59PVsOOOrmH4667Cbace3Pzs8bpQS1ubdXR
7hQ01N0J6vXUi0oSf8V0uJZJqHk4MR54kjGYRMbarwulKrTRBCArUNql5hvaTgoJLVgAaB+QpITxSW13ywA+88jmx2vKpsq1t/OdQdtk5YyTiWmHZZsJH641iOV2x1pR0rY2FHe9hZ3lhvnXod15IbVDWcN7Vp5+13wgiSfIw3FEeaCVT4AqTSzuZb5CwlwqIKEVYxdEX5YDpkPKEnwT1y8JXv8lqwICuIr6nuCJicykhLk7a/zXxnuRzMOKlKCE
LXSZ1waWdwyNncVgoic70sH8vTp7Rl7kp4BDM2kSPA0liivRf88iHZx9GCjrOsJOQqpNBIZsOR7xc4e8shLfAhNHo1zppPS5hiDtEYmBdVzm2xikF5koOqgvk2CzFNFQDgJoDgA+w2EbAQxhwB9iFxDwtQTOHcHGAnBJAzIGhbWMs2O4/oghVyF0ibbrE4pXSZIFQweBdaFS0IGVeSmRTKq94Wew4FFoUWfwap73MUOVQanzikt1zLRa1Jy16LLQ
YPPUoePr3WgTFuWhOc6qTnJkitI091aVrsWllKtqEdODVtfTzSP0REA4Wwl/FtasW3i1AI9G1LrF0pjcsBomu54prQlnc9NdoleDwh/xfc3NQPPiXS97phFMtSkr8r57ry1yR7amEeX6cZJMcQEtKJZmia2ZBkjmdbq5mmTsViY5rvivyaJxVNSkNoJLFZDOB04uAWyo0G1ykB3dcAKAPQDaDh6LNBdFuL5TfCpTlpVaH+qKt0ysEQQvovWb+n25
Lotk5rLpBRFbICViIOe+tGqqYyZ942bkLbZ7C9lTjm9RVaqYaqLz1S1FFejRVXvNU16V6de0HhHMb3PN289q0xe3vMWd6kew0yALeKvr3jMe2c3HhQmaAj7X610EiEJs/rNbXos4KNTXIrLEQaU8hBuRfggkYrIG6+kJaoeOlb6xtgvFHEkmiWj681EvdFVLzZbfzZe52xbSchbVLq219axovdoibKkTkc/MYb7iYZFdudiOrteryIkp9tepO6gs
r00R7Aqd2OwRR/Tx2uRoiYO9rBkk2Af9u+FrNQull9zRFjtiQ9Io5AChjEG+pfHouPGIFPb5k+A/xIQKp0lLhe6WUpHHtz6raZCJWC4A3R7bggFSFh86dMk2C1rQjT69wfOtWMoDFGcRn9AkcQpKZiOmSmoUAxeE/a1BoW9ttW0w6SZnCxkLwY0N8Egq4doOvQVcY6w3HEZNOtyLTquQmQx+BEvo760MK3GlhiIFYZMmhW/TFBebdo03wORdGQTv
WctG1meTVpEaCQznadseiInli7dStLCB2E9GYkjRzE80bO2Ize2Hm7DCsJxwpCOWgJuAYoU+PJAEOdO34yFH+Pzrk+h7IPkCL0HOYDBbmFDgRJeye9aj7aAIf0o2V8tliYGv/tUbFN986kcSOI34vW0oMQozxok/+3FRxr1TrBVgyUTWLxsi2SbTHfSfzYyF+jCqeAW0bKKN9ui8J2ON9uUFkdftj7bdRH0VXL8X+BWfEOQWtpkQW0lPRpZWvTbM
I2EnwKmpxlexgo7SXHHuFv2Wzk61seR6M88TqRxnVCfhF4UEKCS8Fo8t+i7elgzO6I8KEyKZngMtOwCBjVNWWq7PlpC1jerxjDu8c6B1m9ljkHJcZCDPDKkzCKFMxvDTPEd9WAp1zEYKKXjzdthS3QU5kNaGDFpRSzJamRA4TwSQHmX0y/Ldk3yBCa88o7W3qHobPtSO/7RnxXPjLGkG5+HfzvCaana6pNbeZDK+3XmWTPcMcl2HOC8KDGCO485y
e1PSN7jPgmIZs37Nk6/kqZ4KLOf0HjnFztxj7U+cprEdpBFA2Qbq1FO991CdSXgcnguF9qM8AQzgs9JEKuQKI3R5bfFUKwBmezyrEg81hbPg6Dzm5yi92ZiHBndzHbfc51hF1WInljI0jbcVBqqiASQKknIdRYIIrHkbGKXcJRtNEbuUslmUZMsoOq6wm1GknGpYBLq66NspIzqzii4gL3i7CWyMJp13YFIF+uwKBKIDHQhuRpIpyPaNBI2XAFVx
dyHiPUuedFLYlhkWEzfxuXhKXyuS+xW0ttZXg3llEjRwctPFOgj0BjXbR7iantL9rD83ro8aBc1RMTFSz8SP6y6rigKzK5CUmPfKiRuuo3d9JSuw4WcEl07gZZ+LG7bicJWK5aJ+z5W614Y5FVGM/2+HjJ0m5BbioVyO70Fzu4Wc0DpJCA6S/SlOs4DYBdAw46cZoF0B4ATgkgygQuKrLM01jUD9Y5wGCfCoEhadvuCUXFO+DJBQo5ZvbIVhlVnG
KOjs1Zl8GHigz2EVnV9lfqzzsHKpPs7g3Ft4OqLvuiWwQwDxS0iHY5Yh61Z1LtU6KepHzOQ/lsmgDVLFbqwFunKfxlbJqXhwfXenZI6GGERcrgSFlOAeLd8s+6NVu2+BzYE1X+lucmscPDa+e8E8JRmv4at4D93q7w/1sLWJLoTpa+QctqlOaDIN2rP9t+fgudrCTPNn8whdSOD9hb7/K3kzX9N4cKeY6itWcsGWymoTh27a+kZ5OF86Le5mtlxb
d5lH9bHx8zPcdYk2YqDUZt3h0XtMdGqijkFdeCDXWYwtOtWaIjbZL5wny+RSgDpsxxg21A8cpvpUbeuOhskioFZKZbO+DpYkkpR0dkuxekWFdWnYRKZqxEx5o/RcdxhgneIusMVTSeA9oH2Mh0nObHSD210TL7IT/2cBTuEMyjzHEdBbvK6zdqVoMHI8AUZg0xCY6umWO11y9aWi5FTJwiq8Lu5RXDG4aSUxa+VNVlyM2j2wQvEyx8uRoQrhKYC8
y+xTqzlXtkm9uezvaibdErL0qcoX/K/EY4bRp9p0STgZ1CX6K0IIq2bqRViardXVqTdzJk19WQ6ABtMYeFGCFwTgHk9kthA4BdAS41QOkunEaYThRg5gFA5yrQPbWPguwY4WRBeCZm2ycUwyNshCQGtRyYAgjjKupo5oLDT1jHXQdap83kNEqWRW9d1UfX9Vxe/2Qls/iV6AbW41LbXvakN7m8mWzg9ltENboeq8hgrXDe73KGStTh2xeoYq2aHc
AAAWSxuFzNoLaDtv+V/E/12tIsREC2VjynUm5FN+w8EqG0ZzabaGemzvuxDMo3qqElm0fv0cn6p7D07mxdsV7gXaCcqVq/OpJMvkyT2J8if+dFD/S3gETJwekiW7ba9y05ptVBbHNGtYLFDChz+yocdmaaqO5S0yPyOpL+b6S5J0Q7R0U8AiytpDYk51bcXXGD+qe+SiWT20t7k2O+4FYPgKWomvY5japeUsIqH7vOd/eJvgXdW37vV+3XJpTEEq
hr6AJSGHCZAlwKATITOFZTaCkAeAHANoEICMC1BmArIEWZuOgCilzNcDra0UU7GIhnwbuWngPE7jPBCsPcDamwUhCZ6Nl5/AW98yC3Lo7t4Zh7QXr1VF6eDdUn64HNNVCHAbrekGx1MMVN7xD29CGw6vjlOqhHsN5OaI5wTiOab40qRyzfRsUIJwCj5fBogXC7IfxRh/9IBiJtmGNqy8G0tYb62BKPuDhox3BNMfb7MM5EaZlNv7mzaX7823CWfq
ccjy7naSqhyYNX6vON+RZ7lwk4iI6t+Xh/FpSf1KfUVynAR/ilNj/kU8Wyeljp6qi6fP2C1mKvp3bpyb9WhngBioIeHTikB04dJdkpUB2DYBZHzAFOs0DYCiwVrDIW4OtdsWbWwpLcMZlaI816131GD1TNPAOH21xMNz0g5HMCesSgZlRNfq9SeclmVlHmp4WRGFXpS5F0WnqLFpObfXjVAhv56w/VnbiOH6WsG8YpkNt7oXMN4+iI6HwI3rFEjl
G1jzRsyPC4mLsfTvjbCkh3cv40WKYY63r5zgp+cm2y4G1U2aXqiOm/S51lkhjInhjBpS92L+HcGnLqBeWvemRHXn0RrUzzanMFKm1hTnwucrVvJHfzYMgZUsRGLq3ZOpyR9Vsf3ebLz3srLO4u2YbJpSLErxtSaTjt63Q7qG8WyLafdEWWJb76YYercH1L/HiA09Tuu9Od9uTRdzJLLZobDqWy9yjbIRbHaJ2tgjdvpTu43J7viTIAsrIBomSnBL
38yXD8vKnkBOe7B84Rse4lud9Rz8544J8P2082q+XpygfcnrNXz6a5p0u4Y2L4V3m+Dt5+TTQbNvyTlfSqHbhZh34XuPnZ81iVn8wg6IPcnPgQi1YyolUaurJj4KYnPd2AZ0Ia4SDKiUqZsp2Mt7YZ6CfGfgZk/RjxZ9e2c6ZXE98XeMxCzSX9RYV7lDxX4vsaWrB8cFN58o3NWJL8IeEuvYPidK3lc97DC2m0umEVJCX6SvffxzxesuwTHK3TiO
DyTKcqXsJjJSiZaW2cpnUrmq+ShP3DJw77/bbt5kDO8VA14Z/agqDGUrKhcZoDwCECswjAbAKABQGIDDAlY2oA0BwFIg+xYHXlD19tYeQ7YsMLyEyB5Gc3rBV4MqcgrXQFZBmZVPWU4ijiTbNtaeTz+bpNk9GsSocZNtg1fHetZbM3yi7N0w9np5vNndUQF5w4kPcPQXLzF791TjIwuq3cLmt8Vt731v+9sLNF7gDcoE8F8RPQNStWEQsZVH+LtF
qgA8OI+GeIsJdkf1Z42G2blNslrBPHd0vXD1LSZYt+zXWOxerLrVwkoW1JKgjtPkIzPNbXrG1PPib5GBZoK5HILERgV+vxP6z8tb8Hn4OBphpZPWaqGqoabyB2OFFM9HkW84TzM8Fv+6WYVxy3d7mtFTmFyUyHbbNXn51mtiY/qc21a/6LnFyTF+44vG2w7XyHY6jrWr7GyPJyKiRHl8zR4rkIjCj3tr44afyBSnCtBkpN+W/dfanmyN75YFsY5B
ooLxwUOSFe+cLE8PC9cMfJ5CmjDAoodbaE8Omy+CJ1eRb5/fjGSsa2+wRqcNPAppbHfWX3+oZ/KE6kZ2RSV0iv4bvIzkp8u57zOBmQeG8pj3hhbqM+8+Tc5/T8WxLuHa4PBfNPsyYxRhb7u/Hw7Ucal92llTFJp2/4wVQ0mgZT0jD7ncFuD9FlyJ/E2icOPx2X3Sd24xIsetEReVwvLdxdvQ852J2lQkZLidEyomXge7FIsRNT49bvzxFH6QiE1M
8UyLzjsmauOnPvkYTqwWL0J/k/lFTRl+2ws4TN2TrNz6Su1ahH6hmKtg+6BEC8i868+M/CB7ICYHg74wEYZlPybu7Fm8YQ60AUzSFG7hF+gbYcbIWyJsJbM6wG+RftMahuutrn46+T2OXaZ+InkUp/uMtkhY9qsnlcL2k+Mr+rl+LpkZ5RupnmDIj+H/kP7PaFjO8Kgi5fGRBVmaxDWZyY0/ooF/YIIsxKqBYMi36EgkKGCZseF2oxIfCYImoHsC
37pwEumJECoLXamMM4JABHPpTrYW5wvH5yeOBAMKgecwh4HQ6IgSGZHaGJt46p+CgaQJCBXgUEGzGCrJohaeoxh8C6CugUxKse4yrEGdA8QdHiJBKvqXZ3GUVBMLMUlrLcjp8thOeb4s65powWMIIALp3m/BNeSiucmKtRVBREOzqC6iaKfw8uovs0Fj25uq56P6r7K8SKWaXJF5YO7aFvbrI1EBrphMa9gl7JIolAl4H2EwUsFz2/oqvZEeqrvj
h72QCmiSbBYTNF6X2wlEFSee+wdliHB+OAcETBmwAlZZcZVnPbR0uXkEwtOHys07a6LwdlyL23KAcgZWYXul6iWhGp5YAhUTAFaeWDKOAr44oagF6PInFHsEfKyXlMHwhfyupaYa/GpiLgCMXnZYeeCul2aPBaOAAoK6JVlEwaWEIdU5z20hCjieWCIYiSohiKp06W6VXlT6IK8Yrq5JiBrmmL1A1QJUySwdJAaD4AHAOnCsgpABQADA4wMwCaA2
ACcBtMrrrQrwOAUE8BdIZSBvCKsqWBg5PAgMEtxsIQvAbrjiPmmAE9Cv5AZg+B3dGIo3QMZpmZyk2ZpWYXeBzHQ6fOX1t845uf1o94tSX3u1QZaH3tIYQushhW59Uwjv95n0VikCzGOyLl6oD6MjmtZnihPDCy1a5ZAFCIEDhJ/5U8LWjFCEu9PHPr10P2D2ZDuVPkmp4+qai4Zv4xPhFS08zNhT75qWEvY4BGjjiu4pKcFuIFQyiAR+4rywgkVJ
UBUHIMjC+oRFk58u+MpQH+mRRtByIeknGAIoeWMMYK9hEHAOEdhbvKqaF+UxpxwvCTSoK7SubvFH5JCCMnRbZ2R/qwwNGhHijTh43BLqwye0Qb4IDqfSmuHNGG4ZxJKBegWkFkQAHhv5AebFHqyOePEmsp9K/AWfIiM3AXbbe2DfsQFN+0mAObAB7gXkpoBMrKFYPmHagIEX64EfyyQRDQUU5iu3wCsaM+YRsz7buXQZQ7iuBHsn6km4QZ2H3O6S
nvKsokbiZ72etai9pvhotsWath/Ye4S44wQVRFwyNEQsIK+YRDfr1B3anH6XCp4Vf4LCTvowYkaqGgya1mggX2xYCp3I5AEgAhFuHLsSdrwISRCxHezSRaHof7yRO4b0GQivFlFbhejVmjijq5wX4wMUowVxzOQNIY8hUhollZH+WWXOSEnBHyjsyz2RIR5akiuIuCHKixnjcTSogzOZH1O4IArSRWRxA9gZEsIf5xyhfloyIhiIllJR+efFp8He
cawfRS/AkUVFYUhr+m1aVenVoyE9WLIf/qNehrqhAp0mAIeCYA4wIWJJA1KicBsAzQEYD6AmcEIBnAJels7Vibrrs5Tep5OKj/QahCSAU8Iqst6qY4KG8hnwXBHEJhuh3OuzbSxEAcjbsYTsaEqqazBHYOCDkOnhsIZnq9aXetDtd6+y9oR9xl6/Bk6HVU/zmw5A2uiq94GKkhtHKWqYhnlq+hsLl3oA+PeojYeqIPjEpg+43pD4lkMPvCzmy0xi
tIRq58pixph0aviDCK1ZNmFYSuYYdISOo2oWHaIBOGRJk+02jEq2O1Xgu5FqVYcu6uInYTKb+Qk2oQFYBN/EK5bq1fm9iakHcCqYC+o/kL5u8mxvgGzGSkdgL+mBIA+ozCaxuQwOY2UqCCfCKjAWgV+pSKLAicfpl2bNEMQmEgPYB/E2FUemMjeGpBYItpzymUHpx4XqSRFTHyBr/oXYF8dIq0IHuqthe4ax+fBDTaxa7reR4en7sRxyBGRMbH1E
WEcU4oRFsbqZqmLAQuF0+pdnTFzCErvdrExnfur7d+EpjrH3uMrBgEv8Q6iOEMCPnFBHM6iFvDowBT8migwBz5vOqZO2EVv4cYCcdHFJxtschGdBcEUe5gRSEQ86exy4TWr5xIvinE5xgxIe76xpcV2HlxQEez45G62NAH1hccQ4gXhBESHFy2yHuHHjhaKF8ZsmIWIzqdxSHmHFvkEcXsIpYPQixSWYKrM3GPmj8oDGwcYeKzTixPClJwwgksZE
6HkSRHcJAMHwIsTMy/Ear6fhhBjo7/shBGzT3CMeEsjC6htgH4/u+duCB7Y/5A4Ijh1nkvohOVscEGQgGzPPbMYosD2JgctgmCQIUjgiRCbIjmM5AIcU8LlJMMYHKMI/oBLC2i4iL6rsA9KryFDg6spwGBw7+Y6iiZVoLwOxzNI2BO2hQov/jglImeCXv6EJwyIOIfq58FwSFYH7FpFkycrvhrIodMg6I4guoj6I9EN9u8R/YfwSZzkEYUZiIrIS
ISZxnw+XrrReR0wZTLkiwVrlI1IowQAm2WtxCZGKJ8Ill5GizIqSJ8JzlpyIKJiJMfAwqUXHU4+iRBMFa0y2iT8TBesOPZYWRiIKSAv6JOIZCEhkKs5iuRkKoxDEhTxD0r0ioiQVg8EhXpCrbSdVkfbx+HkcRqgqZxIEjFeZXG/r0h2UVhJMhZknV56un9gVFpihcDAA5Qf9unD0ASsKzDNACAD7CYAzAOyQ+wFAEkAIA4wBN4zcWsoXT4goKHXJ
nABCc5hxSd0AMQ3xs9lty08Pmjf7bhW/hOILR7EQWbK+7zraEukWbg6H3elzBuIuhZbkC5cOrVFIbHiSyQI4/elbj8zVuAYbW5BhyNq9FNuz4negGgrbh+IOgyvn8hzgv4lXJEuh+JhgFoAjBDF2GUMRvowxBYU9Sk4hLMy6H6lPhWGLuwRufqZxjQShq+BeAf4GKxDcRTp0EqsfuyGxK5hRDWE1QnP5YUskaNGK+nEbkEz+6kYnZ52I7ATTcEHE
XwTYpsnIMkaRqcWABjJSvrfHYa49jpE/ErllEnyWKIf5EPBh9rCSzBmkqfFyJ2MYkkoqmrikm5R6SayEKazXhIBCA+gHSSFwwwBQArgpAEYCyO0QPQBdAmAH5BhwHAD3D1JmsvQrayvlEfx3Qo6gcjwC/4u2LxotkB3AIUc2Cj58KkciWagaZZvGalIP9E84e+hSpMnbRn1jMl7RfBr9bMO/1k96Fu/DsW4guayS3obJ33gjwKGV4qnLPRfeii5h
hJyRQisw5yXVpwqZRLtKo+ieL27sQ5kO7gsULyT9RvJ1NsGEdyE7kT7wx20r3I5qNjv8l2GlYUu7oUfjstra+EOu+5bxW5AEHCBfEe2m7u5sfDrCxVFmLECsrsYdr2psZhaEVmJNM2nFmZoY6mWh06cCkSSOGgymGczmDwkKSLFG8EOcbGjiLnIgSQUi/GDkXymZRGrgyFCpOriKn5RbIYSolMSkEICsgCADwAmoJTBM4+wgMEYAKpWYpUAho0oR
HqyhZzr3Dw4AnNerGy5qW+AKh0Vskg2pRaHanrsaMqLDBQybogT5St1r2x7YPKJWSM4ezJtHput8F6m3esyecyHR/3IGnsOwaW6EluWWq6G9S0NndF/eD0XsmA+cacD4JpoPjI5KQqabD52c+IImEAS/6Jog5pWIFcmTwhaRAzFpY7vAyE+cMY8nuss7oyw+GVPg2lApXLvT6EMN7vgGYB67gBE6IGQZp7ZBQzEkE/q88bxiCxBOhvjYY2IM8hJo
Q4W2HCKdfGiiVYc4CXSn4bZLZn0R7YYEioJbMUepOQ7mWIL2ZXmUkR+IqJu5DdETGKSnzIJ8XIQiMCUn9BnwrDCMbSEhEby44R58Y2ilyKaB8ALgqrFpk8+N/CQFJEwmF0hbk+IFHw8YAAdy6ExGbIVn/sV6v4g6y2QRLHymGmR7FJEyWA9iXOjLjXxzYlxq2ZtpSRBNh5GYWfP6PAZgQsIRugMuRExuKpmHgxZjkCkgxq42Ryx6eMFqx6Pxxwi8
TRWPSORDROzHhOYbZGGVak7ZkjPfpi6j+vol/y6WKF5MUxos8GQkCUUjjTGcUX4x5WVVu4kuWXwBImgkX2TYn66v2bymYia1N9k66Wuo9l9MYOTaJMi26fKhkQH2SJqnpSSXArxKqSb/qyaDXjekjOEAEkATgDTPJA+wdJMoDpw+ADwDNAwwHAB3AKdJoCsg6cA+h/p7ro0kNid1n0gZsc2IMz42S3qqSHAS8GZClKXZh8AEOoJuMirC5SC6m3WQ
2QTQOEkmGNkepvDjd61SPqT84mqR0fm7PeEaZRmhpV0WlpnigjtsmFaj0WI5A+SLpI6hh7GUmm4AVlFxkaI5kKZwY0WaSmFCZaAMKgTChbGJkHS7ycbmwxXyW5A3JvybWnlh9aYClqZqmW7GuBORjCBZqIeYdqiRNpnbk2x1WRGY6IyQXKRyx5fBnrxOBcdk6bmKTsQ5pY27IozJxdsZFnDI8GRzSIZ6+FsAxGNsaClJOL/MAnPgDgp5oF5WcQ86
HmBQQ3m/GBmM3kJ5Y8Enl15cxnYKgJTeQHFERYvm3m1IHeWAkemwEW4GAo4+YPmN5XeY+Th4Qka74Lg6Zg6lZmEyJUZfk4AQaGYalWRyzjp5oeWaTwFkLQksmwSJRatsG8BvkTpp+Tlkf8r6opyUGn6tMgRBJeaWZb5Z+R/xwUO2HYT7Ya+Ifl5BpeYm5IZQTlXkOIcWbHrWkyrP9DaB7SPG4IZSbhAUBC3uJ7ydw50sXI/SOThxR5Om2nojtZv8
aOT/xXIj6YESk2UuxYoqJCqb1Zf8dSJkFrERyyz+0UicYqmF8aDFYFrsgQFpGzAfOEzGSRA2xkEAMMDKRm9fun7Gm9ARnglsKpnEDxZVGnAXOJ7tpaYmmDAXtzV2m3KziVEACUoUsJn8mwmMiQIWKJqkf2ZiL4hPog1bMpaIclLSJkJOEma6KrO9kTBvKKZFORL2XCFrwRkR8rspEwVTjuF3KM+BqJwlCsFRMj0P4XsU3wCq5heQRRDi8q8ScJSp
RlMvFgcpukX5E8i0CgKnnpdhqjnv29Xvq5ipNJC7oGgmAIXDMAjQJIBdArgEyBwAMACuB/QowNUCSArICXDapketrIhIyQA7I0cwvAoSvULmk8A2WAUEcAMoz7AQ6xxi8SMkWk/cT8bGskthQg0OeGVwb0OXzormOh/qc6Ehy6uXuJUZvDjRlQ2PoX3jRp8Nsxl1uxuQ24aG5uQMBW56GIChWYShvxlI+6jvcnsQKKLEzfobuS/DUu5LAT6PUgvD
7zgJfuWWGKZAKRjGNpgNEunLaPiNSnXI9tHllIBYWPobBBx4bxExC+IPzHAkInHOnf5zqeiWtxUWN0I/kQUJFTjwuJYvEcY0xd8azFTBQJ4nxeJeSWvm3xpSV/GotmdlwKbnsr76RYTEIkXBSGYDkHwK9lsFledOJgWii5Xi7RI5aKjlGXpOKnkWZJmOeKkY2JTEYAp0YcFZRdADrsQCSwAwCUxsA9ABOAwAJcJoBnJ9Oe1GM5CyBRao6qrORDtw
NrJAAuazuJEXwEWMG/nfMPmvAGhaZDgeJwR2yrLlgubIDtHepper6m/OKuWRmnRkNrw7uhYaeC7XRmyVGl+hjGcjwnFBySCzlaqLjI5ShkYVD7RhXhnVoN0ujH9BPFyYfPqO5qAA8BJ2LvB8UjueYZvrlpMmdcIkQY0UjEsuAeX4aglKmTWFcmuprsZ2+2WFTrsSankYFyY7fqCCjpsnMiUJ+tpSenzq7pXHl+J2mUTErhFBTR5OBHpYhG6xfhNs
q8MK5Y6xrlhAd6VmQRHHSl9Bq6fKgIgASRJZJWvieFZeF/nNlTpRZxJ+am6yURiT8pHVsjn6OORf04ZJVkljmSAksM4B3AlQGa5Mg9ABmKKQNKCXAp0ksI0D4Aw+iaWTeZpbXQgCPhJkj9IsTKqG+Q36Dqz04CHAQ6gFQqAEw9KgWqsxup+HhtE2hnqcsW7RQZUrm5uoZYslehVqsC6XR4NrGWRpicgmWKGsaacWlp5xdI7m51QNcXeQ8XFxwzu9
uSWWo+c+qjrix/iFWVUuhjt8VSZvxcT4sE++jWlAlOPtT4cuTaRCWABSsQqpceM6QsJ0BCbNIXqFUeeOUaeWQSMaGZlQmRX9p86oQ54FaTvnnhOpsZR7LZIBXphlShFV1r46JsU0RmxnaS/wEVX2f5Wk+BjA5UhVx5dpEGFyor0gg5PxIIzORAYmZAxR+OAKZWcYXm4Xg5nbmfYZR5uu1bsyH5WjEawwqTKU/lX9oSolwMAL7ragfkNqC4KdJBOA
cAuAO16p02oM0BXFCFQ0m6pqpK5Clo66gPQ1+vuSMzWQXSY4SAqByHOBAkrpfwrjFN1iaEjIc8iFiPAniYn7Wh3slRV2hgZZAz7RfqQ94MVmxUxXLJb3qsla5RbjrlbJ9GTsn+hSZU9G8VhyWxlvRMjtQqfRi1DGEaIrGHGFhqv4rTwaOieOMp/Q8hPJW4+0MZ7mfJfxSfg/0pYTNqtlWDEHml2ySknGlBDOrygXmUyMAWHaPiBOXeBaJdz6E4Ba
OcgIgbSeZlTq3otZmggOMeco+lwyB0Sfo58DyiFIJRohoblBLIeU7KlJsLzOJeFKFZHxNJYtWs6IWpijhatmKSUic3mKFp3c/mA8orp8VbrSlKopVsHGW59lWQ1WLKE+WjBgMi4XaWDsryWJW4RbSHquEpRJplVX5XlEO68pYUUSAzQErBKQPAAgAwAXQJoCkAwwNUBLWuAKzBalmcOMBwA8jr1U6p3KvpBfik8aqyTID3GSBxSbwI8gyECIGEgr
KyaGMVdxo8ah6el+8JPHr408WETp5FFdtVy5AZYRmrFcyb9wBpjFexUa5rFaW6nVcZZxX3R3FYGFI2qZajaFgMjs1EnQX0V9Xj6HcPCSkQHiv9HAxxLsWxNIHOb1p6OZVRJlKVI2lDXUsj4B2iAl8NcCWB57ZcHmdlwftFXSxHSGe5BxQdnr4b1RSlKY953sTh75KwVZvXuxwwmzW1xP7GL7L5y9sR7aFCBWIEmZHfPchhVI8P5VkgH+S2H1hvOm
ijf+p8LGoLE4HmLbpxkthxiOYN8VxzrwgKl5Ua20WSeYcYp/nZzSKzSEOHy2I6mnXDIBJcax9CUAYOop1CtqOrPheoYSV4NJJXoWi6bJRdnQqdiX0xmWCXjYVspiRT55WFgXvTgZVYTNxr2FXDRw1QhcYbolc4COUVVZRpVVKU/6uRVVVZJhKmZRsASsHACFwUAOMCHg+gJLDm4zQMwCZw7JKzATgVlAHUKw2zhtaml/VdZCFYzwK8iSoBrHsD9R
4Uk8B3EOiHCTUoYJPhU+VZeSgWV5qGctUIJQUH9A5eTuP+JpuhetMlF1tFWsVHVpGeXXa52xZrlsVUTfsW65t1frlMZj1SmUY8pua9Xm52oMJXBgujHIS9RHijPqD1h+M+DZcmaWPWr6+jpPX4+ylVSzaIWKF8DyZ6EkvVtlHNjjVjl7SLOGTGG2gIXV5mebXkAmGfr+FV2UVS3lZ5BEkMYJBdlXe5ER/TTOU7lagn9rTlanvAGLNhEvCnv+mRsR
ztxhQkiVzGCoVSiLGvcNjWycHHoZUqxF8sxaixnRs1m1h2DZOpYolNUZjU1tMdUajV72OsjBBIKA5BvmLkB+at+WRitgwp7jl80Ic75jlmEgALYOYoo46l8Zgtn5mx6sl0khU7ggKogYmeR84HyUxw4saYm5WSXviIGiilmw3iofGmyny6Pon6JG1uwGCGjBpEjDnG1FXmenJJ2RRVV/6VtQUUFMVQO5B3APsGXBCAmcMwBKQ3tR0C4AvqPQCmuz
UTbg7OiFSY3bWVyIR610BIPuzDMpQO2IJIS3AqSu4NLBY63ONeWlmlArqaM231W1RwZ+l8uc1GfcJdVVQRNJ1RXXRNVddRlbF8TTdWHFXFTGmN1L0S9XHJvqoFJZlndbmUrU1tClJf4ElamGASZhm0k0GonuU3Esa+opXVN09XWVPUjZYJkL1KMXWktNNPsjXtN65dfXZx0zWkpj5NcTM16tevKCmFtsVawnnZyLSMHaW8NDEVlsj9oy1iNF6RI3
floqU7oKlEAOnASItQAgCTW7ME7Up0SkD7CsgJwFZQUAPsFUytF8DhYZuaWnPk5GYbYtrJggbGOchLc8dcBqC5S/orrh8zqVjDp1YSJfltJ/pjfkptedSa0vMZrYw7EZ6xcdXV6exZGU7FfpQ+1QuCTS6311brfslN1aTWmWJpvqvaAfV0Pl3UOg2+dgShtBLuGpFNIsD7kHY5LuPU5hXxfG0mOKlXU0AiaaHDVptCNUAQr1WbcZWq+heVBrlYVf
r7Fe8PfmeF6+CDeA2iMBleepBQAtRrboWpHf7GxGjsXOHdNkIPn56mzsT028FBfl00oMDdOb5kB3bM/XQRAsevnp+sJo6be2kcTzoZxwfts3JClMTyg9lBLL8A8FdjCoVSFxbBZWnmkvqwXEgcdmeYY1FQa0bC0M+Y3Fz5LzV35MdvuO5VBVB5KRDCme9afWeV8vvfEby5BRsavNZMXX7BBg8Dx6vyfHqawWdFOnka3GJQg81WZTzcXk6m6zRka8
m4/rdx+YX4k/Vxdb/gl06235t41gkVTqKwSCXZSp22+anUVy3GsLb83gtCqNew+Z9MYjJ+acnap7kWdEQFnFGLwvjSdZ2ksMqVk/4QVmARDPq1klZ2HpnE95tWaX6/18nZCXSmVcbKzKdZfBXQldBxiKY+dtfh9iUx8XdrYIeDset2C+38WrGbNBEop3km+5ZXFbKnNeiYr5NEtHjgodYS/WnxGnSUAYC2WMpE4CMkSx18F7Hcc2RBjMVJG4C7As
Z07MdnFZ3jNezSgRMxqke51yReKfbHA933SpG/dzZv92rmlKM6YHde4avnpY13W918dhvoJ3QCQnq34mBUwj/W3dMWVwH49xge35/QsnSkbUl0eeT3Dl3BFT3md0KWthA9njmj2XdGPYjFQF3ZcV2JGi3XM0OBbpgs0emA3eEYDpinixbXNqGkuHYBSyLgWpOJDgU7EdPfLZ0+8Cvbnn5Ox8O52I9mNWz1qeq2bE7rZNgRwEVGXnWp541VwlOWBC
AOuZEA9KOPr3Lah3b44K8Cpn7Ff19HbJwx5mPfHkROfaU53f1DiN73c9dKEfVLl86sH39lRAYuUlxFbfoVVt8ruMwClOugDkJeWVcrU+W2VXZE2RmVQc2UtTEqlUyWbTolyWWNTkykqJSXCkWMpNTg4n+RPwYlzpV/DYGKcNjKQVUBibfS5aQ5pIgbqCNnfYbrd9oUe9mN9VVrX0WFWIT6INaiVveXHpqVpCGXlp+Bn2609felY8NutI6I1OeVQc
jr9HoqFYHprwDi36ijnD6IH9AiRZFix/CZTIzVaLZf1IkykmtGr9/nMm4a1Hjo22m1PTq/attltYM7sticKzC1AUAPECLAzgDIArgdwGwBMqAII0C1AXII/SB1bRYXQOQWaIhkvAcIOzRxSKdn6JJIkuuWWR5kAD5qCRnPTHhLVC0XdZvIinNg6dAKSKm4LFQTRIAMO8Wje3hNCyTa1xNj7TE3V1trU63xlH7ccUpN37ZnIt14LL6qEA2TfPpOQR
ykWXGGwYAPVhtDySpGV5y+tj7zuBjoNpT1yHbU2YYBzV+Zi4GlYvVaVymavVLNoDX2EtdIinCkZdG3TTF9KF9c+oxIyFr76wgnHU7HzhmplcrI4m5BMIvgpjH0qWxiXUrTP5oaqwj207ZjOF7dfg1AUS5J+Nuzdg3g3r6+DWXaKB3WlyOeQvIyHIH25E8Q2P7/sg4gEzGQFAx/VWDevt722mg2XphyEFhEhnjwZwLuEXdLvtdlnxUBUFi5oQ4lWT
R2nvfMgEDdQ0QMqmTQzhQOBkmJxwuep5Vnr7pl5U/0t9/nB8ARewVti10NOorYVA5w/YlwMNJfclYeibkOJaaSAyNf3Tlr/ZkVMtCCiy3o5+RR20216APNZdAhcKIAdA4zoeAitHAOyRXg7JEpDagUINO17ODwFg4M4LmGEQkQpqdrJyF50jxgY46Ii40JuwvOAUpuB7c1246Zg+e1XeBdQRkK5oTZa0sOYZS+2g27Aw6011HFR3qutvA4bksZZx
Ucmt15uZnCiDjpmmz3Fq0pJUosUHaHhOl8YWmgr6MbZU2Id+YYm2C8VKGwLNlfyVh3sup+rpWWV7SDYPxqGeezX8swcQRKtph1OfnE9YnQ2HA9PEQn6iB8o1HF/m5FrLSK96OrgMbCJg7CPTh8OqAUQjFeeshwW+o1OFqsoVa41gFpo2BIThOOpaNbuiLXhr0UqLVdkWRvRElUPZsiTMPL9UlJyWdlew++WSlLbbV6VV7bYNadtdJI0A8AsjiuCl
FrIFa4UAJTNqCHg1jZnDDAEoO8NTeiIKpjeCrZNNEqEfRdrJXqehPHXmCFwJFV4DS6M73pSTzvYOUCTWvCNbRiI9RV7VFrYwPzJwcve2OtbA/a27FfY6+3OtA0rskPVhI09XN1jbqSO+q34IB05luhptASodIh5weK4HcBgdaQUAzpY+FLrG2qDSHc4acjs9eWVM2ug5h3NNiNTh1tNeHQJ6Md4pnZ2BVXseH3B+ooxzFPEurdD16+r46L01dkKS
fVlt0Gjn7CdBtrc0lEUnZXYV8eSiN19dlEqEHR+EebWpO+IiAeGvAaXULYWj1AQ5lSCIPQsaAkRzU4NsdxfgEKW9vggTXB2HnQNncRngSiXp46Q3kg/hXttn5UTgQaRN0TZdoM2MT7jiROolOvC6OT2ifYP0CidLQUhK6pIj7xEtD5SbQK6M/bDgUteVQSJn9LiVcRKTlIvphClDbXSH7Dzbcy3SlrLd/2nDHLQMAVFYcKQAbg1QLgDagHAAaCZw
rQCuAlMhcOMB0kr4nAMztd1rtgBmySATgljqpLph5GtdgqEfAlaDq0nd6AbgOTF1MLL0x9EfvMW4ZtA0orIj+1cGXK51rb2M4jlde97RlfDsDa11eIzwPwuKhsSOetM47NT4Aog6GopSs2BwgRq642j4gd9IhjBRt0kEoN7jo7moOHj0mUm2fC6leT56DygwYO4delSK4hTO9e77R9UrrH0gpw05KO6jYqGH0TTy6fSkK1cXLQKL9qIiCGFVwYyV
WhjOk5/1XpbLQZOJwkgCuCyOzQOnAnAcjvgDagK4KMBCAJTDiBhwbAKzCZw9ADmNmlchNtgU4ZhOUgHY0ddsBloPSkhIXIMueNHN43E/J7zRFpMAlyMWmMTg4ZlFW2O7VITYlN0VJGcwOpTnA/2MZTl1RRm0ZBxaOP3V9xQVN8VJI0IOzU+gGVOTYHNWNVAxUgzdCSD/9NGqm8R/OJXRtthkWnsjtZR1OC8WmKOWptXhqjFKZSNdeODThg1vWudn
vqu6EMpMSt0fNcJU+M4BsE3hFhBb5BKyIB8sygEvhQ4tzHwiEmOR3r1Y08gG6sSBW42Qj6yD101ZME9eEpBlgQYFzxCo3/VtxcE6dqqzS3TZ33jvfuYOax6SKRJoTenYDoGdimJjQYTUHLoh9ZDFlhyYE43RqMXaDE9J3DNUWGA209snHWPgps8pfWo9tQ1Hhc9VOjKOHOSc193zGBzXhOMusxsqP41bE492/+gU8m4lzz8pc2Bm8Jjc3zqlc7hM
1zmwAp71z1FqvFDDS0/KgWEu6e8TP6Mk9jgsN7FNfY7DY86ZFEtqWAbWaSKUUS34gWfXFbKSirspIL9/DddnwqAogPO2Je+nlVIsjha+WI5Wk9tOHDuk8cNylP/RUCjAE4IeDKAwcKyAlMOwNqCswg3D7CSw9AEpDxA7JN0CvTMrSVhqYLBJGb4s3k0zkdKNQYxH61MqsUNMmKzMtWDpUvY3O08gTR87BNCU52Pl6qMz2PCGGIyxVYzsTVdW4zb7
fjOJlhM4i7EzRU6TOlgwpL62fV/rfCw0sFSlVPFlnilJXRq0yOXy9iYNSoOtTB42Wlcz1LJ+pWy+qGeP8z6bZeOtNgRjeMMdy3asird0i1e4sF5vE4SezCKUHxCd/WSJ3MT3abDrKFGgQQI2msC9eEwyTnu+F6+ucybbI6nc8OlNzwfjb7zdiRhhXmeJi9RES1XrHoTWm4KG4tF8+i54tIplDTxa9z5KCYETDmIirpVWgujcFW0HJt5EW0z2XlX3
ZmIhwmmFWej4wsiGRSGNm14jeGN6TGOVfOoQSkFZSHg7JCXDNAYSJUCswJwCnQnA7JOnDMAecBQBZNLk3s7c5uHHtbZZXC5zlgLFIdSIL9hztAtadZlTp3/iTzsxE4yr1CgtTJdAysUojXY6XUbF6M6wN+lUZdjPZTuI7953VpCzxWpNAg9ONULqEGwCiD53LqKj1NMwJnMLsgy8UzV9Ikz2szWlVU0cjAi9ojFyVviIs9T54/oNCzUiyLOC1LcW
SVrNFgzt3eLis7QL4ROzcCvYTCrD75Nj93WLMHlwyg57WzKgUzz5zt2n71n1RSmMtWeLWb+PLqdg1EE0T1wsillBJnQ73uOkfcSvo19vcj20B1ZgYteLAS2U4J97CSzzDzgwfW3ucPKYlbsi4OYX18Wv8spKNEQUVza7Dmk5kvv9tXLtMRj16fkvoA4A0ICEA2oHSSyOHQBQBKwCAJIDxAJcIZqswKdD7oiDzSx1EjwZrM2xDi+yv8PhSK7eubcj
OMNzGQFNY5HJYrnOgKbp1QktrMx45xBMs0DqC9Ms0VyM2E3djyWidG4LKyQeKZTL7bdHvtDGQ3VftHrek1ets1MJDzj74nmVX98zOwhrjpZc2i3QL4MyPNTbI3G2PLKHZhhMoZ7W8vIxYi/yPA4Xy9WFGDF2ofULlUroiXZtvTRKN01Py/A1C1Ci0tjSzcix81Bzk4ZhNWj1g2Hn/IEeSIzQlJKZC3AB466XPUTk5e0Mq9r2DLMUxzi8m08xGSEe
Wo1a68xgbrnq5St29SPVjV2mryBT2M9cDcnNOzZJmZ3qZuK+L3s94eMhNo0qE9T0nu53ffWo0JHkYsJzUcyyXy1zK/RQdg3JcqJ0imw2KLCq6k1lbmJpInJMeicww9gd9nKdMNs4lhSokwgu/ZeU8rNotcijDR8yI1Ntp8705SruSycNRjZwxABKwSQHSRKlwwJLATgV0wMAYgV0I9P/l+gHOMGNrUTKFbWpHsPBUMVmeiHAe41dtbbAzbM5CzY2
WKIhpoPmj1gUQTkFAmpkj1lSjp1MdclLt2w9iwbjikyztVoL5rQdUhlKUzgtDjmIwOPPtQ45GskLMa8mX8DahvGvFTpYC0XJruanmXfTEFGKN0jtMxMWA1szDi7Uo3Cw8uczxa7g6iwC/ryP+5F49h2SLtax44s+qc0z4gNF2lCW29xxoZ1X1xbZSl3GJPRN31r0WWZmjK8FOJyacUnOiUxZmyEFj2QdchgWrkvs5rWNriefaslAKm4PZMGqMlci
Lrt634F4rrdgPaMGHdi1sQgZPZ0QE9I5WhaTRAlFuyeJTgl2knhsOqpxjKKDZMpoNggVCth+wnO0o0MP/rtxU4n3fivLbMgspwicE2Fo5dKrkDi5u+vArtsoW+2/chC54JrZjYJS2/wKXbq2xfmVkhYzA28q2292oXbDg82NUc5jXJt0cZWbYvLalBb/5pYYIqgkrRxdh+qFsJIGxNurm2h6uXK3WFerKyoSL1EU496v3nt59gp3lOCpW9tisItT
m2SjqxQt+S4NkAT8lK0vwg8I0MLQ6it9xItZP5QocO7NuZI8285iLb8OggkeDyCUT3Ao3NTEKGQfNUSsv8PO+MJ87ty8Cjf+byJtv/+Iwtcq87kwlLtRYgu2tUi7es+Rbi7SCcrt8BTmbqJuQJkGGoM7wKNrtdwXg82qjbm7DNETbu7GLspYZwDEKlyk8F3RK0ZW0TsBIJOwV1qeIyOda3bawqglQUYAhexYJF64gX67S/D4JhqSm2uy2aY2zbs7
ssK1siHwhwsLyrInzTdutbEJvdsimNO5Jh07zwrvn6hRJQfm3CMcPcL57wiIXuf54I+XnIZVtiKYAaU8Yro51fAVDPwiMM/L1/8Te1nUt7UzG3sD5hQfIy+NPcwBu6R3K/31qiRuvEWZVVfV8GxLXJR8Fz2+/XMNDzCugCgqT7xGVm4hW++CRW0nxHX1Twc+5iJSJdfVSLBW0Q8+V+Mw814m5W+RConH2yuqJMCWtLfvOv7cG3vMeil+yomb7jkX
4pX7jkXn3g5Nbfi1H9jMscKjz9LeKUnzWS2GPMhe0/pNkbHLcwBMgbQBOCCQSkNLBMgsjiwCjARmjwDMA+gEpCcZhq0hVuQw8KoQlY4Aq7ldLg8NsA7McNDkprkIfRlJLojY6wK/bl3AtF3Gbvg8bAWLQsa0IjprYXXoLem8lNozhm2lN2t+CxwNLL5my6oG5CLkbkULtm/st3oVuLQtAd9Cx+jxsi3KDUSVfGV5s3Q5kOzRvj4iPmsT1HMx8lHj
zy9aUlhoi3O7H6Na1jHRby2i45uB4XQ6N2ZrXQuytbmKSSk69+ncosy+ePb4tAmIfXkiVzkkXD0sxoR96z0rERyRzzNFQdUMH+hKfmY0plQhYHIr4yiF0s9Q5sFBwBpEcE7UFYInbPM6uW18gUrUE7Vu959W6Iy9r7zR3C1qlHSbuwcsi00fKtiQ2EOZEvh0SnjJXETz3bd1MRXMg90Ry91sShrT0HA932zCt3uuMY+4PbCnE9uwg8x9N1Sj6BHx
PslHnL/t3lMupi1bzdtAHiHHPkXl3H7Lyhi3BW4S/iKwbwIaSFNOlVllxktRXiAf1W4/UFwVTC+0GNirW07Ac7TOSxfO/lnbc4D0AjQHSQ7AXQFZSSwHQF/M5AE4M4CZgzAEYDVA1WqQcyt6OOMSah0CeyjR1vk7NXQgNNMUinwBDlqOa9BBcQO56ozT2Etjixf6VIjum0lP0VBmwC5GbeCxdUELOM1wN110a5+1Wbca7+1m5vqrkCObLNqmtGY1
ED24SV9MxuPsQgYmnjYILI2zPiZVh5DU2HJaysjjiGHZWvhbAow44uHA5W4doR7MaNPQTfedKMcCGR1ilFxOmQ3vNzYx893MxbEtDLrrOs56v2dUsWHtieuTq5X207px2mPAGvfgVuVgVR6ej71Dci1ISaRW5EAkdwXZahLsONLl0NwyshsJJx8+Kso5Rwx/ZAn5G+yQTgygBriMkXQCuDxAxAJoAlMkgJhC1AE4DsC4A2hmifB1DYo8AyoQiLox
QJpHugN/T3/C8QL6INa3g+aLc0XPJuGWOnWR9vpZe0iHDJyjO3tzJ8Gusnoa7aqyHhC1ye5TPJwSNKHRIyocCnGTb6qbOHdXQuLjrYG8Ajw6rZB20zdyfSPRgOsvdDaDZQBYcIdhawFsaDuDuEynj7y9qefLV498vCjwtG7NWsjotPn5HIAQbEbNvKIkeZDhQ4OUcTcc41P/atgeQHiRhc9XNsoKuyUDVHMPYheHNw5z4vxHfi3LWLTY+yiR8rOu
ksO8abCI4nHBf8j4XpLb5b8cSrNuvAfSr+00geJwowFUu1A4wD7BMg3sDwBKwygGwC1A+uA0VE5L0/WdWaAI/BkcUeOsihuQ6Uu2JJ4WnFBSXsxqT/S6hmexMh3bYuSaGkg5jZqqCaoF5wcxT8M8If0n17ZgvTnEhyydSHWWisscnay9dXcDq5/lPkLz1aofT45uVXAinLitdARM+7LozT6hTZcvNkTNCJJ+bKp6Wle53M4ZANNfM44d2Ozh0KNr
1mEfCvI7rvb+fe8mu9lswjTo0mZi9GEZlfBzgWZKanNtHYaNfjRp7e5Y9XHfwUcdoQ0V0OLiFE4vW+rHfx2sBn2wYwWLry7kTfj78SUfg7AQt1du82R/oHZURSkOVt+569ERDXaQbnXYTsPRMde+c146d311El0NnbLzbldmHacb+ubxfac2FpGwx+rFQp/WMrF7qXyLOWwr5KXin/L8Uvc2WZM6jZl494E7wG3GADeUrxY/jLCuHdN69+Z0JV+S
e0sGmiOiZKz8E99ddX+wo+BMQPSI+BsTscxBMH1yexUQs02Wb8AfkcRwWxDLjokVfg39OCkg3IFhuv63+r0ooyHtxCaXKOQp7dVsArXs4imgBalyLmODOKx1u2DwgnMw6MizCEifsZcUXlFHQvb3ZrmqR6BOh85V5pk1HHlXtpo1dhAZ2NdgAWlfpY/5yetySDPaYHAXCXT7MK3Q2xNePXttl7bxzDW6Ous9KPXadxBwxtp5YeSZrLfWsbW0oJSB
02aDL8+B1/t1zNNt3Z4zZLHQ7fqLjK7K4EXhnGylz9twc4nDzkwd6OUa+fVGfiUN2eJRvgAB9yhUa5x9vZspJLYpbCIG6dxRhFwB/ZGUX6fVCGVEux2iEz7g8/nc/Eud7DgCMJx3iErT/DaXerTZhbcdEi/Rpi0B3CumhvvHdd4XeQkdDSxhvZmksFznHGS7RcZn581mfVVWOQzBWUKdAaD0w5ZzwBWUCyAgBWURgJoDNAQgJUAObHG8FLGNDZ+a
XJEWWPHVAw1aL9NO2qkZbLdIyUjKodXB3qsznXY5zFoTnplwdHmX2C5ZcYzyy0+2feZm3RlRrmy5Zt8D/J4INuXvqiJeaHC49jabQK0XJtduBhwFcMzZhlwQTC68KFcPn1h08slrbyq+cVrsV2VX9Tws9+etrubYXHM9x12c10dKWd2EltqF4MummrNf+N9NZDyEGPrD9UGaU3Da2LfupMSJNm2e0bqDIUBg655kBC513kfZGY63GEMxGF8XPLGW
3YCtaxc5bBem9so20f1sPR9bHTyNHZHzEPw8Y6NDr/V8Ld/jFHQnGVHQx5I+HXH4Xo8ND3R+7e9Hnt/0EVOPkYDIcrPt1Mgd3iupJOMiyE5S2rU4wVDnAyKdw6JYbQXBFELzmmMBtHEeLamf4bb/QPfEbgJ8PedtVlMQCyOksMMCVA9ACXDjAPAOWIB6sAKzDOSzQDQsUwhjW1HStm9+LG8bm9qRKXO1YyFQtw8odjDlKX9RphSbS6O12E0K0bty
JmEM9TCbAPuDjjt2ct9TOQAWmwjM6bd94dWBrx0QW7kZdl9Ifsni55yeOqxCwofJNE4zss2bW5wmulglmnudaHB58GC/GTPJQYeK3zEYdQUzaPHU7j8HZDFhXtLoFs+sExVqcYPgs5+dRbBp/WvFXu6nKNB99PeNfK3d8ekf+HhZjBqZb0c1jqmVppjIXdYq6mexJIbvv4JtXuRIp1XhiQ5EMjZ0ubEMKdV6wu0EWcBJSWpI0eL5g1DH6weGIgGS
lepghPT+VOx+8694HW9HCpXlNINSDZhMosK68IWMHXUTStPG2MzkPWbZOkgiEk1yy/NPyNL+QqmjmFy9PWuUrfpbHF2XpHTzQBdHeYim89Xe8iTdyvsHprxzJYdwir9sgt3Pke6PpFNFx/raTZ85E9D30jVjnag4wCnQFJcAI0BwAAwLI6UKhcCXArg099gBWTmZXk+cb/6dxudAegkhQ9Kh8LvrR1YIO3CiCqNJChzFPmgjt7rKV/q2rMAih5nC
KAVTSdxTBqn6sYL990wOP3s51ZeYz0z9iPP38h0cVOXyhy5erPdm6hBrAnl99Efou+lsoyD/6ADXPFwmfrJ/at57uMFr+40WtPnEGPk0xXCmR+eRb+p9V1M3bmzg8GP1N6BcZOBs3UdW3/2r8/Ep/z+KN4PYzQ+tda9kJswS0MF3qM8Pib1Q+C9/DHzfOBN3fbNZbCwlG+unMb6W00Pn4wb1cxiO7zHzKIzR+MSv/6+GcCTgY5CQn9Rd7XcuWryJ
BvyWt+3iH13E+733CNm0wa+EbH/QCcmv1tRy2HgpAGHCdgbqLI4UA7JAaBtAHAOMBxPAEKLJ05a9xyqFPYlwNUTYN6t8EjiLMyq3tFh99lTH3VYzecDJFE1ouxvJodggDPxl+2NIz6byM/zLd7ZIfP3xmzIf5vchx/cWbvJz/fxprlw4qoQLrkA8prK1KFbjKeaL+KE2F52WWDxpHgqd3nFz4g+qnyD7g48U6Unc/9vfU/FfglY7+0cIo1KOuZ46
IW+Z8lA59y2sOIDn82mSvEZ/f3xnkOEYl20G5IEl93EH38dGv0H7KXZnyB3AB0kZUfoA2UYcH7pwASsPoCVAVlPQC/2FCn/NFPTkMkA048zEfAx2aaO2J2NsmOdwU89wg0+Ord79G+Sc6dax/erUy/FOTnAazx8zn4z+GWQuAn3m+DjOb8OMOXX92J9LP1myGFlvahxQhGAZU2MgCm1IrclZr6IqmQGXip/cuXPPxd2+uc1aW+f3PIJYO8JXdaws
K+Dat92u4RoK8rMtGMvduUAyVBeDvl8jn4JJlfF7xV+7fnMVrP3vIbMEEGnrn4n0v5nCUB9t3QOan2Jcgk3bTzzkXn5/dOET0F9SNsH4nB3ABoM4BMgHADGOFwlOYk88tJcKzCVAzgCnRtA7rzMD5PXG1N6hqkOAyjZUXLQxzR1djRji3QNLN80zXDq4dwdH5MV0fhTrYGpx80tpJJyU/hl/nXsfiM6IeMnWC0GtNfIa+dVhrqy2dHrLeuWONkLJ
b1OMXF99JoAHAZUwiDCKa2hcv/o0p7VOCIOsq3Ctvs38oP+bSD9c9l0pj1Y7oPxn04ePPQ75LM8973URMQrUWIF3bm78gQ0jxRDV0q9xpu4rsS7uuyTHmsbzbT+fNyDRMqc7V7NZ1e/vnfItoojPwhTM/WnJ6epXwfyutdHSDQmhM/EnFH9hnSLa9+oOywR4kIst5bNMclRLRFrF3nChsEIqgP4Kn/HDFyRuXzB0xUBKwE4DwAvDSQAaDT3+gMMA
a4rfyUwmuSkIQAtuol7GhMEZQ/GyQh4KEu3hSgI381w5H6sItU/cVAzWO7KDryqWYF98tVS1otdiis7gh62Mc/QzwwNmXmb7z9q5HX61+C/tl8L/2X3J919rnRM6W9/3Un+gAy/R0FW/Ad0g8ecVE7z0mG0zljkc+MQaWMtIIPnb4+enSFhBsiW0qG/Fso6natam/Db6uHetbb1C5SPvPXhzTLvbGPP5bN5XOLVxZAG3dOkodIVo62ZeIgPYTrIE
nY97qjeR7YA1sJ4AgVi5dc0Y7vAZDDrXR6UBcgEEAlC4NHWP59rZo7m/DIY9HTboESVUyc4S/zAka3qCeQbZnrb54DNeApjZSwxpYSlKAVDnqrXCTrLlXm60eI96O+GQFZzIgZ7ZAfx7edQI4XIEzwCXAq8ZbNC+Rc24sAzo7w7CzxQqHhS98XtIYrKbY0TA5QcvZq449Gq7mnXXqA9clYUPRNh7vNTwvYRvgmQErCJhB7o4TQc5LGWF5bXEnr6P
UUATNAzK6MJPaemM5qnXa242eaQIURLW5SiHiiCxGKQkRZ26cPV4B35E/JOpL9BJ+fb4g3IPzkWHBoQBYkqd8XOaVGFoKWMKbDs3VDRVA83rkWVm4LMPRikBTRZ5zVP6ujKKwj9bV4QhGEJhePwrAHV8DnkVV4kaYA5FYJear2fPrzBSxJZce+qqvZpDB3fkoNIDz55jHeYBFXYJheJYEpLbeyq1KJgwyYA4QbVV4jAr97coU4F0NJxJRXBXQCNY
SZpDGkKl/LIqBfCv5RPU16dtGE5lMcYBu6egA7AegDagIQAGgXqDCAHYAlwOADGlfD5StPqqb3C4Bh1Y6hBQJDKqjSj5c5ZLCDYc0Ll8IXgyqbb5/DZTYNsTjhlZCZBJsZBbVfbTa+rDsZiHJk4WXbN78fNk7H/GZ6TPZc4bLJJrjjdc6TjH9o3/H1TkIGX7DAOX52YLLBK/JHyDHd/7QPQ/CBQVjC5SP/68LLt6AA5aTJuNB5gAgd6ZtbB6JXBL
bWnXrpmnFzo7aXa6b1LEH+LDAH2zcIEyxJFbDXXI5B/U7CsA+P7U6JnYy1VLqcdVTpMMe5TscV7bQNRwitwXPju3Hb5K0OQphYIgiWGMqS71OxZhDD0H0YXEHUGMyCgxEIYjrFR4weR2z6/H0GIZb5pMvV57Rg8F69YKvZr8AP7+gu/SvvNP74adx4YhIkQaJLLh9AzPqavaJgP9MeZL7JpyJLA+DuiILgGyDYEv9H47+fOi41eF4EwfWVYQAbAB
GaDoAlMQ8D0ASoB3AA3A+wEpjDAZwBCAQcGDcbkG9/aUiqYfoblIRg6o0ccQDwOpA2ERlDUFfxAwZaf6tae5oeeHAgCmTS7cHRObX3DNy33Hf4ZvUZ6q5INL0g3N60goT5LnOZ4jjBZ7Mgq/6S/ASrS/ZzBy/JOzK+et5I+Rt6qfVKQGpTX5afV5LzfGprSg4XgtkRpr6ocRYRbRUFfnZUFsRRj4RzAmK1HY+rzqLGTmA6IaLpOz5oaKKgzsKXLA
ad3yHmXg7m2PNBibezpRGJvxk7YDi7g7fZbvMWamnW04+7SLq0Q+LD0Q3mzXvWLrAoFiFAkPcEyEfNqkPG95Zg/C5vvXMF2Ea8p2FMO7+WAYF2RalrJeIwr+WBSF8WUry+ffV5A/T8qZnYL7RPcjZdAXyQ7ATOBHTb1CvgYgBtAEgCswUgD2SEphUICEFGNQj59/WSSWGDHrAkeugWrayB+QcYigaRnALZCWgDLMQFpAqFCiZdp5dyShJ4mQWIEm
Y8H4ZDj5c/Kc57/MZ4H/akHznHhymbDr6FvfEbFvDc7X/PZb/3TkH4gI5btod9StvGkaCgh4qq/Cshr8B2R9PNt7nPECE6fcK4z1NeAJsaOxQQv/BVrdmxwQp55wlD06qg8aZIA3R4oAsNiq9e8ZYWWq4lYXgEtoQET4rMuZW9Wd5ocUdjGeI3ydwaR4cYY0Z17VArKFPyHpghf6S1K0EpdTxJsTQQHOJcQHpAwKELKUZBgmLPYaXdaGHQ/yFbQ6
7YhQp/wEJEgGCeSQoY3MF6nQ1aq81DaoZXYF7uA8ypU6FaqJuT6E0QTXYvfMSECrIrxBPblBUXIrw5eOO41Be46U4WGETBCSb3EcHJZ3Ev5qQsv7PAtJKMXRA5NecjZJAVmBFnaoCHgCcD0AImFdALoDNAVkD0AXsEGgRMCW5acGF0JAbdgMEis0frBLgjNALgPZRr4OQjSRU5ZbgktDLETDTmRR6wHgveAHIcvZ/CAvYTQ5N4+rWr7DPfTaUgvn
5znAX4LnO8GzPTr7n/JkHi/DKGvg9MpJpGX5z4R/7aHGniokQZinnATKWwmU4gdHAiBEbTC6OCpqWHWqFXPJ87QqHwjNQ1mwmfSAFmfBCEcsZWhWfOUJCoAITxvUwahzA/xwXJj5+zSW7BHYaGiAsoga3F8AbYToaqAhlbxw09ZK3ViRxIJ1ZmLNTzxDJR6eCXg5AWZoSMcU0FoVXwHR4DPb3Q/BIEmDRbhzSxZRYSBp4g7jiugyTrXQzaHb5f9S
TxSgzAaRnBFEB8LzQzUw1YTZB57G0hV7FQidQ/06W7KWG07ceFDsI27+UWarfJJNg7KJuFvbF0EA4I0Zf5SdI/5djhVYWnRG7VnDz5EBKL5fHYX5feGG7QzBHw7HYT5XHZT5PeHOZA+FXwrdYLTE8pBLJBzQZXYFXlOO6vBPKpzAt46AfUyyQHLV5wwoKBRLCBQJeWsFX2Bez3BSGGpcJGEeiYHIpLR4EHDIjYg/SMb4wjlp9eWophgIQC4AH2Ca
AbOAegSQBJAAYCSwJWD9eVL5EfCap2QaeC2QY6hMHMDIibD4R8wtfgqXfhSDpYrDpIL8QXwIKG2yQF5erWKbyw1N5kg7n4P3ff5Xg0/5TPW8HtfAt4ifJ8G6w1kG7LKX45Qosgmw7Z6oABLAsEV8Aq/UnhZrFjBISSqFa/FqY1lXX5uwnREHIT2ECzNb7tQs34ZzAl5o0Il6vrBjwdmSixcI0rCs0ZxH/uJiz+mdxEqecdSJzLoH8TXMHvfd4jRc
csGyTFIgTzKA4CAURqQfSVboImVbV/CQBhwH2A5AJIClnJICsqE4CFwBcAIANoBDeWygaHD17r3OyHrALsAUHCCiYwYhLWBITaokNTAiIXxq6IV8AlfCBDGzBEDhVHFxf1ZTb/SRebvqEeBtkdaKeyIRE1fERGcfckE8/OKGSIiMov3LEayI4T54zBRHbLPr4m5Ab7ZQioAy/SsSyfJzYrUMEihIEGoeKa2GlQ/hhFYVcgSg0xG6fQLYkQdcyanB
w7G/OK4+w7xAXfbd45KEpD4AkTBMA9w6NxYcyRg5eCBwxN62fajwKApwKB/HwaBg7EF3NPfIl7N2w/PDFILvCZKjKdnbPUYcDTRfaGTrRd7U7GeGV7J4QTw2FF+HeFGCghrYhgoJAx2BihHycibzvAY5oWAIZAaFgw8cEoH1rHUFU6GOrXqdHY4ERYghA6jp/IlzBBw17D92VTYkWFnZKta34NbHDjrVLrSxMOTAxA5Qg+AzUyVw7Di9YbgiWYHA
jKyMOam+Tq4NbXpFdIfpGFYKtCKRIBYIlHzbuOLbDHUWlidwXVE5AhC57WQ1H+2DbAmovpElZC1F/rESE5gqKL5g3KxdKBYYl3YD4obYsGORVlKeWGSGiWKYEQhENElg7O6+WIlo+cEJIQIjLyPHDUSGRcqwoIw15oItsFaQt4HkbAZGEAAYATgJSCZwJVZsAXADskUYDpYaoCjABOgfRGyEFPKEHUI3TApEEKLNIAk64OMDJ1ohnBtYHRHXI/pL
8KfXbnlL3jYGdOo/xAgF5DDlBw5QRFGXcc4mXM8HcfK1rKw+KFLLI/7qw+ZH3grWErnC/7pQpRErPdkFlATQwy/WAbbI0U4rUfeL+EQdwSVUG4lQ6SpjkCkJnPJ2H3nf/5mI8CEO0Tq6gAvkbgAtqE6VX2Gbff2GxA89TxAv2Gl2JlHPIuh4OIr9ZR9TUHWAyQJBOSgRm0GXRWAzyrOnFAb0vLCGTmcWYzmHxFFYRtgBQ2pHzlFh5RObPLWkLDCr
YBWiwYiWZbwzfI7w51LEY1DGkY+/L5A7CF0oACZuQXIHzpKdLNqN3q2dOOFOVeswEYxDK0GEdguAtcwuzdCH8mfbI6dOVgErBdbwYxXT4A+Mx8Bd+pEVebrJ5Vl4tPRaFGzcP4FbZCgKxeQEHvRQF7lYMGSWOEEEg74CcoybJQYqF7tzbrBiotfBoOBDbR/BIFIoW9RmYu1GQJRviIcWBLOdC3rWVE26lIM25JEOQpySL8EZEaW4LCMGabVdLKHU
TVQyKR/Kcox7qMlKHC2o9grJASTik2NzH0MLZp7hJ9YgYhLGahUrKGCGXRY7VHrA3Z2aoaH+JcCUKwJBYHYxzX6HDLWgrEFRrIjGCrELCJMFGVOrK1YxyHDFBlFY6ARQMAj5E+2OgplYprIdY1XxkCJeH3CFeE1YodHdZFjAUNaTze+EbFMMX4zjY9OyTY0dFBI9ko59I0RbpTfqowuDZYCH/Y37eLgefFGGIbHywIwo4IKoOBFReRu6KWS4KxeM
i5spYBRrAnYGYtcSamRKSH44NxLHYrjRp3c+wkXI+znYr46a1BYL/KWarVg54ANggrDfGcHGdmNnCXZPV5pnfu4aQwe7posH4VAZoCSAbABdAGAB5gWRzskegCyOeIAwAKZiSwAhHtgKhEMKOVpfoIEh81PqJrcGlBION/DloRvKtIuKjldQpA5ZQRgDooQq9EZvjQgPCob/Wk5XtKdFKwrN4qww/40gxdHJQuRGLIot6KHF8FsgrKG3/SBhtAGa
TqIkB6tgOuR76RpDduP8GBXb+hlYQIj3FYxEdvSUEAAsxyoOVgT2HFb73IzB6mfJ5G3fbDEOdcW5LvOPgWEA3RSePqFhA0x4KPcx79bUIbugiFGm2AoL1IYVRNIUFF6+FOG0SN3yO2O9S0CFQgrKGaEdIKa5AeDl7rsPfR46ZS5ySBPHMvI0GseLOG+YsHFrIe5TyEMdQ9XU75GxYIJbYaFTuTQAovwnmxRHB07g9WPZ3EWeE4o+eHB+Uc586aoJ
xhIYoeNN0GGPGm4kRYFG/aclF0A6gFwjJz629IYqtoY55cQu3F0WDPhT47PiggWfFpxQhqYNMcJFKJ3yGYY1I20FZQE3I/xYecdRlA/fL/kMnovQ0F66dCBpHtU54vgTeER9KrFmmSHa7MXkoOQHlC2Yud7PueSKH48bC2aKsikSPIyXxYd4QpTrb0YRZRC6J3BEEF/xqzRvy6ZCzGKoxNAQElmhPQgDEnscvZTYJOFneMPHB+dFEIorraqbBULO
ZJFieAnmxKLYHR2og9TAEuwiU3WAgQvBLAoZMqRmEIAlpzZm7AoNeHOgwZh34tTzLmUlaYwX35zbFAavIFIgkAy67EWb/EgUShLLKSCgWOffFf4wTYC7CQkPWKQm5w4SFvw724eMOSFPHIYL72GJLBFcvqMNdaYeJWhoHpKFQYbLLheorFqejU7H0UF8hnAjxiJVXYHCTaZDw5VSxAHZfbmFGGFWEgrxaEjLgRI3UzKJZLyeEjwoZ/ZfZTzKeYwI
hSSgfKKzF2UJHfHE2owHFsHauY17I4jsGswUPQlMCcCtsHsHpwYYAVnIQDXTQgDrOVE5Vo7H5IVVzQyXdcynkAFBtPcapNnIZjYYJ5CHUYqGRvYTED+Y3pwLbg5YlcjFWhOWGjI+gZ3eOZYzokXFzo5dELopKFv3FKHyImXGLPFkHLPfr5botFwy/POSq4xRzbUNlA43btz8g0qG76HfFwdG9HafO9GXIp86d5ILKhbTSrew9b4fo6AFY6SKZNrN
pT18Moi6MUrxUMd/GhmMPrNrczy6BOozkhRbic3Zd7UnKxb+mAnAuYZfHHwU1gW3eW5enZfFM8BQiBTSm4oEypCTZKK6iEQPDCEpCHdEifGEpVRjcCDRgRw2R5CoJ064k4CbokhAGmCahgJYDfDuYltK29coJkrSY4fSMkm0MB7CpY5wEkralbHrVRYgXVEgHrGkk0rdxb90FgiaILYiEkjoHEkgIFTQ3wROA9nqFY69aoaYERfEtjA/EwQLik1j
BCqbOEtEmCzuYY76JA225DIy779+DUl+QRTECvLroazSuYdwJ8BPINvHLaHOFjidFIisLgTqMFfGazbiRwyW0kEpLghYkx0mrYi7KjonP5PZL4lf7QsFEiLu7Bk5/ol3AlqkiFKpuPGIn+cGMkeMdz78NcGFT7Z0QiJKqzhEgSyf7GDYHpaHJow84hG1ZNHxI+i44wyv4hfROCYACcDmUJIA+wfkLogJkDOAJSBdAUYAp0SQC6NGAAkHYolevDqJ
J6ZG44UdIjv4NbiDVFDJtkPHQ0MMtaCwumaJ/CP7J/esa3WXoZ5GImRtDCKFLFTn51fVEZl1FgYjE8XFjEz0JS4+Z5TE58HOXfWF/tHKFsqfdFeXHQ7F2bEBDMbtxHIufSSRbNaKDdt7Owg4l1QtU6nkKpFWImCG6nTGJQA556NY7R4gErq4AU+9Z5whwHcdNgLtXJCFm+B2KW/Vq6nCUPx7bYBQCPM9RvPMGQrNWFZIybuJjxF365EdClyzGAn1
HaQHSkjuIjrDa7E3QJHrXO9ajvUPqkkhOoWCJklMvUOG46RiIj5Xly9KDUG1HUbokk/LIWzLNjlHODRYAtnyCPNbDxbBYSYU1Oob4wI7+zZRZ1CdR4YNUcLjxV3qhdESmwrAjpaBAWGfo5GooY8ioYkz/FQ9J0n71GDS8HL+pYDCugTwHa4YrWbb5bDTjIUBPE0E1MGWsDdTJITMEwAqbp6xOuQV4ignME49QvNZSkFHZlFeU1tQ+UvpSg7T+IQ7
FMGybWjjZZIHalwj8L1dGnpEJSf7X5AG5MPXZTuDd34W7NbZYUUiiIcK0nZbM3aeDFBJEUHyokUNtC5Usiygw+ijBE0kSF/aqyHYrcjJ9OELrYl4Lpkp4LCTT74HwP24BiLvrqJPfaWideaXlK0QSQ7zhUoOMmySZBiUtRwnn7IsGAIl4KmRbYLsaaJHQ41xLCrdQmg9AH6Ywp4Gpo4smvAlHESAXJL64emD4AQuAp0FVKkAQuBwVA1AnAZwDjAb
ABk40sZ2NXorCEcyJ3QNbiYOXvhYeOW55jPsT8KSLpE6CjhhTONwNCYuF+CeAFs/C9o33SdH9E3f4Xg9Eaqwi6KCfJdGaw1KF5TWXGHk+XEqIjZFtAUzRnk6t4t0FzgLZOYo0jHEBZrS1hhEDNaOw1kbPkk3H3os3GnkdZCvUIz5NNBUHvoufE4QtSngoDSlXEpJSGtUXLdQiMx8UotoFtPmmM0MfHe7SbpltEWnsBYCbQUwW42/FHSqBGEk04fC
k2nEOHxU48yiU/DrTvLinVKIuHRCZoS14hLbTvVpRT6SEkY9dhBK0vzLqPbw7j4iIHiYql4J4/OFLQlbTz8ZtgnbJfiokyHqiEuQkJzAq4eESm7OfeOLbXNG5WmHQHO0nAEh0zQI+YO0nBCbElOk4obO0s0kSbQdicowOl2Y3zA+cI/jSEyOn0rXTHUeAGRIk8ggok99YrXVQFR4+4mPAR4lrecsrblIfELNbXqi0jR7iCSm4UWf0yILYLYBCG4k
C00El4YuWiSeUDGcU/wgt0zokP5HfI5tF3HYOcWLD07eGj0t/72fJLaopWSnUYvIHZmMemwTTOa0ScQbpmWvbuNFDKD47TEgojCnt7IoL9YXTwWeAVhCIHbBOkng6L/fWmxCAIRYyC+mNIXHDEQ2+lNCe+lqkmGRP0miC9Q1+FxVNQkXHC7EJCTV46yaalX2UwlAKVYHZ3Q4G72fYFAKT+EN3bbGSiJMlSUJx5srNERLUwUm7YmYYX9Owp+ouwpM
NCwqHY64HH9RNFQ5cSFx3DfY37IMkm0EIr1WLlJpVPwhN9X7EW0RAiavYYrVggskBfbalo5dsHJI9AC1AEpiyOYYCNAMOAKQWRzJwZwCYALXDMAQuD2vfUr3U8KTEQcxrWNJjRm0E4lIgv8TysFUk2kYmpdoyOQTwQnaG7T3YXIR5yrMI7xnsDAnibOGbs/CdFRQ1ckDEtEaRNTcmJQj0LrJCYnS4tKFo0iX4Y0t8E5Qoom4zKMJyfby5mEHWSGH
AGI1TaSoy6H9Bv/KqF7EmqEvk12HSgt3yO8T8mtQ9GIXEtml/ozta/1A0FwrUwgT00JCdwJ6HfjCiGN+QWkUovSm52f5Z3jPvhAaXcLEUlWaQ6QIFIXSXScooilFAorGf0l0njLdGh1w9VGyk9UlG9E1i+UxjAnXOekvhT4m5GBUkbxVLapZSlJ1jX4mzKTmoDrYqREyEexNAo2nJXeAGhAk95AvLWlgYtzq4BZgl5XTrGhxJ36l0XViw3ZviUk/
K6O/TBqXMjuaAktcwEgEElMPQyk17Bglw0c/xDiJglxbIWJbmeWiaqM/HaAgwiJHELHfQv6TFHMvE0FH84kde8b1M60ZkY2emGBITxV0l3g10/vJ609+lPGW4wILK5pILaiEZCMoT4sU+6IySLpuQIGDaMH5Bk7KFF9CI0Is3Bkp4UbECBIGlCDYvILA0u+m4surpHmBCya0jlmD7SfLD5E5CP0t5TP03+majFHRknYM5VHOla4XeDHurB96d8P8
krZWWI2zEa4iPfZqtMoEico1ukixBuarxNUlTMgGDwCWZnw6Tlk4sgQ53fHplvaPpkv8GXZJIOXZU7CfGRwkCZOVOm7Z7VjEW3fvgv8D1kaXCVyfSckn0vNia+7ZYQXQgPZorWlgMk1bBvKb0kRnM/oV3CJYiifhrW0ValI4GJYN3EMm5WMMk6WXDZqiKUTDzcTqYtItm1tVgj/w0452PeMll3LfZefK4hKJOV6w4F0SJWXBnyoE+BjUvZpEXI4j
9zT0ZBokzhkMsSZ0MmmRqTPfpII57EUXJO5RCI4FwM1exR3VwrxWAHHyoPkpcMhInlVJHGg/DsHpwdkigxdkg7AZgDjASqJMgKyglMGABGAKAADAfABWUXJ6Y/T14M5dE4JSekTlbAZEqdN6mt0Op67PMGjsIu1J/Uklnx+G84GtRAHUOEZEkghWFC48Q5DE6ZEtfLcluM8NIeMvcleM6Yly45RF+MrGnwVXGlP/XzQEsG+Ix7dzb/oc86644w4Z
WFzbnIiGqvkvT68HMGlM06CHpM7SqCjS4kqs0uwR4tfJEQkcxqsnI6U/TSljpdWkMeMply9a+nfsn6Sks7QavE1CHPjUoH3Nf6m/sg+pd0h7RxsxPpb9d1GZVANFEhedkN3A+b/veVBX9YrjLs4H5po9dn8MqzSswFcAcAfAAmocYDKAeD4GlJSAlMCuA/2YYAGrDsm3stL7/SF3inkKECZmCeBvU6pAXCbuBokeII6hRp78vZWTKYysgHtL4zMs
wWi73Jcl0nexmKwsDkSIiZ5SI6y6v3HckLIuDmo0hDno0pDkGw98F1nNDmmwmKBvme8qbEnfCk07NCKtWixNTJ8m3ommmHE5Jm8ZAEqnE3qYm/TJkirDjmycHgGSRbzEBIuWxgCdZloyNVGB+WLboRfll09DaESAjIEckzLpcA+/Hn4tQpU6RZk+xTIg+CPwGfNQdJAk15nXZd5k3kImpss+Yxk1YZBccimgjcq9ywA9tbcQ8nblAzDRPQ/Ug7cg
KB7cza6Wgin7hc1lk+cFW48mIMFRYMLn20CLmvctLH0PT9aP1YWpu4VBxMEeEjssw7SRA2yovgf6EUs49HUsxAhak+zG9RRzFGUyzAmU15lMkp0kmY1gTQY8zGm2Yyk1PBWiXOWTnsJNtkOErNmUibBkobFV7vZHqkyWfwkzUwv58dBtl9MZwoavCNG9siEJs4OxLacxHFJEvTnMXCoD0ATABhwOAAlnCgDjWXACSAZwApwbUDskVkD1RfAARhEp
EEfGtF9/cpC2iFaLMSJjC5fUPBh4T9SQUOpw/SAhzH46FEMs5j7cHQ7adKZ0oJYSIhRcwXHQ088ENfWdEQckHijE6DkxlVLmPg/cmKI2YmrI+Yk7otoCY2ZYlYuD9BgCdMHFc2ZhZrI86OsznTEcj3KkcwLZvFfGLlreUHnE2xG/kmmqndBFZDc406sxEd4Pc65mZqNFEWnP564E68L6k2JyaktuEZwr5554tFCRdO65U1J0nPQuW6gxVBwqMRI6
7Kewg44LhEs1dpkvYb35+ddpS7eY7a289ileA6oyyoiZBy3Nwb7KW5SoEe5Qgs9G4X4/6Gs3F/6g80nD6o61EXseLF3NYDhN8mLrnbTIJeYqZr78izLTqZvnb82LECqHSRcQRvmX8o/lWom/lGoo/G3XR/mzqEnl8WdamQIysGkXKHF5pYYLmEnlAM8q+ymRaGGp3JKL7BK7FRMWM520dnkYw+HHNgnTk7UvhmC8iQDskCgAcAaE4wACgB1/SoA4
HDoDjAHYDjAVmBKQZwCckRRnrcRyA+4KPggqAk5T/Sp4reAhL89ASi8I21LU/Sz48o4RSduA9q/XY9rk3FKn2808GO86dFOMjcmaw93nhrd+6eM9LkHknxlZc48lY0/RqBM7MrBMpcYOaS5AwXEqFMIUsqEgXjIrRePklpJJl00ktiWYNJmvojJkZ8ujnFbPJkQsrPFdYt5EUAwgGfM4EnSXQ5x27EdaNHH35XKHvlM1SeCFlAfnAU6ikJ/aymR/
SFm3jZbD/I/xAPYRKl/XQQUqMJh6lM8Ql+7cNlfqfPmUEkIWLCM6HC5bPZNAyqkJVUsEXlLLgw1KNH7HBLxJUUAXsaFQiUM6KIBeXnnm1TSEC8zBEOoeXmSwDOBCAJIDrQMODYADoAdcOkiswXUCYACHwOcje7UIweDBQRtBRUXraZYF3qaMzBzHEaLjEgVsgNc2DIQIJCYMPF9Z8I3zS8so7k2MiGkngqGlEZGGnO88DkJcmZFSCoX4zIlGmOXb
xl6w3xnZcnKEYuEPltuaMBpArrITfNhZmGCxwGCiml3LbX6gQhNpkcwth/C1Pkvolmm0crJltcxArnMh5kKzF1l4kzeQSPCd4fcgIFxBGzBM0CpQJ4r66/uUArJUTgTXBT67pYzYXfrapSZbY7ntIDYUA8xh4AvE94gNAoVZWEJ62RSAX59OAUmcA7H1CzamoIqD66cjBGFRdADYAHgDYAZgAGgPNFMgAYDkw6oDVAbUBMgSWQp0OABGAHGkq8yE
FB1cYVsYRtCpSMrDDlCCl2lbahZ6A5SGCUNSjqXyEJw4QH18i3l7wQ3oLmdzDCCo4XF1RxnrkxZYuMtWHbk9xm7k73nwc+QX3CxQWCnHKE9/PLkaImPC+4VY5SnUspONbs55rKrn7EmrmJ8o4mkSe0aNcj5bp81mmtc7mmRC7wXD845n/M20F89Bq6Igj/H2kkIQ8CO+KushuEBAvtjmktEjxYdpljXEwLmiy7454sERZ42sVmQesUyxSvnWiw0k
18xW518vHkV86CxV8rsVx9KhquosJF5s4IqP7UIqjU3YGp4MBmr2CO4yWFTl0aBoXZLXkVJI9AXoAdOBJ0aQCkAE4C5JQgCkACKiEAeICYAaoBlnfHijCspGjMZLDrpewTMyfYxvU7RnTwXRlss/RkQIc95I7MGlxuPEXfM0IhDiW0Uxc0DkUgs4XNfN3lQc6QWwcj0VyC33krI/iqPCrGkjC1QV+tQMUsUI/hx8gw4qffDnBQNkS7YSMXVQ9mYu
whb51cqUTLfI37M05MWQi1MX0csdJkApwWMAr1nwsupm6gwrpzdPYx9lNbr94j24sksoi7crlqbtbC5MEBxiCk1F7LaeEmOzcPDb44zBacTlGD8kP79rNh7JHOjzsAjjBrcl5kcocWIioriA/i9wWEilfi3c/dIvIcdTaSgkW/MmCmsS3soOg1wWvMnSWmS9OE9iwnq8zC+TieXjwvgfLF2nZUngza1k5SW1k57J25BOGFnhUhEnFHDh4gyYzHQs
sHbl4zIHakl26xHYcWBLABluaDx5uRJkV4hZwm1WRqn66X74uWT7H66JyyUXPhqDA3zzDAu7FJ3KBlheFLz+RQImirOInpnPnmJIpi4tCioAp0Q8DEAIwAcXKyhwADoCkASQD4AWoBKwQgD0qfAC5o42GXitXkZoBtD9saLhQqGLy04/6SAyKzLIoKKgEOevJ3w4VntEiWFaooyyk1NDr7CoQ52Mlcmxc4CXxc0CXMVVxkQS90VdfHWHLI3+4K4j
kFY05Xn7FIJk7IhaQUCZ6wGXIqGYS4UEvFQFQcUDzRGCyTJAipPku4PjKUclqGWCmjl6nTPkO/V5G8oZwWfIsRhi0G0jmU6GWf4WGX0SvknGMYSUvE5gFmgkwFv1Gen5AnuC4AuiU9YkflHbG3k4uCfmYRVcj6SlgiGSruEUGbjQ4hUnqlxCJgomKhhvmJ/HTwF/EdIqrpyUrCnO/ZtSWYgPBpEQjgkA8SlO/SSlwElYQ/obKgs0TlGwETaUMHd8
hBIHMX1XdiVwEg2T20GPC0tJh7DYmmijY4Gb+DFkzcyzUyv47hJgcQdI9iOGgvgD/i0EyzA98IrbHyK2WtYG2VrwaPGY7WPEMEhFrZg7oHJVNhnZ3XKrL7P/lHBGKxRot7G8NHjR/Yrlb/KVRJLUydk2ibKyYtJOUVC/hqn7OHFhPeIkoC3hnJE/Tn9g0YDCM/QAUAfQA8ALoDVACUXNAAgDjAZzDVAKFhMw9bgJSLlrYVSlBUoHUVMCwgj/TUGQ
u8VuDLSs2zWYMiFjk+n4+KSfFZ8VZTFQtj77S7f6iC4XHHS/n4I0tr6S4r3mXSsX7XSiT5rIxXEy/StFIS/c5q4taSbsZHBlNM5ZI+PDlfSruSIZMcTXoqmnVci5GxiurmdsCwUQiyGU2ClIH2S4bZUAtZkQCfrlLHGyraeOPRGA1HROdNJBBOLAnkWEem0Yg+qqmBfju0i4QhshoSkQ2zBjk2aEL40eUz41+nUQfuUIK/IyZKRfFjyl94uov2Xn
AxSxRy2Ion8v0k3kQ+b0MlM5ilWJEEbbhk8i1AW5yjcUMAIwAlwNoD5wJkCYAdOCSAaoBMgUYD0ALMRCwKABa4KgULIOVq3IFaJPCBOqyXQ86OYLAznSAFDlSEGZYgXFLe04Kj/s2imPCOECtvCeWQ0wCXTyuLlTI84WQcs6VXCyFw3CtdF3CjdFzE26Xbow2FtAdsnbyrZ67yxaLqhTnY/gt6C3kzaRNoCwghi/4UmIkjkmCydzhEdIgPyiiVPy
qEVpiw7RfIsLqFHe3FmPTiWoiyJVkpFRVPhRcKUMQNnPIBALmnL2mpK+zoZKrRWnZX2XBI+ihctD97yoduxJnc8pgbHyLrpL1EriuA4MK5oX8iiABKQYgDSARlT4gQ8DyisEGkAPNHNAK4ayOOpL1y0RXCYN/DnYgwGCktbitkWgUW03yJQJdKS6hfgVk3PCjVEA9pbIWpCZIdnSE4ACUHSoCWTIy8FGKsCUmKk/7XCyYmeimCU3SzGkSAGX6Mwg
MXOKwUlBmG3LT6SJmMzcyJWYU2l+K43E3ywJUVpVBwrIF6xgisLaPyn8nPyi/SMQrR4IoLKgKYdWii3eEo60oDGRUIzAkgEzAKy7WmWzTwQFBaGbFBZknbrRzJoJA3ZR7a+HUPLm55taWV+HZVGgxb9SkUqikPcl4DPAbF6hCS4Du4gMH+4xI4wg1jCCWQRgOkvRbSEVQp/Q+gjyhGXQJWYkBwkJl5UilCakio7SgUOHY8vGaLQqfF5EeakVbC9A
RqtC5A+cZ1bW0BVX7hZ9aSqzBwoPPyCd5FeANMzpkykveRggGyyr8FFBQUJh4gvObl7yUZXD7cZRxhbGVKMHJVE3PeSgUIoj/K3fScoPvEoigPGcSXEB/DSwzp4nJR+qtRaJK8eClEXmLGiPISo3MFGsqqnQ9wVlBM0eASTYFBjhqkC6Rq+UJdNJKgFQrPFiSm35Bqz5S6iOpAPEkvn8Y3kn5YYN7m8BUJ5cTwXmLFJXuq/LBqtTGDLSfxBrefpm
Dc/LBljaFQ4uVCai0LtUPxfLCJAVuBaqQXTvkph5p0qLDxUUXInwVoKDMF1UiElhj/LGNQpYaeBWZO4i7YTNWq3ANUzq+g4WqobDSdEplsYoaEhw3ZTL+L1U1BcPjmzOrbnq3TAmJEiz04GwlwkxR7h0h5C/+SMyG0HAgKsh75unA7kNOY6hbceGRoKvg4lwtWlBq1JBtgYrCE4UDUg07lnmYSDU1+eOovEXbKWPYYZmsYhUgbcpQ37Iyyg4juzl
CosGgIpcV2RTnk+WZqlfBFzhrA64ILsqLxhy+anqclYEU8sJioESIkfKGBkHAtlIMM1exUK0BTF/eYG8amYLWkOGEilbO5YoZx5hMfeyuJPQmMaYoUk4SoUs8uLy0a8YjcJYAVKag45jU+pXl/RpV8itMTrQOXl1FUYD2wdOBtAFkCnsn2CcALoBzOERXYgLwTVI9uCeiPsW6i4MATqLjhO4ZVizeH6mRyTp4ekvIwfEaQgHtRAad3JhjFyYuyt4
HRWHCvRXHCp3mDE2eXw0x5hzIxeXLo8xVXS91prygPl2Knqp3KlYkxQOLAKESPmaInXGny4NSoEGb7AQgiWJMoiWmCvNLfMUGVew5rnWCiJXUS9rngoxI7Na2NifPByWn8WukH03crO09rVm0sk7mowDEZbPZnKsmoHmQT/AiEDGAja2f6rYPITb5V3YO4/JWWCKmjf+FeBTwQWLVjGrZRsuimMknAq+snIX+7KWnvjApnmESenFMqmjINZFEX+F
tBeI7hgiS4szXa8/yGhEvy+00AQs0T+UkyF/jPa0IivaiFWkuUWjQqgXo+7X7Uooy/wK3dFnF2AM6Ha1IXqXCNmcxY1nfEkKJU0QXbUmVrYcw4WoT+a0Hi1Q7VzydHV7tfq7Y3TQUrKHCjYygGHL+XdpfofdqoEi5BvI1mh+vDClo6lfwY62QiyFAvHYUAJCvIBPEU6ndqr+GnX/sOxrrUb6aE/OQHus7doE66nUEWXtgR4N/CerL8So6iXUs6wn
X0EapBEvdCr/FPKliU5nVU6zHXtEJPDXBGrBvAUGj3hWHVhs+HUnayPy6yHLytkFzClXH3Y7+JTzhEX9nJwwcRYymBWYoRXVloJ3WVEHqI9sBJDk3RcAjGXpDTY8XXe6zci+6vCg9sJPC4OJzA0axwhe6/pAR6wTkbYMonVETIIzRfm6J6ysjBwlPV7yDrJTYAETHENNjk6x3XJ6l3XZwuQoxMe4goEepDZ6n3V56lTD4GcRXSRQUnAsw7Xh63PU
V6lTCOYAUwhQFZQgcBrFH5MvVd6v3X5YETZMQErLcaGzFXaubY3a/7XceUChIkAqGBEcR7w6NTE2Um75ooWdV+CJoSbMGlhU0HtEoo5/ScHZaEibKxgzVNQgRCsdJH63lQn6zEqgUYIaLcFozNEQ/X4q3tFqEftEAaxKSKSP3ApOcnUb68IVTsGuiJvRvgLZUnY/aufUva6aJvaiISjq/AHf/Z8CqEevXl6sfXmYfMbZZGGpakM1ni6uHX03PgKg
gTopLcZPDJoWPRrakqn+QcSFbao/H0HcN52iNPI86q3ldICmX+JGHkdZIBhjhFfx+iXVlzap3ZbQpbX4lRIB4cUVgbUWGYYU3g3z/RbW/uNyaY3ZhT+4cnU87MyoF+IBis6YN7J4GKzU62Eov8Ckr06f8i/uDhSvgYpncjfrBkgWlnF7cho7KTp4IcOwj6fWJgt0w7mV+PuL4GNrBAyQKZOYcnWknfArDavnSjqi2mQUdeKxMY/njwObGIUJgEHK
cEBHnUDRoSogh9HS04BHemol3A2TWYQkEQXSbo0y9dp3c8pQ+0jjAwgtagBmNajEyHlUr8u1X01BJAZYH1yy6kI4fhU3kWGpLD0Hb4JaceGSpISvjLxFyBvkC2kMuJLC+TZNwhajPWxSr8atG+rDSROTA6yLo1IOI87QkPo0VUopXslIGSdshzgH7CxLQbeqzBWVMkobeqksM0HIUKvvpsa/XQ5Sr76Ea9vpkK24F5VBqmMavpil9Oez4M9ihBy4
EIaEynC61J45FS3ey1KrjWCapex2iRxKiasLwfYshUFSkoUyaknDAI0RDVK/HDVEFtn7CbO6RFbY0saIHHyaz3gs8qZi1sljST/RSwcaNlLMIatmh9TY3YmiSypsiyKrkGE1+JYSa/KXYGGG/0axFSvJEm0Pp5SmURQvUYF4mnhTgIiHBlslnlUm840l0VqksmmeyUtdOVeMMqRhoulBCNDSY1ShHGNCtdm6awlQIAQuA+wQ8DMAWRysgIwAmuZo
CNAZQAdAFOjxABe4lwHHIiKrpL2mbBzlE8+Cec3jbOZZ0rheeYJbtfHXK6qXXKbMAkIEuWUpSHZWZQfJEcUcsB7K8RGGKk6VnVeeUyIpLXI0s5XQS1eWsZST53S65VtAFOhlTarCiwwqEAxE+U2w2ZiHwUQ2afKMUJMmMU/KmTLfMpiChKhrUpizlgdreCHBETiGTwrUE+2Ho6+44lWBxOAGd8LfHWZZFXSSrPmblFZkKSrIEyBCylHMsCba3aC7
k6kx4/jJm5Uq7zoZi0P44Q+xZsSyyUthP2l76N7mB8RJUFGBN7+07kk8E9km4PQplu4gOml8glEVxElWt5NI5woqlEDQmox98dXoH+StVLmifHIK7JSoK5EURqvdXz011lIi7iWHrPXruOZdUrsJ0k4i+7USBGY4n8yZrQ8ogFydfZml2D8W8xLfW8deERu04RBtsNDFKebhEkeCHoek0VjcCQTE+7OTGf1Crm5Ec+7HwoVkZ4dzqliiMFOVFf7M
7HhHG+XC3g82Tjd81LB8GqQ1SUmOHA6V3jw6Jg1j8ymWJHa9w0qjCkMWlg0gm/c0a+Mjo86iQ0Lal3bNMjyVrmBXbI4Hxp5dT5RF7Mhp/kEfE+7HLoEnPxoazUThJ/QrYiW1aLyWxdUjbOPZVEF9gOQcnC8W65RiWhS1oWL0G98JylDYKoIU/AeKLSO1FW7XNDPUey086laVD5bC0pC83X03TZkTZRSVKA02zki2FZX3A7m7CvAj0imY2P6OOWUX
LyyqvbwlnYy463Bf7GZslnmKiRKyJW2FQIm0YJvkQ411svqk4iZY0AkbjUQhe41BMKjWByqoWMidSQHHFlk77FEgVWyhmvKMhU5k8hkoMqKJlWw2oqQqqyw4mqlM8hBFFeZ40HA6dmgKd40x3T41spQdlIbMpXkoLYF4bcD7qQ8U388yU1Y5TQCyONoADAHkh0qDgCEATAAnAVkArgNRoNRJIBMgcEHKi2yFjS/SCDVCYitwDwiUoXXmVyMPDAae
Lxr8V5kyqK0UseMgjp1JOkDsS0nha4kGDPOgYumpNCHS/ZVw0sXHHKukGJch8HLygmZBmwqYhm2xXvgjH6OqJ6UHo7Fy8YXjJHI9XFZrOwjtwLXGU0pU7u5YwVVa+lyZmzcHPooFVhKkFVNapgLmStTpjmkZrQTCpkvGSlGZHHjm9dOm2QXIQFK3ZjBM23ik90pUaUvaaF3uFc0+AoI2MQXsSJGJgEcQgJDnaopmh6jzFCWgQHSch7jc2l4wZ8Nf
gCsNO4hwiikn1Q5lO4zcJVMliRiEPUH+aLAFF83oj7Q7whsy+cAcyhMWOzRpkx+Rm6ZCh7kLcuyWJwjm0CS/kmbER7WeWuukpHCdYjyi81XkomX2BXrXnGZ2mdNQ3xQEr83BGg2Wi21jFkUoW0hG8sox21i1f8noGeFLexy3AOzKSTMmPlTBm+jJii522JISalEiqa/yLJW4MSl2tSQTUvKo37cJGHY6xIN3JtlzzSa1Ng6a2rinTXrixqUSAP+w
EHYgBWUHYD4AGE4cAU1CEASWBKQZoAwAGAA8AB6WQASVpHW1UWxoMVR+CaWpjse1ZMC+FCMQZ8AeEUNReaiBAjmiyUeyLg4WkP35OJBbYC5fnEpvDKC/W0ED/Wj00HKr03nRBLUmbcYkXS7WErytLXBm9eWhmu/5tAISovCi5I+KUJClKCj5CggUGHPJt7SDKZCAobQVG46mnfK/G2/Kwm3dTMiVUc8GVYPAs1JKqLbK0KFVq0EHVJXKaZloBCId
mz2xdmz364ynwV1zZ5nrIdSWdwLIwoU5MGM7Cn5wtf5ojQ+Ix72/6FH2uEAB/FvlNY85rAodh2oNIzLUqgvkicP1lY1E9VkUu6F4GvIXOo1QmiQqKIZ2tyIs8oYqT7GSyuE4EJkauELqOn0YxWu2ghRak3VShlrhPOqVrihqXNK3TR3pA0C2gdkiYABACp0YKDdtSWBCAZwC4ACM3DKmgUg1WjhECTTAnOUPBwUeg0WyKYb+cyOT6ykW19ILDEH2
6mC+2E/Bv4DfCUs6gZAc7600wS+1um/RVHSz01zyh+2I0v03XgldGMg1+2xrdLU2KhYltAd6rZa0PmHnKPAfqd6URqFPnAOrYlR3AJjJm/CXKnQiVgQs3EIO7M0PIlrl5mnCEBw7gU2fdW3B0h80q2k/DU4LR7KECNhAKt5CwrXQiPWF/6d85lH63FXjTO/NizOjvl0ImOmekxTA4kgZqMEVZ33CdZ2TQ3m0Sk1Onrmvc0fElPLqsk0HcA3nrqyr
gircyXoEs7uZ22k5kPc5yrm0wxawk/ilbCLAF6sodLS9YXzm2/tRMk3ZqzHDg6MU2EUoeR5kEeDelXdZiUvjKflGGmfn+AsADl2KHXPEkh3lwuVGz8vb4naMkzVYdBoCyqF3aLabYVBAl2p1Il39imJydi0i1RZCF2K2eEX4le5qUszG1T4jF3T8lbls7J5ACEkizzBDIUvOx9insdAmneaxl8u/5kQJb7B0cN9jIMUV3Dc2LKBeKJ3bMVhBp+QR
322x9iDiOrAuGgjgJ2mV3GnLmWf4M2W8yl1XJC42VQ7GjXrIN/HJ2grgOPbMnNoctmMiMa2Nob7F1gmoU1OG/Y99dqkQCo4JnBCYIZStEIRypIpVSuwnKOviwkMsSbHAkfo08uyJKQljUIMvWpaSOhr4m/yJDk7x4saBokHpB4FcilNH0KnOVNKtMRloyQD5nSnJpIyWCaAJSBJAZoB0qeICEAXNGr3Q63Voue3rAKEBoJJwTO7MwjaCqyBJ6Ego
O0WJhdaKEAuNZFlOpNekWi67jINbl1TOsdG2M3RVF6JJ3X22KG329J02XEG2nK2QW3CjLkKCzdGFOwPm/pUp2vCtZgUoHgW6Ip3LR84hxR4PCXxMirVpmuB0Zm5FA+9QFVnEnM2US7p3ZMk7nQ0QF0Z4YF2zdMC0MoCC1xYHdXa2AuElAREnTuIunZ0mbE7MF/mLgOjG60t+mPGfwR8vDsXPWnCkcYQXZVEabAu7MDhgK1ekTMh5Ds7Md1CEjD0E
yrD07KUd0vIHl3h2zY4hW5FqHhBTkzBVeY/KeN3GE0hUTBbhoefKhlaczN2Fk1sFt2kx1piBAD0AfQCsXbADPzFWR0bVkCVAFOhEKS/A+wPD51ukokytLYCSWWewiYKuZvUjoizimrCKcbpFKK3ugP4t6HDu1sAEyXrlfaxRU9E4DkLiGd3umud2A2hKEuij3lZTUG05O0X4Q2t+1Q2j+0w2nKF3U3+15lTxJISVrCfCnDnxm5Hy0sXuBlalM0Xu
2B2tOgm03ulg51a6xHL1Lp0o1UCmJqgNnRs1bXCk+uEaosVAhEAW2XakOl8q6rGN0wmTGeym62q/lWFeoz2lSb7VxSplayO3faVshpygIhAXd3eY2Ng0U3ICox3cevGHNK8YCOSaWT6AaoD4AJkA+wRoCjAJkC1MQ8AdAIQCNAVRoiKyYX0CHRAk+JtCPik6zNIkQrfUsYq5Mg35xuNgnOrYIa6dcGl7Sqd3Om0KBX2yz2w05xmSC8CWmK70Jpc1
d1eiqxX+8zd12Km6I0IHeU5a3gAiZeFL91UmnGQTUxY2z5UwOgJVXujDDtOvt7kSh93hKqiW1qUgm1COi24qyFaPbBwa0A/WZoAjymo8qISWsw2lnMzb3CO7dqoel8DxsBwU9muIUxWK0TrEf6C2Cr3FcQHb3cccN6U+3H2P+GuH7+A2086PJk/ADpTMG7pQI0YzL6gqn3s+0fkcWqmUMix/oTW+qz+u84HeuuexpESq07avR25/Zq3/KL0YOEs4
3puipWqQpAUt2hpU5uua2dtSQB2vFcDKAemHskYtHlu4YBYAH2BwAHYCYAQgBqQYZW9MFoY6Ix/LZYN6klcLZ3gCLDDaCnzQfM9aXXcfFkGskdJn24REX2k73JO6LViCx0V8fedFXek5VmKgM13ei5UFOq5Vf29uqvepxXveuowsIVAiHuoaik0wgzWlKB3la5p2VayL3wO6L2IOtPkQ+sm1Q+2FVdQrMWyuts3a2hEXATe83DddFbtm7CZCWyUk
xbczwIe6Qo0ulw6/OxBZPOuWmGgi505HU3Uj+yZlj+40ET+ij34K4pUp26qkCWOSRwwhLzqatf2S+2AWb+s4gRWDN0a+rGE8MyRo6+8jYDAA0AGgXXBJjCAyypOADskb+YrgNH5KwYYBKi69mlI463oGeVpfTNJAGCWnE3i8nCzVGljqEM+5QUp9FxuB1m/+RymvdUz0JO8z0h+2d3neiQXZOy4Ux+m71QS+P2Q2zc4Za98FNLHd1/2sbRGYtZBo
WnQXBgT6WBere29ESZXY2ub4tOwGUaDUH2Ji986k2sErk2o67mCcpQAozuloqlm1Uk5W28StW0BxHL3S2qkkkW/c0TO1jhTOgbnDqnUyNsKBU/u+EASBnXx8kqOlECeQOUTdOmF0rOnKE6/zAB39wWs2D2xUl4zCB+mpu/HXYW7FQNRwjjBgBuXbZUWI1l8wlFcQdi1c+qmVG09I3+2EmqSbcmpKull0jwAynbcjI1uB/bkN8pl1w80nAI89DXvw
qSwK6WziF29u7DsqqwKTOvo+o0SwFWi4JJS8Sh0e8SgDUkoVUyWLxxW2tqzU/R3QHWqUzW+qVdetMRlMZooDAXADVy+ySjAKmDCi5a1KQEuDUbGzVggdDbmCbwTrmPyAvs5ICdy9NWgaT9kQIUKmlHTxqjJX23T4pUhOmn62wBs72nCuLVA22z3nSpeUv25z35O9+2YBnKE+tRxXAPdP3J4PwR3EgL1vQQeVGHB7hPIOYrQO6+VA+kv3Xulhjl+8
EWMBjsrQi90n4os52+9XbWaKtL0FYk1UMCUG7Cct4NfSD4OrvRVUSqqd70kvbXfSHFWs200Xs2xyXLa1L0MUsEnGAsh3tbVV21qSBXgW1ti/uq+rLMnPmTcywZsTHxDgXNiY4EuwNoh790YhuQN/c4DGA8uv158pUlHOmbY0hrYzb80Ho/dSAPKPQHXiMXKhA3L4NNMjiUTvCx6fB3F3fB4rGcA1I3C+6ewlWzyJMMy8qi5X12siWUPnGtPLRB9Q
lH7NO3JB5UQUMtO0eiTfp8ms4gmJDu78a+AUka0J5TWg/3Zuo/3t25pXagaoCVAEpgkADgAFutgC3+oRnKAJZy4AEpgarWb1ggAN4sULsw4wEf7z6M4S0CMLJsiVJBbtTvWQabvU++5RWGBqANb/KYOumuAOzBtJ3xaxd0aw7J0pavJ18nRP3IcsM0AdHAPObQjiHKbP1Fa0gMRSgZGNO891F+y91XBkH1l+jp024x5HV+wUMp+XkNLvGZpOBsSm
eGtJzeGmP6DQpiUt0gi0469f5NXWCnNocg0C+xwPMW7BUoK/226skfWRhtA2QUki0oG0fVR6k3oy0vC1/0ytq1eo4jJ+EBlxYB100iFKVhIk8MokIa0Zy00NbU80NttS0NpiNkjqlVMaSwBAATgYRn4ABU3AOPyR0kWoAqCl/2q8ht2F0J4DgeojyCMUJADkk3goDeMJzYR0SXWcKVhUkYN7wGs1Iq3fF9uwP29Eiz0pOgG0XexAPR+pd2x+ld0W
Ktd3eijd1J+pXH2crYPqCnfCsWalDZ+oB3no9hahEf6Cgi8w5he6sMRemgOAAugN3uprmdOxrXNhlzqo+gh3sh2TBA67B3gutfGQuhl3z0t1VF0jF1D8oc2R+dF7graGXyU+l0azJCM74lFXcPYcKSyxSkfPJ6722bGXcE6la849FKAeZEkDbKEO9i+wHmPablqeeF5T/BR5jh8j32RpSPmotApgU+cIuRlQn/03cOGcLK1GiBwk0MgyL525zihR
nESeos/axB7nl79GSZaa7GHa+u8OEqNoDKAHYBQ/EyhlJJSBMgWsCkACH4UAfkDagLLWyezslmle30OBR32VGZ31dLQcnUGDDKjk7zRsHe2l827YVPWvv2TBxJ3TBzCM326z1R+4G3phhz2ZhlYPZhtYNPe98HkjLz3lkVKQS0YVAeKTYnSVV5EBIZiNxMq+XRi9iPqDTiP1hsH3IO4FVMB/iPwuwc3yS9Lr8huyM82QtXkPAyN/hbsXO2mEN209
EVlKXuA8EBa6YCBvHw9YxY2s5zxu8ewVqk3v3Fsfv1fIL6MKSr21xYGS114pqM9pQGNB2w+TSO3yOjiuERnhzKVy+zqlpWWNFX2eNFBMdwnCm2IkGOrOUdexKM8ewlSIAOACZwIwA+wfQATgQByEIipiHgRoCsgPRo7AXLnFRxznjCulUrKInkh444A2NefRcSAmhZYd4A6IghyAG5P79CbYXRYeHk94lDJnoiLWRQ6d2dRsP0zylMPzBn00S4p+
1LB1dGpa1YOue9YNY09jYUR56UfoCnCeaSU4HB3FillOTa+YVZWUBgEXUB9aNtOzaP0B1b7xeviNPux4MoQkgiuB+7m9mlEOLc5dbmg4IL2MAehYy5kPjHJa49+gcXUupjHYlId2eCXy1VBbHW7QkcPnculnSW8WULh53X1IIHlixozESxv6O8OycnqYxzQwtLvEb8jxpIW8iyCxzTjCxxnbA88WNg8y10OcZ/bKTNKXnA1IP+eaIqpWioWomokJ
NehUSZBk0PN2s0MJI4x2lBqU0QOSQBlLdOClMBADVAKADOAGACSAJkCkATQCLWVDmMxsYV9/Mo04bfQGVGXjE1Ete2mmrgRatbe3N4fy3Rh1VTbIZWTiYcwTzKgJpfW+MMdRxMMzB2LUKxmz1Kx10Uwc5+1qxrMPifEaOkRmX6lTCaPXQPChIUdOOnouM2lQ0pQecMcKXynG2fFa2PtTYtZcRnQZW48H28R3M2Je9jw0/TMVSzRiXpXLPHEh/3zn
m8YPL4p6NPdMHqvRxSM2298j7Qk+MI+g3T3RrEXd2IGPeW9OkhS5IEhUuCPDBqKVkRGKWWovpQtiyYQbYEpQYirI2PRvFH9HRm07bTILCJh6OVKP3GcSjLBiYu6OLzGRMFqt9UiMFZogx+tbGRpHqmRyEkSeYLoSFXlXadR/EBWmONXRs0VOatITv8x5qf8ksV4kssX386xPRdWxMqu/l0eBw/kuJ0fE6R9fF6Rz7lFxkHm94lSMCyqWVooWf698
5mqBCsl26RpD3U+o9rLK9dJDisq4HR1daegp2zr2l2yKtWROuJsV37qE2XQ7KeD+MRW3wu8R0o7c+O4OKPiKtNkRJC4IUPcwxnfTYxmVbWlJJJxENYJ1gkccdeEcEo12YJhSNX4p0G7e2Bp1xxdmRul/Z9WwyzFscnmRR4/ociqqz9sgu1srbMmCm/zjqh3Wj6hvfp4aqalrJ6KNRcXKy5WXSxVWConHG1fbXGiqx/vVV7HJi41rDILiokOUPxRw
/23h/GNY5LICyOLoDMAR6CkAA0CaACzU8AQgCyOTUrOAQ8CSAFeN/hlUXwDCarJ6HLxC8ViSTYbx2VyV33hEd32iG2CMAyUzHbsJf4kDR2IyB8kNxO8dFHehMN/Wx+PiCp0WXevqNI0jMNx+wiP3ev3lwSpQVhm8mYAJj9A0yhO0Fa0sNbE3/yhhx8lNO3G0Aym2NRem4MNhh54JewDEdco4TmQOkmD0rgMXacVU6qqPrZeyW2RFQQMXaSHm/y0+
1B0gRGI81bAOY1FMiBwBViBlIjqplFOtsT91NsMkOG7CkPLlZFM48wXREdKQOu0k1MwKwZOsiYu1rzDK1o4F4j1e54jkaNnDiJL+GOEFN0im7GNFB1u14x4eNY5ZwAGgFVbYAcYBk5eayZwXi5KwbTQrgMbh0kZAzDKkFDnQmNQ+5M+AG/KyAVI0b5DYdIjYYBqN2pHXX86hCMdPDgSbOstVEg+J13xmAMPxrqNWe7CMOepAN4RlAPg2rZYuejAO
jRnKFXs+G1qCvWMgdVAiXII2NHyt6Asp6SpZKO6CK6f6VtTfhYIJu2PcRpMWV+3aPOx9B24houwAehiEaKr6QUk0Y7G3H81/yh0ZFe0qQKETC2rSpfIM+SFWiR4BjIy+i0c+xi3k0uC2FixC05x1XZK63XVs69gSYkhC1YUUuPFmEtOs6gXWQU79MOk8VglA8UPjWjqkFIZNlpk9/Ywbdtk+JH+Fsey8P9x68ODxzr15LfTnu1e+bKAGABwGCcAL
xz+ZaNbACSwO1xalERV8qHwhPgH6R28rpZNndui16y1IR5MEa+VTpHEVA9q4JUKHP+Cd0HC6WPHe+tNyxgxXzu1MPJct0Wqx3J1DR7+Oax7tNY0w5b0p0PCecMIjuK5sjR887BPgbDmVczlOwJ4v0cR22N8praNgynaMPBtdOvB2mV1q2pOLOlQSITNyOMCGv1Tw/GUDuy0LiFMFVt+xv1+Jp7nfcl7mAwPLJmZ0mqvOywN/+awM8+w22rqzjMPQ
2uFlw+SOHR+QmM+6hLIEtRN3Q2LNhQ5n1FDTrWtiyxP2Big2y7QLP9G4PwAx0JMO7NLAZYQFSdwfaHAiCDDrVY4C6k+koeZgCE+8bzPHyTD3b5bD26B/g76B4PzH5ZjG7wgK3YsvQPOjSj0CTX1PmEuuiT9bnlwZq+wYx9YKi+hIr5/HE2a1DwXKasA6QqWk0/KEHHtU9E28JAMkbTVDPci9DPBpzDNMKyQD0AFcBKwQuCsweICsXWRxsAMOBKQY
paT23oCGaKgUPIVrBJcDahOmaRWVyRIAfUy2znlZ1njkpS1TkwrbKbajgA7aKlGWJsrDInFORamWMCZ+0UnCp+PCZxWMZOheUqx5LXkp9WPDR6TO/xtoBJrAsOxhRwgCMEBPGx3uhzRzaRJYzrJLR84OrRy4O6Z3lOpYW4Mk25dPGZgbVQApikDhcWkqg9dMjHHzN+BumXZGqlIVpn9NbOnwNa21h7Ih/l3aR1SPYU5DG02opOGnKMHNYp959NTs
McsYVN8A1CNqjf80kAtXPjQjXM027dP0Ug7XXOxthjQrrn8BuVNT0im0ZITrmipj82KjLsrmPTdNs56gIc5xCGxhnCEORoq41J2Fb5ZyCmEJpfFNJ294wyTCF6MSUyHdfF1IsmjFEe+Cl9sVubBA0DXwKqgz5GELFd+5oE7QsWoJx3Igp53VmvXGVUAidjnqeTv3zhyhIiwnpD+mGPOiPNua6siRSUsjSRTqDTOadNYiYy6Yiz61tCY2nsxYoBvO
ICWO0d6gIil5srL0QiOnw6XBL95sWFcJjOnIk0D1h6vvNibMvOD54BLB4y8xc7afOI3XIwD5vgI3mDnQdBbPWPgNfNj5zvFxxsWoPcWOPJdDPM1OqxPAcZl2ZYOMLX0lC2UyoyWEeiswB2rTGOBX7QN0ryV3cjHxX0kunaqisyIEcfPqBi+U/5jLFccf/PQu5Gjo9GnB7p781RAw9NGmUFmECf1hQWvxE8ItSIgZosXbOpyoOG1+qqxaQPohj2lm
GqS2vaivGWZgRiEFinbEFo1OYpggs3wjLAAJbdj+MHObaByTEh5mxgBCRjkY9eNXuS+kOeStQPAejQMkAqVN/5s+lf0sVk/0p0m+5y76iFr/Mv0ljnB5xDGh5o1nT+tII86u/PsZ5s1BOQAvF0roQ7g3iF0QopRvWi0nVi8guXciCHtAjL2vpqxNJxygtATDoGy0uf0yO2GOTDeR1EiH96gkfY0VWV13DUhyHpBtSRBePfoQMlywkGskIUaoKzIx
xTni++V4QmgKJx3bfa1Cp1NiTbwsxweIMWFSIsVWYIvd9ZwqSh94JQIo4IlSqcVziljTeBzV4X2Leylg6X0/wwE0OiGj0okQN0vKIwmXlFJnHGxN1LGv1NZWMASHY647S6ZYFO2TR2LswhlBccbMOiYN1hI5Sa39GqnMagrj5FvuNtezX3aa/bOkbDu3oAYgCTOdUpGlKyjlREuCSwNXCVAae4dAIIDkR4FOz20FOEG2gSCxN/x+g3AyJ4XtjE4Y
nAoMeNjM4jKglJ0+NH4QrNXdTLCahG+M1pyeV4p070Np+ANEpnCMkprJ0DR9HNfx3r6XK3MNf22t2PS/tOI2nQ4eED+rUjCNSsLA4PSVTLCbaw3GF+rlOzpiK63IRBPE2+92oJx93oJ1ykuB4mp8558JVAl1WOCtGWkyjQtYefgtAFyilCOyS0UFq7k6uiq4FZ9wYHKeECL85lUYJ5JMWg8i1t+DHofF7LANmiCLn5tDQE80GhE829MCRvB14xT5
oNCdHnyl/rPz+tbFLUsyJps7eznGv3BdU1ey9xmSyxF7IsFBmhWGO4oNDxg7NLFiAB7iuADagDVL0AUCD4AEuBKwFcAbAAYCmAWmNw2lqKv+gCPI+OIAJC6Qqt6zmM0Cw5yU1RaVsKbT1/iMGMMhl4ve4bLHio8rLCIdqN1p/FP/F5MOI5l+PI5302o5/00ERjHNSZrtPY54pGwl5CXOKumjlKKp3FlGsv4cjov3QUL1aZ6so05nlOl+/TP2x63E
Cpp2Okl/8nPF07US2nRGT0qwjHm1klHrWFLi57MU7msugMJYZQ4YPjG2EHBVQUKZjr+QeFzl+bk2Z5V302zISzlv3BU6ID2Z05ksPmnkmnm+WmUWdbnqSuXMXaHXOlIW1YOZqPNP53Vl0u0dRSRriBajRWlw7ZWl2Zks1KFvvjfEnA36zcku7c8zNiY2W1Z407lNm9emCvWs0oR9pk3c3nMgVzVn9sIwuc7HnPuxxCsQx1/Mi9NCsUljCvb6x/MJ
mOCu+B9Ct+Z7aG1Zlln1Zmku0SukuUAlMH6/frBacZymJg73ObIP/J7BsVgHYOF0YJrgVsB/p3s6+Qp+EYK4J1AFrRC4OFZYwboDYFMtuS+F08V6z5iV/PFQvOuxp4OTZBC2Su8owFH1sGuyF4+uwqVh1PfYTuNW0KakIZ9EJ/GkwrPYuUM+4Kouwmu11+JObOpcRO4dWm/aTiqLhpLOM7Z3KDPiiMouACn5Tb+o+xlF4NgJWmovmli3Q4xq0sYZ
xYvNK0AyAOKygDALoDxAJkCHgCe6aAFcAWUZoDQgIpZUCyYVIsHpRR8Bk0u+0tAOyR3YqMW6B9nDhFSsrw2A0uN6w8qlkhBwDlQ5vjO/F0P1w5mLWEpyP3Oi1+N2eiNZglyTMQlnMPwSsM3CnPHPXQOHaoOQzCzRrNYPCdHS7ElaOpmtaPwJ2gMLppBNIOwzP3B0WYs5/XNux3Cu9wEhqGez7Unpjy2q+WSVx/YIIzhv23EJ8xPQho8LWVaRMMJw
a43hCrPiYIMw7KYyU/MhtUdZ7sNK9ETjVVrwOhBj8IuyqbDpZnZSqlwnkV0C4CWyxTzWywGvo+5thyl0Gt4KxwsEKxdkWVzytq1IKuzTRDNlFjGsvGnK2MiUIsxIkKuBprX0Whh5OdtKABWUAYVofC9mswfABGAWs6kw3kJQncqKZV53CKcLVj2sOn5WQTByFBAPp6MpFP+SiKWwsl4ux8C3PhINMvB+2HOzLeHOtVp+69RhYPXe8ty3eilMJ+n+
NQlpXG7nVP3bBsp0ua2kwmE/6qllZpxFEaR7LRmBMtlhPnpmusMdlxdMMBpnNrVswPIQjatwqoemWR2vl1ijLPMPR2sSp4LFxl3gvPu9pBDBvq4pesEO7puO1R20J3Ks9JXRs4OtLHYW3LwhbGRsqhhB14Nl6V+tlobPK0uErk0+WZZOUaik1RWAZj1OW5M3hr/o2l5pVdATVB2SVkDYAQuAWwdkhhwA31KwMOCaAGmOsgSt6jSgMsKe9uhTIdZC
NlAWFMC/6TYwF3AtkIl7zVO1LE+7YWGM5fGmEWpXfGTTa3xn4v3xjMuCZ1J3Zl2WsdVxYNo5wsvglmYmwSkmbrIsM0eXIasIlkcQTCb71fCjrQfNVEh0RqnOzV1svzVjaOW1pasV+4kuQ+1dPrV+jFKltH22F8OYt+lnxuUh9xCRoFGQx4GMkAnxDs+9bbYUMiioVxsL2ZieKMyiwyZ4wUnFmyyl0VvrAg1VEFMvb316YiescouSTnYFYxN7LpRs
EMwgIN5SWxJqrBsEWrC4UAykPwqhP2WOrASsiDONof43qWbuMJFOTVH2WeaQqVfgefMJLcNlbP1WKDP3A/OsceuhV7Z4mshpzto+wFOg8AZwCjAZoAUAOAB/A6pIcAUgDchO4CYQAg5UC3yj+CcZSp6fAEOw3eNuaYTVpEOowecmMu0lCYpPOA8uT5/RuQ5yd3Q5/jML15qvh+hZZtV4lNy15AMK11ANK19AOZQ7HOAPXWPwlvXmcoeuio27hCn1
l4pibZPAr+GdN8LPEuai++uElniONhwVNxKqiUbKAW0jlyf2khxfj2ptmpvuy21+xtFnA1DFkw6ln3fO/5ZWNkD2aB7H2YA/5ZCJ+hMtI8CvaU7eLz4xcuzh86ua21zNi5s81tNs6uB5nyM7hpwuw5RE1mVhLxPYxYIN21xIIbP40akLE2GcWuwxosD47ZrN2iN+5PiN8jY2UU9maAAaXOAAYDskDqC64UYDJVicBxVlNOt10FNNnGBKusc6RHwW
nENsYRBrvKPjheUquRyGZ3t8/Z3eY5Tajw/4TV7OMNz19Mt/FxetYRhAPNp3CP9R5d2K1osu9VlWv9Vr+0bPDWuURlzVTwUrMeKMBPSVKzCmBG85X18L031udMLVhJuxer8kQAlJv5moTC29YZ18S+o7C1octS21Enu5n9ZqptG57Oi5Q6i1fEfalGSQCEr0rO95sst+wF4Fu1OYh8070tsUk8F4S07m54MSJpyU5oD8vIMK2lDO3gOjO4WrkViL
l/pxCE8Bz/N8BxFFcu0j3jug9YUtzVtK0YnUnwUnXl8PVsKt/iWYo5vHYo/PMnO9Vuq2xVsTxHZAk60ihblyflqVngWxC8QlzyfH2aiikWN01GWIY+ksFZ+whFZ+LI73FunUVwNu0V4NupYd4slZ8WkMNqCgLUgyL+NHUM4194h8ic41UMGytNUnotDMBcVbBbYaUXKAVL2AtszBMttL2Q0Mm0UZuIiMqVN22YsDxoskLFqv5MKhkimuUYB3ARoA
lMKXmFwYgDNAVmB0kU9kdcEpgMxo4v1ui5vJYO7KeiKoikMK61/iV9l76d9nMUGVRUSTP0bvabCvW66sNNthli1jCNAt7qNNpi4Vgt0lOgljes9VreuQl2FtK4lusBN88lYgEGrtojxQq/C9GqalmjTVk2sKVHTNtl64P05/lM2ItBOAY3p28V+Suktp4PiJq07x1lbXwh8Vvgd+I3HdLc0rvN1vco4Dt8o8r17V4mSu5nmlAVzI2kV+uIiRzkMw
qspufaPJmnVohP9NzK44+syOPhV83Q+ptUKRZ505JnW3mR+jvZK3c2St3SnMdzSI7Otvnmoj5vmQKjuE3FjtK22wj6th1uEO4TyGRr53Edqn0DnbVlr6jik4Ylpu0J0pTKJ/cOIN9v23RqRPbty4DJ10k0HHAa12EqIpMUWbDupogYeFgjSRJNK24WaeaB4RZsCJAtmRBqHFY1yMmXJ4MRo14JZ08t0Yte/GvFVdr1hV5tulkioB3AMODNAAT3sk
TOBdAEgAUAUE6vJ5gBoHCe6bBsdtyehs4EgBpHRUjfBOqgckYCHCjZtvIwRvMgwg5qKkKbel7p1UjsB5uqt2Nhqvz1wFtON+WPL19qu5l5WMpc9euQtzeuIckiOq1mX4yfW9t40y86/AV/J618Js+O8LzVoM90zVnFtm14H3v4AkuEt6jmoOjqF5e4xN6e32vn80oQCcyTnvy49MYdlul8W53aL/f+UhOSNjiBv/iFd+Tb0cT1sI9Xptkdp0mSwg
9gYiqHDxcai1Ll3JS57OPYZsMvMcmDRnoWsYPld5Ot1ttURK1fho4hH+FrG4MQjFo4g8mx7IF11ZtF1iKtpiUhTEAJWBpwCUX3pfADh8Okh9CssAcgKgUVI3S3XBEDjiYYKg5piCPJ+HijHKN8XN4d83bC7PO7t2WO1doTM9Rhrtphk9sQtrxtQti9t9VmlNf24b7yZ2ZjaSEK6QPUspIq7jSEB7FtsR3FtxNhaW/tgzP1ap+tV+l+stHDW2Kltt
aQV8d5qLAUNeJqXMXEK5mWmZvNCk4x4SRtSO6sDSNSSvfHBZgSl1N72titlzOKdva520ovNTmkiQ3mkIKUJ11tUkhm0Qd8Ts8BSTujlqlbjltwFN5oSUt533uPm1wG0rQPsBx4PvVer25+Rs8p9F1kTg9+uPKhpHCOE/DXOV3KyKO912nGlYaxJbP5Jo4Rsrsi2oIHYutpiOki9kXAAnAH2BHNpkDpwSoAUANgATgaoDOAVkDVANqqaN5LA91E+C
fqb9Bztx6AgCYrOybV5l658cn14shNsh8J3Oyc8tqSt5m09iWv+rNckuNmWtM90TPvx8TNOejtMaxksuddo4CiDDuxpYc7zE5nP1DdyuRiWAwgxNqUF6Z6XudllBPJNnsuAY8GQVHKn2h28CmqVsZlxAiZnUlp9wStz3sd+0Vup5+tZU9j/OmLJ6Gj91kPjqVSWUOt5laqkAs0i851/lmZlPQoQvUhxHVykeUmms6GODNxGslcLZOFWnOsfKNkVb
BV41J3IgcQw2jXUKgmtimoNNiNkvuEqf+wDAAYAp0ZgDWc+E4lwHYAwAJZyswHYArgBmC451eNXiv8QJIYqv7ul3yxMqyBytbDCXWwDR+4Ahy55oBofXA9q2/Rsz72g72b/f5vi1xxuS1lqsR+pftuN1evy1l71ntjfuY5rftXtzQDpYCkaNIE7bIllhagO1T5MoIjx/Z42tUBr9u31y/u3uh+t3Bm2sDTHCE5bKn02Dfs1Idwh4/oj/tIQ7+tCB
+xOZe2TuHNRlxGkoLnI0FTHfRsONCmSwtaSm0Z+VLpFoWlSWAs/ukWWhDieiCp39YPgKKDnIf2sig2ANd655CBTzOSoLruyFumyDioevO4ocGJ6PtWPV755k3lbWdivrmdzNuqvAYtAmqNFmu2tpL+8ge+duYsJR6gdw9wlTcKjoCEAERkypeACZwTOD0kfQBJAVRqZwLcVUC4+BYtfeUl61n6c1r7OWsT6ltgZPB81j+KcJkWNHgtCNme9Qc1dz
QfON3j46DoEvuN1tOeN9tPf3aFtY57fu2+g+uJ4GJjDFOiM0jZ9vRqTZjBbLT0A+i4OTd2sPTdxauJNpdNy9ldO9l1XMJZwKpQdo3MGBiIfi+Dmnc+iO0x10bFx1zXM09dVMBSyUxD5vyVnDgOuidYgF6V7zvPEZ45RceGN53IBlAbWjXQ9ptsTDltu2ll2pOhoQC5I+Zw+ANoCyOEuD4AbADagFTS3TTYdPAFSt10EeDOlfb2c1uICrCPkTXImh
IcC0GZ7NCD0YwcWHXcBwMnbdBKfW74u4p6rtNVu4d1dxnu6Dxrtvxz3ktdtnttdzLkdd0wefAMqbpINDo2N2p2AMLNYCUXbCHKc/um4unPuD2EfW1+EfM5yUtVm3PlMhlkuqu8wucWMIcvPKIV9OkDvW2nkNdmLgsBguq5sSu51IVysUp0kSvxj1DvdqCsXJ0j60hjs7l20gsfvW4wv8y8l2vlwwtViyBtLdBXM8OzTt0J1TuNNq3OWldXMbYOUn
TM9Adtj03O25s2kytz53ex9l3yoyFHmG5OOc3fJtSqT5o87Xkt3KAUuuU7Zk7KHUfj8obr7RlpM9JzLOTh3UfYjuIY3O9MeNXV348lhfmGGhcdY6J2lfVoIM1V1l3MOu0F5ilUuBWupTMVoUsPjoPFdGJfMgKxcdTTEsfVKN8cNIdczL5n3bPl7XswaP8ch4t8wxA/ssYqjZXvjgCefj/8kNj39FZDlJyDjr8v1jt/vBDnZTvl6EmfluVsOFmGNY
DtzSgm7URzDQ2iHY2wmNspbPOcPAc/yAKMrJhk0leWZMm0T1OUKh13zMcYsk4QYdmEmX0b2UZPeFJkfrJt/Z8T9u579EyvOFYvrqWVR06Ooq2ICzOWE1+YvsjwLsSATUr8kFcDVAPHGnU0gCcKyoAeocyEFiEaV8Dt/05eU2SNEYJgkWGFPz6FrD3KMFCnwKsZbeBF3Lc0ccvF53PN02fsaD+fsOixftUglesWjzqsyC1rvnt9rvWK3+OXAUQbzB
I+ByVCSrjpzaR5Oa5Dvt5wc1h2nPtlq/tW1h2MZtADupNrL2E4e/pAuzmXj0i3O5e2CLZT1fi5Tq20MtsbWTjnKfvuvKfxxCc2YdvIKj12qdi0ym7eAxF0cuzKetTxyfYuiEqJtqJHhWiIPDBR42IwuotavJTneffPv7+tDNsjtZs0DrHJMqa6YGgEybRADInMAVmAZiFOgmAKCA6xpLslRkxprq5ij79DPBUs0BZUoWUiqEQrAKhJgj2TqCdDy3
gBKy1uUqysw4qDgXFHMPdv09petmjp4d6DjxsGDgKdGD4su+N7fvWQnrvoc8nAKkQKY1TVrQTV1uAb4aBMJTuat4tu+spTjweM5oMe21khtBCStNb8qBs/luAe3hJsUAuqqcFNrHWn5+7icE0Br9Q7rDu7BpOScNhlRJnxMxJ7S5PCPDjnYBEFY+w6sOTiuHdT+jD3T7aVFcZ8fmsEcfcz2Dh2mr8SrYYpn7Qzqdcz5F0WMoV0zYLkRZ44116Y+p
MVbWmc6diMduJqmdGM1Wck7QpWalgYIXh7vrdDyu272Hif8UY0ugKCtvcoNIucKC2djJwou513IP1tgNOUDomszTyYdY5V8MnAfKPZAMdrNFJSDDAYgB5osOCrT+ID/x85toGK0RDVV7DwmWzjD9pgUHD1b1fUk4cxlpAewD5yfYTvw2ytr4v1V5ckON24ceTqWvaD7yfL9xLX5lslOGD94cc9mFtc9yBg/AMqY78UGTWD2mYAjsB1llE/Aa4uGd
WxlweIztwcxeu5E397ssZT0DutNv3tPmyY6ypmlurm5fnJUV6GX4riBZXF3OU3QAfTyHvP2IoEPSpvkPq9k6OSpmzM/BlF1ys8I5IF1jszlm3Z7lgAtMl7QvG50aE252WGUukTGseP5myuqofStnCfZzp+e6ugcdvzocctDjDUuF4SwRojLwyTp45DT4SjI1iyvCarewNxpZsNtqadcegLvaQjlq1ARpbxPb2rGUTQB3zUYD6AGADagD1DlkiVpY
/XacNnYuwJAcspb9SI0uYNbhsID1OhqJ3DA9jb2e4ik4RTKk7hcZ6fn2t6cmjhnuHt4xXPD8Fv4Rv6dVzoKePekKcGT8stverWsAYcgMN5ogNllY90hWc4g+j2ml+j/ufIJ7aOrV7wcrd1VO8+1AHK5tccS09+v/11AK6L1FWCR6Uvi2v4lC+gbP4adnDupptBGdu2hLsgvvZyxSeILxOCuhqyh5wfXBY4kuDPTSoA2TeERWUO4AppV1wLAJYDwO
I/jKCKFQoDNvycxnrA4hWrBO7Y84vNtpF3WbILkDadwcmEc6EG5cY2mMrIGqtMvS1zhcfT7hdHK3hcs9/hc2jwKd2j4Kfb9tRE/DmKBgoaJkFagQ30RswzIqyoyrjS2P+KyEdJT6927YAFUozoktlVekC3gKCAVAWCCOAeKDToNMrqyTCCaAJZDagOPQ3gD9S4AZyiQgNCDiheIC4ATQCtYIJzYAEL01nFiBsQdxhsMOdRP4QSAmwJKNY5UdrVAN
oB+1BlQsK0WDpwG16NAE4C9g4YDB8iOfcbXpiJ2YrMoMGECdJZ3BxFLowgqG0VmN9dhISBWdlqlZAHtXya8ExfkyVatO5z6Lm7KzMsI5z6egt4Evlz09sCLnr7Vzz4cOjvdEgz/LljaNtAqy0Jv7wIXvR2C2SVh8bvi9npfftkH2Xk+erX9tRdeDpUEuxkZrFII6jwCQSv4pEedC2U8hmCnjiBEa7IVqblf9B5tALGLdRtodmj5OXBz720MwSr1u
BSrg5q58b9DjKAVgQoJxJQ0ZVeVkLRVYCdaFciSzClZrDCUL1WKoTXz3CKSTg2kBa5J6qSwRsAFf4rZDh8oLch5DSC1ge+1eJ7aKwOeIrCtKIbDVI/aFt2E1eahT/Dj96D3+4aDLC7assyr+7Ce8HwE1Yf6EWYSNcjA4Q28JzOLFIL7Iss7vsvsBTzz2UarF2gk7OsS1f5pzzi12R8gYt0jw5UBQix2NI7toA4SqM5S66rqzCSrg1dc+bJX1r/ob
zQgvOnIWVeaFpNDisZ1garuHL4AxsoqjtIyWrxdhisJFhPl08jgoe/r1giZm9rrbifU6Ohlq1vgKsTBLmAxghHfUIaoTABJTR7KuUxSdfe6r/22rvdcygp9VYnWLLl7MTanrm1eUkhhvz/OZu8T0HHmidqkcaoBRmzvUsnA+jVr+jhvRWoBkxypIOjZokSJspiiePf+dyO3UtsiRPt2E9zsfwvGusj+BcuLjNGGTJSADAGADKwQgArgceDjAUb0l
LFOjg+IwADeERUM6Z4BXxOoznwRVpTKhKT2NHRFYYL9CBOiBDbABIytsMIrdgQeUNjelUT5bS0TU3aWqDw0djI6KH1fdFclL06VlLkEus9t4d4roRfUp30UbIoNCfg0QQY4J9ullWhrs0aRdi9nEuxNmeqGCAzDLdgMdpTiRZ39zKf5IRo0dBuHBWkJ75W8DYbQkbVFxYbLKd0rdQKhX6VqkDtUkF6gyjqDzhlqsXXwu1zfnEdzfCEE6syoK0Rok
ddJCILh0gCGoLheHRHBbtoyG7Hoii5O4h+bjBMBb2Ld7YNNiPkbxXwpJjC2EMiYudbRhUmA5qeiBUKPkYI3H4ZXhpsVSnJAeeybsZDh73ITkHzk5ZJbkKxrXGOJ2b6SKgyPkuhENbq25SvLt0BzSmGkOKdbhfS76ePHACUbcObnrc4O2iJTb7rcTbwDGs+KBDz2Rgv7xTDLtM81UX0sbeObwWsjNIrdrbsLdBQFzcdIwLdxbrLfXkIrdTwYJVy2J
l5lG2nQYwONWbKhZ0KhEgqi0PMb4Au7cEab5SE4ZthtgF7ckESf5jILVd6zhGsL+8KyqhxBGedgrxdWh41mlyeaQIybNpeJHdclZTXcxUDf+WVO1khOyJ2REac6ls/pr7GUTQL/1OFB12cKT92ccj5pW6NOOgdATOCjADoCfJ01x8kIwBMgTQB3AVnfGjv0v/h0FMLIOnElsFpF5GU7a0b3thrmYwLrkF8C3OIrf1b9CrzgLUfKK5BgneHLwxWHI
RXD6AN9E/duNpkFtHtrFfNdgsu4ry/7VL4Rfb9xCViLtP0SL3ohucxeaQzyuT61xOrzgWlcft8GoMr1wfpqfTfdPRmkDztldozjRecrprW1bt7dbOu3Vmp+H3tHLzcoEG5FMq1EPbYMFADb61YAiBeRS71p7HogBICEBXeTaiLdokBPd1bpPeNbpcyhbxXcZ7sGthBhKU93GpwOzou7BRrfbFs2N3Oz0nd+dqgcU7pSfoARoAlwTACkAVmDVAFcA
rgdkivJo1B2UB7CZwbCVkbyYXHCVJAzt4nCcwnJqTt4zw53aoiYwFdvnxmnBRIj+omQGckmheVgc4ZfHqhAtKq72tPq796fAtwEuYryTfYr6TfLB/6cfDkwe1zswdT2qFwI2u9va15pANGk+tol6NSmBbKii97EvaZxKeMriwzXIVPDRXVlcrV9ldoO1+tpxebfjbpzep7/eKMMPkvHUV9Wyhpzfkm4VBqRBXewH6yX1Tunrz2dcymrunQ2R/reM
2O7nx7tLE5b5ffbSfvWAY3TCkHj9Qr7ig8M+MPfs0DuyCxMnrYHjHDZY2nQvCMrYx7wg9Dbx2nR73S1EpNlmOmt24EHvxREH4bdLdW3UXCd2GeTSoT3bn7dPb4YrQBCA+7b2A2iMV7dTplZCnwYrDQBLTik/OEi91cimNGxDKYFAgGJJ7cPx9WPvjWiysZ3ZSRoMq7I7HNlYDYRZPyvM/qCTr/ZuF6/bYhLO0jDuJEiN6aew9yndpiO4BqpPX2LO
UYDskE4AckJIDamjgCYALoCdCn+1fLjqLs+y1IAT1D2EFcaqHUXrBCr0LCV0sGkMfNjexOvI9cb0ir+74rfrbxcFi1mZaFzrQdeT0XE5l5ntSbipcybg3frumpcOjreWm7zWu7uzG6xO63eaI9TepYFzhYtr/em1vG1QjkDjpVctcy9uL3pTkkuAY7YAK79DZr4ZiiiksVAHbl5CVHhULWEIo98SzjdR9TY/0iMLc7Hg/x7HjjfC6qGhHHkreGZD
Utg7tzz5VY40KiQ2czFl2f17t2eBHpvc3AMOAkgCgBdAZQAAnicBQVB4Cqmy32aAZNMiK5iigoAPDPRpTy0butGaYSuk81F60xloMunbjLceb6EZ6HyMwGHnzg5zyrt5z0kHjIsRGa7o/fa7k/e67iuf679dFUpnesbynYAHW7o+It5HxVoDLBE06qZZrOJKvYFmiKL2rn02N3ftwBnNDLoecLHjqfRbtzfnbuYVS2bE+BTAJ1oT7zrpbgjGYn/G
Qyn8vicceU8WHkcWETnbA2HuoWyTq8O7ZgI/F9j2edtaZwlwFRtXZicB7s1mAW5UUUQOBkDNAX0sz28dvwOXNBZoVGjw4M+zVEzRkN0Cjf7IZNCGbnzRXqCChsHkrKDIOXfRwYw8CmbP4/Gao9pvCZEHtrXc8L76cvD36eVLi/f4rq/cKb65U7AYJf1L3zSGpCogjpt0e90LNZqEdw191LpdfKiXt6b65AmBUiWP12/vDznCFLHyo85UXnFokCtT
XH7Y/X6r3opqnA/sH0VhwWKM/fNetffGFg8hnvpBhnoc8qn15kmHmM/jn4vdWHp+JZSzkRaJYtkMjnzt+HwvtNC4/0ctbyRtAFJ7EAfr14ItgBWUfYu1AVhVWUZQC1AW/fOn5Ltqi1LtLsWVj960pC0b/GhVbZGg4wItPU/RU9Bbu4ixucxlTCmliMH0ar4n3jOEnkDlorwpcNHnydNH0/ctH8/eCLw3fyb7c6cg0sSiDCVA0MF1YSVEgNbE9Tgg
MKs+A+53e9z13d1npUJ/tx2PNnzRfTyP8/nb9HBwWFQ8zbmIF0XzLcMX+g/HUbzcR7riuABVi8NZP7OICBg8+blZB4Xe48DBKdunG6HeEXAztbn2hU7niU1XLztrctIwCSwJkBsAEpjKAZgDqmvi7NMcT0PpSWBOnwhdMx2NCuaD8wkFf7GQJ2jdqtMeBGkUiyRLXyGG7LChl0eX5lpxPA8bzbRisJfif4OM+iImKEAl1xtfT3ydr1vXfpn5C/tH
o3cOj25XErwMXQZKNzSLoqFot4mzRSKChdz7pcTH3pfQ3Os+ixSi/zH5+uIjyIV8X+LeznnA9qnww9ugtNh32bLD7OgknkTZY+oTMwQ0A6TC1Rzji/sA3RLq/PcrHhq/rH1s+coDTBwHm5DlXka7mk6q8JbjykpocPjszwWoWboVRw4MGjZb0my5b2g8Fbn+uJ70LD8sfpYjsc4/MSTULKH7bfTbxbfC0Zq85rb4zMUXa8xefa9k8e/srb5aR5DS
bCOiJ1cthVU+4nvIQnbmLdKnoq+PXtgOynuUR+tpq6i5KTjDXucxXH1bdbHo7fP5xtV1X30S1IRq+YEJi8TbuOyQ31Y+BZJq/HUQ2StX0693xRG9dX70+h71G8tXiVBtX5Os2EuYa6hmmTjJ1Tnk3qxI+HykTU3wyy033eYltuLgRk1wv03/XR2V+xKHY1DZXHAOWXlQ2vxnZDeJEkoOzTztoFEgYXFFSoDMAUYDEAEpjnUsODEAcYC9ceIBrOER
VkgFLAGAqPA992jfT78TywyIRADB5vBxAKQ/W7UKz87CftrSRfe7YGg/kH/MVsLoP01Hrj6mj8TfemoK/6DnKYSZjM9ybuk+f2uudFRpk8DpmKAUCeLCRTw/tAjswzMIeMJ+eoi8Qj9K+/7qY+0MIrA5XkzfUX33dpxPQ8GyDNj4AswiUxdlCSoX7fTuGpC6HrI0OBEYjs0DyOyhkixiH3g/9EVa8Nb40RNb4M8rKTCGXTlvnXXhNjVoY3XR2VDR
UHha9kH/Lf7QsEDTX3ZfHKeezzXpfdW3vu9W8Qe/CcX4DSl7u9j30eDW33iZWLlx6S6G4EvY4KwhynER7Jr1MsTnyLMmkncWl0KsN7z4+uLioBMgDoDFLHUpo4uABWUdOBKQfACswFOCVAAMD74ERWpdpR0K0CJjK9LI/rMeOqp6d7smJH89qj64LwmFsjSjom1xuVkSCxQwQ9w4Go+X4k9+XrMsYr8k8pnvhdtppC+yblC9e39z2Kblx35npmW4
cYs8yL9gWjp6SpmUmiCujpwfdzn/cu7onz6b8U6w1T3fAH73ccrkzPTyI2/TRfmqrC7o453x7cjA6OgtTqYWmpmQ9nwuLqiHwbdYCOynlH6XfJ7+u/9nkVduB8jtY6NE9vX/89SntEWb75XyMoNDUjrQq8Xbu75gCTbnq6+34jrDh8yH029ZDnswNO2B92syf3xUKx8wPoDTA1M6/2bhbeXX5xaGP8WLGPs8dIj3h9Wkfh/DFNUmc7ZeDwEDHD+m
PdimcJA/bSFeBMRAKIiIMeCZ8MWHWELG/Q39Y8BuSChfZExJkXSCbmnLa+hYC0HpP+J+hP7J9GRg5wGsfY+ahIJ8ZPhJ9hPnJ/4TzAfg7/yOw72KKNWjUOQ7j45W7qEKRotK0mdzBlhn4SbdPxRKE9lRJkT/hqjPqqzycshV1taJEC31dmzWxS/kbKACNBhmDagPM4nATQA8j1kBEAEuDq4KyhMgbrs7T4y+Nu5LCc+c6Tao8jlTK+bhZ7BUKi6/
W+HnWUgZp6LjsmQC/LVMECl0ZER1GaZvgXw732Nok8ibhfsPDkufmj+C+UnnFehXzB/hX1C9rPHM++lzZ49H3ANiYc1G9vQ/tOaV/cwPdZBgCLEusRnTcX9si+TIJwmJ32CHJ3th968Gu/oVCWgBIkc+mHtkxbqMx8r7Cx9rNKkaBQVthAaVROIH1EiGGyeD1HJPDYS1rC5odX5x2PJ/dgbh9ZDjbnIp6evMJBNWRPjl+x8vemf5d5/qSqol3crP
fq/Na/vYDLMlmBV9b7342vqvx953gR/4yrV9XJL5/omag8L3u0SYlXYDvkAbCUOpSTYWBYgJ1V3xxhT5orta18UoFzB2vkg8938e8zVBTxWPtpJCqFhC/X/SOOXxTDOXvMfGLTx8VEQTQmP+/EnLJy9vmCN9SFqN9FcVJAClxNuuPP+GKOsSelWFuNq6JkfTNmvrDJnY3tU85PM8np+huuKxOz14917sYd3Jk+9ob8H4DAV4QTgQuBMgKcCbW8YB
hweyZdACUKVAZQC+36e1GXteONu4N7s0IRa5oUrpdLeEhSw2K+MbrgSYg/g9RP4GRyv5ycJICwjs48a4LER7iz1oTf77opeH7gK/H71B/lL9B+fxqpeQv7B8LEnYBJH6K/OKivJctGM3FlTxXEuCPBOCLfq8n2+X8nus9f6oA+y9ps+ingVdAUul8m3pgFz3y2/mv1fe58PV+KH+ef2P6B+kMJx+2PvcfsvwQ9cvkOHrv2zhWYLd+i5Qa8CHoJAr
v+o4TqDd/YfyFDbv5OvtD2BFo7/KUOVmt+H3+SfjDxven3iQCSwGACEHO4AIAE8WVADIlSpCcDGUAYAB0QsTD7yrBjZYEhLA65FTK6ECloA0hoiVDXD1xvQ36Sr6X6CrsQXlFdTyjXf+Xx4fHvl28/Tt2/r9sK/ERjo/X7w5e89o/Dt5SsoSVKB6BetIjTRMlngj6nMkXvEv0PmOeEv78kIjpbfKfqGg36PSsXY2Z9F93GHC38jY7AdkhJAFRvxA
OoCYAVD6jkegCFwPhWj2jgC/hod83skd/hSOnFOCKKnFyEw9TKlbzpfsLLxhe8wxl668VHk48gA0ZY9BvlBePmN/KDqWOQX4TcOMouf1H4YnAvlftWjkK+tHmk/b1yha71u/47Abd13v973nyzbZLRmkaJXsO/tYeZipX6s+Of2s8R1LMKzHoltvowD84QqUzdnkr8eRmD8BPgu/rKVb+lb6l5lP9jfbX5zOFbkG/HH3b98PZPTWlCKhwgbwMuqo
r+Hbs7+f0lN/ePrbk7f24+Pfir/RvtN+iXgieNPjxi1WmpyVvxuPmd9bwvrkrjedvz+7nhZ8ctCgBnskphWUfQB/9ChSEGOAAlMNH4lMcYArDsjdpfv4ZQJTL84XrI9bDn9CY4Xbg2kBZULVJ69yn+cvOT9Uj3YcYKs1oKDwP/5+eTwF+wX0ueP20F9n7898e3rB9df+k+ee/M9C7MnjNz5X7615RLHHS+tjHz9s0P0i90Pus/8bVz/Et0zdAf1M
VcH+HDiYGS7Nsau8nfm49VH+vihvzMyJvjjFATin/qnqn9KCGiDEgGjicX9rNNdE38Bcf6GuvogjuvlZRG/239fX0q94n4WqfKMTZkXJAjg343/u/3E804L3+0/t5T0//38DNyw9DN8lD+Pqakr+mvoQLvZFLU8ztCrPf1yTsneMfht97U9AAlwKAzKAPxdskdOBCAUYB0kO4AwAMNM+wMe4+wKcHJHpCoreTAqpId5XqCLpaK6bex0iZohHwTuA
yqDffciLffaPphe4sK19O/oRAu/lXa233on23hM+kno98oPnT+pnvT+JNW0eXv3n/e3swcGD+/e9doagOmY9qotj0fmRLY8O7+Gc1no8b0Pin4K/xb95XwDvAXtG8E35duXb7X89nhPEqPiU9sXgS8LzuG9k8Z1gbfv7fzz5/9nbzLdu9teW32653rB+VOgN3pASq/AqdNQS5R73fhtuJEQW/nkYIKi8ZCkO+SBw3lAez8j+vi0iP0iO8MxWr25A
7h9uBwgKeBty3zTG6nHoLfLyHiABAT6/+PjKyaDiora+rlgtHFA+xwhYAQ1Cwb4JzB/+vW4ePh9+qb6SoLq+D27+Pj/+SarlfjfEn368Ack++8SdXqk+ON4yxOEiRj5VfmuaQr6VPuZ4wT7YEOeUTSDtri8YigEWgj3+3oh9/u2iux4FGsUepP6xBJo+GPT6AUue0f42EAhuyGaSiHVacxpuPNP0V2RQ5M4BLqZGiJZ2wViTFgVYkyYKOiokObYO
cBmytbQdFpyKk06GnihuTH6NvhUAMIA+wNgA9ADYABOAE7TVADf6ksDpwKLITIDhdh0Amzj3nkQu4wq4OLSOFRCZYGOuH2a8AIQaF1qNlGtE+9wxlh0Q+v4R4I2iymxI4P5QGSAj1Iz+9X51Hiz+TX6BXiC+YmbWju1+liq0niv+OD45nin6xUAVlun6YtCSYEbWRUKh3h1osagmJKpuUd4OfjHetD6FhPQ+Tc7n/lYKxL5gHl3weAHBIMDun26Y
0Hb+v25f/vwB+r6BPnCk0r5ofrQwT/7Rbm9u51gg7qPeEH55blB+IcQHAcH+O2ymAdvuOj4h7jIBT36CaA7Ik96vMpZuvxDWbn6+gsQYvsOAXRibbk7YcfBD3jPe9zobci7gS/B1btfSvkDnXm4+nAH4VrQBNr4evgwBW3TnAQR+coQavnZArCgv6qNSfigGAbJgRgGXHnc0JH64UGR+uH5nHoYBFT7kQgfmUFBVbFd0JiRHAQoem37/Ql9mA9AV
oAEwoViF3iVeQf5m/o3CVLRaFB/UzpQSspzmeKqzYFseMhBpsCgBA94AgTNeQIEj3hPEiuiFBKTgB1ZTXiqBMIHAgRqBTnSsYNqBGA5R/tqeCrwpsjBmAohHpArohVhn7KzemIhzDE6Be/Sk3tlabRYFWJuespBDsvYuv7yg9tJCbDYQhNG6WMa1vo22YQFZ/h2CHQBWUPegmcDsDrUASTzrPvgAksAwgNs2GC41/oZOAZYLIFJ+rrCBTG9oYBbj
VNMgcxiZ8JUYCLBzXoV+MAGg3g9+2woUAXw+f27UAbvuag6T/iSemn5Avh0BLX72epz+7t4Gfg96UL7lvD1+2Ab9fhIu1mDS+JVCNIwvKsS4MTh8lhymVYY4vr6Osv6TIPMEHu6qLsw+AH6X/mZud34VgW9+qsTf/tO45CTbfg/+a37Z3scBih67gb/O4QZ2zkXa04qOLiEBKzZGngF+Jp7kbFrgwwBWais4pAD0AD5I8YwnAFAAmACLLiuAQ3rD
7q6+ZaB5oCNWIAJWQL8QWLSZfua62jB3Pi5qQ/50AdiBrl5O5HE+IT5ZPvvmfzZ7vo2BiD5ibkmepS4nvs0eZ76dgRC+hn4RXsZ+iXZ9piMBEi4Hrglg+hwovrYO+HLq1Fxw6Er2ftfW034n/nWeEGANnp4OLD6gHi4+XW6QHntu/2iKAWJsnIGUAbWBO8YfPKweU57uYEvwpr7evpB+dB6EMCB+JBTPNKj0Zr6PAfJBQthT3rNeI9gTnoq0TEAd
gNwk11zVgQIB+d6CPkdeDpKWEBAq0e5q/o4QbCCa/i802wHvbvAQmqj39qxujIEXHhaCKj43AbsBBwiCvm5Bh34kFg5BtwGfbsnW2jrUTr4SoGhwmjTIVPL1WH0ORwTETlxol4ETNlDgGmreVnR+FA7vHuTu4YH6crPGwwAkbgaAFACHgBQAroaNAOnAowD21P7UJ4Bkbs5gMmCOvhBQ9rCT7rwAYVDEGIi+tdhLsN3+LSS6AVo+j7YXDi8BooHj
/tcOGEGibjBe7QHafp0Bq/bdARg+bR5EQT2Bg3xmDvmGA4G7ukDo7jzKZmtI+tai0G+ABvzabt/uCM5OfnWeI9jodEw+/74inquByv4C5mnu4W4dnirun17CgZT+y84mmg9wmMCHKJkEw56B/rdB52zvAf3+L0E3Qab+lNw6AVeSXUE77tdB+h5vQRYBhE46EhEWupbcpLFBMC5vHnW+hdbGnkEehKhJAJIAPyYvhuMAIDglwOnAsVaUbJUAksDh
mrUA80GHPil+63BYwH5QQg6VGJ4c+YFzgF8MhNKmcPgCJJw+VK2gxTIdwFMMymxCPtIe9L43Rv1Bau6DQQC+jXwjQbP+Y0GtflSe4L5TQd2BV747ojsAhxZkQeIuu7qjqFoeMai/iC++HWgHCGQMlZ5MQRN2iwEy/ssBe0FIUGsBEMry9vleo3LVAeG+GlZizGS+x6IHYLoIKgFRuKg4TLgthBwBs25dhozB5OBdGEiwdganIIpBsh4dmMQBzMHu
wZUIht6TKBzBJt7KQfU+ZoG/fiXcTcb2VtMWLlh8NlJQ4UYH3ulBcMEw9gjBXx4wAHcAWzZo/CQK1QBKwL8meqyPDD7Ah4pnNumBPO7WNAVWBPoRWAMisS4dFAHKZ9jnYsUgBDijKor4MQi6IDjet07Kgd9B9v7NAUmGWEFknsmec/5oPq8Ok0Edfpe2xn7jRvmeByhkcKIgSsFrQayyOiLxTtQ+O0EzfrZgP2D6wfN2diLs9KpBS15PfNI+Oe51
3h4apsiDMImgHNBC8DZu2hpLwM3BpLJL8F2e+4FnfrHGapD1IFfB0gHmwbfBtx7UjnBugqC2LuOyjMiuVmlBow6hgYLe1pb3gRy0wFRJAGXKI7TYAAaAQgBHAL1449yFwB6WtQD8/iXB8DjR6AnUt0D53iqwa3DWlFmgTNBCoAPW36ysHKV8sgGVfmPuB7S4gvMEAKBpYCwY3z6Cbr8+UF4afkg+Tt732kLB7YGIXlz+XYF9AdDa175yZhPBEnAJ
1OyeLCzRTmYYd2BmQD3WW0HjHtymSwGZXjgINlhrwbbie0agNI7BwAiaQWqBAQ6KIXteaIGrqiiBrj58QeWaZVzUGGWgi/xaOF924B4aIbohRPpKIZjQaAFckiQ2gcEk7MdeFkE8QTtuzF7SYHo+gAH/kl7Boj4T4oJBgNwjbmYhcWDuPrBMFW5UGIsQpWaSvsd+N17t3hzQxojvfiIBPAF/AX7iFV6x6L8AN7pJrg8+nKBPPhngvZ7zIK5BFIEV
PsKWcQBInjhYGmAQFL5BeSHuQZ805CFGYHdwq1Bbfro+6J7vXvo+53IiiHKqVCGMBHkoFsG57gToZAY1IdQhwkE1gSZB3SEUIb0h7SG5Pn5B+T4PjmygGSGbMFkhCeK5IeU+FSEwaFMhOohcEO+odx4/fuyUUG4JVB/BBGhcNpXcgdxAbochwC5X2MchQTCBFml4m95clCnKGXgo7jkWb66DPrJCGO75Wk8hGbaQHBD+Cl4k1uRsrujxAOVEhcAi
ju0AbQAVunAAhAAnAPZQ+gDkALqaxaoqMEiwMTpfdpU8S3CJYubGDgTKLA5eXRhhvob+CEHFAfdYL2aKSMEgcxQ1fmp+fz4tAfcO/MGu8hJuuEEIXvhB+n6EQeLB/QHXvrwOft6BNuIohWDAaLEyNIxEPkYcldKVCkBC2L7bQcf+Aiz6bnkOcoKcQSuBhsFCplZBlV4pIcIUh4FcgYIB5IELIf5B0B4ucPVetSCV0vKhB34TIaNeixAG/q/irv5a
Bik+ax7PwTy+jUJgPucIta6SHkBqcer5oKZSVT5VjLbBTSCMAS7BJAEswYMwKr5jbLXesu40AW6+I/5uclI+ljDfBFWg0SEPXgBYyyEjRL8YRlimsAYhVqGbvCYhjiYtIZQhKrDEEloGWgGfNE3BBXwFoL3AqW6VYvPYi5YxMEzQVHS7KP4hk4ExjiZUKaq5odUQirRc1IAsKyikeE6q6qGUgcKWs4LnYrZB9jTfBBE+Q14SbKkhI8LdJAjgYCjM
HvKYUaFFwsYh/VwJIDjAQKii7rqIGFLaIbxBASHogXpifSCdBtNgnNJOIRdec6GwcKOhGpCM4BOhPuQroZohj7AboUmw3W6n7KDuGyGhWsiENs747myk4WCOJGW+16FXoaAiY06xwXROkkKQweDBAiTRFppyyuhWgfVYBA6qWCw2/QIBgT0CSG5OLrjGqG7Z/hAAE4BCAG0AmcATwAaARgBLOJLAPADjADCcSQCFwAMAwwCxpm/e8rAecP12+X5d
Bi3+iDi91MOAJBTQqMkuBt7swcbeb24RnpoiQ1RooTqhLl7dwQSmxc6s/s1+Zc4c/mwhBEFiwZwhbnrXvjCWMsFm7nLBzwjhEAMeeF7phArQi0JGIpL+Tu5awbtBpDD7pHIhTYYK9nuBqr613hS+fW5M8My+Gv4SHvohQcGUYfQkWqEJvrqhis4UYZw+VGEGYeihRmHvwc8gplZ41uMangGterDBACFzPkLewCGJwPmIJTD0AFM41GyS3tUApADK
ACcAdJDYAFD8CjQ8IcghW1h04gK4aWCNIEaK1cGSjur4aexyotBBqACDiD8BY4gD/tGAh8FX5IG+OAGMYdBezGECwf3BLCFdVpXONKHcYVrGOZ5llvxh8L51aDbQ2U5nIgYcY4GbjGIUtl6fvubWf+68oI8qCmEktj06JmEiPiK+hEjbgQI+prCvbk8g6GwvsM/BPV4F7pdBN3bXAaNhITY4nJte4yGk/lr+KmEy7inuBHhbwYvetm5FoUiw0ZZf
bB9B5gGmPpahQ6E2oVwBcSHPfiq+bd6BoQ3+v7hMAVlh2AFkFvKYI2EW0vNhz8HwfswBHQZBvss6uogvaswa3gbD9t8B3AEXYUqS2ErKsL0gR5xd/mdhcgFffuiYwRoPQTZYuTQZZilhQOHyAbDheQjWrndAiOGdjsIB0OFiAaDBEcGJStYB8f5Q5AhmtDCIxli0gPYTPslBVxyudrlYv8FjFh+hldIFvlHB5KDjijDBIYFwLoAh4VaIwVjktQYH
ACUwrMDgGKW6KcDYAEpAtQClnFLejQB9fkTB/A6GMLiANmBrmJkIr55FAXkImGqCMDNEmpBk/kQhqWFlqmQhYyjVIdQU1CG5YQwhvcEz/oVhbYHFYdSevQGdflwhksGDVgtBCL7/QCXQBvxFQlZ+4CZISBYY0JCtYVN2cd7bsHChs3YoOvIhSmHGPGgB1ODqYdZBLL52QVK+segyvoR+D9JIQZk+iT7hPpjeEgEqoYahD+ZGvp8+5whMPEZB+r7K
sOOohSHcaMUhU6aV5G6hMj7qvm/y8aEjIXUhDuZ4gcgevogwaEUh2eEl4b9WmgFLYUoBpthN4XdyLeHx0v2eoZ7uYB7gAVpd4VuQXRit4ZBcEkG4HjKORsxEgcMUJIGmHic6KaFLIcSBDCTz4fWh+SGTIcvhM0Sr4fjh2xwNFiV41OEleK6B2ohUTof0Tnbr3viI+2K1UoD+nIj6dvmSIGH+dmBhHYLwnKHorMAlwBnQowAihPgAPsB4ZtqAisiE
IkCmSX7+ljzu1MFuJJ5M/DBBIKY2+YEkgHpgaQzO8BXsZGHAgEu+seHofqFyGzC5GGH+fv76jsiuDvIm4cNBZKHO3kVh/k6iwSPBnPbZnj1+6tbDAbLBCL6UDA7I3o6hisf29WieTPpgh/6LwfyhKlT6bhyYljgB4UZm6M4n1J0h+8FKoVNhyu4t8ltuqIHjboEhkKwHYSxQtL66YaZhYOxL4bPhK+EIsEEKz2HnYlv03CRr8mgRPv5vqAqw7TJc
Hvh+nL6XASH+6BG+/kKuehFIERcBq77mMN7+dP6YEdSO8fasoOchMwSh3On2oCizsnRovh5yXs4u4QHgYcQAtQDpwOW60gBQAA5MyMEdAKUU+gArgEpAIX5DKrX+MrTJIOXs+mCbMNci3CRTKp8MJYFlYHFgMo5JYXYhwj70vmP+kD6ZYY4+pFjrUMbhB+6Jnn3BOEEDwae+Q8HsIaVhNuE8YZLB+9YO4XmU3zStbIReh/bKwexAirQbEKMevKES
IbiWy8EJsK9S835zdkHhRsGy8LvBar7nYBlm4AEKPvMYSj7HxFCBQSAwgaWBQUrCcM1Y137xhNthYhGzoauqd2FFEawgzkDbETohuxEAsg4+iH7FEUcRO+GhWhaBEz7TJoiQlOEm6JchwYH0fhn+9b6pwcx+6AAp0PgAmADy3to06zjVAB0A3IQDeMoArIBtAMwAMopv3jbY+PbJGuCaUypdJGto7wA8xOkQCBFhrNnuUxFqYdsKVQFwPPEEbQYq
prY2qn44EWUR0/5afoLBFuFEET0BREa0obbhhsK/AkcsUzBlZOrBo6Z6IgwRBLAUNo4O4iFS/kvBrEG8oCjgwqGozqKh7n6ZTkV+5eHTEfgeGmHq/uYIfqHokaphG15gTIlumep4kT4G/BGYkfKROJHJbqT8ydZ19IIkymq6vNtmsC6hAVzhCC4RARIATIC1AArIzAD4AF0A3xEKNEYAOwAkIpIAPsB+SKyAJTphYVN4CIB6YHkazNCOsiQ+zmof
emieqMhGIU+qku4ykeS+cpH6ekOAFhH4gSgepREHvuURZuGVEYQRkEqUkZSm9RHlYT1+8LaUEQJhuAafoHTK0Ta4XhNWHYBlUpN+xF4yYYMR1pT8kcKe/7ZLfjReESq54aABZeF7waqRQxx14dE+KUiNkRiR4ZFmPK2RQh7ydpqe8UrLnqfA0oZepiNaUVhnHBNO6f4ZQZn+HxEmkegAYvIbAPKk7QrsKs0Ax2YDAL7oE4C4ABOAlWFc7iCmsoSu
aoZg6JC0cDi4qRE10KlIzaB1yEie7UHHov9BZgGAwRGRNGEnLK5sBJxrRLGRtR4koS7yhyrkoVUReEE1EZxhJBE1zmQRdc43toyhD+7z6PdejLgUrqN+HWidKH4IisHzAcxBZZE8kaRIBOBdYUr+PWFuIQFBElAXCM0Q3SA2/vqhqeFQ3unhghHoHslQmB6XrMEh/5BJYnWBJRDYHkjc+kEhYO9Bvf4AwafqzW7GMqzGE14kAn9BNQS3kSxR2JG7
9GfA1RCmgVqeBOGYmBROkODJFBv0Z/Rk4YqGVbbs4a8RU5HvEXeBPOGdtGHAdJCIYW3urMCihC6gxRSSwAaAh4CyOJUAqw5dHoAR3O6unul80QjUQFmm4QKVPG6eKOA4bCqIjxYZYZgBn2E5YVWBVkHRWDZBrL6vkQ7eXC7YQV+RSZEfxn+R1uGjwYBRZg4HPlVhzJ7IqiXIN5wjfh6OLnCVDFOBdK4zgUouc4GkSOdwqFEbAe2hEeHlElo8ZkHo
3uTOlWItboqRKW4emBoe2FGHCDoeLpgIAUQQ3RCrES2REpGeUVHhnGKZYQG+D2EPcqr+HlGR4dphPux3Ya1RrAE3rv9enVFaYeshDT5ueHGoijqtPj8Qb6EBut+uqMibnu8h8z6fIRy0SsC+6JLAOjRCAJEeE9xNVM0A4wBKwPLyh55pgTLhb/oTClxINtCzVKfAY1bTvoT+5xAT7mngHeFrCgOISEGqAU4kbcFPOOABdFFSXAQhBKFEkXGRJJEt
gaNB5JHJkcPBwVGkEWheim489vmeqrChOuEyz7761hyUgug8oc2WXJFsEVSwHBEpEJWRSTbHQWKhmU71kdyBriENIf+e6OADbCbBGKHh4UNRtkHdUdaST1H2oc/B71F6QZ9RlNyFPnQWagG00f2eH1FQAdSOtmHWNPkGdhIK+n98WdYOYRzhhpHOYUAhylHkbBHANdb0wmTkmAB92gKQgJElMMZouADEAFsibpFmlL964VBzVNVgXRjcPvChWyB1
GIqwpHhYAQzBvsFuwfpgcKFPOB1RmmEU0TPWBo50IXV+PcF4EZ+RBBGA0YFR1KFcYWmRMmbXKqLAogwg1Gnih8olnrIuDBGR4G5yJZHR3pIh2sHSIaRIeOgZUTWRKd5nQQRRSN4w3oQEr36Lgmjh3ghqMJjhY5BWITthn/6bmCbRpAHxYGXeTL6Skay+PsEcoM6hB8yxoZbRJdFNUf2RNXqWATSOyfbPEKORUIqyXpaWx94zkeBhXQCSAKQAMAAQ
nFRAhcBKwG0AlSxsAKXA5Zyj2qO2JlG7kfWIMdQIbBMa4SBtJCvaQ0iEEK2gFvCi5IWUW3gKjrVg+8TAaObSXzZavMF6NpjMUCgQbk4Fzj5RxS5+Uc7RbGFdAW1+wNFUkWVhntF3/AcgZUzMYOIMNLAFNKTS37q61vBRmsHh0bJhxxAzHn++cx5J3rHRJL6hmPwRnqFmbjkRwcENlMohc57RnmOe5h482OAB/eHMIBrMk2EkUdSIjFJ3YWCBRoEA
4ZdoF36W/kgBYNAUJDlkoUBDiPvEVDBuDO0EChDhEAawjFIifhKBDtCREOOoaoR0CAdgsOwyEJXwQarUZjMBqMg3Rg1s9QHu4K5gNOBJCt6GjODQarEwIiDdoSBooAiAQnouLzytBm++a2jwkHkyksKyMYSA8jED8lvR5OC/ekmg53wTxFFchuzAZPFwuWbseDoxuloM6FCSFeI8MRKgfDGmMdMa+s7ItI3MYlEEsDze/yhQhCUWnjHeMavedJrW
YWUW7N7nxj0WKdbLivfhHdFKUV8e7pZhwOCR6cCTAJXAh4CFwNUAzy48AE0Uw3pIIUdRAZaCDnEksIA1PNbsUyr8+gaaNNBvFDhShCFtImwxBmBvXLqIfAp4gP9AyjgkslgRBJ6EoUaODtH5YfgRzCEu0Wv2i/4XvtNBEsGGwq8APtFhvKIgtEZu4ROmu2A9mGP+nJHSYX/Ry8Eg1ETa3BHqLqw+mwEgNlCBwME/XuC6liFbgUeBVAHhIcH4yOHn
YTG+VaGL/IygWgTh8E9ChT4OCNO4jRA0QOxwcoGX+P4QPHDtMuB+i17daCJwTaG1Mee4DzEyEeSGfWGvMTUxMoLDEJ8xfiE7ES4hoyi2VHOw68Q6gTikBqHI3l626dGkEOCgpzH2viahTr4f1NQxnwhsMgaQnojYygMUd17nAJqwMEad4jYRGBFmEduUFv7FILXEBLGM7ESxphG6EX92LOFWvibOYkx0jouKAG6hoqWCQG6/ofgOMcEXBNyxxkTI
muPste7yUcnBt4Elkp8REACNAGwA5NxKwBwAt75jtorAsoSkwS5AIlBloLToa3DvTIuwguiDMM5kK7YwgKWgmPI4DmPW+wDeUVP+zYEsYa2B19HjQbfRtRHu0SFRYNFe0ReKzRErUENEIEgrQX+I7irSVNcIvoj7PD/R9K6IUQKh6eClIAMuRm5dllhI8rESAIQAqAAAALw3QIPAPAAAADprWlGxfeCoAHTA2gDEAGwA2oDMANoAzACmTH7UzAB5
AInQOwCpgEmx6WAJsQmxObFKNHIAqABKAKgABoBcgHeAqAB74KgAGbGoAJUABoAAABQAAJTUANfgjID6AKgAhBwEAMEA9ICoAMbAqAAGoH5h4QBQAKgACYySwKgAOcgJsVWxNbFKwHpouAAwAM2x2oAzsYXAc7F7QOYA4QCjsWwAo7GogKgAEoBMwIwAqADtsVkA2y7BAMQAnbFbsZLAEQAjLhuAzABlsW1UfgCLANOxeQCeKENQqYCvsXAA+gAG
AF8C/CDjAKZMaACAABTqgABf6oAA/uYXsdgwqACFwHexgAAgmoAAjK6AAFzmgACMQYAAgAyAAIvKgACsrqhxgAAxKoAANvGAAAragADlcoAA+K6AACFugADyCoAA2UqAAJfuKYDOAL+xvaaVgGzAHMDhsSWxsbEJsRGx0bEhgCmxcABpsRmxWbEVsXmxBbGDwMWx/HE7AK+xYnFLsQoAtbH1sc2AjbFYsBuxrbEdsd2xvbEGAAOxiwD6gFOxB7Hj
sYKAygD6cbOx87FkIIuxzADVsQpxK7HkAOuxLbGmcbuxYgCWcWOx6gAIACex2ABnsW5xl7FtVJoAN7F3sbOxj7EQQOEAr7FewMoAH7EpgN+xRwCscYuxAHH6AEBxkaagcagAkHEwce2xcHEIcagAKHEYcThx+HHEceRx1HH0cUxxeQAscQmxiED8wILAwsAgdHzA2QDSwKagxuAskRTA2kAGwGrAFQCawJs4usDmAAQATXFGwCbA1wBmwFEAlsCk
AFuiXIAOwG1UD96ccegAfHExscZAvHElsT2xqbHpsZmx2bG5sXIAEnFFsSWxMnEcAOWxy3GWcTWxdbGmTMpxTbEtsW2xXbE9sZmA2nGDsXpxI7FjsROxxnEjsQ5x5nEG4Dtx1nGrsXZxm7H3cY4ATnEGca5x7nGecRexV7G+cc2A/nHbsYFx6iAvsZtxb7FhcbeAEXG0gD+xf7GxcfFxIHFQAOBx0HGwcWSQ8HFIcWhxWHF4cYRxpHGUcbRxjHHM
caxxFYBewL7A/sAVcWgAQcDGSOHAcbyykF8eVlCPAImA5aKfgUUkGqQG4HcATjpxjMDOGTGgpq7gyejMGqjorshR1NO+0BH1yEtwK0T6GI5RyPhavF6ObYDRcOthLxZxLhl2e0JhatimjTE/UW+Rjt6X0e0xFrHCwWC+KZHK1gSu1+48AM5MAv5PCFuQzySC9gwRUBb2CJbqVD5pXtMxrEEKJi5AMdEnQct+K27ZUKJgw6YsrhpBtHDfoF465NzX
crVuHvFtYF7xUnJB8fFggD4pSB+Yk96bwNdk5wCYFPiRoe6pSNg424zDol9uOaAK0DO2QIwkNLyI8Mh3clv0QGjtXhoRrDB63j0USraCaElYr7C3QEy86pDHECXxmMBl8Vq2wZgbwAq0yPokEtLx+hiy8d+gTW5bIJ0orcHBJKHicdjF8ZEUDfHy8fRg5qossvBQNEAOaC6qQWA8xIsQdCLWYN2hAEJT8XcQ2kH2QecI5FDXBCG2NjFg4ttK7uCE
GG+YLm6b8Zzs2/GpYLvxffGToVeSg/HXEVR6ujr6lsW+1laImhUWEwSuAR8ob/HcoC/xc9g9WpxO8UEFWGzhH6Jt0UfeHx6d0R2CSJw6lAKOjQAL3FZQPAA+wK/MDJ53AFZQGRJErtzxkc4NoIvMxxxCoHLcrkJPIJwomAhFZj9U7UE8cKIxbLKCJGYyJoR1osDIhObxDsFsxrFNgYwhWvEhpOz+N9EiwfrxPjZHkqFRPAAq4vmeBwjp3i7hKJaN
YV0RQDC3KN7hkx4tkHSIgugu8djRp0GJbNwk7hBrwG+AJaGizJO2eQgLZCQQlv7KkRASnvFQkJviYOIPFjjACKxbhqJKzxBEQEMRZBC2YMnCeglpUbk0lhgpDrXxMvGl8WPxebBlmPZYXKppENYQ4KAk+NEIHJhoWBYwtBErwK7g2hTWEMPxXfGN8cnRZZgBcDGoLkLDYSfxdWCWJFma9/42Tj5wUQkzRFnuckhIsJqwKtr7AVFS1wigyI02xmFM
EKYQ2Bgs1B5Bfgl5jAEJP6BBmMfxD0BusIWU+hj2Ahnx00TyKlU4WSZlXMUyvjRpEHUJqpIWrq2gTQnEWHmgI1HhwWNR655T9B/xmIhiUUtwhpY4iIo6P/IobNDBJ2LfrtGiwApMEMD+o/SMyJ8WfpILUS5hYtEctBwAUsGR0CbgNKgZiFAAbwBHstKaNMLpMVPRxxaRzmMw52DmCexuh8CpERNgirC8EkHqQD6rJFoJIfE6CenUQEZjZNF0CWBT
YDxmPz5VdvbRTGGNfm0xTAmZOpShv5Fu0f+RhvGcCUsSE8EOCOyIAiG0zJ0RCmYIkCgMogkZXn/uCia1IFIJQpEyCeHxkCbfBJvxa3TosfDIuUi4OKiq+XQkiaHxYxBw4TX4+UKtwNQSJERi/v8Jj+TVNqLMvwl0iGfknIlCUQORDdHb9G5E294uVvSx9Vr6kY5hnOEi0dzhXx5dALI41ZydSqMAjQbGcfXWXSBwAM4AsjgcACUw9uGoCfWIf2B6
YJjh3ygYtELxWR6TCoFuVBznqO8JkZ6x8fHoJAH7sAe0EijN8fEEctxwod9RIgq4Ea0xTtHa8cwJlrGsCXfRqZG2sdC+T9Gnko6xRch1GMlQ/tEyLkIh0wEDIB6SiVGO7jws3JH+sX8usTLzMSAeC3ZZNgkAm9Kssq2QxbBpCTWh58A35ogqxSidFPiwnBFANBH+mVzykOt48fEbaqmhnRSlKJLcyhAC3Lo8NYlx8X6CjvBVwijgotDvsFVgMfEJ
sHaJRhqbggn8DBS6MC6Jp8B2UndC1wJvIE5gzCBTieISM4lQvAqwgeAUftFBGfYqJLMJ9ViP8QXcBb7M3lJQslGJwf/B0on+fqKxs5FEqEpAKdAPAAgASsADAD5IRgCZwJUAPsBCAJgAy0gd7k9mHpGsspiKE2w3nCmQaRH0vGjyX6DykLBG7Il8idvGLz4LRPKE9rDrtK2gyo50CZhBjtF32pCJKObsYVShXTHc/sv+NJHS/DwAz/oRUf7exQFe
jB+oH9FW8UQSbyoLwfbxAxGO8fFkVmQEicGOHSG6ICzBmQlssgIQGhGMuFyIByjLXoachQnTIB9chZQWgioJ3gjL4ghsr2AsHmCgBpBu+MxIfTzkPK3B+tGvbLNg0WJliSQJPeJGmodeqUjXIv9g0QLblKBJZDHgScOeOQl+iLCAwSSKRBTwa66R4EZYvpGICMUyNfiMuCd4nwFcEgVW3RDGeD+QSdQM+FZJWDFCunZJtv60cMVgCq4mJLEqNsSi
sG2gyQkUCKkJJDYQrtVgGmFR8OWJqESFCepJEphdaDFJakmAyPFJqW5PrsTe2ZJ83omSn6FuRDmyZIjw7vYkZb4RWoMCzT5peMpqHxBbIQVwMAp/wdue3hFZQUwquABGTCnQ1QBKQHF2PACNALZQr4ACevgAI1gp0Heew778Dhj0AxAk/gv0fiicxuygF8FRmudg3QwxlnPxTza+NNcEFtiBamawE2xHUAT84/bcwXvuvMHM/qSh3onISXmWqEkw
iehJHCEe0b/GpcplTGUg9OhPvi3OpOZh3lC82EpablJhSYko0QhI4glk9hxBApFY0YSJbvFB8QKa55Qa/PvOK35O4K2w30xR8VmhZzLtiUOJ9Yn39uFJbBDAZI3kYkHtHG5Jw6KOamRRS2BWSVvxRBBBwgzEfUTjqkqxT4BugndRp9ILSUp8AVoKMNXqu+oKliyqhMnzSQTQJMmM7Lxg0hDNoYHqufCNCWYJdlpGzIQQFfHNieawrYkBgqzJWfGn
4BzJjYkIsPVgLYknoaNRoVqV7nCE/tzX4acEwomcTryxXLEACisJUz7/kBEiWwmi0V8efkhJgcoA3b6SALTuJ1KC4e6WXQCBYfgAYhhZAUc+0gwPqpygPSge+mUQUypRqmqQV5J+GrLx9k7oyafxmMnCKLCunpFssuyixOA5ZPBJQ0FeiUhJ6UwoSSwJevEBiQbxWZ52sU/RABF37nCWoFEXIMigvirMkd/QWaw0AjUBodELAQ7xKYmFlO3AtEm8
EV8BGx5AyRsMZRCOspTRrlKBSYxJYRBZCSOwngnrpN4JLnCy2H5MkUmZBF4hDYotPN5ix5y8cBvxcoQeyYtwXsl3NPWitIGEEt4G1QmBQHEJA8lAZlFgYeBrRBMIq/B+vCoRsQmsSFPJIcKzyb7JjOD+yX2Rkf7CUeyUAToSTGpyZyYSTv5YLh6dUkGB3KAVSihmBpE3gWGBoAn6ctgAak6SwCXACAAUALnA/wLNAMoAowCKpHPcfQqfLqrRe06G
Ms2g3gjMvrZgKuFbIL0g79CFsKBkMZZ/TM2wDcmElHth95EPICdsQvDmQATgrC7uiXaKv1GmsQVhiZEdMRNB1rFwidHJwYmQMKTkYU4kWAIwdZbnLHDRosT91tiJsd6vSVk+Bck+7mAxL8HB8UWJZImM0C3JcMlHpKlS4VARSTwp5YkCEPXJTknqfLPx2YnwiAvxTKqHOA/m0dCf6sDIElBD8XXxI/Fy8U1uuyhg0OK8YyrGeO1eIin/QLMUqmKP
IFp4GaH1IFWJWOj2CZ3xjglqKZKOknBv4ILQXgTmEVnMaKF0IjIp04lFcLOJK4mtCVTJkiklINIp5wCuKYc4y4nIcJ4pO8mCieaBDnaeWHjuQxTk4W6m2pbMsXTgUVquprve9FAQHGw0GsmyiWKx7JCoHM0AmACXiYQA6cCHgG0AzgA5scKOTIClyus+T2brMGqQLuD0vFPA08nwoQ8gwqheqkE4f1SpzlYJ1AnDKAz+Isb0HKUgjMkR5IHqgcl8
wR+RIcnSIk124ckdgbCJINEAUTHJpCl/ySBRm/6pILQxjEGpyZGoVvHarqVg5ElTfn6x7BFkEHewwxFAMQt+6wGgMZsBraqmCQLJFgnHrr0JbMktCXwe9diZmOuQtMlU+vYJ8gkoDEE42MonKZnxzQnnKc6uDAhQoDOwGmBa/ukJBBL/SYMy5qJTDIqQ9tDG6gOJtYl+grmun+Si0Fy0/Nx6yL4hBvbcKQ4I8MlpIcrIvzTC8POC/d78KbDJaKm8
KcLUDMlVkH0p0fFhSd0p3FGEgHXBMQLcSWmq88EL6ESpPSkkqdSpe7DUyfcpujqXjsPJV+Sx6GPJB/i6Kd4JS0o9ZsgwhSDYqYK2Lxj8qQgp0+G8bO+YoqnB7nXRMfYN0euJe6R/8Y6Be/StyozeaISrGjuJtVgX7PZhJdw37FzeiXDA/mjGclFJwU5hp4m7Uh2CmcAh6Fo0QgDw/kpAbAA3gHkS7JAQ/NUAWdD+NnqJHrgucMnoUCaC6FQYVxYp
hKpgKOADIhWh9rCZ6AOiJgkfKf0Jx5H1gehB8Z70CabhpJHm4TrxrCFoSZ/c7Pae3nShO6JxjGFOUjEoMK6xomGbSG1gqwhNltOBfKEsQbnJbxSW4stWR0HVka7xtZGpiobeSUmyrocoAjpFye8pfQkn8Di4Ue78yc0JAwn2ERqpFViBMb96LOFpKcaR4GFwAJLAXYJoQEdMeCiaAJgASAl2vMUwJwADANuRFsnEwerRQ9JZpglYYUygQeQcDtB/
YIq4rODhqdsKlAn6CTYJtAmxqXbR+74a8b5RFRH+UfgpVrFBUffRJ0mddotYFIzHKKQaAx5QUSLAt0AWXgmJR/4Vqdsp3OIB4MwpizGK9vKQpggFoFiKC4mEMEjJNkk25KpSYxBlmOJJZtA3qNZmsfLtKQWgRgkygY7MmGk8EDQJRgmJtr48lOAJKV4S7qbKsPverdFjqY/h+nJ3AI+JISCFwEnQgWFkwoPRs1jYAKyA/Urmyf1JRk7aXFupcpA7
qXO2JkAZmGWq4bB5jCepLxYCSQ7QjrJsoNhKAynbSUMpC7qPqf6JhCmTKfCJ0ylLxv6KYYmbQOcgpGFsoRGohalD1HfqFaAbKaWROcnAaYakybhgadxBJDYdqVcp/akkNlJpagmJeNhKtahOaUxALmlXEaeBJe6lgjW2eoabYtRc14GcekaRtGlMKtnAHQATgCFA7b60qOWcE9o+wF0AE4B9eFAAATKeqYzkctx6YF5o5dCuPlghFSJ/bnQSOKLS
LrqErQajwMtwIYhQUBxm2YkBKe5gQSlIrmrxHonEkTgpEImhyftJYykcYRMpL6lBib2BpCkm7nhJTKHJYdPAlq6usWEgov6D/E7gY3aJiTr8fJ5kXuQGzlLWaZmJTlR4qcMad7CEqSOwcgn9IAoJrykxCTUJnQl/QPUJyGliSdaUaGmhIMWulylnKfzmvbAmSeLQZkmzxE9hVQxLIDtpXo7Y4eTgjhBFYIP4KY6TdFXJGQk1ycxJcKklaRLOqhBQ
ULS+pWqy6tXxd85+JsSpVKmTGjXxDkleCc5J22qZZqipy2m/KXHYEqmDxPDpoDZrRJn6gtAMUXuup2mfKfzmIyA9iedw1wj9iYOoEMky6PaJI4nZCkTpGq5vYDJKnpHbaZjAu2ndCadCNOl9ic5krKlzSeypi0niEmzpJOkc6XypcCmiKX8YRsyJAHzp8dQC6QM0KGmHaZ0oPkKLiW4pgSkRmOiY+GkGCbowb2FCGgrp1WlK6eJEl2lBKawgBeYj
IEuJWuljwMZJ0Gp66UvwfAQa6VVpc4km6bfxAkxHnCqpSODfoTZwtOE4iPTh0wmbiUMWlIiN0XXaViRe6YZY7bLTURfJeO4lSaDkOyGbsEHpHjD2HkTukPaBaZORwrG3yRExYrFzUDeehcAtkrUAUCH8eh8mbUliyEpAsjh4Pv/JxC5XPjbJTuBvZlR48KG6sabwWAh5iRBQJvJg4lamwqgu8MaKIsaOYGUQ6OCqbAhQNtHYEfVp2CkMCfepV9G+
ibrx4ylHSXURnWmzQZPau/bCShVCGxLqbufAeKFZyQhR5mmo0Tsp3wS1aodBwDFEvkcpnOlhvtzpdMnsPs2pGkljGHj00ulYfiVk/yyzScc8IkjUiaJJvOIy6Wfp34QbMDqw9a5YcmYxWgYhCZYpugkq6RepOGkeIVgYdKklCbs0WQgxWK5kCtC1qFBJAjCJChHk5rAUBIjpUUmbsAp407aCks+cshBctifpEkm12Ja+8Klr8M4EIUSM0RYwyRRO
YIxuZsETqFypbSQ8qWPhoCqPIH2iCinCEOXxTYmiyTzJGFK58dhSEvGOEGtsc8l+yYvJyulUCQRpHSlvYU6JA+al0G34pkF/6cUJfEmfNKpgEeC76Nwkr7Au8FCpHYmU6RIZvGwDyfCxdDEFCaIZvEkGfI6CbelVDArOVRrHfoCpf0kIqb+4rekqGR3p+hnd+niqK8AR5KoZnektHKYZNhnmGa7+DDbjbkeG9LEEaj0W3Q7jUa4UcMJkfGsC48yU
XAEZhLTXIVfYIRnCUHZ22JrDkctmPnx4mn+uwKja0T/shfzHJjRpPhEdgoMqSsCYAABARgDeiHI06cA+wJIAdJAowalG48GF6dQi0dDjME0g4TDo4Jhg2X52QGyIMTBtBhzQQAao6QzoFTyHeAPe3cB0JgDApjHyaQ1+bQFNaSMplo6pqYdJ6alL/j0xWal9McZR8cnkQbu60Kh5jMHeyykr2kc8A2C44Ibs9ClSIbiJQiiGfOvpBykGwV9JDamr
poDJSQlRSPv0yKlFyZsBRxm/SUxJ+84wyUtpcBk7McYMsBltyf1h5ilsSYakkul7jr2p/QmJ8aP6jiKCqLJUSinZUPbQo8AFslcoYNBkQqqh9hAl8i0ZpdCsMYYpHSkTia8yKOlC6XoprRnjqA4ZZtA6yHbCU6rS8XTsOiLhIKaJ9GAFYJQYOXhDKBygX263KUTJDymPsMSZScmUlIMw6s4Jqmyp+ro86Ya2e/FGkPSZ5JnUjr0+toEACQze+fSg
LhCE4RZXIZ6B7E7RFmKZ2pa5FqfhFkTJLFeB8enmqZD+S1GJwNqAt4l3AGW6j8yjAI2S5lCJpoaA4JFzAPXK70zvqB5qujrl6SmQIUBpJp24wT6NlNaJOwqYqSKpsM4nQkgpYulgmMTpEukVPJgpUWoNaX3pCZEPqSmpluHEEWppxCldaUvGjJ69aaBREKCrkAouGEqk0o9Y6lwsERRJum5USfkB2xlLgbWpVF5b6WTptokU6QnxvgmFCSnx/5A1
6ePJGMl8oAkJNFFgoK4J8T7/9mYpMOnwKfopCBk1BNnhBfGybMoUrcFTDJkExCRq0hswfyD4OnJslMnt8e/pDfEvkIyplKlMyWSppj7A6YakoOn4Mez6Txlu+HzKF+ifaUCpxhl3QuLpdOkeCSiZjcno6c6ZOwHs6UmhpaFw4RAmRtD0wbzpLpm06aTpMPS66cwgg+oWSdTpp5m7mQpJxAlybKQJ80IrmXeZ/Ol7mRywX2b79gdgykmWIkYGuUiR
1JYQujCjHI+ZP5lGYipJBWYAWWFkQFmPWFqRrLEahluJakgKSKlBdbIxGTDiwz4zDB6IMSkK6CkWNVLuGYW+Hh4OgayIfU5XyVKJwtEWqWgKtpYrgM9MdwBk1q8udwAlMJUkzgD6AFAAguHUqCzuVAqE4OMwEumWkjRu076YOOMo7wC/erQRNpmwKY5JqJk+CdUx1hnt6XoZgKIbSQ2B8akIScHJSml+mRSRkcnsCQ8KRvF5ntpp6uIEsGIUtEa0
QcVqY2gUIX5M6xkR0ZsZa7QpmTWpG+lufnRJxjzk6XWJsKlxdBSJ18RHTkEKtKliGVoZ5zp/GT7kyCQsyXjpxFhfKYEGpBk6IgmCLfLmKfXxqimW6R0oTxjFyBquOJkwmYKpeKpSGZ6I1SmdqnfEiVmIKWKB0lm6GZjhFhnt8ZlZBikoKYJoKrFsssiZ4lkCqVlZyHqVaVZgxukc3BlZG5mSqf4ptVk26fVZ3mmDkQkWaoiptl/s9LEF9Pn0hyHP
EV8E+GqjsobUfgGC0UKxCpkfIes2HLQlMCcA6cAUALUAdVRwAJIARcCviW0ArIBMgL22sAkMoVcJLp71iF+g4zCIUE6UG+ANQakg5eyNEFyI3gatoEAGA5nRcEOZ1PZliRNSxbCNsCp+wIm1fjep59GHvkmpeCmqWUDRqmkdaaDRJClLxg4qcymgzsEgLRATARGoP6ldyJgUc2CmaWHRlEkpic8+jD6pmTZZiv6ZUXuB7CmkiYwQ/ZRA6dmgIOmi
IGDpetxWSWfABqq3iqSA/lmnKX2pPxkHzi4JxIiVme0yEVkqKSCo1WaliVkIQvDPWX4CgJkWKYOZrNlfmRng8QQLNtHgydZSTgCQ8wm1WDbOK3BHhqchpqnHieRZipnTWYnADEDMAHcAAaDskIeA9fzpEq8uJSzDcFZgnFmIDFWKMVhRLoqQ2X7WXp8othB58ZVCPmizSTvpLJl76WbeWKGrUES8bSReBDu+ttEgiR9ZJrHemd9ZvpmD6cMZaZ5s
CZ2mgM6mDtPck+m/emNsFK4xiexAG5AhRByRj0mTaV++02mtbPH4c2kbwZYZ++n+CanxjLjgug5ZMKk02fzZ9W60NK2wS8l9yZPJO/FfkPWi8/AsMLlkuOlU2YFZBOlW6S1ZHilsvsyZxMl+Dh0Zw5bTMqYxBMlc6XbZfg5lGkpITIxwgGAIPdm22W3Z+6EWMBLQqWDD2aU2YcG7yRdkefbahmf0TE6upnEpFnDuMdEsB+FW0K7pR4k1SaBhqRn6
coRA9ABCAPnpMvwcAEkA3bSVABh8mcBVnETGKtGpaSY0GJxROtNUS/BQqJJ+Qalu+FawjyrMbjP8y0np3hKcrZDpYTdAhYGRKP7xgJC9Ga0BO0nDKUlyv1mu0SPpNrGA2cGZPACDvtMZVBF5lMwa4Nn8CcWUUwEvFOuQUwznIGZZu0Ex4PUga+mo2bsZ68FQypIeGhl5COIZgGJSaYeZsTBNQhQwgUmCzjfEpxnT0nIpgJA0GV9kN8HHGWw50Qk6
FvWinOwqEBQIYfEsOZEJIUlnGbJaf9nlRhTBjpnSnr7x2AjVEICQCuwAWbI5yKryORsIkGl+8VyIAfFakXEZeoYoWQZEy9kJwTf00RbKuIjGKRl1SbaWApBsgLeAzy6EAAWgOOCSAOyQBRLO1FQKcoTbYKhU9LxwkKkR/FD4CdHghAlmNqOhMOys0Bqmlcb3kYEgk6j91lk+ajAQOe+RIEoqWX7Z/pmB2Zv2wdlG8QXpoNkkrgfMTc4FaiUxX/yo
lCxQ8NnZyYjZwGlu+MOAqdmUOQYZVxnfafvOF+nJoHpEnOiSzmUJPEk0OV5ZKA6GCDIQ0RKp6KPZdylTaig4YJmuWT34DckuqvQ5RmJG0Ew5qSaWGCBwn5bvqFI5oMagWdyM+Abn6QqOddnmCXhOwfg8iY80AImdLP+wQhqKcEpIDSAcqtQmcxi8iTpJgIkEENUgDW5cCHCAbNDd2NpJPGC6SUKwNdCs0DbQFv6/cjNiiznPmXLpzWCjqmCQeR6S
oNmgC1yXmddpETmVsOq6vZixMEKo/jDKFAeZ4zmMOXYGMIKnwPcx1jQWCeVZsOlo6bQEdkC7rOTcT1ha6qr4dmkCyU5ZQfSF4X4ojLwiID4+Anju8TU5wKn0ECUIMTmZ8GowN+mRmOLQf/rTyahc9LlWcLE5VZkWmK2ZIxhGYh+oAQhROeroXLmMuanmaUnaqf5wQ1I1WovZHT7HyYYU/jE79FvZ7Ip6qc3Rken1AU3RUpkWcAEBAog6uZvZVGn+
Acq5FtBQ4p3cYZJWOXfJTCoNVNaGOElR0KsuasAlwOyQPXonAJtZ0QH62bpgbaILSvGErbwpkFE5bviG7I8IAyBa4YdwBdjOHoLQREClfqswI+6f2dcITiTxzPJZcam+XkHJ4Im7Sc1poyl+iRHJ/1mBiYg54+mwvgi2+EnnFhgJVClI+GeiRzw6sGWqrLKEObWeMeAVEpU5oKriqY1ZmLm8ORHxIMk61D7mj1nAGZaSCMlaOYo5c66TGuLKufH9
IuF4HhDsQgPePblgObP6yFoFVq1scQmdaG/+RxnNuWXJcpAYUiE5R+wrCQUcI2oUqQWUbeqIARu5wsmV8coQkqrUuaw5KQnzOcWYnMn0GVU45rCSqk2pmdkFmdnZZOxRIrQw9mJgud7iOYmNOfPYh5iREHXIl7C/btjJtk63IHjJPLneVJw5+FgUoFzSJZggeSZ4iikscqCprom6XMbq7BlRskpqouzLlELwD0EM6MkRP+IiRnc6d162Zqh59rAe
tvawVdGrOVGp6zmpGhdo4BnoeZE2VdH7OZyg5blyEGyI25RoeYR5mHlCsAkgxxAqiFfClzhsTJR5LHlHUAQQTwANuduMnkkUeac52zn8ifQQlTiqASCO7wgPmQfKpNSduWABK7R7WGXQqLmkWKbpmfCXMiso884wglx57kSY4diKbSm8GdhpIkTYudzEuLlUISc6t1ks2Z3w0BF8oCPYw6Ko6CIZ+NmTmYTZ+DF2eXGu5LlOeQOJnHDz2EkRHsLt
EKS5DnmMuN556fhoGUdp/yzCucGYTnRiuZtua9oyqQ6ZVPqIDI0BgyBvgHie/d7xeVipiXnfhM7gYPKhEA0gUBbJ1t4B0k40Tn3MZGm1FiXatroJWqn+lXnngeFE2QZBcAsQYlFTCRqGrVoQbhEZP8jZSRqIJ+EWcI4SY1myTEqpfjCeHrVY5yakeHm+OujOFMaGikJGOVyUGdZzUpAiMtlpRHqp5rlJ6eeJDwAp0KzATob4AGHAQgD7QAJ6YvI/
hvoASpShiQ/Zm9zoFE+AsIA/YLVgAanI+DUg91i0sFpgROCokcugin7bCnnor1m0IR7ZW0l9GVA5STlQiQdJAdnqWUHZHAkaabSou/ZzlopwBWroiQ+AS7nP7kRelPHJUSzYRDnCoLJstbnMBhfor3mEBN5+dumlpHLZpVQI+SnBjFzsJNnoySmYFsJCvhHu0FAAOwBGAEXAeuC3+sVERuCZwKmMa5GZVk/olSZSiEBonOxqsWFQmXxTDPawsOy3
OJj595HvefE5mvH96T6J/3mtaWmponwIOVMpQNk8AK6RWTmBiukQhyggcONWVvHL4hdOWL7j1AT5/RH9kKWQyPn2EG9qwbGDznWp0gns0p5+1+jIoCTyBp74+aQAwcDwwUT5pPlsMO95fEDiQOAAK0AUIHAAYIJBcdwAUkDQAKiAmQAtcZOI0wAMAIQAL8ndtgmpGUDagDH5sflagJ2CIgDVQF0AG4D6AEaA16krFAn5emgagMn5GQCR+UpZi/aZ
+Un5KfmSwAMZkADYAIn52fkp+Wn5vC6F+ZX5GQDV+UPpYci1+dkAOfn6ABZqsgrN+clpKfmFwF/Gnfmt+ZLAUsAywHVxpZ6FAH35xfllcQHAlXGj+eX5Wfkt+Sn5zsDKwKrA6sCtcfH5M/lF+fX5UQCmTDZxbAAUAKiAStG30GP5GQCHgHKA2/m7+SEAicCCgIyAdCiH+foAp/mswPk8J0Dx+axAjID6gBGaQ4BNuq0kwkl0iF+YzoAXLvqAbTA+
TEZApAEPFgWmofk9eAYAfvmjgAQAwcAGeuJ44dpDODf57fkI2vHJ8fnSgCQA5XEiwHNACLjoBRuAwkAj+SNIJABXZvtAx/nXsWzY2AXcfNSQOpRmyRUAfmHigO2xM0Q9sQwFH3o9gC3gnbEVgH7A98wTsTQFygB0BdaQjAUk0sUBMPFQIGwFodCd+Q350poIGAOAmtarIn7AxYD2wFMuaADUkP9xN7HcALr5pQDYAEQAeAWjsfb5EDBtVEH5FPE6
BaGA3sCfgIHAOgWiBXYAmcAIAB5xIoptVP7UjqkIACQFAPGUuBQgHnGEAIwAm3nY9ooFVaJhAMEArgXb4L1xUEDGwAj+hjRVkTtMSsCuBe4FbACeBVbU4AApiOM8/EzAAGJAIABiQEAAA===
```
%%

View File

@ -0,0 +1 @@
https://support.logi.com/hc/zh-cn/articles/360023416333-%E6%B8%85%E6%B4%81-Logitech-%E8%AE%BE%E5%A4%87

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

View File

@ -687,20 +687,30 @@ Thus, both the load summation method and the constraint method are equivalent.
There are 10 output loads at the tower top / yaw bearing location. 5 of them are the 3 components of tower top force $F_{N a c,R o t}^{o}$ (2 components are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). The 5 other loads are the 3 components of the tower top bending moment, $M_{N a c,R o t}^{B@O}$ (again, 2 components are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). All these loads are given relative to point O as indicated. Note that none of these loads include the effects of the yaw bearing mass (YawBrMass), which would affect the forces but not the moments. The new generalized active force for the equations of motion resulting from these new loads is:
在塔顶/偏航承载位置有10个输出负载。其中5个是塔顶力的3个分量$F_{N a c,R o t}^{o}$ 2个分量以非旋转框架表示2个分量以旋转框架表示1个分量与旋转无关。另外5个负载是塔顶弯矩的3个分量  $M_{N a c,R o t}^{B@O}$ 同样2个分量以非旋转框架表示2个分量以旋转框架表示1个分量与旋转无关。所有这些负载相对于点 O 给出。请注意这些负载不包括偏航承载质量YawBrMass的影响后者会影响力但不影响矩。由于这些新负载导致运动方程中的新广义活动力为
$$
F_{r}\big|_{N a c,R o t}={^{E}\nu_{r}^{o}}\cdot F_{N a c,R o t}^{o}+{^{E}\omega_{r}^{B}}\cdot M_{N a c,R o t}^{B@O}\quad\left(r=l,2,...,22\right)
F_{r}\big|_{N a c,R o t}={^{E}\nu_{r}^{o}}\cdot F_{N a c,R o t}^{o}+{^{E}\omega_{r}^{B}}\cdot M_{N a c,R o t}^{B@O}\quad\left(r=1,2,...,22\right)
$$
This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the tower and platform. Thus,
$$
\begin{array}{r l}&{\left.F_{r}^{*}\right|_{N}F_{r}^{*}\right|_{R}+F_{r}^{*}\Big|_{G}+F_{r}^{*}\Big|_{H}+F_{r}^{*}\Big|_{B I}+F_{r}^{*}\Big|_{B^{2}}F_{r}^{*}\Big|_{A}}\\ &{+F_{r}\Big|_{A e r o b I}+F_{r}\Big|_{A e r o b2}+F_{r}\Big|_{A e r o a l}+F_{r}\Big|_{G r o w N}+F_{r}\Big|_{G r o w H}+F_{r}\Big|_{G r o w M}+F_{r}\Big|_{G r o w B I}+F_{r}\Big|_{G r o w B2}+F_{r}\Big|_{G r o w B2}}\\ &{+F_{r}\Big|_{S p r i n g Y a w}+F_{r}\Big|_{D a r m p Y a w}+F_{r}\Big|_{S p r i n g R F}+F_{r}\Big|_{D a r m p R F}+F_{r}\Big|_{S p r i n g T e e t}+F_{r}\Big|_{D a r m p T e e t}+F_{r}\Big|_{S p r i n g T e r}+F_{r}\Big|_{S p r i n g T e}+F_{r}\Big|_{H}}\\ &{+F_{r}\Big|_{E l a s t i c B}+F_{r}\Big|_{D a r m p B I}+F_{r}\Big|_{E l a s t i c B2}+F_{r}\Big|_{E l a w p B2}+F_{r}\Big|_{E l a s t i c B\cap r e}+F_{r}\Big|_{D a r m D D r i v e}}\end{array}
\begin{aligned}
\left.F_r\right|_{\text {Nac,Rot }}= & \left.\left.F_r^*\right|_N +F_r^*\right|_R+\left.F_r^*\right|_G+\left.F_r^*\right|_H+\left.F_r^*\right|_{\text {B1 }}+\left.\left.F_r^*\right|_{B 2} F_r^*\right|_A \\
& +\left.F_r\right|_{\text {AeroB1 }}+\left.F_r\right|_{\text {AeroB2 }}+\left.F_r\right|_{\text {AeroA }}+\left.F_r\right|_{\text {GravN }}+\left.F_r\right|_{\text {GravR }}+\left.F_r\right|_{\text {GravH }}+\left.F_r\right|_{\text {GravB1 }}+\left.F_r\right|_{\text {GravB2 }}+\left.F_r\right|_{\text {GravA }}+\left.F_r\right|_{\text {Gen }}+\left.F_r\right|_{\text {Brake }}+\left.F_r\right|_{\text {GBFric }} \quad(r=1,2, \ldots, 22) \\
& +\left.F_r\right|_{\text {SpringYaw }}+\left.F_r\right|_{\text {DampYaw }}+\left.F_r\right|_{\text {SpringRF }}+\left.F_r\right|_{\text {DampRF }}+\left.F_r\right|_{\text {SpringTeet }}+\left.F_r\right|_{\text {DampTeet }}+\left.F_r\right|_{\text {SpringTF }}+\left.F_r\right|_{\text {DampTF }} \\
& +\left.F_r\right|_{\text {ElasticB1 }}+\left.F_r\right|_{\text {DampB1 }}+\left.F_r\right|_{\text {ElasticB } 2}+\left.F_r\right|_{\text {DampB } 2}+\left.F_r\right|_{\text {ElasticDrive }}+\left.F_r\right|_{\text {DampDrive }}
\end{aligned}
$$
Since $\varepsilon_{\nu_{r}^{o}}$ and $\varepsilon_{\pmb{\omega}_{r}^{B}}$ are equal to zero unless $r=1,2,...,10$ , the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower top loads (since also, Fr ElasticB1, Fr DampB1, Fr E $\left.\phantom{\frac{1}{\mu_{2}}}\!\!\!,F\right|_{D a m p B2},\left.F\right|_{S p r i n g T e e},\left.F\right|_{D a m p T e e},\left.F\right|_{S p r i n g R F},\left.F\right|_{D a m p R F},\left.F\right|_{S p r i n g T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{P a n p T e}$ SpringYaw, Fr DampYaw, $F_{r}|_{E l a s t i c D r i v e}\,,\;F_{r}|_{D a m p D r i v e}\,,\;F_{r}|_{G e n}\,,\;F_{r}|_{B r a k e}\,;$ , and $F_{r}|_{G B F r i c}$ are equal to zero if $r=1,2,...,10\rangle$ ). So,
Since ${^{E}\nu_{r}^{o}}$ and ${^{E}\omega_{r}^{B}}$ are equal to zero unless $r=1,2,...,10$ , the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower top loads (since also, $F_r^*|_{ElasticB1}, F_r^*|_{DampB1}, F_r^*|_{ElasticB2}$ $\left.\phantom{\frac{1}{\mu_{2}}}\!\!\!,F\right|_{D a m p B2},\left.F\right|_{S p r i n g T e e},\left.F\right|_{D a m p T e e},\left.F\right|_{S p r i n g R F},\left.F\right|_{D a m p R F},\left.F\right|_{S p r i n g T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{P a n p T e}$ SpringYaw, Fr DampYaw, $F_{r}|_{E l a s t i c D r i v e}\,,\;F_{r}|_{D a m p D r i v e}\,,\;F_{r}|_{G e n}\,,\;F_{r}|_{B r a k e}\,;$ , and $F_{r}|_{G B F r i c}$ are equal to zero if $r=1,2,...,10\rangle$ ). So,
$$
\begin{array}{r l}&{\left.F_{r}^{*}\right|_{B I}+F_{r}\right|_{A e r o B I}+F_{r}\big|_{G r a v B I}+F_{r}^{*}\big|_{B I}+F_{r}\big|_{A e r o B2}+F_{r}\big|_{G r a v B2}+F_{r}\big|_{G r a v B2}+F_{r}^{*}\big|_{H}+F_{r}\big|_{G r a v H}+F_{r}^{*}\big|_{R}+F_{r}\big|_{G r a v B}}\\ &{+F_{r}^{*}\big|_{A}+F_{r}\big|_{G r a v A}+F_{r}\big|_{A e r o A}+F_{r}^{*}\big|_{N}+F_{r}\big|_{G r a v N}}\end{array}
\begin{aligned}
\left.F_r\right|_{\text {Nac,Rot }} & =\left.F_r^*\right|_{B 1}+\left.F_r\right|_{\text {AeroB1 }}+\left.F_r\right|_{G r a v B 1}+\left.F_r^*\right|_{B 2}+\left.F_r\right|_{\text {AeroB } 2}+\left.F_r\right|_{G r a v B 2}+\left.F_r^*\right|_H+\left.F_r\right|_{G r a v H}+\left.F_r^*\right|_R+\left.F_r\right|_{G r a v R}+\left.F_r^*\right|_G \quad(r=1,2, \ldots, 10) \\
& +\left.F_r^*\right|_A+\left.F_r\right|_{G r a v A}+\left.F_r\right|_{\text {AeroA }}+\left.F_r^*\right|_N+\left.F_r\right|_{G r a v N}
\end{aligned}
$$
When using the results for the rotor-furl and tail-furl loads, this equation can be simplified as follows:
@ -712,97 +722,120 @@ $$
Thus,
$$
{\bf\mu}_{c,R o t}=^{E}\nu_{r}^{V}\cdot F_{G e n,R o t}^{V}+^{E}\omega_{r}^{N}\cdot M_{G e n,R o t}^{N\omega V}+^{E}\nu_{r}^{W}\cdot F_{T a i l}^{W}+^{E}\omega_{r}^{N}\cdot M_{T a i l}^{N\omega W}-m^{N}\nu_{r}^{U}\cdot\left(^{E}a^{U}+g z_{2}^{U}\right)+\nu_{2}^{U}\cdot F_{T a i l}^{W}
\left.F_r\right|_{\text {Nac,Rot }}={ }^E \boldsymbol{v}_r^V \cdot \boldsymbol{F}_{G e l, R o t}^V+{ }^E \boldsymbol{\omega}_r^N \cdot \boldsymbol{M}_{G e n, \text { Rot }}^{N @ V}+{ }^E \boldsymbol{v}_r^W \cdot \boldsymbol{F}_{\text {Tail }}^W+{ }^E \boldsymbol{\omega}_r^N \cdot \boldsymbol{M}_{\text {Tail }}^{N @ W}-m^{N E} \boldsymbol{v}_r^U \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-{ }^E \boldsymbol{\omega}_r^N \cdot\left(\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N+{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^{\boldsymbol{N}}\right) \quad(r=1,2, \ldots, 10)
$$
$$
\varepsilon_{\nu_{r}^{W}}\cdot F_{r a i l}^{W}+^{\varepsilon}\omega_{r}^{N}\cdot M_{r a i l}^{N\bar{\alpha}W}-m^{N\;E}\nu_{r}^{U}\cdot\left(^{E}a^{U}+g z_{2}\right)-^{E}\omega_{r}^{N}\cdot\left(\overline{{\boldsymbol{I}}}^{N}\cdot^{E}\alpha^{N}+^{E}\omega^{N}\times\overline{{\boldsymbol{I}}}^{N}\cdot^{E}\boldsymbol{\epsilon}_{\omega}\right).
$$
However, $^E\pmb{\omega}_{r}^{N}$ and $^E{\omega}_{r}^{B}$ are all equal when $r$ is constrained to be between 1 and 10. Thus, when grouping like terms:
$$
\cdot F_{\mathit{r a i l}}^{\psi}-m^{^{N}\,^{E}}\nu_{_{r}}^{U}\cdot\left({^{E}a^{U}}+g z_{_{2}}\right)+{^{E}\omega_{_{r}}^{B}}\cdot\left(M_{\mathit{G e n,R o t}}^{\scriptscriptstyle{N}\oplus V}+M_{\mathit{T a i l}}^{\scriptscriptstyle{N}\oplus W}-\overline{{{\overline{{{I}}}}}}\,^{N}\cdot{^{E}a^{N}}-{^{E}\omega^{N}}\times\overline{{{\overline{{{I}}}}}}\,^{N}\cdot{^{E}\omega^{N}}\right)
\left.F_r\right|_{\text {Nac,Rot }}={ }^E \boldsymbol{v}_r^V \cdot \boldsymbol{F}_{G e n, R o t}^{\boldsymbol{V}}+{ }^E \boldsymbol{v}_r^W \cdot \boldsymbol{F}_{\text {Tail }}^W-m^{N E} \boldsymbol{v}_r^U \cdot\left({ }^E \boldsymbol{a}^U+g z_2\right)+{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{G e r, R o t}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right) \quad(r=1,2, \ldots, 10)
$$
Recognizing also that $\begin{array}{r l r l r l r}{^{E}\psi_{r}^{U}=^{E}\psi_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o U}\,,}&{\quad}&{^{E}\psi_{r}^{V}=^{E}\psi_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o V}\,,}&{\quad}&{\mathrm{and}}&{\quad^{E}\psi_{r}^{W}=^{E}\psi_{r}^{O}+^{E}\omega_{r}^{A}\times r^{o V}\,.}\end{array}$ ωrB×rOW , when $\begin{array}{r l r}{r}&{{}=}&{1,2,...,10,}\end{array}$ , this generalized force can be expanded to:
Recognizing also that ${ }^E v_r^U={ }^E v_r^O+{ }^E \omega_r^B \times r^{O U}$ , ${ }^E v_r^V={ }^E v_r^O+{ }^E \omega_r^B \times r^{O V}$ , ${ }^E v_r^W={ }^E v_r^O+{ }^E \omega_r^B \times r^{O W}$, when $\begin{array}{r l r}{r}&{{}=}&{1,2,...,10,}\end{array}$ , this generalized force can be expanded to:
$$
\begin{array}{l}{{\bf\Pi}_{r}=\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\nu}\Bigr)\cdot F_{\epsilon{e n},R o t}^{\gamma}+\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\psi}\Bigr)\cdot F_{\epsilon{u i l}}^{\psi}-m^{N}\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\psi}\Bigr)\cdot\Bigl(^{E}\nu_{r}^{o}\Bigr)\cdot F_{\epsilon{e n},R o t}^{\gamma}}\\ {{\bf\Pi}_{{\bf\Pi}+}=^{E}\omega_{r}^{B}\cdot\Bigl(M_{G e n,R o t}^{N\bar{\omega}V}+M_{T o l l}^{N\bar{\omega}V}-\overline{{I}}^{N}\cdot^{E}\alpha_{r}^{N}-^{E}\omega_{r}^{N}\times\overline{{I}}^{N}\cdot^{E}\omega^{N}\Bigr)}\end{array}
\begin{aligned}
\left.F_r\right|_{\text {Nac, Rot }}= & \left({ }^E \boldsymbol{v}_r^o+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O \boldsymbol{V}}\right) \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+\left({ }^E \boldsymbol{v}_r^O+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O W}\right) \cdot \boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{v}_r^O+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O U}\right) \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right) \\
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{\text {Gen,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \alpha^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
\end{aligned}
$$
Now applying the cyclic permutation law of the scalar triple product:
$$
\begin{array}{r l}{\mathrm{~\boldmath~\sigma~}_{r}=}&{{}^{E}\nu_{r}^{o}\cdot\left[F_{G\!e n,R o t}^{V}+F_{r a i l}^{W}-m^{N}\left({\}^{E}a^{U}+g z_{2}\right)\right]+}\\ {\mathrm{~\boldmath~\sigma~}_{+}=}&{{}^{E}\omega_{r}^{B}\cdot\left(M_{G\!e n,R o t}^{N\!\langle~}+M_{T a i l}^{N\!\langle~}-\overline{{{\cal I}}}^{N}\cdot{\}^{E}a^{N}-{\}^{E}\omega^{N}\times\overline{{{\cal I}}}^{N}\cdot{\}^{E}\omega^{N}\right)}\end{array}
\begin{aligned}
\left.F_r\right|_{\text {Nac,Rot }}= & { }^E \boldsymbol{v}_r^O \cdot\left[\boldsymbol{F}_{\text {Geln,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)\right]+{ }^E \boldsymbol{\omega}_r^B \cdot\left[r^{O \boldsymbol{V}} \times \boldsymbol{F}_{\text {Gel, Rot }}^V+r^{\boldsymbol{OW}} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E \boldsymbol{a}^U+g z_2\right)\right] \quad(r=1,2, \ldots, 10) \\
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{\text {Geln,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
\end{aligned}
$$
which simplifies to:
$$
\begin{array}{r l}{\mathit{\Pi}_{\mathit{c},R o t}}&{\overset{\cdot}{=}\varepsilon_{\nu_{r}}^{\bigstar}\cdot\left[F_{\mathit{G e n},R o t}^{V}+F_{\mathit{T a i l}}^{W}-m^{N}\left(\mathit{\Sigma}^{E}a^{U}+g z_{2}\right)\right]}\\ &{\quad\quad+\ ^{E}\omega_{r}^{B}\cdot\left[M_{\mathit{G e n},R o t}^{N\vec{\omega}\gamma}+M_{\mathit{T a i l}}^{N\vec{\omega}W}+r^{O V}\times F_{\mathit{G e n},R o t}^{V}+r^{O W}\times F_{\mathit{T a i l}}^{W}-m^{N}r^{O U}\times\left(\mathit{\Sigma}^{E}a^{U}+g z_{2}\right)-\mathit{\Pi}_{\mathit{c},R o t}^{I}\right]}\end{array}
\begin{aligned}
\left.F_r\right|_{\text {Nac, Rot }}= & { }^E \boldsymbol{v}_r^O \cdot\left[\boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g z_2\right)\right] \\
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left[\boldsymbol{M}_{\text {Gen,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O \boldsymbol{V}} \times \boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{r}^{O\boldsymbol{W}} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right] \quad(r=1,2, \ldots, 10)
\end{aligned}
$$
Thus it is seen that,
$M_{N a c,R o t}^{B a O}=M_{G e n,R o t}^{N a V}+M_{T a i l}^{N a V}+r^{o V}\times F_{G e n,R o t}^{V}+r^{o W}\times F_{T a i l}^{W}-m^{N}r^{o U}\times\left(^{E}a^{U}+g z_{2}\right)-\overline{{{\cal I}}}^{N}$ ⋅EαNEωN×IN⋅EωN
$$
\boldsymbol{F}_{\text {Nac,Rot }}^O=\boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)
$$
and
$$
F_{_{N a c,R o t}}^{o}=F_{_{G e n,R o t}}^{V}+F_{_{I a i l}}^{W}-m^{N}\left\{\left(\sum_{i=I}^{I I}\varepsilon_{\nu_{i}^{U}}\ddot{q}_{i}\right)\!+\!\left[\sum_{i=J}^{I I}\!\frac{d}{d t}\!\left({^{E}\nu_{i}^{U}}\right)\dot{q}_{i}\right]\!+\!g z_{_{2}}\right\}
\boldsymbol{M}_{\text {Nac,Rot }}^{B @ O}=\boldsymbol{M}_{G e n, R o t}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{G e n, R o t}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E a^U+g z_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \alpha^N-{ }^E \omega^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \omega^N
$$
amdMB@O $\begin{array}{l l}{{\displaystyle M_{G e n,R o t}^{N\vec{\omega}V}+M_{T a i l}^{N\vec{\omega}W}+r^{o V}\times F_{G e n,R o t}^{V}+r^{o W}\times F_{T a i l}^{W}-m^{N}r^{o U}\times\left\{\left(\sum_{i=I}^{I I}\varepsilon_{i}^{_V}\ddot{q}_{i}\right)+\left[\sum_{i=I}^{I I}\frac{d}{d t}\Big(^{_E}\nu_{i}^{U}\Big)\right]\right.}}\\ {{\displaystyle\left.-\overline{{{I}}}^{N}\cdot\left\{\left(\sum_{i=I}^{I I}\varepsilon_{o_{i}^{N}}\ddot{q}_{i}\right)+\left[\sum_{i=I}^{I I}\frac{d}{d t}\Big(^{_{E}}\omega_{i}^{N}\Big)\dot{q}_{i}\right]\right\}-^{E}\omega^{N}\times\overline{{{I}}}^{N}\cdot^{E}\omega^{N}}}}\end{array}$ qi+gz2
Or, $\begin{array}{l}{{F_{N a c,R o t_{r}}^{o}=F_{G e n,R o t_{r}}^{V}+F_{T a i l_{r}}^{W}-m^{N^{\textit{E}}}\pmb{\nu}_{r}^{U}\quad\left(r=I,2,...,22\right)}}\\ {{\phantom{=}}}\\ {{F_{N a c,R o t_{t}}^{o}=F_{G e n,R o t_{t}}^{V}+F_{T a i l_{t}}^{W}-m^{N}\left\{\left[\sum_{i=4}^{I I}\frac{d}{d t}\!\left(^{\textit{E}}\nu_{i}^{U}\right)\dot{q}_{i}\right]\!\!+g z_{2}\right\}}}\end{array}$
and 22
Thus,
$$
\begin{array}{l}{{M_{N a c,R o t_{r}}^{B@O}=M_{G e n,R o t_{r}}^{N@V}+M_{T a l l_{r}}^{N@V}+{r^{o V}}\times F_{G e n,R o t_{r}}^{V}+{r^{o W}}\times F_{T a l l_{r}}^{W}-m^{N}{r^{o U}}\times^{E}\nu_{r}^{U}-\overline{{\overline{{I}}}}^{N}\cdot^{E}\omega,}}\\ {{M_{N a c,R o t_{t}}^{B@O}=M_{G e n,R o t_{t}}^{N@V}+M_{T a l l_{t}}^{N@U}+{r^{o V}}\times F_{G e n,R o t_{t}}^{V}+{r^{o W}}\times F_{T a l l_{t}}^{W}-m^{N}{r^{o U}}\times\left\{\left[\sum_{i=d}^{I I}\frac{d}{d t}\big(^{E}\nu_{i}^{U}\big)\phi_{i}^{2}-m^{N}\right]\right\}.}}\end{array}
\boldsymbol{F}_{\text {Nac,Rot }}^o=\boldsymbol{F}_{\text {Gen,Rot }}^{\boldsymbol{V}}+\boldsymbol{F}_{\text {Tail }}^{\boldsymbol{W}}-m^N\left\{\left(\sum_{i=1}^{11}{ }^E \boldsymbol{v}_i^U \ddot{q}_i\right)+\left[\sum_{i=4}^{11} \frac{d}{d t}\left(\boldsymbol{v}^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g \boldsymbol{z}_2\right\}
$$
qi+gz2IN $\sum_{i=7}^{I I}\frac{d}{d t}\Big(^{E}\pmb{\omega}_{i}^{N}\Big)\dot{q}_{i}$ EωN×I ω
and
$$
\begin{aligned}
& \boldsymbol{M}_{\text {Nac,Rot }}^{\text {B@O }}=\boldsymbol{M}_{\text {Geln,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{\text {N@W }}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{\text {Gel, Rot }}^V+\boldsymbol{r}^{OW} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left\{\left(\sum_{i=1}^{11}{ }^E \boldsymbol{v}_i^U \ddot{q}_i\right)+\left[\sum_{i=4}^{11} \frac{d}{d t}\left({ }^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g z_2\right\} \\
& -\overline{\overline{\boldsymbol{I}}}^N \cdot\left\{\left(\sum_{i=4}^{11}{ }^E \boldsymbol{\omega}_j^N \ddot{q}_i\right)+\left[\sum_{i=7}^{11} \frac{d}{d t}\left({ }^E \boldsymbol{\omega}_i^N\right) \dot{q}_i\right]\right\}-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N
\end{aligned}
$$
Or,
$$
\begin{array}{l}{{F_{N a c,R o t_{r}}^{o}=F_{G e n,R o t_{r}}^{V}+F_{T a i l_{r}}^{W}-m^{N^{\textit{E}}}\pmb{\nu}_{r}^{U}\quad\left(r=I,2,...,22\right)}}\\ {{\phantom{=}}}\\ {{F_{N a c,R o t_{t}}^{o}=F_{G e n,R o t_{t}}^{V}+F_{T a i l_{t}}^{W}-m^{N}\left\{\left[\sum_{i=4}^{I I}\frac{d}{d t}\!\left(^{\textit{E}}\nu_{i}^{U}\right)\dot{q}_{i}\right]\!\!+g z_{2}\right\}}}\end{array}
$$
and
$$
\boldsymbol{M}_{\text {Nac, Rot }_r}^{B @ O}=\boldsymbol{M}_{G e n, R o t_r}^{\text {N@V }}+\boldsymbol{M}_{\text {Tail }_r}^{N @ W}+\boldsymbol{r}^{O \boldsymbol{V}} \times \boldsymbol{F}_{G e l, R o t_r}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tailt}}^W-m^N r^{O U} \times{{ }^E \boldsymbol{v_r}^U} - \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \omega_r^N\quad\left(r=I,2,...,22\right)
$$
$$
\boldsymbol{M}_{\text {Nac, Rot }_t}^{B @ O}=\boldsymbol{M}_{G e n, R o t_t}^{\text {N@V }}+\boldsymbol{M}_{\text {Tail }_t}^{N @ W}+\boldsymbol{r}^{o \boldsymbol{V}} \times \boldsymbol{F}_{G e l, R o t_t}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tailt}}^W-m^N r^{O U} \times\left\{\left[\sum_{i=4}^{I I} \frac{d}{d t}\left({ }^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g z_2\right\}-\overline{\overline{\boldsymbol{I}}}^N \cdot\left[\sum_{i=7}^{I I} \frac{d}{d t}\left({ }^E \boldsymbol{\omega}_i^N\right) \dot{q}_i\right]-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N
$$
The output loads are as follows,
$Y a w B r F x n=F_{N a c,R o t}^{o}\cdot d_{I}\ I,O O O$
$Y a w B r F y n=-F_{N a c,R o t}^{o}\cdot d_{s}\it{//}\it{I,O O O}$
$Y a w B r F x p=F_{N a c,R o t}^{o}\cdot b_{I}\ensuremath{\,/\,}l,000$
$Y a w B r F y p=-F_{N a c,R o t}^{o}\cdot b_{3}\it{//}\it{I},O O O$
$Y a w B r F z n=Y a w B r F z p=F_{_{N a c,R o t}}^{o}\cdot d_{_{2}}\ I,000=F_{_{N a c,R o t}}^{o}\cdot b_{_{2}}I,000$
$Y a w B r M x n=M_{N a c,R o t}^{B@O}\cdot d_{I}\ I,O O O$
$Y a w B r F x n=F_{N a c,R o t}^{o}\cdot d_{1}\ 1000$ Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN)
$Y a w B r F y n=-F_{N a c,R o t}^{o}\cdot d_3/1000$ Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN)
$Y a w B r F x p=F_{N a c,R o t}^{o}\cdot b_{1}/1000$ Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN)
$Y a w B r F y p=-F_{N a c,R o t}^{o}\cdot b_{3}/1000$ Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN)
$Y a w B r F z n=Y a w B r F z p=F_{_{N a c,R o t}}^{o}\cdot d_2/1000=F_{_{N a c,R o t}}^{o}\cdot b_2/1000$ Yaw bearing axial force (directed along the zn-/zp-axis), (kN)
$Y a w B r M x n=M_{N a c,R o t}^{B@O}\cdot d_1/1000$ Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), $\left(\mathrm{kN}\mathrm{\cdot}\mathrm{m}\right)$
Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN) Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN) Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN) Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN) Yaw bearing axial force (directed along the zn-/zp-axis), (kN) Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), $\left(\mathrm{kN}\mathrm{\cdot}\mathrm{m}\right)$
$Y a w B r M y n=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot\mathbf{d_{3}}\left/\mathit{I},000$ $Y a w B r M x p=M_{N a c,R o t}^{B@O}\cdot b_{I}\;/\;I,O O O$ $Y a w B r M y p=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot b_{3}\mathit{/1},000$
Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), $(\mathrm{kN}\!\cdot\!\mathrm{m})$ Nonrotating yaw bearing roll moment (about the xp-axis), $(\mathrm{kN\cdotm})$ Nonrotating yaw bearing pitch moment (about the yp-axis), (kN·m)
$Y a w B r M y n=M_{N a c,R o t}^{B@O}\cdot d_3/1000$ Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), (kN·m)
$Y a w B r M x p=M_{N a c,R o t}^{B@O}\cdot b_1/1000$ Nonrotating yaw bearing roll moment (about the xp-axis), (kN·m)
$Y a w B r M y p=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot b_{3}/1000$ Nonrotating yaw bearing pitch moment (about the yp-axis), (kN·m)
$Y a w B r M z n=Y a w B r M z p=M_{N a c,R o t}^{B@O}\cdot d_2/1000=M_{N a c,R o t}^{B@O}\cdot b_2/1000$ Yaw bearing yaw moment (about the zn-/zp-axis), (kN·m)
$$
Y a w B r M z n=Y a w B r M z p=M_{\scriptscriptstyle N a c,R o t}^{\scriptscriptstyle B@O}\cdot d_{\scriptscriptstyle2}\slash{I,00O}=M_{\scriptscriptstyle N a c,R o t}^{\scriptscriptstyle B@O}\cdot b_{\scriptscriptstyle2}\slash{I,00O}
$$
Yaw bearing yaw moment (about the zn-/zp-axis), (kN·m)
Like the LSShftTq, LSSTipMza, RFrlBrM, and TFrlBrM, it is noted that the yaw bearing yaw moment can be computed differently using the yaw drive spring and damper, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows. First of all, the equation above is equivalent to saying:
$$
\begin{array}{l}{{\imath\nu{\cal B}r{\cal M}z n={}^{E}{\omega}_{Y a w}^{N}\cdot M_{N a c,R a t}^{B@O}\ /\ I,000}}\\ {{\vdots}}\\ {{{\imath\nu{\cal B}r{\cal M}z n={}^{E}{\omega}_{Y a w}^{N}\cdot\bigg[{\cal M}_{G e n,R a t}^{N\ @V}+{\cal M}_{T a i l}^{N\ @V}+{r}^{O V}\times{\cal F}_{G e n,R a t}^{V}+{r}^{O W}\times{\cal F}_{T a i l}^{W}-m^{N}r^{O U}\times\left({}^{E}a^{U}+g e n^{E}a^{U}\right)\bigg]}}\end{array}
$$O Y
)IN⋅EαNEωN×IN⋅EωN/ 1,000
\text { YawBrMzn }={ }^E \omega_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Nac,Rot }}^{B @ O} / 1,000
$$Or,
$$
\text { YawBrMzn }={ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left[\boldsymbol{M}_{G e n, \text { Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{r}^{\boldsymbol{O W}} \times \boldsymbol{F}_{\text {Tail }}^{\boldsymbol{W}}-m^N \boldsymbol{r}^{O U} \times\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right] / 1,000
$$
Now applying the cyclic permutation law of the scalar triple product:
$$
\imath=\left[\begin{array}{c}{E_{\omega_{Y a w}^{N}}\times r^{O V}\cdot F_{\epsilon\omega,R o n}^{V}+^{E}\omega_{Y a w}^{N}\times r^{O W}\cdot F_{T a i l}^{W}-m^{N\,E}\omega_{Y a w}^{N}\times r^{O U}\cdot\left(^{E}a^{U}+g z_{2}\right)}\\ {+\;^{E}\omega_{Y a w}^{N}\cdot\left(M_{G e n,R o t}^{N\bar{\omega}V}+M_{T a i l}^{N\bar{\omega}W}-\overline{{{I}}}\,^{N}\cdot^{E}a^{N}-^{E}\omega^{N}\times\overline{{{I}}}\,^{N}\cdot^{E}\omega^{N}\right)}\end{array}\right]/\,I,000
\text { YawBrMzn }=\left[\begin{array}{c}
{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O V}} \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O W}} \cdot \boldsymbol{F}_{\text {Tail }}^W-m^{N E} \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O U}} \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right) \\
+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left(\boldsymbol{M}_{\text {Gen,Rot }}^{\text {NaV }}+\boldsymbol{M}_{\text {Tail }}^{\text {N@W }}-\overline{\overline{\boldsymbol{I}}}^{\boldsymbol{N}} \cdot{ }^E \boldsymbol{\alpha}^{\boldsymbol{N}}-{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
\end{array}\right] / 1,000
$$
Recognizing also that ${}^{E}{\nu}_{Y a w}^{U}={}^{E}{\omega}_{Y a w}^{N}\times r^{O U}$ ${}^{E}{\nu}_{{\scriptscriptstyle Y a w}}^{V}={}^{E}{\omega}_{{\scriptscriptstyle Y a w}}^{N}\times{r}^{O V}$ and ${}^{E}{\nu}_{Y a w}^{W}={}^{E}{\omega}_{Y a w}^{N}\times r^{O W}$ , this can be expanded as follows:
$Y a w B r M z n=\Bigg[^{E}\nu_{Y a w}^{V}\cdot F_{\epsilon\epsilon_{n},R o t}^{V}+^{E}\omega_{Y a w}^{N}\cdot M_{G e n,R o t}^{N\vec{\omega}V}+^{E}\nu_{Y a w}^{W}\cdot F_{T a i l}^{W}+^{E}\omega_{Y a w}^{N}\cdot M_{T a i l}^{N\vec{\omega}W}-m^{N}\boldsymbol{\varepsilon}_{V a p}^{W}\cdot\boldsymbol{\nu}_{X a w}^{T}\Bigg]$ vYUaw⋅(EaU+gz2)EωYNaw⋅(IN⋅EαN+EωN×IN⋅EωN)/ 1,000
$\text { YawBrMzn }=\left[{ }^E \boldsymbol{v}_{\text {Yaw }}^V \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Gen,Rot }}^{\text {NaV }}+{ }^E \boldsymbol{v}_{\text {Yaw }}^W \cdot \boldsymbol{F}_{\text {Tail }}^W+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Tail }}^{\text {N@W }}-m^{N{ }^E} \boldsymbol{v}_{\text {Yaw }}^U \cdot\left({ }^E \boldsymbol{a}^{\boldsymbol{U}}+g \boldsymbol{z}_2\right)-{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left(\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^{\boldsymbol{N}}+{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^{\boldsymbol{E}} \boldsymbol{\omega}^{\boldsymbol{N}}\right)\right] / 1,000$
or,
$Y a w B r M z n=\left(F_{Y a w}\big|_{R o t o r}+F_{Y a w}\big|_{T a i l}+F_{Y a w}^{*}\big|_{N}+F_{Y a w}\big|_{G r a v N}\right)/\,l,000$
$\text { YawBrMzn }=\left(\left.F_{\text {Yaw| }}\right|_{\text {Rotor }}+\left.F_{\text {Yaw }}\right|_{\text {Tail }}+\left.F_{\text {Yaw }}^*\right|_N+\left.F_{\text {Yaw}}\right|_{\text {GravN }}\right) / 1,000$
$$
3r M z n=\left(\begin{array}{c}{F_{Y a w}^{*}\Big|_{N}+F_{Y a w}^{*}\Big|_{R}+F_{Y a w}^{*}\Big|_{G}+F_{Y a w}^{*}\Big|_{H}+F_{Y a w}^{*}\Big|_{B I}+F_{Y a w}^{*}\Big|_{B2}+F_{Y a w}^{*}\Big|_{A}+F_{Y a w}^{*}\Big|_{A e r o\theta B I}+F_{Y a w}}\\ {+F_{Y a w}\Big|_{G r a v N}+F_{Y a w}\Big|_{G r a v N}+F_{Y a w}\Big|_{G r a v H}+F_{Y a w}\Big|_{G r a v B I}+F_{Y a w}\Big|_{G r a v B2}+F_{Y a w}\Big|_{G r a v B2}}\end{array}\right)
@ -811,14 +844,14 @@ $$
From the equations of motion, it is easily seen that this is equivalent to saying:
$$
Y a w B r M z n=\left(-\left.F_{Y a w}\right|_{S p r i n g Y a w}-\left.F_{Y a w}\right|_{D a m p Y a w}\right)/\left.I,000
\text { YawBrMzn }=\left(-\left.F_{\text {Yav }}\right|_{\text {SpringYav }}-\left.F_{\text {Yav }}\right|_{\text {DampYavv }}\right) / 1,000
$$
and thus,
Y $\iota\boldsymbol{w B r M z n}=\left[Y a w S p r\left(q_{\gamma_{a w}}-Y a w N e u t\right)+Y a w D a m p\cdot\dot{q}_{\gamma_{a w}}\right]/I,000\qquad\qquad(=M_{N a c,R o m p}^{B a o})$ ⋅d2/ 1,000)
$\text { YawBrMzn }=\left[\operatorname{YawSpr}\left(q_{\text {Yaw }}-\operatorname{YawNeut}\right)+\operatorname{YawDamp} \cdot \dot{q}_{\text {Yav }}\right] / 1,000 \quad\left(=\boldsymbol{M}_{\text {Nac,Rot }}^{\text {B@O }} \cdot \boldsymbol{d}_2 / 1,000\right)$
Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate YawBrMzn if various DOFs are disabled, it is best just to use $M_{N a c,R o t}^{B@O}\cdot{d_{2}}\,/\,I,O O O$ , which will always work.
Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate YawBrMzn if various DOFs are disabled, it is best just to use $\boldsymbol{M}_{\mathrm{Nac}, \mathrm{Rot}}^{\mathrm{B@O}} \cdot \boldsymbol{d}_2 / 1,000$ , which will always work.
# Tower Base Loads:

View File

@ -1,9 +1,9 @@
{
"nodes":[
{"id":"4b7faf7953451d56","x":-140,"y":-160,"width":250,"height":60,"type":"text","text":"1、debug转速"},
{"id":"24b6d0ae8c62a4eb","x":-140,"y":-20,"width":250,"height":80,"type":"text","text":"2、Kane原理理解\n- 模态叠加法理解"},
{"id":"d0a44ee1cb295fda","x":-140,"y":120,"width":250,"height":100,"type":"text","text":"3、增加自由度对应的广义主动力、惯性力如何推导"},
{"id":"e52009c9149e427f","x":160,"y":-160,"width":250,"height":60,"type":"text","text":"模块稳定性"}
{"id":"4b7faf7953451d56","type":"text","text":"1、debug转速","x":-140,"y":-160,"width":264,"height":60},
{"id":"24b6d0ae8c62a4eb","type":"text","text":"2、Kane原理理解\n- 模态叠加法理解","x":-140,"y":-20,"width":264,"height":80},
{"id":"d0a44ee1cb295fda","type":"text","text":"3、增加自由度对应的广义主动力、惯性力如何推导","x":-140,"y":120,"width":264,"height":100},
{"id":"e52009c9149e427f","type":"text","text":"模块稳定性","x":176,"y":-160,"width":264,"height":60}
],
"edges":[
{"id":"2a6d49446576cbc8","fromNode":"4b7faf7953451d56","fromSide":"right","toNode":"e52009c9149e427f","toSide":"left"}

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.0 KiB

View File

@ -0,0 +1,21 @@
# array2 debug
![[Pasted image 20250123103518.png]]
aug_mat矩阵大小600
012-24 表示矩阵第0行12-24列数据
例:
```rust
    let matrix: Array2<f64> = array![
        [1.0, 2.0, 3.0],
        [4.0, 5.0, 6.0],
        [7.0, 8.0, 9.0]
    ];
```
![[Pasted image 20250123103848.png]]

View File

@ -0,0 +1,13 @@
机舱偏航
FAST 可以通过将 YawDOF 设置为 True 并将偏航弹簧常数YawSpr和偏航阻尼常数YawDamp设为零来模拟机舱偏航作为一个完美的铰链没有抗力。您还可以通过将 YawDamp 设置为非零值来模拟具有偏航阻尼的自由偏航装置。
对于指令偏航位置保持不变的偏航驱动涡轮机,可以通过将 YawDOF 设置为 True、YCMode 设置为 0并将 YawSpr 和 YawDamp 设为非零值来模拟偏航驱动装置中的柔性和阻尼。FAST 将使用输入参数 YawNeut 作为中性偏航位置即恒定偏航指令NacYaw 作为初始偏航角度。在这种情况下,通过偏航承载传递的力矩 YawMom 是:
$$
\text{YawMom} = \text{YawSpr} \cdot (\text{YawPos} - \text{YawNeut}) + \text{YawDamp} \cdot \text{YawRate}
$$
其中 YawPos 为即时偏航位置。
对于固定偏航模拟,将 YawDOF 设置为 False、YCMode 设置为 0、TYawManS 大于 TMax并将 NacYaw 设为固定机舱偏航角度。
您还可以在仿真过程中主动控制机舱偏航运动。有关主动偏航控制选项的信息,请参阅控制章节中的“机舱偏航控制”部分。

View File

@ -0,0 +1,260 @@
# 惯性坐标系 xi yi zi
- Origin The point about which the translational motions of the support platform (surge,
sway, and heave) are defined.
- xi axis Pointing in the nominal (0°) downwind direction.
- yi axis Pointing to the left when looking in the nominal downwind direction.
- zi axis Pointing vertically upward opposite to gravity.
- 平台不运动时与xt yt zt相同
![[Pasted image 20250120111003.png]]
## 代码中
z1 = xi
z2 = zi
z3 = -yi
![[Pasted image 20250120111631.png]]
```rust
    coord_sys.z1 = Array1::from_vec(vec![1.0, 0.0, 0.0]); //Vector / direction z1 (=  xi from the IEC coord. system).
    coord_sys.z2 = Array1::from_vec(vec![0.0, 1.0, 0.0]); //Vector / direction z2 (=  zi from the IEC coord. system).
    coord_sys.z3 = Array1::from_vec(vec![0.0, 0.0, 1.0]); //Vector / direction z3 (= -yi from the IEC coord. system).
```
# tower base/platform 坐标系
Origin Intersection of the center of the tower and the tower base connection to the support platform.
xt axis When the support platform has no pitch or yaw displacement, it is aligned with the xi axis (pointing horizontally in the nominal downwind direction).
yt axis When the support platform has no roll or yaw displacement, it is aligned with the yi axis (pointing to the left when looking in the nominal downwind direction).
zt axis Pointing up from the center of the tower.
![[Pasted image 20250120111003.png]]
## 代码中
a1 = xt
a2 = zt
a3 = -yt
```rust
    coord_sys.a1 = trans_mat[[0, 0]] * &coord_sys.z1 + trans_mat[[0, 1]] * &coord_sys.z2 + trans_mat[[0, 2]]  * &coord_sys.z3; // Vector / direction a1 (=  xt from the IEC coord. system).
    coord_sys.a2 = trans_mat[[1, 0]] * &coord_sys.z1 + trans_mat[[1, 1]] * &coord_sys.z2 + trans_mat[[1, 2]]  * &coord_sys.z3; // Vector / direction a2 (=  zt from the IEC coord. system).
    coord_sys.a3 = trans_mat[[2, 0]] * &coord_sys.z1 + trans_mat[[2, 1]] * &coord_sys.z2 + trans_mat[[2, 2]]  * &coord_sys.z3; // Vector / direction a3 (= -yt from the IEC coord. system).
```
# 塔架节点坐标系
t1 t2 t3**基于a1 a2 a3 加上塔架节点变形角度** 计算得到
# Tower-top/base-plate
![[Pasted image 20250120112122.png]]
加上塔顶变形
Origin A point on the yaw axis at a height of TowerHt above ground level [onshore or
mean sea level [offshore] (see Figure 14(a), Figure 16, or Figure 20).
xp axis When the tower is not deflected, it is aligned with the xt axis.
yp axis When the tower is not deflected, it is aligned with the yt axis.
zp axis When the tower is not deflected, it is aligned with the zt axis. It is also the yaw axis.
## 代码中
b1 = xp
b2 = zp
b3 = -yp
# Nacelle/Yaw Coordinate System
在p坐标系基础上加变桨角度
![[Pasted image 20250120141307.png]]
This coordinate system translates and rotates with the top of the tower, plus it yaws with the nacelle.
Origin The origin is the same as that for the tower-top/base-plate coordinate system.
xn axis Pointing horizontally toward the nominally downwind end of the nacelle.
yn axis Pointing to the left when looking toward the nominally downwind end of the nacelle.
zn axis Coaxial with the tower/yaw axis and pointing up.
## 代码中
d1 = xn
d2 = zn
d3 = -yn
```rust
    // Nacelle / yaw coordinate system:
    c_nac_yaw = (x.qt[DOF_YAW as usize - 1]).cos();
    s_nac_yaw = (x.qt[DOF_YAW as usize - 1]).sin();
    coord_sys.d1 = c_nac_yaw * &coord_sys.b1 - s_nac_yaw* &coord_sys.b3; // Vector / direction d1 (=  xn from the IEC coord. system).
    coord_sys.d2 = coord_sys.b2.clone();                                        // Vector / direction d2 (=  xn from the IEC coord. system).
    coord_sys.d3 = s_nac_yaw * &coord_sys.b1 + c_nac_yaw* &coord_sys.b3; // Vector / direction d3 (=  xn from the IEC coord. system).
```
# rotor-furl 坐标系 后续删掉
# 主轴坐标系 Shaft Coordinate System
The shaft coordinate system does not rotate with the rotor, but it does translate and rotate with the tower and it yaws with the nacelle and furls with the rotor.
The nacelle inertial measurement unit uses this coordinate system for all of its motion outputs. Shaft bending moments at the hub and at the position denoted by ShftGagL use this coordinate system or the rotating hub coordinate system shown below.
机舱惯性、主轴弯曲 tilt
![[Pasted image 20250120141352.png]]
Origin Intersection of the yn-/zn-plane and the rotor axis.
xs axis Pointing along the (possibly tilted) shaft in the nominally downwind direction.
ys axis Pointing to the left when looking from the tower toward the nominally downwind end of the nacelle.
zs axis Orthogonal with the xs and ys axes such that they form a right-handed coordinate system.
c1=xs
c2=zs
c3=-ys
# 方位角坐标系统 azimuth coordinate system
e1 e2 e3
The azimuth, or a, coordinate system is located **at the origin of the shaft coordinate system**, but it rotates with the rotor. When Blade 1 points up, the azimuth and shaft coordinate systems are parallel. For three bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2-1-repeat.
方位角坐标系或称为“a”坐标系位于**主轴坐标系的原点,但随着转子旋转而旋转****。当叶片1指向上方时方位角和轴坐标系是平行的。对于三叶转子叶片3在叶片2之前叶片2在叶片1之前因此通过给定方位角的叶片顺序为3-2-1-重复。
e1 e2 e3在c1 c2 c3的基础上加上 DOF_DRTR DOF_GEAZ的角度
```rust
// 方位角坐标系统 azimuth coordinate system
c_azimuth = (x.qt[DOF_DRTR as usize - 1] + x.qt[DOF_GEAZ as usize -1]).cos();
s_azimuth = (x.qt[DOF_DRTR as usize - 1] + x.qt[DOF_GEAZ as usize -1]).sin();
coord_sys.e1 = coord_sys.c1.clone();  // Vector / direction e1 (equivalent to xa from the IEC coordinate system)
coord_sys.e2 = c_azimuth * &coord_sys.c2 + s_azimuth * &coord_sys.c3;  // Vector / direction e2 (equivalent to ya from the IEC coordinate system)
coord_sys.e3 = -s_azimuth * &coord_sys.c2 + c_azimuth * &coord_sys.c3;  // Vector / direction e3 (equivalent to za from the IEC coordinate system)
```
# teeter 坐标系 用于两叶片 后续可以删掉
f1=e1
f2 = e2
f3 = e3
# hub / delta-3 coordinate system:
The hub coordinate system **rotates with the rotor.** It also teeters in two-bladed models.
**Origin Intersection of the rotor axis and the plane of rotation (non-coned rotors) or the apex of the cone of rotation (coned rotors).**
原点在轮毂
xh axis Pointing along the hub centerline in the nominal downwind direction.
yh axis Orthogonal with the xh and zh axes such that they form a right-handed coordinate system.
zh axis Perpendicular to the hub centerline with the same azimuth as Blade 1.
![[Pasted image 20250120142238.png]]
g1 = xh
g2 = yh
g3 = zh
**这里变了不再是2对应z方向**
默认 cos_del3 = 1.0 sin_del3=0.0
g1 = f1
g2 = f2
g3 = f3
```rust
// Hub / delta-3 coordinate system:
    coord_sys.g1 = coord_sys.f1.clone();                                            // Vector / direction g1 (= xh from the IEC coord. system)
    coord_sys.g2 = p.cos_del3 * &coord_sys.f2 + p.sin_del3 * &coord_sys.f3;  // Vector / direction g2 (= yh from the IEC coord. system)
    coord_sys.g3 = -p.sin_del3 * &coord_sys.f2 + p.cos_del3 * &coord_sys.f3; // Vector / direction g3 (= zh from the IEC coord. system)
```
# 锥角坐标系 Coned Coordinate Systems
i1 i2 i3
There is a coned coordinate system for each blade that rotates with the rotor. The coordinate system does not pitch with the blades and it also teeters in two bladed models. For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2- 1-repeat.
Origin The origin is the same as that for the hub coordinate system.
Xc,i axis Orthogonal with the yc,i and zc,i axes such that they form a right-handed coordinate system. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
Yc,i axis Pointing towards the trailing edge of blade i if the pitch and twist were zero and parallel with the chord line. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
Zc,i axis Pointing along the pitch axis towards the tip of blade i. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
加入锥角原点与hub坐标系相同 三个叶片,有三组
i1[k, ..] = xck
i2[k, ..] = yck
i3[k, ..] = zck
![[Pasted image 20250120144724.png]]
先把轮毂坐标系根据方位角,变换到每个叶片,再处理锥角
```rust
    for k in 0..p.num_bl as usize{
        g_rot_ang = p.two_pi_nb * (k as f64);
        c_g_rot_ang = g_rot_ang.cos();
        s_g_rot_ang = g_rot_ang.sin();
        g1_prime = coord_sys.g1.clone();
        g2_prime = c_g_rot_ang * &coord_sys.g2 + s_g_rot_ang * &coord_sys.g3;
        g3_prime = -s_g_rot_ang * &coord_sys.g2 + c_g_rot_ang * &coord_sys.g3;
        // coned coordinate system
        coord_sys.i1.slice_mut(s![k, ..]).assign(&(p.cos_pre_c[k] * &g1_prime - p.sin_pre_c[k] * &g3_prime)); // i1(K,:) = vector / direction i1 for blade K (=  xcK from the IEC coord. system).
        coord_sys.i2.slice_mut(s![k, ..]).assign(&(g2_prime.clone()));  // i2(K,:) = vector / direction i2 for blade K (=  ycK from the IEC coord. system).
        coord_sys.i3.slice_mut(s![k, ..]).assign(&(p.sin_pre_c[k] * &g1_prime + p.cos_pre_c[k] * &g3_prime)); // i3(K,:) = vector / direction i3 for blade K (=  zcK from the IEC coord. system).
}
```
# 叶片坐标系 Blade Coordinate Systems
j1 j2 j3
These coordinate systems are the same as the coned coordinate systems, except that they pitch with the blades and their origins are at the blade root. For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2-1-repeat.
Origin Intersection of the blades pitch axis and the blade root. xb,i axis Orthogonal with the yb and zb axes such that they form a right-handed coordinate system. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
yb,i axis Pointing towards the trailing edge of blade i and parallel with the chord line at the zero-twist blade station. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
zb,i axis Pointing along the pitch axis towards the tip of blade i. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
原点位于叶根,在锥角坐标系基础上加入变桨角
j1[k, ..] = xbk
j2[k, ..] = ybk
j3[k, ..] = zbk
![[Pasted image 20250120155301.png]]
# 叶素节点坐标系
n1 n2 n3
m1 m2 m3 不包含叶根 叶尖节点
## 问题:
- p.c_theta_s
- p.s_theta_s
- p.twisted_sf是什么
- n1 n2 n3的计算公式
- m1 m2 m3的意义
# tail-furl 坐标系统 删掉

View File

@ -0,0 +1,83 @@
# yaw
p.dofs.ptte // Array of tower DOF indices contributing to QD2T-related linear accelerations of the tower nodes (point T)
npte 塔架 Number of DOFs contributing to QD2T-related linear accelerations of the tower nodes (point T) 计数漂浮式基础自由度+塔架自由度
nptte // Number of **tower DOFs** contributing to QD2T-related linear accelerations of the tower nodes (point T)
```rust
    for l in 0..p.dofs.nptte as usize{
        // Loop through all active (enabled) tower DOFs that contribute to the QD2T-related linear accelerations of the yaw bearing (point O)
        for i in l..p.dofs.nptte as usize{
            // Loop through all active (enabled) tower DOFs greater than or equal to L
            //   [C(q,t)]T of YawBrMass
            aug_mat[[p.dofs.ptte[i] as usize - 1, p.dofs.ptte[l] as usize - 1]] = p.yaw_br_mass *
                                                                    dot_product(&rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[i] as usize -1, 0, ..]).to_owned(),
                                                                                &rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[l] as usize -1, 0, ..]).to_owned());
            // println!("{}",aug_mat[[p.dofs.ptte[i] as usize - 1, p.dofs.ptte[l] as usize - 1]]);
            // println!("{}",p.dofs.ptte[i]);
            // println!("{}",p.dofs.ptte[l]);
        }
    }
    tmpvec1 = -p.yaw_br_mass * (p.gravity * coord_sys.z2.clone() + rt_hs.lin_acc_eot.clone());
    for i in 0..p.dofs.nptte as usize{
        // {-f(qd,q,t)}T + {-f(qd,q,t)}GravT of YawBrMass
        aug_mat[[p.dofs.ptte[i] as usize - 1, p.naug as usize - 1]] = dot_product(&rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[i] as usize -1, 0, ..]).to_owned(), &tmpvec1);
        // println!("{}",aug_mat[[p.dofs.ptte[i] as usize - 1, p.naug as usize - 1]]);
        // println!("{}",p.dofs.ptte[i]);
    }
```
p.dofs.diag Array containing indices of SrtPS() associated with each enabled DOF
srt_ps // Sorted version of PS(), from smallest to largest DOF index
ps // Array of DOF indices to the active (enabled) DOFs/states
```rust
    if p.dof_flag.as_mut().unwrap()[DOF_YAW as usize - 1]{
        for i in p.dofs.diag[DOF_YAW as usize -1]..=p.dofs.n_actv_dof{
            // [C(q,t)]N + [C(q,t)]R + [C(q,t)]G + [C(q,t)]H + [C(q,t)]B + [C(q,t)]A
            aug_mat[[p.dofs.srt_ps[i as usize -1] as usize-1, DOF_YAW as usize-1]] = -1. * dot_product(&rt_hs.p_ang_vel_en.slice(s![DOF_YAW -1, 0, ..]).to_owned(),
                                                                                        &rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.srt_ps[i as usize -1] -1]).to_owned());
            // println!("{}", aug_mat[[p.dofs.srt_ps[i as usize -1] as usize-1, DOF_YAW as usize-1]]);
        }
        // {-f(qd,q,t)}N + {-f(qd,q,t)}GravN + {-f(qd,q,t)}R + {-f(qd,q,t)}GravR + {-f(qd,q,t)}G + {-f(qd,q,t)}H + {-f(qd,q,t)}GravH + {-f(qd,q,t)}B + {-f(qd,q,t)}GravB + {-f(qd,q,t)}AeroB + {-f(qd,q,t)}A + {-f(qd,q,t)}GravA + {-f(qd,q,t)}AeroA
        // + {-f(qd,q,t)}SpringYaw  + {-f(qd,q,t)}DampYaw; NOTE: The neutral yaw rate, YawRateNeut, defaults to zero.  It is only used for yaw control.
        aug_mat[[DOF_YAW as usize-1, p.naug as usize -1]] = dot_product(&rt_hs.p_ang_vel_en.slice(s![DOF_YAW -1, 0, ..]).to_owned(),
                                                            &rt_hs.mom_bnc_rtt) + u.yaw_mom;
        // println!("{}", aug_mat[[DOF_YAW as usize-1, p.naug as usize -1]]);
    }
```

View File

@ -3,14 +3,26 @@
{"id":"9461f7dd96103316","type":"text","text":"Kane方法","x":-120,"y":-280,"width":250,"height":50},
{"id":"0c8534c8ba68c9a6","type":"text","text":"**广义**主动力","x":-280,"y":-140,"width":250,"height":50},
{"id":"5eaa425c204bf600","type":"text","text":"**广义**惯性力","x":40,"y":-140,"width":250,"height":50},
{"id":"7351d2bbb065d539","type":"text","text":"动力学 ","x":-210,"y":40,"width":250,"height":60},
{"id":"e398416e55019686","type":"text","text":"运动学","x":-210,"y":220,"width":250,"height":60},
{"id":"38d3d1a313c094ee","type":"text","text":"广义坐标","x":-280,"y":340,"width":250,"height":60},
{"id":"8ec17237cebe7433","type":"text","text":"广义速率","x":60,"y":340,"width":250,"height":60}
{"id":"8ec17237cebe7433","type":"text","text":"广义速率","x":60,"y":340,"width":250,"height":60},
{"id":"c20eeff7484d8a39","type":"text","text":"叠加法","x":185,"y":140,"width":250,"height":60},
{"id":"a729b7930412f0b1","type":"text","text":"需要保持边界条件一致","x":520,"y":140,"width":250,"height":60},
{"id":"d405163cb9ecd804","type":"text","text":"叶片多段拆分,小段做模态叠加?","x":520,"y":250,"width":250,"height":60},
{"id":"7351d2bbb065d539","type":"text","text":"动力学 ","x":-210,"y":110,"width":250,"height":60},
{"id":"da500b2b12ed0901","x":290,"y":-30,"width":250,"height":60,"type":"text","text":"填充augmat矩阵"},
{"id":"20ce8d75f0f35588","x":580,"y":-30,"width":250,"height":60,"type":"text","text":"解出来q"},
{"id":"6094c53caf966263","x":-165,"y":-40,"width":340,"height":80,"type":"text","text":"由F + F^* 的形式转换到 [C(q,t)]{-f(qd,q,t)}形式"}
],
"edges":[
{"id":"647c1b45edc92b02","fromNode":"9461f7dd96103316","fromSide":"bottom","toNode":"0c8534c8ba68c9a6","toSide":"top"},
{"id":"e3d4293dd3262f2d","fromNode":"9461f7dd96103316","fromSide":"bottom","toNode":"5eaa425c204bf600","toSide":"top"},
{"id":"9a803fcaec81414e","fromNode":"38d3d1a313c094ee","fromSide":"right","toNode":"8ec17237cebe7433","toSide":"left"}
{"id":"9a803fcaec81414e","fromNode":"38d3d1a313c094ee","fromSide":"right","toNode":"8ec17237cebe7433","toSide":"left"},
{"id":"7ff52c30a0b0347d","fromNode":"a729b7930412f0b1","fromSide":"bottom","toNode":"d405163cb9ecd804","toSide":"top"},
{"id":"d97ef554530b15b5","fromNode":"c20eeff7484d8a39","fromSide":"right","toNode":"a729b7930412f0b1","toSide":"left"},
{"id":"034d145edd7cfce0","fromNode":"0c8534c8ba68c9a6","fromSide":"bottom","toNode":"6094c53caf966263","toSide":"top"},
{"id":"da18b7fa4859fa6f","fromNode":"5eaa425c204bf600","fromSide":"bottom","toNode":"6094c53caf966263","toSide":"top"},
{"id":"5d5f4fef281a656e","fromNode":"6094c53caf966263","fromSide":"right","toNode":"da500b2b12ed0901","toSide":"left"},
{"id":"5573fa12a3a02ee0","fromNode":"da500b2b12ed0901","fromSide":"right","toNode":"20ce8d75f0f35588","toSide":"left"}
]
}

View File

@ -0,0 +1,34 @@
rz Position vector from inertia frame origin to platform reference (point Z).
r_zy Position vector from platform reference (point Z) to platform mass center (point Y) [m]
r_zt0 Position vector from platform reference (point Z) to tower base (point T(0)) [m]
r_zo Position vector from platform reference (point Z) to tower-top / base plate (point O) [m]
r_ou Position vector from tower-top / base plate (point O) to nacelle center of mass (point U) [m]
r_ov Position vector from tower-top / base plate (point O) to specified point on rotor-furl axis (point V) [m]
r_vimu Position vector from specified point on rotor-furl axis (point V) to nacelle IMU (point IMU) [m]
r_vd Position vector from specified point on rotor-furl axis (point V) to center of mass of structure that furls with the rotor (point D) [m]
r_vp Position vector from specified point on rotor-furl axis (point V) to teeter pin (point P) [m]
r_pq Position vector from teeter pin (point P) to apex of rotation (point Q) [m]
r_qc Position vector from apex of rotation (point Q) to hub center of mass (point C) [m]
r_ow Position vector from tower-top / base plate (point O) to specified point on tail-furl axis (point W) [m]
r_wi Position vector from specified point on tail-furl axis (point W) to tail boom center of mass (point I) [m]
r_wj Position vector from specified point on tail-furl axis (point W) to tail fin center of mass (point J) [m]
r_pc Position vector from teeter pin (point P) to hub center of mass (point C) [m]
r_t0o Position vector from the tower base (point T(0)) to tower-top / base plate (point O) [m]
r_o Position vector from inertial frame origin to tower-top / base plate (point O) [m]
r_v Position vector from inertial frame origin to specified point on rotor-furl axis (point V) [m]
r_p Position vector from inertial frame origin to teeter pin (point P) [m]
r_q Position vector from inertial frame origin to apex of rotation (point Q) [m]
r_j Position vector from inertial frame origin to tail fin center of mass (point J) [m]
r_s0s Position vector from the blade root (point S(0)) to a point on a blade (point S) [m]
r_qs Position vector from the apex of rotation (point Q) to a point on a blade (point S) [m]
r_s Position vector from inertial frame origin to a point on a blade (point S) [m]
r_ps0 Position vector from teeter pin (point P) to blade root (point S(0)) [m]
r_zt Position vector from platform reference (point Z) to a point on a tower (point T) [m]
r_t0t Position vector from a height of TowerBsHt (point T(0)) to a point on the tower (point T) [m]
r_t Position vector from inertial frame origin to the current node (point T(HNodes(J)) [m]

View File

@ -0,0 +1,59 @@
# yaw
pfrc_oncrt: Partial force at the yaw bearing (point O) due to the nacelle, generator, and rotor [-]
pmom_bnc_rt: 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-]
```rust
//  Partial force at the yaw bearing (point O) due to the nacelle, generator, and rotor [-]
    rt_hs.pfrc_oncrt = rt_hs.pfrc_vgn_rt.clone() + rt_hs.pfrc_wtail.clone(); //Initialize these partial forces and moments using
    // Partial moment at the base plate (body B) / yaw bearing (point O) due the nacelle, generator, and rotor [-]
    rt_hs.pmom_bnc_rt = rt_hs.pmom_ngn_rt.clone() + rt_hs.pmom_ntail.clone(); // the rotor, rotor-furl, generator, and tail effects
    for i in 0..p.dofs.n_actv_dof as usize{
        tmp_vec = cross_product(&rt_hs.r_ov, &rt_hs.pfrc_vgn_rt.slice(s![.., p.dofs.srt_ps[i] - 1]).to_owned()); // The portion of PMomBNcRt associated with the PFrcVGnRt
        let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.srt_ps[i]-1]).to_owned() + tmp_vec;
        rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.srt_ps[i]-1]).assign(&value);
    }
    for i in 0.. p.dofs.npie as usize{
        tmp_vec = cross_product(&rt_hs.r_ow, &rt_hs.pfrc_wtail.slice(s![.., p.dofs.pie[i] - 1]).to_owned()); // The portion of PMomBNcRt associated with the PFrcWTail
        let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.pie[i]-1]).to_owned() + tmp_vec;
        rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.pie[i]-1]).assign(&value);
    }
    for i in 0.. p.dofs.npue as usize{
        tmp_vec1 = -p.nac_mass * rt_hs.plin_vel_eu.slice(s![p.dofs.pue[i] -1, 0, ..]).to_owned(); //The portion of PFrcONcRt associated with the NacMass
        tmp_vec2 = cross_product(&rt_hs.r_ou, &tmp_vec1); // The portion of PMomBNcRt associated with the NacMass
        let value = rt_hs.pfrc_oncrt.slice(s![.., p.dofs.pue[i] -1]).to_owned() + tmp_vec1;
        rt_hs.pfrc_oncrt.slice_mut(s![.., p.dofs.pue[i] -1]).assign(&value);
        let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.pue[i] -1]).to_owned() + tmp_vec2 -
                                                                p.nacd2_iner * coord_sys.d2.clone() * dot_product(&coord_sys.d2.clone(), &rt_hs.p_ang_vel_en.slice(s![p.dofs.pue[i] -1, 0, ..]).to_owned());
        rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.pue[i] -1]).assign(&value);
    }
```

View File

@ -0,0 +1,42 @@
# yaw
```rust
ewn_x_r_ou = cross_product(&rt_hs.ang_vel_en, &rt_hs.r_ou);
rt_hs.plin_vel_eu = rt_hs.plin_vel_eo.clone();
for i in 0..NPN{
tmp_vec0 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 0, ..]).to_owned(), &rt_hs.r_ou);
tmp_vec1 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 0, ..]).to_owned(), &ewn_x_r_ou);
tmp_vec2 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 1, ..]).to_owned(), &rt_hs.r_ou);
let update_value = tmp_vec0 + rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 0, ..]);
// Partial linear velocity (and its 1st time derivative) of the nacelle center of mass (point U) in the inertia frame (body E for earth) [-]
rt_hs.plin_vel_eu.slice_mut(s![PN[i] - 1, 0, ..]).assign(&update_value);
let update_value = tmp_vec1 + tmp_vec2 + rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 1, ..]);
rt_hs.plin_vel_eu.slice_mut(s![PN[i] - 1, 1, ..]).assign(&update_value);
// Linear acceleration of the nacelle center of mass (point U) in the inertia frame (body E for earth) (excluding QD2T components) [-]
rt_hs.lin_acc_eut = rt_hs.lin_acc_eut.clone() + x.qdt[PN[i] as usize - 1] * rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 1, ..]).to_owned();
    }
```
plin_vel_eu
Partial linear velocity (and its 1st time derivative) of the nacelle center of mass (point U) in the inertia frame (body E for earth) [-]
lin_acc_eut
Linear acceleration of the nacelle center of mass (point U) in the inertia frame (body E for earth) (excluding QD2T components) [-]

View File

@ -0,0 +1,24 @@
# yaw
```rust
// Partial angular velocity of the nacelle (body N) in the inertia frame (body E for earth) [-]
rt_hs.p_ang_vel_en.slice_mut(s![.., 0, ..]).assign(&rt_hs.p_ang_vel_eb.slice_mut(s![.., 0, ..]));
rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW -1, 0, ..]).assign(&coord_sys.d2.clone());
rt_hs.ang_vel_en = rt_hs.ang_vel_eb.clone() + x.qdt[DOF_YAW as usize- 1] * rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW -1, 0, ..]).to_owned();
rt_hs.p_ang_vel_en.slice_mut(s![.., 1, ..]).assign(&rt_hs.p_ang_vel_eb.slice_mut(s![.., 1, ..]));
let p_ang_vel_en_slice = rt_hs.p_ang_vel_en.slice(s![DOF_YAW - 1, 0, ..]).to_owned();
rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW - 1, 1, ..]).assign(&cross_product(&rt_hs.ang_vel_eb, &p_ang_vel_en_slice));
rt_hs.ang_acc_ent = rt_hs.ang_acc_ebt.clone() + x.qdt[DOF_YAW as usize- 1] * rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW - 1, 1, ..]).to_owned();
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@ -0,0 +1,36 @@
# 问题
转速在14s之后一直掉
![[Pasted image 20250120102349.png]]
## yaw求解过程
1 输入yaw_mom from 控制
multibody_solution 1834-1846行
Elastodyn.f90 8295
FAST_Subs.f90
- 4835
- 4520
- 4865
pmom_bnc_rt 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-] 2方向
Partial moment at the base plate (body B) / yaw bearing (point O) due the nacelle, generator, and rotor [-]
- 2, 10: yaw 差距较小 3-11
- 2, 12: geaz 差距较大 3-13
- 2, 13: drtr 差距较大 3-14
pmom_ngn_rt 就有问题
Partial moment at the nacelle (body N) / selected point on rotor-furl axis (point V) due the structure that furls with the rotor, generator, and rotor [-]
pmom_lprot 有问题 210
pfrc_prot 有问题
plin_vel_ec 10, 0, 0有问题
Partial linear velocity (and its 1st time derivative) of the hub center of mass (point C) in the inertia frame (body E for earth) [-]

View File

@ -1,4 +0,0 @@
# 问题
转速在30s之后一直掉
![[Pasted image 20250110111923.png]]

View File

@ -0,0 +1,9 @@
PCI_E1 PCIe 3.0 x16
PCI_E2 PCIe 2.0 x1
PCI_E3 PCIe 2.0 x1
PCI_E4 PCIe 2.0 x4
当在 M2_2 接口中安装了 M.2 固态硬盘时PCI_E4 插槽将无效。
当在 PCI_E3 插槽中安装扩展卡时PCI_E2 插槽将无效。