vault backup: 2025-01-24 09:55:06
3
.obsidian/community-plugins.json
vendored
@ -1,5 +1,6 @@
|
||||
[
|
||||
"copilot",
|
||||
"obsidian-git",
|
||||
"smart-connections"
|
||||
"smart-connections",
|
||||
"obsidian-excalidraw-plugin"
|
||||
]
|
789
.obsidian/plugins/obsidian-excalidraw-plugin/data.json
vendored
Normal file
@ -0,0 +1,789 @@
|
||||
{
|
||||
"folder": "Excalidraw",
|
||||
"cropFolder": "",
|
||||
"annotateFolder": "",
|
||||
"embedUseExcalidrawFolder": false,
|
||||
"templateFilePath": "Excalidraw/Template.excalidraw",
|
||||
"scriptFolderPath": "Excalidraw/Scripts",
|
||||
"fontAssetsPath": "Excalidraw/CJK Fonts",
|
||||
"loadChineseFonts": false,
|
||||
"loadJapaneseFonts": false,
|
||||
"loadKoreanFonts": false,
|
||||
"compress": true,
|
||||
"decompressForMDView": false,
|
||||
"onceOffCompressFlagReset": true,
|
||||
"onceOffGPTVersionReset": true,
|
||||
"autosave": true,
|
||||
"autosaveIntervalDesktop": 60000,
|
||||
"autosaveIntervalMobile": 30000,
|
||||
"drawingFilenamePrefix": "Drawing ",
|
||||
"drawingEmbedPrefixWithFilename": true,
|
||||
"drawingFilnameEmbedPostfix": " ",
|
||||
"drawingFilenameDateTime": "YYYY-MM-DD HH.mm.ss",
|
||||
"useExcalidrawExtension": true,
|
||||
"cropPrefix": "cropped_",
|
||||
"annotatePrefix": "annotated_",
|
||||
"annotatePreserveSize": false,
|
||||
"previewImageType": "SVGIMG",
|
||||
"renderingConcurrency": 3,
|
||||
"allowImageCache": true,
|
||||
"allowImageCacheInScene": true,
|
||||
"displayExportedImageIfAvailable": false,
|
||||
"previewMatchObsidianTheme": false,
|
||||
"width": "400",
|
||||
"height": "",
|
||||
"overrideObsidianFontSize": false,
|
||||
"dynamicStyling": "colorful",
|
||||
"isLeftHanded": false,
|
||||
"iframeMatchExcalidrawTheme": true,
|
||||
"matchTheme": false,
|
||||
"matchThemeAlways": false,
|
||||
"matchThemeTrigger": false,
|
||||
"defaultMode": "normal",
|
||||
"defaultPenMode": "never",
|
||||
"penModeDoubleTapEraser": true,
|
||||
"penModeSingleFingerPanning": true,
|
||||
"penModeCrosshairVisible": true,
|
||||
"renderImageInMarkdownReadingMode": false,
|
||||
"renderImageInHoverPreviewForMDNotes": false,
|
||||
"renderImageInMarkdownToPDF": false,
|
||||
"allowPinchZoom": false,
|
||||
"allowWheelZoom": false,
|
||||
"zoomToFitOnOpen": true,
|
||||
"zoomToFitOnResize": true,
|
||||
"zoomToFitMaxLevel": 2,
|
||||
"linkPrefix": "📍",
|
||||
"urlPrefix": "🌐",
|
||||
"parseTODO": false,
|
||||
"todo": "☐",
|
||||
"done": "🗹",
|
||||
"hoverPreviewWithoutCTRL": false,
|
||||
"linkOpacity": 1,
|
||||
"openInAdjacentPane": true,
|
||||
"showSecondOrderLinks": true,
|
||||
"focusOnFileTab": true,
|
||||
"openInMainWorkspace": true,
|
||||
"showLinkBrackets": true,
|
||||
"allowCtrlClick": true,
|
||||
"forceWrap": false,
|
||||
"pageTransclusionCharLimit": 200,
|
||||
"wordWrappingDefault": 0,
|
||||
"removeTransclusionQuoteSigns": true,
|
||||
"iframelyAllowed": true,
|
||||
"pngExportScale": 1,
|
||||
"exportWithTheme": true,
|
||||
"exportWithBackground": true,
|
||||
"exportPaddingSVG": 10,
|
||||
"exportEmbedScene": false,
|
||||
"keepInSync": false,
|
||||
"autoexportSVG": false,
|
||||
"autoexportPNG": false,
|
||||
"autoExportLightAndDark": false,
|
||||
"autoexportExcalidraw": false,
|
||||
"embedType": "excalidraw",
|
||||
"embedMarkdownCommentLinks": true,
|
||||
"embedWikiLink": true,
|
||||
"syncExcalidraw": false,
|
||||
"experimentalFileType": false,
|
||||
"experimentalFileTag": "✏️",
|
||||
"experimentalLivePreview": true,
|
||||
"fadeOutExcalidrawMarkup": false,
|
||||
"loadPropertySuggestions": true,
|
||||
"experimentalEnableFourthFont": false,
|
||||
"experimantalFourthFont": "Virgil",
|
||||
"addDummyTextElement": false,
|
||||
"zoteroCompatibility": false,
|
||||
"fieldSuggester": true,
|
||||
"compatibilityMode": false,
|
||||
"drawingOpenCount": 0,
|
||||
"library": "deprecated",
|
||||
"library2": {
|
||||
"type": "excalidrawlib",
|
||||
"version": 2,
|
||||
"source": "https://github.com/zsviczian/obsidian-excalidraw-plugin/releases/tag/2.7.5",
|
||||
"libraryItems": []
|
||||
},
|
||||
"imageElementNotice": true,
|
||||
"mdSVGwidth": 500,
|
||||
"mdSVGmaxHeight": 800,
|
||||
"mdFont": "Virgil",
|
||||
"mdFontColor": "Black",
|
||||
"mdBorderColor": "Black",
|
||||
"mdCSS": "",
|
||||
"scriptEngineSettings": {},
|
||||
"defaultTrayMode": true,
|
||||
"previousRelease": "2.7.5",
|
||||
"showReleaseNotes": true,
|
||||
"showNewVersionNotification": true,
|
||||
"latexBoilerplate": "\\color{blue}",
|
||||
"taskboneEnabled": false,
|
||||
"taskboneAPIkey": "",
|
||||
"pinnedScripts": [],
|
||||
"customPens": [
|
||||
{
|
||||
"type": "default",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 0.6,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "easeOutSine",
|
||||
"start": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "highlighter",
|
||||
"freedrawOnly": true,
|
||||
"strokeColor": "#FFC47C",
|
||||
"backgroundColor": "#FFC47C",
|
||||
"fillStyle": "solid",
|
||||
"strokeWidth": 2,
|
||||
"roughness": null,
|
||||
"penOptions": {
|
||||
"highlighter": true,
|
||||
"constantPressure": true,
|
||||
"hasOutline": true,
|
||||
"outlineWidth": 4,
|
||||
"options": {
|
||||
"thinning": 1,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "linear",
|
||||
"start": {
|
||||
"taper": 0,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"taper": 0,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "finetip",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#3E6F8D",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0.5,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"constantPressure": true,
|
||||
"options": {
|
||||
"smoothing": 0.4,
|
||||
"thinning": -0.5,
|
||||
"streamline": 0.4,
|
||||
"easing": "linear",
|
||||
"start": {
|
||||
"taper": 5,
|
||||
"cap": false,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"taper": 5,
|
||||
"cap": false,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "fountain",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 2,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"smoothing": 0.2,
|
||||
"thinning": 0.6,
|
||||
"streamline": 0.2,
|
||||
"easing": "easeInOutSine",
|
||||
"start": {
|
||||
"taper": 150,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"taper": 1,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "marker",
|
||||
"freedrawOnly": true,
|
||||
"strokeColor": "#B83E3E",
|
||||
"backgroundColor": "#FF7C7C",
|
||||
"fillStyle": "dashed",
|
||||
"strokeWidth": 2,
|
||||
"roughness": 3,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": true,
|
||||
"hasOutline": true,
|
||||
"outlineWidth": 4,
|
||||
"options": {
|
||||
"thinning": 1,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "linear",
|
||||
"start": {
|
||||
"taper": 0,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"taper": 0,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "thick-thin",
|
||||
"freedrawOnly": true,
|
||||
"strokeColor": "#CECDCC",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": null,
|
||||
"penOptions": {
|
||||
"highlighter": true,
|
||||
"constantPressure": true,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 1,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "linear",
|
||||
"start": {
|
||||
"taper": 0,
|
||||
"cap": true,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": true,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "thin-thick-thin",
|
||||
"freedrawOnly": true,
|
||||
"strokeColor": "#CECDCC",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": null,
|
||||
"penOptions": {
|
||||
"highlighter": true,
|
||||
"constantPressure": true,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 1,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "linear",
|
||||
"start": {
|
||||
"cap": true,
|
||||
"taper": true,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": true,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "default",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 0.6,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "easeOutSine",
|
||||
"start": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "default",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 0.6,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "easeOutSine",
|
||||
"start": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "default",
|
||||
"freedrawOnly": false,
|
||||
"strokeColor": "#000000",
|
||||
"backgroundColor": "transparent",
|
||||
"fillStyle": "hachure",
|
||||
"strokeWidth": 0,
|
||||
"roughness": 0,
|
||||
"penOptions": {
|
||||
"highlighter": false,
|
||||
"constantPressure": false,
|
||||
"hasOutline": false,
|
||||
"outlineWidth": 1,
|
||||
"options": {
|
||||
"thinning": 0.6,
|
||||
"smoothing": 0.5,
|
||||
"streamline": 0.5,
|
||||
"easing": "easeOutSine",
|
||||
"start": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
},
|
||||
"end": {
|
||||
"cap": true,
|
||||
"taper": 0,
|
||||
"easing": "linear"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"numberOfCustomPens": 0,
|
||||
"pdfScale": 4,
|
||||
"pdfBorderBox": true,
|
||||
"pdfFrame": false,
|
||||
"pdfGapSize": 20,
|
||||
"pdfGroupPages": false,
|
||||
"pdfLockAfterImport": true,
|
||||
"pdfNumColumns": 1,
|
||||
"pdfNumRows": 1,
|
||||
"pdfDirection": "right",
|
||||
"pdfImportScale": 0.3,
|
||||
"gridSettings": {
|
||||
"DYNAMIC_COLOR": true,
|
||||
"COLOR": "#000000",
|
||||
"OPACITY": 50
|
||||
},
|
||||
"laserSettings": {
|
||||
"DECAY_LENGTH": 50,
|
||||
"DECAY_TIME": 1000,
|
||||
"COLOR": "#ff0000"
|
||||
},
|
||||
"embeddableMarkdownDefaults": {
|
||||
"useObsidianDefaults": false,
|
||||
"backgroundMatchCanvas": false,
|
||||
"backgroundMatchElement": true,
|
||||
"backgroundColor": "#fff",
|
||||
"backgroundOpacity": 60,
|
||||
"borderMatchElement": true,
|
||||
"borderColor": "#fff",
|
||||
"borderOpacity": 0,
|
||||
"filenameVisible": false
|
||||
},
|
||||
"markdownNodeOneClickEditing": false,
|
||||
"canvasImmersiveEmbed": true,
|
||||
"startupScriptPath": "",
|
||||
"openAIAPIToken": "",
|
||||
"openAIDefaultTextModel": "gpt-3.5-turbo-1106",
|
||||
"openAIDefaultVisionModel": "gpt-4o",
|
||||
"openAIDefaultImageGenerationModel": "dall-e-3",
|
||||
"openAIURL": "https://api.openai.com/v1/chat/completions",
|
||||
"openAIImageGenerationURL": "https://api.openai.com/v1/images/generations",
|
||||
"openAIImageEditsURL": "https://api.openai.com/v1/images/edits",
|
||||
"openAIImageVariationURL": "https://api.openai.com/v1/images/variations",
|
||||
"modifierKeyConfig": {
|
||||
"Mac": {
|
||||
"LocalFileDragAction": {
|
||||
"defaultAction": "image-import",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-import"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-url"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "embeddable"
|
||||
}
|
||||
]
|
||||
},
|
||||
"WebBrowserDragAction": {
|
||||
"defaultAction": "image-url",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-url"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "embeddable"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-import"
|
||||
}
|
||||
]
|
||||
},
|
||||
"InternalDragAction": {
|
||||
"defaultAction": "link",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": true,
|
||||
"result": "embeddable"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": true,
|
||||
"result": "image-fullsize"
|
||||
}
|
||||
]
|
||||
},
|
||||
"LinkClickAction": {
|
||||
"defaultAction": "new-tab",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "active-pane"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "new-tab"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "new-pane"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "popout-window"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": true,
|
||||
"result": "md-properties"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"Win": {
|
||||
"LocalFileDragAction": {
|
||||
"defaultAction": "image-import",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-import"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-url"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "embeddable"
|
||||
}
|
||||
]
|
||||
},
|
||||
"WebBrowserDragAction": {
|
||||
"defaultAction": "image-url",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-url"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "embeddable"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-import"
|
||||
}
|
||||
]
|
||||
},
|
||||
"InternalDragAction": {
|
||||
"defaultAction": "link",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "link"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "embeddable"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "image"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "image-fullsize"
|
||||
}
|
||||
]
|
||||
},
|
||||
"LinkClickAction": {
|
||||
"defaultAction": "new-tab",
|
||||
"rules": [
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": false,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "active-pane"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": false,
|
||||
"result": "new-tab"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "new-pane"
|
||||
},
|
||||
{
|
||||
"shift": true,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": true,
|
||||
"meta_ctrl": false,
|
||||
"result": "popout-window"
|
||||
},
|
||||
{
|
||||
"shift": false,
|
||||
"ctrl_cmd": true,
|
||||
"alt_opt": false,
|
||||
"meta_ctrl": true,
|
||||
"result": "md-properties"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"slidingPanesSupport": false,
|
||||
"areaZoomLimit": 1,
|
||||
"longPressDesktop": 500,
|
||||
"longPressMobile": 500,
|
||||
"doubleClickLinkOpenViewMode": true,
|
||||
"isDebugMode": false,
|
||||
"rank": "Bronze",
|
||||
"modifierKeyOverrides": [
|
||||
{
|
||||
"modifiers": [
|
||||
"Mod"
|
||||
],
|
||||
"key": "Enter"
|
||||
},
|
||||
{
|
||||
"modifiers": [
|
||||
"Mod"
|
||||
],
|
||||
"key": "k"
|
||||
},
|
||||
{
|
||||
"modifiers": [
|
||||
"Mod"
|
||||
],
|
||||
"key": "G"
|
||||
}
|
||||
],
|
||||
"showSplashscreen": true
|
||||
}
|
10
.obsidian/plugins/obsidian-excalidraw-plugin/main.js
vendored
Normal file
12
.obsidian/plugins/obsidian-excalidraw-plugin/manifest.json
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
{
|
||||
"id": "obsidian-excalidraw-plugin",
|
||||
"name": "Excalidraw",
|
||||
"version": "2.7.5",
|
||||
"minAppVersion": "1.1.6",
|
||||
"description": "An Obsidian plugin to edit and view Excalidraw drawings",
|
||||
"author": "Zsolt Viczian",
|
||||
"authorUrl": "https://www.zsolt.blog",
|
||||
"fundingUrl": "https://ko-fi.com/zsolt",
|
||||
"helpUrl": "https://github.com/zsviczian/obsidian-excalidraw-plugin#readme",
|
||||
"isDesktopOnly": false
|
||||
}
|
1
.obsidian/plugins/obsidian-excalidraw-plugin/styles.css
vendored
Normal file
27
.obsidian/types.json
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
"types": {
|
||||
"aliases": "aliases",
|
||||
"cssclasses": "multitext",
|
||||
"tags": "tags",
|
||||
"excalidraw-plugin": "text",
|
||||
"excalidraw-export-transparent": "checkbox",
|
||||
"excalidraw-mask": "checkbox",
|
||||
"excalidraw-export-dark": "checkbox",
|
||||
"excalidraw-export-padding": "number",
|
||||
"excalidraw-export-pngscale": "number",
|
||||
"excalidraw-export-embed-scene": "checkbox",
|
||||
"excalidraw-link-prefix": "text",
|
||||
"excalidraw-url-prefix": "text",
|
||||
"excalidraw-link-brackets": "checkbox",
|
||||
"excalidraw-onload-script": "text",
|
||||
"excalidraw-linkbutton-opacity": "number",
|
||||
"excalidraw-default-mode": "text",
|
||||
"excalidraw-font": "text",
|
||||
"excalidraw-font-color": "text",
|
||||
"excalidraw-border-color": "text",
|
||||
"excalidraw-css": "text",
|
||||
"excalidraw-autoexport": "text",
|
||||
"excalidraw-embeddable-theme": "text",
|
||||
"excalidraw-open-md": "checkbox"
|
||||
}
|
||||
}
|
191
.obsidian/workspace.json
vendored
@ -4,11 +4,39 @@
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "3b7c67f16ef1a64a",
|
||||
"id": "ec0d65b5f47f4a2a",
|
||||
"type": "tabs",
|
||||
"children": [
|
||||
{
|
||||
"id": "585a4d130ed61c2d",
|
||||
"id": "85d22a0ca1301b67",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "多体+耦合求解器/坐标系.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "lucide-file",
|
||||
"title": "坐标系"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "aa4c94f200dee238",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "多体+耦合求解器/计算力和力矩.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "lucide-file",
|
||||
"title": "计算力和力矩"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "60f9abb64e51146e",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
@ -22,21 +50,20 @@
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ed403eb8f95f0215",
|
||||
"id": "0f7e37da67e92e6a",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "split-diff-view",
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"aFile": ".obsidian/workspace.json",
|
||||
"bFile": ".obsidian/workspace.json",
|
||||
"aRef": ""
|
||||
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "diff",
|
||||
"title": "Diff: workspace.json"
|
||||
"icon": "lucide-file",
|
||||
"title": "Kane-dynamics-theory翻译"
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 1
|
||||
]
|
||||
}
|
||||
],
|
||||
"direction": "vertical"
|
||||
@ -67,7 +94,7 @@
|
||||
"state": {
|
||||
"type": "search",
|
||||
"state": {
|
||||
"query": "",
|
||||
"query": "r_pc",
|
||||
"matchingCase": false,
|
||||
"explainSearch": false,
|
||||
"collapseAll": false,
|
||||
@ -92,7 +119,7 @@
|
||||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 278.5
|
||||
"width": 354.5
|
||||
},
|
||||
"right": {
|
||||
"id": "de2dec4e906755e6",
|
||||
@ -108,6 +135,7 @@
|
||||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
|
||||
"collapseAll": false,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
@ -117,7 +145,7 @@
|
||||
"unlinkedCollapsed": true
|
||||
},
|
||||
"icon": "links-coming-in",
|
||||
"title": "反向链接"
|
||||
"title": "Kane-Dynamics-Theory-Applications 的反向链接列表"
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -126,11 +154,24 @@
|
||||
"state": {
|
||||
"type": "outgoing-link",
|
||||
"state": {
|
||||
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
|
||||
"linksCollapsed": false,
|
||||
"unlinkedCollapsed": true
|
||||
},
|
||||
"icon": "links-going-out",
|
||||
"title": "出链"
|
||||
"title": "Kane-Dynamics-Theory-Applications 的出链列表"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "974d410a4bde10bf",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "pdf",
|
||||
"state": {
|
||||
"file": "力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications_origin.pdf"
|
||||
},
|
||||
"icon": "lucide-file-text",
|
||||
"title": "Kane-Dynamics-Theory-Applications_origin"
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -152,10 +193,10 @@
|
||||
"state": {
|
||||
"type": "outline",
|
||||
"state": {
|
||||
"file": "多体求解器编写/多体+水动 platform+tower debug.md"
|
||||
"file": "力学书籍/FASTLoads/auto/FASTLoads.md"
|
||||
},
|
||||
"icon": "lucide-list",
|
||||
"title": "多体+水动 platform+tower debug 的大纲"
|
||||
"title": "FASTLoads 的大纲"
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -167,13 +208,33 @@
|
||||
"icon": "git-pull-request",
|
||||
"title": "Source Control"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "162ba1965655cb5e",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "smart-connections-view",
|
||||
"state": {},
|
||||
"icon": "lucide-file",
|
||||
"title": "插件不再活动"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "b55183b559c43c96",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "copilot-chat-view",
|
||||
"state": {},
|
||||
"icon": "message-square",
|
||||
"title": "Copilot"
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 4
|
||||
"currentTab": 5
|
||||
}
|
||||
],
|
||||
"direction": "horizontal",
|
||||
"width": 679.5
|
||||
"width": 360.5
|
||||
},
|
||||
"left-ribbon": {
|
||||
"hiddenItems": {
|
||||
@ -185,60 +246,62 @@
|
||||
"command-palette:打开命令面板": false,
|
||||
"copilot:Open Copilot Chat": false,
|
||||
"obsidian-git:Open Git source control": false,
|
||||
"obsidian-excalidraw-plugin:新建绘图文件": false,
|
||||
"smart-connections:Open: View Smart Connections": false,
|
||||
"smart-connections:Open: Smart Chat Conversation": false
|
||||
}
|
||||
},
|
||||
"active": "ed403eb8f95f0215",
|
||||
"active": "8080c9209794d082",
|
||||
"lastOpenFiles": [
|
||||
"conflict-files-obsidian-git.md",
|
||||
"多体求解器debug/多体+气动 yaw debug.md",
|
||||
"多体+耦合求解器/计算力和力矩.md",
|
||||
"Excalidraw/Drawing 2025-01-20 10.29.17.excalidraw.md",
|
||||
"多体+耦合求解器/填充augmat.md",
|
||||
"多体+耦合求解器/计算角度 大小 速度 偏加速度.md",
|
||||
"多体+耦合求解器/坐标系.md",
|
||||
"多体+耦合求解器/rust 经验.md",
|
||||
"Pasted Image 20250122185202_369.png",
|
||||
"多体+耦合求解器/images/Pasted image 20250123103848.png",
|
||||
"多体+耦合求解器/images/Pasted image 20250123103518.png",
|
||||
"Pasted Image 20250122184831_285.png",
|
||||
"杂项/b450 mortar主板.md",
|
||||
"多体+耦合求解器/理论框架.canvas",
|
||||
"杂项",
|
||||
"力学书籍/input/Flexible Multibody Dynamics (O. A. Bauchau) (Z-Library).pdf",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_origin.pdf",
|
||||
"力学书籍/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library).pdf",
|
||||
"力学书籍/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library).md",
|
||||
"力学书籍/FASTLoads/auto/FASTLoads.md",
|
||||
"多体+耦合求解器/计算线速度 偏加速度.md",
|
||||
"多体+耦合求解器/计算position.md",
|
||||
"多体+耦合求解器/images/Pasted image 20250120155301.png",
|
||||
"多体+耦合求解器/images/Pasted image 20250120144724.png",
|
||||
"多体+耦合求解器/yaw.md",
|
||||
"未命名.md",
|
||||
"多体+耦合求解器/images/Pasted image 20250120142238.png",
|
||||
"多体+耦合求解器/images/Pasted image 20250120141352.png",
|
||||
"Pasted Image 20250120103502_252.png",
|
||||
"Pasted Image 20250120110208_931.png",
|
||||
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
|
||||
"copilot-conversations/#_2.9_CONFIGURATION_CONSTRAINTS_The_configuration_of_a_set_S@20250114_160735.md",
|
||||
"多体+耦合求解器/Kane方法.md",
|
||||
"多体+耦合求解器/多体动力学交流.md",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_content_list.json",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_origin.pdf",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_model.json",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_middle.json",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).md",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_spans.pdf",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)_layout.pdf",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/e01949185d74d494489307ffee162bcbbfb08bca34d939a9abd1a8a29b4d249f.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/561cdf3a076017e71010351bac3b474662fe9140c35debfd1e08b61066846760.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/b4cbe48d3256430e1ef457827859a1bc104189116f3d5bbcc1fadf49f320ecd0.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/93fa55b8aaeaf754305dc285fe39e33d290342ff4aada3e50b6e031c16e3ae1f.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/008e0da2890e6ed0c04420feb50ee4294e88f9daedd236686a33a82970606a5b.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/9f694a342b10250dcb45a19a5e4f24acff0e131cc405867e56c2767b1d440d56.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/a783e2c17d32eff5c3d571183cab47ea06d0e480d09e7e4ab872037c44ca5450.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/a76a7386cbde0bc5def46b94fcadc8b9af3933926df089fcc0a2e8616a0244d9.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/7b6d75432d24cf9ea87ece068da41f8ae731ee3eceaafd24326d1dfc45f1e52e.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images/7c962f089b0ca7989a43f0e06df2f971685ab16be8d232203f5b826b9098db81.jpg",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/images",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)",
|
||||
"多体+耦合求解器/理论框架.canvas",
|
||||
"力学书籍/input/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).pdf",
|
||||
"copilot-conversations/The_number_n_of_generalized_coordinates_of_a_set_S@20250115_092015.md",
|
||||
"copilot-conversations/#_2.9_CONFIGURATION_CONSTRAINTS_The_configuration_of_a_set_S@20250114_160735.md",
|
||||
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md",
|
||||
"力学书籍/Kane-Dynamics-Theory-Applications/auto/Kane-dynamics-theory翻译.md",
|
||||
"InterestingStuffs/剧自动化获取任务+下载素材+制作+上传/程序流程.canvas",
|
||||
"多体+耦合求解器/动态数组调研.md",
|
||||
"copilot-conversations/中文回复@20250113_144007.md",
|
||||
"力学书籍/FASTCoordinateSystems/auto/FASTCoordinateSystems.md",
|
||||
"力学书籍/FASTMotions/auto/FASTMotions.md",
|
||||
"力学书籍/FASTKinematics/auto/FASTKinematics.md",
|
||||
"力学书籍/FASTLoads/auto/FASTLoads.md",
|
||||
"力学书籍/FASTKinetics/auto/FASTKinetics.md",
|
||||
"力学书籍/Kinematically nonlinear finite element model of a horizontal axis wind turbine/auto/Kinematically nonlinear finite element model of a horizontal axis wind turbine. Part 2.md",
|
||||
"多体调研/sci论文框架.canvas",
|
||||
"Excalidraw",
|
||||
"多体求解器debug/多体+水动 platform+tower debug.md",
|
||||
"多体求解器debug/多体+气动 转速 debug.md",
|
||||
"多体+耦合求解器/数据结构讨论.md",
|
||||
"力学书籍/材料力学2(第6版) (刘鸿文) (Z-Library)/auto/材料力学2(第6版) (刘鸿文) (Z-Library).md",
|
||||
"力学书籍/FASTLoads/auto/FASTLoads_origin.pdf",
|
||||
"力学书籍/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library)/auto/计算多体系统动力学 (洪嘉振著, 洪嘉振, 1944-) (Z-Library).md",
|
||||
"力学书籍/材料力学I(第6版) (刘鸿文) (Z-Library)/auto/材料力学I(第6版) (刘鸿文) (Z-Library).md",
|
||||
"力学书籍/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library)/auto/结构动力学 (R. 克拉夫,J. 彭津) (Z-Library).md",
|
||||
"力学书籍/理论力学Ⅰ(第8版) (哈尔滨工业大学理论力学教研室) (Z-Library)/auto/理论力学Ⅰ(第8版) (哈尔滨工业大学理论力学教研室) (Z-Library).md",
|
||||
"力学书籍/结构力学Ⅰ(基础教程) (龙驭球、包世华、袁驷) (Z-Library)/auto/结构力学Ⅰ(基础教程) (龙驭球、包世华、袁驷) (Z-Library).md",
|
||||
"力学书籍/理论力学(II) (哈尔滨工业大学理论力学教研室 编) (Z-Library)/auto/理论力学(II) (哈尔滨工业大学理论力学教研室 编) (Z-Library).md",
|
||||
"InterestingStuffs/本地知识库+大模型/ollama 设置模型上下文大小.md"
|
||||
"力学书籍/材料力学I(第6版) (刘鸿文) (Z-Library)/auto/材料力学I(第6版) (刘鸿文) (Z-Library).pdf",
|
||||
"力学书籍/材料力学2(第6版) (刘鸿文) (Z-Library)/auto/材料力学2(第6版) (刘鸿文) (Z-Library).md",
|
||||
"力学书籍/材料力学2(第6版) (刘鸿文) (Z-Library)/auto/材料力学2(第6版) (刘鸿文) (Z-Library).pdf",
|
||||
"InterestingStuffs/杂项/清洁 Logitech 设备.md",
|
||||
"多体+耦合求解器/25.1.16思路.canvas",
|
||||
"InterestingStuffs/杂项",
|
||||
"InterestingStuffs/未命名.md",
|
||||
"多体+耦合求解器/思路.canvas",
|
||||
"软件组工作",
|
||||
"多体调研/sci论文框架.canvas",
|
||||
"InterestingStuffs/剧自动化获取任务+下载素材+制作+上传/程序流程.canvas"
|
||||
]
|
||||
}
|
806
Excalidraw/Drawing 2025-01-20 10.29.17.excalidraw.md
Normal file
@ -0,0 +1,806 @@
|
||||
---
|
||||
|
||||
excalidraw-plugin: parsed
|
||||
tags: [excalidraw]
|
||||
|
||||
---
|
||||
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
|
||||
|
||||
|
||||
# Excalidraw Data
|
||||
|
||||
## Text Elements
|
||||
# position ^WGE8EUn2
|
||||
|
||||
i = 1-12
|
||||
i = 1, p.dofs.srt_ps[i-1] = 11
|
||||
|
||||
srt_ps // Sorted version of PS(), from smallest to largest DOF index
|
||||
ps // Array of DOF indices to the active (enabled) DOFs/states
|
||||
|
||||
augmat [10, 10]
|
||||
|
||||
pmom_bnc_rt: 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-]
|
||||
^Go680AnZ
|
||||
|
||||
## Embedded Files
|
||||
aaafbef3a38cbef153740247e445222dcd248461: [[Pasted Image 20250120103502_252.png]]
|
||||
|
||||
fbeb81f661da648ae635aabc7ab952254c52421a: [[Pasted Image 20250122185202_369.png]]
|
||||
|
||||
%%
|
||||
## Drawing
|
||||
```compressed-json
|
||||
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQB2bQBWGjoghH0EDihmbgBtcDBQMBKIEm4IAAUALQBmav0AcQBpQgAGAE4ASXokiiMAdQoAFgBNAH0qflLYRArCfWikachM
|
||||
|
||||
bmdhpOHtAEYktradg54ADk2kneGViBh1gDZ4k+1hnh4Lu53ajp2H2uuKEjqbi1Wo7bRtWpJJInV4vWp3WpXQqQSQIQjKaTcYa1NoJNp3fYwi5JHjxRHXazKYLcNrXZhQUhsADWCAAwmx8GxSBUGdZmHBcIFsqkSpBNLhsEzlIyhBxiOzOdyJLyOPzBVkoCLSgAzQj4fAAZVg1Ikgg8WoEDOZCAGgMk3D4yIg9MZLKNMBN6DN5WuMoxHHCuTQO2ub
|
||||
|
||||
AF2DUt2DB2u0uEcC6xCDqDyAF1rtryJlE9wOEJ9ddCHKsBVcDsLRAZXKA8xk3mC06wghiNwfrVTrUTp14tdGCx2Fw0IjaU6+6xOAA5ThiLHDGFtbGPQvMAAi6Sgze42oIYWummEcoAosFMtlk2nrkI4MRcBuW8GyWToZDhi8ktciBwmbn8/gP2xJU3NBt3wXdGyiKAhGTCBEDlItlArXVghzCRcDQ7VNAQbValwTtsEw7U9lqeJhjaHhhniBBXxJ
|
||||
|
||||
V5iGwYhyLOD4K2YdxxBTZEwBDTidmRdMnWwRk4B/fVCgAX2mYpSnKCQBkaQ8TkPABVDgeArWZ2OgLBNWuNY0A2eJEh2UljgOEESWuKNUGcEi4lJJI7hOeJLhOJIOlc/47VbA5kg6PyeHczokniCFuNFKQ0QxTU0DeCkOCpdiR3Cl1rQVLkKgAYh2BBsuyitxUlONZXlDl0uVchVQFIUdKdJDDWNTTvRbOkrRZW1iCBGKWtdBB3U9Z0OR9J0/UkGt
|
||||
|
||||
kzC0owwlSNvKS0oioTJN8n48LM1wbN71Qes/ydItiBLVDagrKtiDGkSduShAgNQT4Tm+U4TgRXsmHHQdeDuZ7+0nad2JOGFnJ2O6TmXNdgjvLcdwQPcD2IY8Mg1c8VtKK8b3Bh9iMhE54WxJ6nU/b80G2/9AM2kCwPCjdMGi9AMtQOA2FYKAB2OygABVtMyumGbUZmM04KADUIIx2J4ObIG1fmADF1r1Kz3ydSmoAAQSIZQ3ogYJtRq8K+yZ9wVf
|
||||
|
||||
RdWoDDCs9GyXAiyYFCtt/UNSHRIsCHZqnOfpxneadXAhGNgAlcIhfYhkhChvHLYACUizFg20N5xMk3bNogaoKBGTRiAAKQAK2cTQYHoE4jAAeUwABHWofaSIR1PgTTMyuzwpidPTrK+J53Icu5/IXDoSSRcKrOcFztA6OcR46HgcTnQ4+9KAEOvtGLh8+cf4i2UXDkM2KnVRdEo94XEvjJDpV5+KEYT2OKEppbrUtKpUadynLlidAqpROtL7+gCq
|
||||
|
||||
1WqxC9Xqj0jVBrNXAj1dqnVUC4nlslVqvUGoVCasdYQ/pAytlDOGGa0YxYQAWomRGGYswIGtkTXaxZm4QFwCkX0MMzqE1to2eu3A/IvFXh0O42CxzM2jJ9V6U4OAzmDAifYFxOwz0gIQVc65rpkxDuFfcxU4anhyMtS815bzXR2I+NeHxOxbA/EWAmNsGzhU5CTCGoFZGlHpkWZRaACiijAPYhxYsShtE4kjEoTjRQuLALiLGbwkiIjnMMPyOxj7
|
||||
|
||||
xHcSsRxnFfFRLALUBIww7hJLCZCQ4hxQR3EiZxLxJRB4xznPOZJ+wITEXiI6BxXE4htGch0L4bxIQBQcsMbJDjclgHyXcAkRxHJsL8ljHufwYmaOeFjUeEIDgUTeDwVpop2nOGqScZeoJR51MhF0uJottCH0Pu8M+PA9izM8TEhZzxj7JOMh0A4+JV6vjiYDbZPwFzkUeFsYpRzomVNOd8eptz16aPKdAhxlxh6uTOIZUiC5u4nA+fMuIPyV5rwO
|
||||
|
||||
ACrelSQXt3BSRSZ0L3F8WuHAQItYRDhHyJxXE+JETxAJHcVF3jHlkhhEs2lrjtlvDCYE4yQKWUggOI8TlUSD4gncouLlvjtmQjqavAVMdqXMrFW0IGIqBV4sbAsfM6jKiEuYMS8x5NSj4FCFAdk+h9BqDvJUNgNjzpx0KFJcRicfbpzXCXAYowVxwGwD7JWQhJa1HoMQfAOxC6aGrnMCQddmzkEbuFZuGwyIJHbJ8QGUJhFiJuOsIiw9XwT0BkcE
|
||||
|
||||
J8IKmzy8g+bQd1wkknnC8cihaUSR2pgFXYXxLii1BNCTR7lL6emwSlFkH9MqPzynuCUb8YZ9vKnyKqGo/76j6kA80N82rFsgckBdcDAEIOAUgvwo1UHBnQdNWAs1YwykWvg2qhDiH0PCntA66BcB3C3dWXdRiLqlCbJtQGIInIHPhDwrhN002cO+vw9ibzWGOWBrtSRYNpGQ2hgok8CMVFOhRuoj9WiXgfFIk5fRX5zrExZKTODTprFnlJW0mJPi
|
||||
|
||||
3EOI8Z8hx8Lbp3WxEcUWewa0lDBIxIpmwzJlJmTRqJ7Tth+QrW8LsGT9gdE2UvL4Cq5zdM6IiWFMSOjJFso8K5XZ2xxLuNoLpEIQovDYz0qEym0XwoXJsTY3wFwAyGZU1Tfk2gOXeMcTuHQzPAuE2CiiWKoUUXuQkx8ZEQo9wM8ZTzooQVEXshPdh+wQn3KSKWwGpEdiA1cl8LpESBM5OGbiUijlPg4jzRCNy9zVMuWCo5ZyUI5y8VyxRypwme6n
|
||||
|
||||
DE8itJUmYmvFLWFzsXZqUhJaY1uZlHNm6deCScyPGQqPWG6KWjcKZOIpeMizeoqwCnASK8Jyc40mGRpZFvJizlkuT8uZDZ3XKtNtW62pZ8R3JHY6Sdr4Kyy0XY+ldxt3xbt7Hu49mjKrwoEsDMS88ZKY41NCnK3EsJ2GStFbD0iE8lUQ4CgFGriP6WdlOPyiH7Z2xGaclj9sNm9g0pJ/1h4gMpX4+IndfEMPWVk4ckzppiriKI+VQtukaqDUbk1a
|
||||
|
||||
DwIurLGQANfSY1pqZDNgtVauhokSgSVtQnCoygoDNCZCuYYrMfZKSMBwOAFB8AwCZJUMOrJJbcmuBpCoEaG4VljZ2XTCrjIxZHvVyyGbETbIe/CR6j0R4488vPbgun9OdhHoZQ4YSFzXB3lFbgiQQno87CFMiZFcbhUpF21dY6H5P0HS/YdRU5R56/hO9UwoMz/1nRu+doDrTgIXsurlzpYG19NJu6h27aE3X3RGQ9WDj3xjwch1aF7NokOvWQ0s
|
||||
|
||||
8RH2nWfVPt9jDBFUpCqLcpf7OCtlb0BjgfCBE3Rog9pZn3r3QYQGjVAMj4NHkQ2RuxHiICoav5oznmHLjVdw4YpfYuAKEZF3xUtQfw4ia2cTiWox5zy0qR8TiBCSpWGEuWuQeC2HmxKEW2GQKT+lFmKV403jiW2GCjLQRFOEOFcjCSewY1+SRQ3kBTiWS0QL2HgKpQuCpT+ie0IIewhFfFk2RXSwILU2IPbC7GTQoJG2OUqQYPSwcj+nbAOFclJG
|
||||
|
||||
kxd0hH2E7GjwQJyygLANFCkPJ1kPXgUJ7BOT8XbChCCTOFCXCQ4N2BpRIiWScgOGJDiU6QU16XcyxgeCexMLeEBQhHcj8gezERZX8UCWxDqXkNTySCe3yS4xwJ41KXwJiSCySRSTqX2COCTSyXELo1FBiMKTiJKRBESMkNLVJFP2PhxAOTuiyK0NGy+QKx+EYkuAyKFSXBiWS3+nKLJDIkBjYS8NLVMN8NbgCJHnoOeGkOYO6TYJhWyPaW8OCjeD
|
||||
|
||||
8LLUCLGMYK2HCSmIg1xVqMgBByJUJXIzpQVQ00Zyx0+Gp2J2lQ32hyx1eDHiqNp2cRjhBFblRyePIld0U0eLpXInh05yuK7FJERH+LRx7g52+JZXRzYUuLR0ek+FxzZxcjeLpSOEhHJxhyBzfT5w1S1R1WAmIxMUNUlzNRl2AOpm2htRKDtTKETiZAAEU2BC5CAhB6BJAw4AAZOoegNgSoSQGAdkqAYYLga3GuW3QISNSgB3dYTnGOaEGpKlAkZj
|
||||
|
||||
T4T3fSS4bYeEc7URTuWbYPCBBomlerRAjJQ+SDcKePPeB5MkCeToFA5zfETtRKXPO+ftAvZ+ORYvd+Z08dSqSvbWHUGveBTvevGBMBJdKBVdDvL0LvYaZBHdWsNBJ0KaAfKyI4bBXBJaR/AhdaIhSfK9aSGfVCE4efXvX/Z0FfG6dyPYeUs/UoPfbyLfffH6VsdhT4fEQpEGKRIjCxW/WGe/WxFMJ/F/DRDDHgLDf3b/fDPGf/WDbskjMk8HbQ1x
|
||||
|
||||
CA/oxAg0pZI04rY+U05xFcxow0lok06TeAi5AKZA8pGo9AwTSjcYtc5o40rcnTApI09sRYn4VyKlLwwLBNdfULVQ5yfjHYnIpc4ZRIZY1nUcqES4dsT84ZJ4K0nENhVeO0i8sADAmA+5MPSTFQpZLYLsUzWYsbYZTCxTM+JgvCqIwHHYmCXEg4uxCHO0vlJnMJGEInCEsVUESlWVSnP6C4tig+GlSeTHaVbGHwplEnEgsS6VVJCVEEncqi1gfQdV
|
||||
|
||||
AXGi9iG/PGIkgwKXc1Mk61RXeOa9ROSoYgAYJIIwSQcYI0cYAANSUjgA4DDlZisoQDuAoEqFDVrnFPt10mlJInBE6B8PTxYQhPTVVP2D00uAMxqWYsMl1ObyOFKIQp7kCTKzKTjzrQdGWzk0eguEUzTWz0dIb17S9Pz0fnyg9NHWKvLx9N/mrxnUDKjODLfVgSbxpBXUKrXX6kQW7xQXjL3UTIwUHxuhjCdHTLPXH2zMvWMXzP2nIVwA6GLMXzzI
|
||||
|
||||
EHLL2DqWPkuGSQbO4G3MgD3wP1+k+E2BxE2qg1BkvxnL1TFBhkUSQ0zJQzUVfxHI+FUJrQ1gMUnJMWnK7MupgnnMOIkPAMoye2SOSQ+DSPSUyIgIGIaTCJxAVUiKezD3YTRPhGRrIjOHuSwO40KL4ye0q2Cn8mpUis7ExtiLbJxs3ie3iphESrMJSpiswK6UJEeEQP2FXgck0MvOgOBT8WtJE2SshFSu60yrOGyqODqTQNQqvLRV5tpoFsCQZsqS
|
||||
|
||||
oM03kxyolu2K5uBxUoXJ+PFtkp+PslkwpyuIxgXCErR1YtuMQIOS+Kx2cySRhLks1qxMUv5wQEF32NUoJP1Q0pNRJOIFl2FHl3wEpKKBV2VGUGwFBDaCMGwEkEPEIGcBLiZAAA12ThhtRWQU53KxT64o0pT9IykEgoRnI7o6tiIut+4vdksDkwlXhPhUDKjYrWxtgYtV44s7TEtt50q0BdD1iDtWCIMHTr52qy8spXSyrCpPTFQeRv5J0q9aoAz1
|
||||
|
||||
0gyhoQzG8wy2q163R6qBpGrIARpe8JpIAkzMEhq0yT1R87rxqNoPrprb0KElYFreqX06QVqAY+l7otq0AdqGAXoBx9rgRnNxaDSOyYNvrRcIB5E794YQCLx7rUZhz39Ry9gY8Jzg6CMLqIHSN+zck5jlyCKlazkECkCDgUC7ljCbzRzakCQFx20thrCiC/IJKyCQkj68lON8jybeNCkns4LECSJNgqy4sgjnsRbVa9bJa0LgVqlalWNApIiRGNg1
|
||||
|
||||
MrkiIsYsLDgqbW7AlYt4RO7K6HFnA+7JjB72CCGvNdhtH27dGEt9HcijGNiTGZiFtMTdjtb/qxU9a+LZSoTzb3jykklbbhK2VBk8cniQQQk/ivHE1TgrljayUXHnRsTlKhcvbZzCSJdNL/bA7yTfxQ7qSZJ0AEAw4lYAAhBoGAE4ZoZoUgEpxoIQMOKATOFcfAUgUYHO8NTy/O7ywu0iGOGzJh5zEES7Ku1UxA8EXZU/L4Eu5u4MLR9sKx+Le2ow
|
||||
|
||||
s0nu1AHEbZJySsq0mpFsvK+KHPUeyq8e0qodKeiqme70n+KdWqgBTq6Mrem0De1vHtDqudVe0oA+59I+iAE+wa1M4fK8S+gcrMm+9B0hGa0sEpp+usJassjRb4f8rpE6nWP+7fGKezWs1FxskDVsBusiL4ceUB868Bnsm62Bwch6xBv5D4GlGlNBl+qcsxfEtJqxP6uixc2JIGsx3I+YoY/w4+UYmJTglRwJNRxTAKaI3lxY4YgVkRxIK5ceDI14
|
||||
|
||||
Q4EkQJfokI4E8I+GtyNhsARzK5FzJ5ELMgyg8EJZFQiEEQt/TPBxPhzRaiIR7GYGxJUG1JdIjJH4VY6QiDOQuTduawkTNrOUiTToJQ81rFcGnwiiwC9pPunEcpFjTuGpKG1c04CnMJMeO6TmqW7mnQ8YoiGpG20cq5ZZp252gG0UFrUTYNvF2xkoBJHlMJCiXRZzVrAN1rIkcTWtuJRIHZ6lX4VzfCmNoVwQph4Qlh74e5OA7ArhhI8pBhjTNhcd
|
||||
|
||||
1LSd7rMEUGieBNkKKbEiZ1kiV18Gloz17rCbaZabNmhVZJU14862q5Uh25ERhtZeH4I4Bw884idV0wzVuGtR1dypdZ1PLZuQqlaeaI9d1w6o/pKZjF0UBtdazuXC+QzoPo7lvJKtoNrtzrTZXt4KR4dzSENPQ7VDjpO1gR4kfF5F+jOAx4QyF90hmpEEaI0jh1/YYRirUFdLHEX1rYMraI+V/ypV1jGiERy0gnG0pC/YAkJx8toCjpfjxVw4ZVtj
|
||||
|
||||
cie5OCsTxC4RfEaEDWnNrWlJnWllbsLiq404YkOJ945jZJU4q4kJfF5EyEgJhHK44yBnczlEqEIE+zjx0EX9/WllJNXzrx5NN5R23W0Lhzh4246EE4tzyE1eI2tnfpM28L9iuGxiynGLpnQnSLk2xlUJo4leMkLz8ldExHBJhSpS92lSwA9SjJv26XAOnS4OvJ8O9AeIA0fYQuZQZp3AVkXUYgJISoSoJSO4AYTAVkdp9AO3LppuaU0cxtR4ciDU
|
||||
|
||||
tNy4FU6yJNUte7IEvpYiZNp0OeCBciYeYh08+9ucUt2tXeamdFHzCFbFEJH+/Kkeh5segdN00oV+EvEqC59AFUK5he1aJeu5vetvUMkPNAcM9qyM3e95/e2Mw+/vU+/5kai+jM4F89Ca3Mqa8RAsu9Cb7vJ9Z+0s99bgMwvbQ4Gs3arF4EWx3+r6bFw/R6KK5616iRM6q/NSuRa6vssa5GSl9DJBj4cpBVel0s0xAA5ln67Bgz2TqjGCr5ZW+yVb
|
||||
|
||||
DeV8eXgxkG1ItJI9lCqRnlyh/c+8tor5Vu2w+rBwoBg5MDrGgovAzfE5E30kM3tPC4S34j05ZQqES19Q+EGDvJDXsGrXj1nX6Wgxqgv6QPFjA4QZZw+Y0I4JSwwyaI/3t1iGzJAQxo8pH5FBpUpPl1zX91yG9o0ovlbUyowGRyaIsPpjaO9eaPovzon4Cono/3K3sm3Aud9jTbM1hu1Qq1jQtX3Ijhmd9voo+d4j/UtN4JsLXNZwhtkrSPFttyEk
|
||||
|
||||
XcmlR6Kf9IpZZwuA85W9s81Alfyfi4ETMg3V+Y79iI4nA/tfo/6fzf4Wm9khm5ff4jof7G23zv7fk7u9p/1X4jz/k87/mQxE56YaGTkM4FWXZqeFiOfdH1gYRJAXdjsRDAAXv1/7DtKkvbBUqvEz6kNsqzhGAfoXkIPdo2MndpPJxtrGQhOuOZwhNlfColJsFPHik9jIGCcVWVA+3soxVadhOsJWJgcPAE6KdKBd/L5OBxypuEoOUAtAQ4mYECDW
|
||||
|
||||
BQgstrpzqK2tEk9rQRqx2xhQ0NWsNC/qvDxrDwDW3SdhMa0BgptGi1ONhAljoaSMQ+UWGRuyixidB08xERRv/1373tn+kgmwXwNfArx08pwMkL7w6TCtOBYrcIg1g8EcYLM3gkyKLD8EghqBT5Oga+QgzB9c2HGBthvg0w8dN2FweIeRGfL0C3yj0KmukPlJl1kcnOXVkowz5O9HCruKmpEOTzr50a/gjQV+y0Hw1L+L/ILLtxMh9ZasR5Hfo/yA
|
||||
|
||||
FU0GCPRIVOPDKztl7+gw07j/ysGpCuISeMZAzjhpTIdq7Da3rO1H4AUSB3WA+MfFXILEFwxBZwknnHjjxU8pkUcrUEoKcYAoYWcwc5ifAbZnA+NLTDsxCjl8bhf/O4cf0eHBQVCzhN4RMjXxkEEQOnJ/HsW1S0VQCRxQ4CEyYptkjq+XfzllmCR+cxUcOQJmjlwp5c2c/jSJrcWcjoivGJkNmpJTRwIdQQbOM4n9AojGcIcjfRVil1xA/B3MOXNH
|
||||
|
||||
AqmFQYjYcgtMzmzks6FYBRmSIUbcVNoO0guhkIrjyN2CccESZxOURSKeIbUSRtxTxrcV+LYj3iASVyE5zRyai9Ryo9yNWhpxnECOltKSsZEEosjZRNKdUVJQeDQlSR1xakWKJNE2iJ4QqM4DKNJAIheKtxO9glzOI0Mgx3Octok1do4kUmNXdJkakyYNdsmulMAEripKtcbgygLWEYAoBKQVwSQQgM0AnCaBtQbIHYEpANCNB5qIpMNFN06aSlum
|
||||
|
||||
1kUzsXUK6+ZP03zAeMvASAKsKhZdCeK9QO7N5VMwUFhAzi0xNsYOEUK7s91KBPcIeTpH7hAGOZPxJ6I6YqGXj+7z0/S4sIHm8xAQPMWqEPTek1R6jQ8uqMZHvF80R5/Nhq4UUamPh1AT5b6OPCFqhBXDQtHxcLTaKRFvYPQv6qAC7nT14RNle6PvCYQ5CJYc9vaV1BDDAxwYUsEGAvalponHKhw8MYLT6ky2vyQTfqNiGXngy5bhD4kefAPu6xqQ
|
||||
|
||||
BZ8JuwypEjUtaR5Ph7afBgROBHxsHgZBLYBtkgIUSHEg49TCONCiB56JHE0UFxOHGaZeJ2IfiahQSZQiwc7jVka5BC5Bc1kbkGUeyldFSUmMHKJnIWwgqxdfE5XJJlV2jGS8IG4uOMfV20py4X0LXAyhUFqArhGgmcNgAMDgDpx04E4fAMoBLgThCAh4TOMoGIDagEIVYjynnTrGzd9IabXyLmhpzwiNqa3QeO2ASDNouwZwLYAWkp4QB+xTCNTM
|
||||
|
||||
JIVSiTxx5pa7iAOZrgC2aUIB4MPVnGHN5xi4wvO6TOarjKq6430tOluY7iWIzVJ5hGR3qnjwonzZ+t81+Yplrx80VHrz3FgPi0Jd9WaoeDfGTTlq10EyFaNJCvU6yaAdKXtSAlH4kkOorsOBMwakseed4yAEOQQnaJAYUKUXrC3F77S5yOE9xnhJgILshCpBVLOSAoapszBNDfhj3HmEcsngphTYDCARDo0aUnfPIsP3iLbDdBQ4soiJNBB8STkI
|
||||
|
||||
g44iVJqRlTs2uvEoEJNhm5T4ZYkxGUVORms1UZHNCEfijcbssfi6hU0VcVpYIiiRwJLxlyO9F8U9JkY5Jp7RjE+06uWlUkhZIpJ6Vlc1kiQMoC6D4ABSAwE4KQFqCswBY7JZwM0GcCVBx4dwOkpNwgDTdQpMadYKOTgIUR1qFERglljilQVdgtdeEvCIeB4zwomU6OG30hnYg00BU7yAlWQ501BaitacfswKovcjmb3ZcV9zXFz1mpNzE8fcyPHr
|
||||
|
||||
1weLeLqcvQaqw9Kw8PC8f1QPRDTz6I+NHnA2vo5l3xN6WapLFmkMtLoGiLsHe1fAi9Rw1PNAP+I2k4tBE48B6D/TZ6dlOZUE6BkojGnP5+erYJ6iu2wT4x3x10klrdNgYLC5ebvCfgb03JG96MSA1wTclHKSt9e65A8g+RHaBtO2HWOcK304Yj8HZcSZjqoIo4RY3er/G3twTeky0XZ/NLjgrXRnWCNhdsworvPyyXykq18spKTJIzkzYRkJJmcV
|
||||
|
||||
1ZTEjmZJOVVqGPxw6J5RQTJUd4lZmVcPa0I1Jj9RMnEkExTXSyQLNTFCyvQHUCgMHBKYrhmAlQJkDsDpLjAoAlQIwPEE0DslcAasjWdGlKCxoAkPuS5EOJyrORjZr4bZPhy1LHwy51spdCIJ6SQd3I0HNKpOODD/SnkKOa0mVO+YzjIEc4sqCVSXGnMVxpeRqUHJqqL06qMcmHruPDmLpI5kPB5qHJB59Txol4lOQC1PRHT1ZE0guVNNLCNB85xP
|
||||
|
||||
FauJ2mK/ijgDZABmgBSKaJEOe0weVz2gltybFJ0ruYLxpyvBLp2PDWF9WbnYTh5HLUeQRLP7tDf2urB3pnyTQXAc+4/ReXeUnnrCwA8nMJD0gJB5DsQA/CIaMjf4JFUBAkvJBP2v4Zs2aETDCs8SSSOQW22IToQROcBStVCTmCEHS1gqPJ2EUinEDIoXkhE+WgYkZWilAoBFwKBIHJdBTHnQ0FigyuZZ3z2DPAeilwOpIqSSSJ91lMy6VkMoLRJY
|
||||
|
||||
9ltdfNEcoeDozJJX83JKyJ1YPZfGdKTsJ+iUleMwiyIpnL5kCSxN/lTka0T8syz8iscpEcpNpKYpDYIqOk9iU/gq5u1YFeJTCSyzFy+0eZjXPmbkzQVh0MFEATOIQCsrsllA8QbMY0BXB0keA1QVmPoGUDDAlIHQdkk4qCm50JSdC1YOsFIgJJmkhmCVCEkCSt4B4D2Z4NSLRqOiOUMzXgDJnD7MZ08bGURQnhigdEmZPHUiMFCmwVT5FVUxRQuL
|
||||
|
||||
9kqKA56iivJosB7aLgeccl5vuKjlQ9upYcuHueP6kWKj0KPNOe3LWigt7FT4++rgDDjOLYWJPNaevh+CbB1pFcgDF4s2npZRyG8VAgEviVQNeyME9uWEvRjUsqigrExO9TmmxKMJnPVlndIpkVtgKj08fjH0obNLj+uaKpbpPWWpsJ5rRIpS4KGEPst5EMimnb3QFnIU85vGIeCOPkEyasTPH4IZA2yfBWUpEuTJPB/RhCGlojB/rMKAGbJqka5Y
|
||||
|
||||
VQNlw6V85V1fSPkqu6zCYv+Z5c7lup+Tyqa+rAzZMlnqTuY2MpxZzFusXWACH2myQgi2VHLJIuwgKeeYOofnv9Nkfic4skmcjHUJ4I8aZW0NeyEDVqU7GpafKKKHJTlEGrViVLrZVJYNWw4iAhucZUUpJMI55bsEUmGiPltE0ulEwkooj2KAlZLmRuEIUb+KtGrLu+QtH44DhhI4Sqxq1EfKsYmXSnBE042GdEC/kamfE3kr6TUVwuIyR+CxVZMU
|
||||
|
||||
F/M5MfpWkiJwjAowbAMoDpJwBNcMgHYErEzikBSAh4IwFZSgB0l/V7KjpiFK5UQBY0mqvTAEyUnHw2aq3J0APCWTggl2DwFtL7n/E2ybo07WpfBtbxOzZmoKaEL5khSarRyOq7tLAle4T0jV09fVU1LNX+kLVbU1dDaqMX6LXmdeOOWYoTLhRBprqm8aNJsWeqs5uanOaWC6ABqYlQa/eDjm/Qqdy59PVsOOOrmH4667Cbace3Pzs8bpQS1ubdXR
|
||||
|
||||
7hQ01N0J6vXUi0oSf8V0uJZJqHk4MR54kjGYRMbarwulKrTRBCArUNql5hvaTgoJLVgAaB+QpITxSW13ywA+88jmx2vKpsq1t/OdQdtk5YyTiWmHZZsJH641iOV2x1pR0rY2FHe9hZ3lhvnXod15IbVDWcN7Vp5+13wgiSfIw3FEeaCVT4AqTSzuZb5CwlwqIKEVYxdEX5YDpkPKEnwT1y8JXv8lqwICuIr6nuCJicykhLk7a/zXxnuRzMOKlKCE
|
||||
|
||||
LXSZ1waWdwyNncVgoic70sH8vTp7Rl7kp4BDM2kSPA0liivRf88iHZx9GCjrOsJOQqpNBIZsOR7xc4e8shLfAhNHo1zppPS5hiDtEYmBdVzm2xikF5koOqgvk2CzFNFQDgJoDgA+w2EbAQxhwB9iFxDwtQTOHcHGAnBJAzIGhbWMs2O4/oghVyF0ibbrE4pXSZIFQweBdaFS0IGVeSmRTKq94Wew4FFoUWfwap73MUOVQanzikt1zLRa1Jy16LLQ
|
||||
|
||||
YPPUoePr3WgTFuWhOc6qTnJkitI091aVrsWllKtqEdODVtfTzSP0REA4Wwl/FtasW3i1AI9G1LrF0pjcsBomu54prQlnc9NdoleDwh/xfc3NQPPiXS97phFMtSkr8r57ry1yR7amEeX6cZJMcQEtKJZmia2ZBkjmdbq5mmTsViY5rvivyaJxVNSkNoJLFZDOB04uAWyo0G1ykB3dcAKAPQDaDh6LNBdFuL5TfCpTlpVaH+qKt0ysEQQvovWb+n25
|
||||
|
||||
Lotk5rLpBRFbICViIOe+tGqqYyZ942bkLbZ7C9lTjm9RVaqYaqLz1S1FFejRVXvNU16V6de0HhHMb3PN289q0xe3vMWd6kew0yALeKvr3jMe2c3HhQmaAj7X610EiEJs/rNbXos4KNTXIrLEQaU8hBuRfggkYrIG6+kJaoeOlb6xtgvFHEkmiWj681EvdFVLzZbfzZe52xbSchbVLq219axovdoibKkTkc/MYb7iYZFdudiOrteryIkp9tepO6gs
|
||||
|
||||
r00R7Aqd2OwRR/Tx2uRoiYO9rBkk2Af9u+FrNQull9zRFjtiQ9Io5AChjEG+pfHouPGIFPb5k+A/xIQKp0lLhe6WUpHHtz6raZCJWC4A3R7bggFSFh86dMk2C1rQjT69wfOtWMoDFGcRn9AkcQpKZiOmSmoUAxeE/a1BoW9ttW0w6SZnCxkLwY0N8Egq4doOvQVcY6w3HEZNOtyLTquQmQx+BEvo760MK3GlhiIFYZMmhW/TFBebdo03wORdGQTv
|
||||
|
||||
WctG1meTVpEaCQznadseiInli7dStLCB2E9GYkjRzE80bO2Ize2Hm7DCsJxwpCOWgJuAYoU+PJAEOdO34yFH+Pzrk+h7IPkCL0HOYDBbmFDgRJeye9aj7aAIf0o2V8tliYGv/tUbFN986kcSOI34vW0oMQozxok/+3FRxr1TrBVgyUTWLxsi2SbTHfSfzYyF+jCqeAW0bKKN9ui8J2ON9uUFkdftj7bdRH0VXL8X+BWfEOQWtpkQW0lPRpZWvTbM
|
||||
|
||||
I2EnwKmpxlexgo7SXHHuFv2Wzk61seR6M88TqRxnVCfhF4UEKCS8Fo8t+i7elgzO6I8KEyKZngMtOwCBjVNWWq7PlpC1jerxjDu8c6B1m9ljkHJcZCDPDKkzCKFMxvDTPEd9WAp1zEYKKXjzdthS3QU5kNaGDFpRSzJamRA4TwSQHmX0y/Ldk3yBCa88o7W3qHobPtSO/7RnxXPjLGkG5+HfzvCaana6pNbeZDK+3XmWTPcMcl2HOC8KDGCO485y
|
||||
|
||||
e1PSN7jPgmIZs37Nk6/kqZ4KLOf0HjnFztxj7U+cprEdpBFA2Qbq1FO991CdSXgcnguF9qM8AQzgs9JEKuQKI3R5bfFUKwBmezyrEg81hbPg6Dzm5yi92ZiHBndzHbfc51hF1WInljI0jbcVBqqiASQKknIdRYIIrHkbGKXcJRtNEbuUslmUZMsoOq6wm1GknGpYBLq66NspIzqzii4gL3i7CWyMJp13YFIF+uwKBKIDHQhuRpIpyPaNBI2XAFVx
|
||||
|
||||
dyHiPUuedFLYlhkWEzfxuXhKXyuS+xW0ttZXg3llEjRwctPFOgj0BjXbR7iantL9rD83ro8aBc1RMTFSz8SP6y6rigKzK5CUmPfKiRuuo3d9JSuw4WcEl07gZZ+LG7bicJWK5aJ+z5W614Y5FVGM/2+HjJ0m5BbioVyO70Fzu4Wc0DpJCA6S/SlOs4DYBdAw46cZoF0B4ATgkgygQuKrLM01jUD9Y5wGCfCoEhadvuCUXFO+DJBQo5ZvbIVhlVnG
|
||||
|
||||
KOjs1Zl8GHigz2EVnV9lfqzzsHKpPs7g3Ft4OqLvuiWwQwDxS0iHY5Yh61Z1LtU6KepHzOQ/lsmgDVLFbqwFunKfxlbJqXhwfXenZI6GGERcrgSFlOAeLd8s+6NVu2+BzYE1X+lucmscPDa+e8E8JRmv4at4D93q7w/1sLWJLoTpa+QctqlOaDIN2rP9t+fgudrCTPNn8whdSOD9hb7/K3kzX9N4cKeY6itWcsGWymoTh27a+kZ5OF86Le5mtlxb
|
||||
|
||||
d5lH9bHx8zPcdYk2YqDUZt3h0XtMdGqijkFdeCDXWYwtOtWaIjbZL5wny+RSgDpsxxg21A8cpvpUbeuOhskioFZKZbO+DpYkkpR0dkuxekWFdWnYRKZqxEx5o/RcdxhgneIusMVTSeA9oH2Mh0nObHSD210TL7IT/2cBTuEMyjzHEdBbvK6zdqVoMHI8AUZg0xCY6umWO11y9aWi5FTJwiq8Lu5RXDG4aSUxa+VNVlyM2j2wQvEyx8uRoQrhKYC8
|
||||
|
||||
y+xTqzlXtkm9uezvaibdErL0qcoX/K/EY4bRp9p0STgZ1CX6K0IIq2bqRViardXVqTdzJk19WQ6ABtMYeFGCFwTgHk9kthA4BdAS41QOkunEaYThRg5gFA5yrQPbWPguwY4WRBeCZm2ycUwyNshCQGtRyYAgjjKupo5oLDT1jHXQdap83kNEqWRW9d1UfX9Vxe/2Qls/iV6AbW41LbXvakN7m8mWzg9ltENboeq8hgrXDe73KGStTh2xeoYq2aHc
|
||||
|
||||
AAAWSxuFzNoLaDtv+V/E/12tIsREC2VjynUm5FN+w8EqG0ZzabaGemzvuxDMo3qqElm0fv0cn6p7D07mxdsV7gXaCcqVq/OpJMvkyT2J8if+dFD/S3gETJwekiW7ba9y05ptVBbHNGtYLFDChz+yocdmaaqO5S0yPyOpL+b6S5J0Q7R0U8AiytpDYk51bcXXGD+qe+SiWT20t7k2O+4FYPgKWomvY5japeUsIqH7vOd/eJvgXdW37vV+3XJpTEEq
|
||||
|
||||
hr6AJSGHCZAlwKATITOFZTaCkAeAHANoEICMC1BmArIEWZuOgCilzNcDra0UU7GIhnwbuWngPE7jPBCsPcDamwUhCZ6Nl5/AW98yC3Lo7t4Zh7QXr1VF6eDdUn64HNNVCHAbrekGx1MMVN7xD29CGw6vjlOqhHsN5OaI5wTiOab40qRyzfRsUIJwCj5fBogXC7IfxRh/9IBiJtmGNqy8G0tYb62BKPuDhox3BNMfb7MM5EaZlNv7mzaX7823CWfq
|
||||
|
||||
ccjy7naSqhyYNX6vON+RZ7lwk4iI6t+Xh/FpSf1KfUVynAR/ilNj/kU8Wyeljp6qi6fP2C1mKvp3bpyb9WhngBioIeHTikB04dJdkpUB2DYBZHzAFOs0DYCiwVrDIW4OtdsWbWwpLcMZlaI816131GD1TNPAOH21xMNz0g5HMCesSgZlRNfq9SeclmVlHmp4WRGFXpS5F0WnqLFpObfXjVAhv56w/VnbiOH6WsG8YpkNt7oXMN4+iI6HwI3rFEjl
|
||||
|
||||
G1jzRsyPC4mLsfTvjbCkh3cv40WKYY63r5zgp+cm2y4G1U2aXqiOm/S51lkhjInhjBpS92L+HcGnLqBeWvemRHXn0RrUzzanMFKm1hTnwucrVvJHfzYMgZUsRGLq3ZOpyR9Vsf3ebLz3srLO4u2YbJpSLErxtSaTjt63Q7qG8WyLafdEWWJb76YYercH1L/HiA09Tuu9Od9uTRdzJLLZobDqWy9yjbIRbHaJ2tgjdvpTu43J7viTIAsrIBomSnBL
|
||||
|
||||
38yXD8vKnkBOe7B84Rse4lud9Rz8544J8P2082q+XpygfcnrNXz6a5p0u4Y2L4V3m+Dt5+TTQbNvyTlfSqHbhZh34XuPnZ81iVn8wg6IPcnPgQi1YyolUaurJj4KYnPd2AZ0Ia4SDKiUqZsp2Mt7YZ6CfGfgZk/RjxZ9e2c6ZXE98XeMxCzSX9RYV7lDxX4vsaWrB8cFN58o3NWJL8IeEuvYPidK3lc97DC2m0umEVJCX6SvffxzxesuwTHK3TiO
|
||||
|
||||
DyTKcqXsJjJSiZaW2cpnUrmq+ShP3DJw77/bbt5kDO8VA14Z/agqDGUrKhcZoDwCECswjAbAKABQGIDDAlY2oA0BwFIg+xYHXlD19tYeQ7YsMLyEyB5Gc3rBV4MqcgrXQFZBmZVPWU4ijiTbNtaeTz+bpNk9GsSocZNtg1fHetZbM3yi7N0w9np5vNndUQF5w4kPcPQXLzF791TjIwuq3cLmt8Vt731v+9sLNF7gDcoE8F8RPQNStWEQsZVH+LtF
|
||||
|
||||
qgA8OI+GeIsJdkf1Z42G2blNslrBPHd0vXD1LSZYt+zXWOxerLrVwkoW1JKgjtPkIzPNbXrG1PPib5GBZoK5HILERgV+vxP6z8tb8Hn4OBphpZPWaqGqoabyB2OFFM9HkW84TzM8Fv+6WYVxy3d7mtFTmFyUyHbbNXn51mtiY/qc21a/6LnFyTF+44vG2w7XyHY6jrWr7GyPJyKiRHl8zR4rkIjCj3tr44afyBSnCtBkpN+W/dfanmyN75YFsY5B
|
||||
|
||||
ooLxwUOSFe+cLE8PC9cMfJ5CmjDAoodbaE8Omy+CJ1eRb5/fjGSsa2+wRqcNPAppbHfWX3+oZ/KE6kZ2RSV0iv4bvIzkp8u57zOBmQeG8pj3hhbqM+8+Tc5/T8WxLuHa4PBfNPsyYxRhb7u/Hw7Ucal92llTFJp2/4wVQ0mgZT0jD7ncFuD9FlyJ/E2icOPx2X3Sd24xIsetEReVwvLdxdvQ852J2lQkZLidEyomXge7FIsRNT49bvzxFH6QiE1M
|
||||
|
||||
8UyLzjsmauOnPvkYTqwWL0J/k/lFTRl+2ws4TN2TrNz6Su1ahH6hmKtg+6BEC8i868+M/CB7ICYHg74wEYZlPybu7Fm8YQ60AUzSFG7hF+gbYcbIWyJsJbM6wG+RftMahuutrn46+T2OXaZ+InkUp/uMtkhY9qsnlcL2k+Mr+rl+LpkZ5RupnmDIj+H/kP7PaFjO8Kgi5fGRBVmaxDWZyY0/ooF/YIIsxKqBYMi36EgkKGCZseF2oxIfCYImoHsC
|
||||
|
||||
37pwEumJECoLXamMM4JABHPpTrYW5wvH5yeOBAMKgecwh4HQ6IgSGZHaGJt46p+CgaQJCBXgUEGzGCrJohaeoxh8C6CugUxKse4yrEGdA8QdHiJBKvqXZ3GUVBMLMUlrLcjp8thOeb4s65powWMIIALp3m/BNeSiucmKtRVBREOzqC6iaKfw8uovs0Fj25uq56P6r7K8SKWaXJF5YO7aFvbrI1EBrphMa9gl7JIolAl4H2EwUsFz2/oqvZEeqrvj
|
||||
|
||||
h72QCmiSbBYTNF6X2wlEFSee+wdliHB+OAcETBmwAlZZcZVnPbR0uXkEwtOHys07a6LwdlyL23KAcgZWYXul6iWhGp5YAhUTAFaeWDKOAr44oagF6PInFHsEfKyXlMHwhfyupaYa/GpiLgCMXnZYeeCul2aPBaOAAoK6JVlEwaWEIdU5z20hCjieWCIYiSohiKp06W6VXlT6IK8Yrq5JiBrmmL1A1QJUySwdJAaD4AHAOnCsgpABQADA4wMwCaA2
|
||||
|
||||
ACcBtMrrrQrwOAUE8BdIZSBvCKsqWBg5PAgMEtxsIQvAbrjiPmmAE9Cv5AZg+B3dGIo3QMZpmZyk2ZpWYXeBzHQ6fOX1t845uf1o94tSX3u1QZaH3tIYQushhW59Uwjv95n0VikCzGOyLl6oD6MjmtZnihPDCy1a5ZAFCIEDhJ/5U8LWjFCEu9PHPr10P2D2ZDuVPkmp4+qai4Zv4xPhFS08zNhT75qWEvY4BGjjiu4pKcFuIFQyiAR+4rywgkVJ
|
||||
|
||||
UBUHIMjC+oRFk58u+MpQH+mRRtByIeknGAIoeWMMYK9hEHAOEdhbvKqaF+UxpxwvCTSoK7SubvFH5JCCMnRbZ2R/qwwNGhHijTh43BLqwye0Qb4IDqfSmuHNGG4ZxJKBegWkFkQAHhv5AebFHqyOePEmsp9K/AWfIiM3AXbbe2DfsQFN+0mAObAB7gXkpoBMrKFYPmHagIEX64EfyyQRDQUU5iu3wCsaM+YRsz7buXQZQ7iuBHsn6km4QZ2H3O6S
|
||||
|
||||
nvKsokbiZ72etai9pvhotsWath/Ye4S44wQVRFwyNEQsIK+YRDfr1B3anH6XCp4Vf4LCTvowYkaqGgya1mggX2xYCp3I5AEgAhFuHLsSdrwISRCxHezSRaHof7yRO4b0GQivFlFbhejVmjijq5wX4wMUowVxzOQNIY8hUhollZH+WWXOSEnBHyjsyz2RIR5akiuIuCHKixnjcTSogzOZH1O4IArSRWRxA9gZEsIf5xyhfloyIhiIllJR+efFp8He
|
||||
|
||||
cawfRS/AkUVFYUhr+m1aVenVoyE9WLIf/qNehrqhAp0mAIeCYA4wIWJJA1KicBsAzQEYD6AmcEIBnAJels7Vibrrs5Tep5OKj/QahCSAU8Iqst6qY4KG8hnwXBHEJhuh3OuzbSxEAcjbsYTsaEqqazBHYOCDkOnhsIZnq9aXetDtd6+y9oR9xl6/Bk6HVU/zmw5A2uiq94GKkhtHKWqYhnlq+hsLl3oA+PeojYeqIPjEpg+43pD4lkMPvCzmy0xi
|
||||
|
||||
tIRq58pixph0aviDCK1ZNmFYSuYYdISOo2oWHaIBOGRJk+02jEq2O1Xgu5FqVYcu6uInYTKb+Qk2oQFYBN/EK5bq1fm9iakHcCqYC+o/kL5u8mxvgGzGSkdgL+mBIA+ozCaxuQwOY2UqCCfCKjAWgV+pSKLAicfpl2bNEMQmEgPYB/E2FUemMjeGpBYItpzymUHpx4XqSRFTHyBr/oXYF8dIq0IHuqthe4ax+fBDTaxa7reR4en7sRxyBGRMbH1E
|
||||
|
||||
WEcU4oRFsbqZqmLAQuF0+pdnTFzCErvdrExnfur7d+EpjrH3uMrBgEv8Q6iOEMCPnFBHM6iFvDowBT8migwBz5vOqZO2EVv4cYCcdHFJxtschGdBcEUe5gRSEQ86exy4TWr5xIvinE5xgxIe76xpcV2HlxQEez45G62NAH1hccQ4gXhBESHFy2yHuHHjhaKF8ZsmIWIzqdxSHmHFvkEcXsIpYPQixSWYKrM3GPmj8oDGwcYeKzTixPClJwwgksZE
|
||||
|
||||
6HkSRHcJAMHwIsTMy/Ear6fhhBjo7/shBGzT3CMeEsjC6htgH4/u+duCB7Y/5A4Ijh1nkvohOVscEGQgGzPPbMYosD2JgctgmCQIUjgiRCbIjmM5AIcU8LlJMMYHKMI/oBLC2i4iL6rsA9KryFDg6spwGBw7+Y6iiZVoLwOxzNI2BO2hQov/jglImeCXv6EJwyIOIfq58FwSFYH7FpFkycrvhrIodMg6I4guoj6I9EN9u8R/YfwSZzkEYUZiIrIS
|
||||
|
||||
ISZxnw+XrrReR0wZTLkiwVrlI1IowQAm2WtxCZGKJ8Ill5GizIqSJ8JzlpyIKJiJMfAwqUXHU4+iRBMFa0y2iT8TBesOPZYWRiIKSAv6JOIZCEhkKs5iuRkKoxDEhTxD0r0ioiQVg8EhXpCrbSdVkfbx+HkcRqgqZxIEjFeZXG/r0h2UVhJMhZknV56un9gVFpihcDAA5Qf9unD0ASsKzDNACAD7CYAzAOyQ+wFAEkAIA4wBN4zcWsoXT4goKHXJ
|
||||
|
||||
nABCc5hxSd0AMQ3xs9lty08Pmjf7bhW/hOILR7EQWbK+7zraEukWbg6H3elzBuIuhZbkC5cOrVFIbHiSyQI4/elbj8zVuAYbW5BhyNq9FNuz4negGgrbh+IOgyvn8hzgv4lXJEuh+JhgFoAjBDF2GUMRvowxBYU9Sk4hLMy6H6lPhWGLuwRufqZxjQShq+BeAf4GKxDcRTp0EqsfuyGxK5hRDWE1QnP5YUskaNGK+nEbkEz+6kYnZ52I7ATTcEHE
|
||||
|
||||
XwTYpsnIMkaRqcWABjJSvrfHYa49jpE/ErllEnyWKIf5EPBh9rCSzBmkqfFyJ2MYkkoqmrikm5R6SayEKazXhIBCA+gHSSFwwwBQArgpAEYCyO0QPQBdAmAH5BhwHAD3D1JmsvQrayvlEfx3Qo6gcjwC/4u2LxotkB3AIUc2Cj58KkciWagaZZvGalIP9E84e+hSpMnbRn1jMl7RfBr9bMO/1k96Fu/DsW4guayS3obJ33gjwKGV4qnLPRfeii5h
|
||||
|
||||
hJyRQisw5yXVpwqZRLtKo+ieL27sQ5kO7gsULyT9RvJ1NsGEdyE7kT7wx20r3I5qNjv8l2GlYUu7oUfjstra+EOu+5bxW5AEHCBfEe2m7u5sfDrCxVFmLECsrsYdr2psZhaEVmJNM2nFmZoY6mWh06cCkSSOGgymGczmDwkKSLFG8EOcbGjiLnIgSQUi/GDkXymZRGrgyFCpOriKn5RbIYSolMSkEICsgCADwAmoJTBM4+wgMEYAKpWYpUAho0oR
|
||||
|
||||
HqyhZzr3Dw4AnNerGy5qW+AKh0Vskg2pRaHanrsaMqLDBQybogT5St1r2x7YPKJWSM4ezJtHput8F6m3esyecyHR/3IGnsOwaW6EluWWq6G9S0NndF/eD0XsmA+cacD4JpoPjI5KQqabD52c+IImEAS/6Jog5pWIFcmTwhaRAzFpY7vAyE+cMY8nuss7oyw+GVPg2lApXLvT6EMN7vgGYB67gBE6IGQZp7ZBQzEkE/q88bxiCxBOhvjYY2IM8hJo
|
||||
|
||||
Q4W2HCKdfGiiVYc4CXSn4bZLZn0R7YYEioJbMUepOQ7mWIL2ZXmUkR+IqJu5DdETGKSnzIJ8XIQiMCUn9BnwrDCMbSEhEby44R58Y2ilyKaB8ALgqrFpk8+N/CQFJEwmF0hbk+IFHw8YAAdy6ExGbIVn/sV6v4g6y2QRLHymGmR7FJEyWA9iXOjLjXxzYlxq2ZtpSRBNh5GYWfP6PAZgQsIRugMuRExuKpmHgxZjkCkgxq42Ryx6eMFqx6Pxxwi8
|
||||
|
||||
TRWPSORDROzHhOYbZGGVak7ZkjPfpi6j+vol/y6WKF5MUxos8GQkCUUjjTGcUX4x5WVVu4kuWXwBImgkX2TYn66v2bymYia1N9k66Wuo9l9MYOTaJMi26fKhkQH2SJqnpSSXArxKqSb/qyaDXjekjOEAEkATgDTPJA+wdJMoDpw+ADwDNAwwHAB3AKdJoCsg6cA+h/p7ro0kNid1n0gZsc2IMz42S3qqSHAS8GZClKXZh8AEOoJuMirC5SC6m3WQ
|
||||
|
||||
2QTQOEkmGNkepvDjd61SPqT84mqR0fm7PeEaZRmhpV0WlpnigjtsmFaj0WI5A+SLpI6hh7GUmm4AVlFxkaI5kKZwY0WaSmFCZaAMKgTChbGJkHS7ycbmwxXyW5A3JvybWnlh9aYClqZqmW7GuBORjCBZqIeYdqiRNpnbk2x1WRGY6IyQXKRyx5fBnrxOBcdk6bmKTsQ5pY27IozJxdsZFnDI8GRzSIZ6+FsAxGNsaClJOL/MAnPgDgp5oF5WcQ86
|
||||
|
||||
HmBQQ3m/GBmM3kJ5Y8Enl15cxnYKgJTeQHFERYvm3m1IHeWAkemwEW4GAo4+YPmN5XeY+Th4Qka74Lg6Zg6lZmEyJUZfk4AQaGYalWRyzjp5oeWaTwFkLQksmwSJRatsG8BvkTpp+Tlkf8r6opyUGn6tMgRBJeaWZb5Z+R/xwUO2HYT7Ya+Ifl5BpeYm5IZQTlXkOIcWbHrWkyrP9DaB7SPG4IZSbhAUBC3uJ7ydw50sXI/SOThxR5Om2nojtZv8
|
||||
|
||||
aOT/xXIj6YESk2UuxYoqJCqb1Zf8dSJkFrERyyz+0UicYqmF8aDFYFrsgQFpGzAfOEzGSRA2xkEAMMDKRm9fun7Gm9ARnglsKpnEDxZVGnAXOJ7tpaYmmDAXtzV2m3KziVEACUoUsJn8mwmMiQIWKJqkf2ZiL4hPog1bMpaIclLSJkJOEma6KrO9kTBvKKZFORL2XCFrwRkR8rspEwVTjuF3KM+BqJwlCsFRMj0P4XsU3wCq5heQRRDi8q8ScJSp
|
||||
|
||||
RlMvFgcpukX5E8i0CgKnnpdhqjnv29Xvq5ipNJC7oGgmAIXDMAjQJIBdArgEyBwAMACuB/QowNUCSArICXDapketrIhIyQA7I0cwvAoSvULmk8A2WAUEcAMoz7AQ6xxi8SMkWk/cT8bGskthQg0OeGVwb0OXzormOh/qc6Ehy6uXuJUZvDjRlQ2PoX3jRp8Nsxl1uxuQ24aG5uQMBW56GIChWYShvxlI+6jvcnsQKKLEzfobuS/DUu5LAT6PUgvD
|
||||
|
||||
7zgJfuWWGKZAKRjGNpgNEunLaPiNSnXI9tHllIBYWPobBBx4bxExC+IPzHAkInHOnf5zqeiWtxUWN0I/kQUJFTjwuJYvEcY0xd8azFTBQJ4nxeJeSWvm3xpSV/GotmdlwKbnsr76RYTEIkXBSGYDkHwK9lsFledOJgWii5Xi7RI5aKjlGXpOKnkWZJmOeKkY2JTEYAp0YcFZRdADrsQCSwAwCUxsA9ABOAwAJcJoBnJ9Oe1GM5CyBRao6qrORDtw
|
||||
|
||||
NrJAAuazuJEXwEWMG/nfMPmvAGhaZDgeJwR2yrLlgubIDtHepper6m/OKuWRmnRkNrw7uhYaeC7XRmyVGl+hjGcjwnFBySCzlaqLjI5ShkYVD7RhXhnVoN0ujH9BPFyYfPqO5qAA8BJ2LvB8UjueYZvrlpMmdcIkQY0UjEsuAeX4aglKmTWFcmuprsZ2+2WFTrsSankYFyY7fqCCjpsnMiUJ+tpSenzq7pXHl+J2mUTErhFBTR5OBHpYhG6xfhNs
|
||||
|
||||
q8MK5Y6xrlhAd6VmQRHHSl9Bq6fKgIgASRJZJWvieFZeF/nNlTpRZxJ+am6yURiT8pHVsjn6OORf04ZJVkljmSAksM4B3AlQGa5Mg9ABmKKQNKCXAp0ksI0D4Aw+iaWTeZpbXQgCPhJkj9IsTKqG+Q36Dqz04CHAQ6gFQqAEw9KgWqsxup+HhtE2hnqcsW7RQZUrm5uoZYslehVqsC6XR4NrGWRpicgmWKGsaacWlp5xdI7m51QNcXeQ8XFxwzu9
|
||||
|
||||
uSWWo+c+qjrix/iFWVUuhjt8VSZvxcT4sE++jWlAlOPtT4cuTaRCWABSsQqpceM6QsJ0BCbNIXqFUeeOUaeWQSMaGZlQmRX9p86oQ54FaTvnnhOpsZR7LZIBXphlShFV1r46JsU0RmxnaS/wEVX2f5Wk+BjA5UhVx5dpEGFyor0gg5PxIIzORAYmZAxR+OAKZWcYXm4Xg5nbmfYZR5uu1bsyH5WjEawwqTKU/lX9oSolwMAL7ragfkNqC4KdJBOA
|
||||
|
||||
cAuAO16p02oM0BXFCFQ0m6pqpK5Clo66gPQ1+vuSMzWQXSY4SAqByHOBAkrpfwrjFN1iaEjIc8iFiPAniYn7Wh3slRV2hgZZAz7RfqQ94MVmxUxXLJb3qsla5RbjrlbJ9GTsn+hSZU9G8VhyWxlvRMjtQqfRi1DGEaIrGHGFhqv4rTwaOieOMp/Q8hPJW4+0MZ7mfJfxSfg/0pYTNqtlWDEHml2ySknGlBDOrygXmUyMAWHaPiBOXeBaJdz6E4Ba
|
||||
|
||||
OcgIgbSeZlTq3otZmggOMeco+lwyB0Sfo58DyiFIJRohoblBLIeU7KlJsLzOJeFKFZHxNJYtWs6IWpijhatmKSUic3mKFp3c/mA8orp8VbrSlKopVsHGW59lWQ1WLKE+WjBgMi4XaWDsryWJW4RbSHquEpRJplVX5XlEO68pYUUSAzQErBKQPAAgAwAXQJoCkAwwNUBLWuAKzBalmcOMBwA8jr1U6p3KvpBfik8aqyTID3GSBxSbwI8gyECIGEgr
|
||||
|
||||
KyaGMVdxo8ah6el+8JPHr408WETp5FFdtVy5AZYRmrFcyb9wBpjFexUa5rFaW6nVcZZxX3R3FYGFI2qZajaFgMjs1EnQX0V9Xj6HcPCSkQHiv9HAxxLsWxNIHOb1p6OZVRJlKVI2lDXUsj4B2iAl8NcCWB57ZcHmdlwftFXSxHSGe5BxQdnr4b1RSlKY953sTh75KwVZvXuxwwmzW1xP7GL7L5y9sR7aFCBWIEmZHfPchhVI8P5VkgH+S2H1hvOm
|
||||
|
||||
ijf+p8LGoLE4HmLbpxkthxiOYN8VxzrwgKl5Ua20WSeYcYp/nZzSKzSEOHy2I6mnXDIBJcax9CUAYOop1CtqOrPheoYSV4NJJXoWi6bJRdnQqdiX0xmWCXjYVspiRT55WFgXvTgZVYTNxr2FXDRw1QhcYbolc4COUVVZRpVVKU/6uRVVVZJhKmZRsASsHACFwUAOMCHg+gJLDm4zQMwCZw7JKzATgVlAHUKw2zhtaml/VdZCFYzwK8iSoBrHsD9R
|
||||
|
||||
4Uk8B3EOiHCTUoYJPhU+VZeSgWV5qGctUIJQUH9A5eTuP+JpuhetMlF1tFWsVHVpGeXXa52xZrlsVUTfsW65t1frlMZj1SmUY8pua9Xm52oMJXBgujHIS9RHijPqD1h+M+DZcmaWPWr6+jpPX4+ylVSzaIWKF8DyZ6EkvVtlHNjjVjl7SLOGTGG2gIXV5mebXkAmGfr+FV2UVS3lZ5BEkMYJBdlXe5ER/TTOU7lagn9rTlanvAGLNhEvCnv+mRsR
|
||||
|
||||
ztxhQkiVzGCoVSiLGvcNjWycHHoZUqxF8sxaixnRs1m1h2DZOpYolNUZjU1tMdUajV72OsjBBIKA5BvmLkB+at+WRitgwp7jl80Ic75jlmEgALYOYoo46l8Zgtn5mx6sl0khU7ggKogYmeR84HyUxw4saYm5WSXviIGiilmw3iofGmyny6Pon6JG1uwGCGjBpEjDnG1FXmenJJ2RRVV/6VtQUUFMVQO5B3APsGXBCAmcMwBKQ3tR0C4AvqPQCmuz
|
||||
|
||||
UTbg7OiFSY3bWVyIR610BIPuzDMpQO2IJIS3AqSu4NLBY63ONeWlmlArqaM231W1RwZ+l8uc1GfcJdVVQRNJ1RXXRNVddRlbF8TTdWHFXFTGmN1L0S9XHJvqoFJZlndbmUrU1tClJf4ElamGASZhm0k0GonuU3Esa+opXVN09XWVPUjZYJkL1KMXWktNNPsjXtN65dfXZx0zWkpj5NcTM16tevKCmFtsVawnnZyLSMHaW8NDEVlsj9oy1iNF6RI3
|
||||
|
||||
floqU7oKlEAOnASItQAgCTW7ME7Up0SkD7CsgJwFZQUAPsFUytF8DhYZuaWnPk5GYbYtrJggbGOchLc8dcBqC5S/orrh8zqVjDp1YSJfltJ/pjfkptedSa0vMZrYw7EZ6xcdXV6exZGU7FfpQ+1QuCTS6311brfslN1aTWmWJpvqvaAfV0Pl3UOg2+dgShtBLuGpFNIsD7kHY5LuPU5hXxfG0mOKlXU0AiaaHDVptCNUAQr1WbcZWq+heVBrlYVf
|
||||
|
||||
r7Fe8PfmeF6+CDeA2iMBleepBQAtRrboWpHf7GxGjsXOHdNkIPn56mzsT028FBfl00oMDdOb5kB3bM/XQRAsevnp+sJo6be2kcTzoZxwfts3JClMTyg9lBLL8A8FdjCoVSFxbBZWnmkvqwXEgcdmeYY1FQa0bC0M+Y3Fz5LzV35MdvuO5VBVB5KRDCme9afWeV8vvfEby5BRsavNZMXX7BBg8Dx6vyfHqawWdFOnka3GJQg81WZTzcXk6m6zRka8
|
||||
|
||||
m4/rdx+YX4k/Vxdb/gl06235t41gkVTqKwSCXZSp22+anUVy3GsLb83gtCqNew+Z9MYjJ+acnap7kWdEQFnFGLwvjSdZ2ksMqVk/4QVmARDPq1klZ2HpnE95tWaX6/18nZCXSmVcbKzKdZfBXQldBxiKY+dtfh9iUx8XdrYIeDset2C+38WrGbNBEop3km+5ZXFbKnNeiYr5NEtHjgodYS/WnxGnSUAYC2WMpE4CMkSx18F7Hcc2RBjMVJG4C7As
|
||||
|
||||
Z07MdnFZ3jNezSgRMxqke51yReKfbHA933SpG/dzZv92rmlKM6YHde4avnpY13W918dhvoJ3QCQnq34mBUwj/W3dMWVwH49xge35/QsnSkbUl0eeT3Dl3BFT3md0KWthA9njmj2XdGPYjFQF3ZcV2JGi3XM0OBbpgs0emA3eEYDpinixbXNqGkuHYBSyLgWpOJDgU7EdPfLZ0+8Cvbnn5Ox8O52I9mNWz1qeq2bE7rZNgRwEVGXnWp541VwlOWBC
|
||||
|
||||
AOuZEA9KOPr3Lah3b44K8Cpn7Ff19HbJwx5mPfHkROfaU53f1DiN73c9dKEfVLl86sH39lRAYuUlxFbfoVVt8ruMwClOugDkJeWVcrU+W2VXZE2RmVQc2UtTEqlUyWbTolyWWNTkykqJSXCkWMpNTg4n+RPwYlzpV/DYGKcNjKQVUBibfS5aQ5pIgbqCNnfYbrd9oUe9mN9VVrX0WFWIT6INaiVveXHpqVpCGXlp+Bn2609felY8NutI6I1OeVQc
|
||||
|
||||
jr9HoqFYHprwDi36ijnD6IH9AiRZFix/CZTIzVaLZf1IkykmtGr9/nMm4a1Hjo22m1PTq/attltYM7sticKzC1AUAPECLAzgDIArgdwGwBMqAII0C1AXII/SB1bRYXQOQWaIhkvAcIOzRxSKdn6JJIkuuWWR5kAD5qCRnPTHhLVC0XdZvIinNg6dAKSKm4LFQTRIAMO8Wje3hNCyTa1xNj7TE3V1trU63xlH7ccUpN37ZnIt14LL6qEA2TfPpOQR
|
||||
|
||||
ykWXGGwYAPVhtDySpGV5y+tj7zuBjoNpT1yHbU2YYBzV+Zi4GlYvVaVymavVLNoDX2EtdIinCkZdG3TTF9KF9c+oxIyFr76wgnHU7HzhmplcrI4m5BMIvgpjH0qWxiXUrTP5oaqwj207ZjOF7dfg1AUS5J+Nuzdg3g3r6+DWXaKB3WlyOeQvIyHIH25E8Q2P7/sg4gEzGQFAx/VWDevt722mg2XphyEFhEhnjwZwLuEXdLvtdlnxUBUFi5oQ4lWT
|
||||
|
||||
R2nvfMgEDdQ0QMqmTQzhQOBkmJxwuep5Vnr7pl5U/0t9/nB8ARewVti10NOorYVA5w/YlwMNJfclYeibkOJaaSAyNf3Tlr/ZkVMtCCiy3o5+RR20216APNZdAhcKIAdA4zoeAitHAOyRXg7JEpDagUINO17ODwFg4M4LmGEQkQpqdrJyF50jxgY46Ii40JuwvOAUpuB7c1246Zg+e1XeBdQRkK5oTZa0sOYZS+2g27Aw6011HFR3qutvA4bksZZx
|
||||
|
||||
Ucmt15uZnCiDjpmmz3Fq0pJUosUHaHhOl8YWmgr6MbZU2Id+YYm2C8VKGwLNlfyVh3sup+rpWWV7SDYPxqGeezX8swcQRKtph1OfnE9YnQ2HA9PEQn6iB8o1HF/m5FrLSK96OrgMbCJg7CPTh8OqAUQjFeeshwW+o1OFqsoVa41gFpo2BIThOOpaNbuiLXhr0UqLVdkWRvRElUPZsiTMPL9UlJyWdlew++WSlLbbV6VV7bYNadtdJI0A8AsjiuCl
|
||||
|
||||
FrIFa4UAJTNqCHg1jZnDDAEoO8NTeiIKpjeCrZNNEqEfRdrJXqehPHXmCFwJFV4DS6M73pSTzvYOUCTWvCNbRiI9RV7VFrYwPzJwcve2OtbA/a27FfY6+3OtA0rskPVhI09XN1jbqSO+q34IB05luhptASodIh5weK4HcBgdaQUAzpY+FLrG2qDSHc4acjs9eWVM2ug5h3NNiNTh1tNeHQJ6Md4pnZ2BVXseH3B+ooxzFPEurdD16+r46L01dkKS
|
||||
|
||||
fVlt0Gjn7CdBtrc0lEUnZXYV8eSiN19dlEqEHR+EebWpO+IiAeGvAaXULYWj1AQ5lSCIPQsaAkRzU4NsdxfgEKW9vggTXB2HnQNncRngSiXp46Q3kg/hXttn5UTgQaRN0TZdoM2MT7jiROolOvC6OT2ifYP0CidLQUhK6pIj7xEtD5SbQK6M/bDgUteVQSJn9LiVcRKTlIvphClDbXSH7Dzbcy3SlrLd/2nDHLQMAVFYcKQAbg1QLgDagHAAaCZw
|
||||
|
||||
rQCuAlMhcOMB0kr4nAMztd1rtgBmySATgljqpLph5GtdgqEfAlaDq0nd6AbgOTF1MLL0x9EfvMW4ZtA0orIj+1cGXK51rb2M4jlde97RlfDsDa11eIzwPwuKhsSOetM47NT4Aog6GopSs2BwgRq642j4gd9IhjBRt0kEoN7jo7moOHj0mUm2fC6leT56DygwYO4delSK4hTO9e77R9UrrH0gpw05KO6jYqGH0TTy6fSkK1cXLQKL9qIiCGFVwYyV
|
||||
|
||||
WhjOk5/1XpbLQZOJwkgCuCyOzQOnAnAcjvgDagK4KMBCAJTDiBhwbAKzCZw9ADmNmlchNtgU4ZhOUgHY0ddsBloPSkhIXIMueNHN43E/J7zRFpMAlyMWmMTg4ZlFW2O7VITYlN0VJGcwOpTnA/2MZTl1RRm0ZBxaOP3V9xQVN8VJI0IOzU+gGVOTYHNWNVAxUgzdCSD/9NGqm8R/OJXRtthkWnsjtZR1OC8WmKOWptXhqjFKZSNdeODThg1vWudn
|
||||
|
||||
vqu6EMpMSt0fNcJU+M4BsE3hFhBb5BKyIB8sygEvhQ4tzHwiEmOR3r1Y08gG6sSBW42Qj6yD101ZME9eEpBlgQYFzxCo3/VtxcE6dqqzS3TZ33jvfuYOax6SKRJoTenYDoGdimJjQYTUHLoh9ZDFlhyYE43RqMXaDE9J3DNUWGA209snHWPgps8pfWo9tQ1Hhc9VOjKOHOSc193zGBzXhOMusxsqP41bE492/+gU8m4lzz8pc2Bm8Jjc3zqlc7hM
|
||||
|
||||
1zmwAp71z1FqvFDDS0/KgWEu6e8TP6Mk9jgsN7FNfY7DY86ZFEtqWAbWaSKUUS34gWfXFbKSirspIL9/DddnwqAogPO2Je+nlVIsjha+WI5Wk9tOHDuk8cNylP/RUCjAE4IeDKAwcKyAlMOwNqCswg3D7CSw9AEpDxA7JN0CvTMrSVhqYLBJGb4s3k0zkdKNQYxH61MqsUNMmKzMtWDpUvY3O08gTR87BNCU52Pl6qMz2PCGGIyxVYzsTVdW4zb7
|
||||
|
||||
fjOJlhM4i7EzRU6TOlgwpL62fV/rfCw0sFSlVPFlnilJXRq0yOXy9iYNSoOtTB42Wlcz1LJ+pWy+qGeP8z6bZeOtNgRjeMMdy3asird0i1e4sF5vE4SezCKUHxCd/WSJ3MT3abDrKFGgQQI2msC9eEwyTnu+F6+ucybbI6nc8OlNzwfjb7zdiRhhXmeJi9RES1XrHoTWm4KG4tF8+i54tIplDTxa9z5KCYETDmIirpVWgujcFW0HJt5EW0z2XlX3
|
||||
|
||||
ZmIhwmmFWej4wsiGRSGNm14jeGN6TGOVfOoQSkFZSHg7JCXDNAYSJUCswJwCnQnA7JOnDMAecBQBZNLk3s7c5uHHtbZZXC5zlgLFIdSIL9hztAtadZlTp3/iTzsxE4yr1CgtTJdAysUojXY6XUbF6M6wN+lUZdjPZTuI7953VpCzxWpNAg9ONULqEGwCiD53LqKj1NMwJnMLsgy8UzV9Ikz2szWlVU0cjAi9ojFyVviIs9T54/oNCzUiyLOC1LcW
|
||||
|
||||
SVrNFgzt3eLis7QL4ROzcCvYTCrD75Nj93WLMHlwyg57WzKgUzz5zt2n71n1RSmMtWeLWb+PLqdg1EE0T1wsillBJnQ73uOkfcSvo19vcj20B1ZgYteLAS2U4J97CSzzDzgwfW3ucPKYlbsi4OYX18Wv8spKNEQUVza7Dmk5kvv9tXLtMRj16fkvoA4A0ICEA2oHSSyOHQBQBKwCAJIDxAJcIZqswKdD7oiDzSx1EjwZrM2xDi+yv8PhSK7eubcj
|
||||
|
||||
OMNzGQFNY5HJYrnOgKbp1QktrMx45xBMs0DqC9Ms0VyM2E3djyWidG4LKyQeKZTL7bdHvtDGQ3VftHrek1ets1MJDzj74nmVX98zOwhrjpZc2i3QL4MyPNTbI3G2PLKHZhhMoZ7W8vIxYi/yPA4Xy9WFGDF2ofULlUroiXZtvTRKN01Py/A1C1Ci0tjSzcix81Bzk4ZhNWj1g2Hn/IEeSIzQlJKZC3AB466XPUTk5e0Mq9r2DLMUxzi8m08xGSEe
|
||||
|
||||
Wo1a68xgbrnq5St29SPVjV2mryBT2M9cDcnNOzZJmZ3qZuK+L3s94eMhNo0qE9T0nu53ffWo0JHkYsJzUcyyXy1zK/RQdg3JcqJ0imw2KLCq6k1lbmJpInJMeicww9gd9nKdMNs4lhSokwgu/ZeU8rNotcijDR8yI1Ntp8705SruSycNRjZwxABKwSQHSRKlwwJLATgV0wMAYgV0I9P/l+gHOMGNrUTKFbWpHsPBUMVmeiHAe41dtbbAzbM5CzY2
|
||||
|
||||
WKIhpoPmj1gUQTkFAmpkj1lSjp1MdclLt2w9iwbjikyztVoL5rQdUhlKUzgtDjmIwOPPtQ45GskLMa8mX8DahvGvFTpYC0XJruanmXfTEFGKN0jtMxMWA1szDi7Uo3Cw8uczxa7g6iwC/ryP+5F49h2SLtax44s+qc0z4gNF2lCW29xxoZ1X1xbZSl3GJPRN31r0WWZmjK8FOJyacUnOiUxZmyEFj2QdchgWrkvs5rWNriefaslAKm4PZMGqMlci
|
||||
|
||||
Lrt634F4rrdgPaMGHdi1sQgZPZ0QE9I5WhaTRAlFuyeJTgl2knhsOqpxjKKDZMpoNggVCth+wnO0o0MP/rtxU4n3fivLbMgspwicE2Fo5dKrkDi5u+vArtsoW+2/chC54JrZjYJS2/wKXbq2xfmVkhYzA28q2292oXbDg82NUc5jXJt0cZWbYvLalBb/5pYYIqgkrRxdh+qFsJIGxNurm2h6uXK3WFerKyoSL1EU496v3nt59gp3lOCpW9tisItT
|
||||
|
||||
m2SjqxQt+S4NkAT8lK0vwg8I0MLQ6it9xItZP5QocO7NuZI8285iLb8OggkeDyCUT3Ao3NTEKGQfNUSsv8PO+MJ87ty8Cjf+byJtv/+Iwtcq87kwlLtRYgu2tUi7es+Rbi7SCcrt8BTmbqJuQJkGGoM7wKNrtdwXg82qjbm7DNETbu7GLspYZwDEKlyk8F3RK0ZW0TsBIJOwV1qeIyOda3bawqglQUYAhexYJF64gX67S/D4JhqSm2uy2aY2zbs7
|
||||
|
||||
ssK1siHwhwsLyrInzTdutbEJvdsimNO5Jh07zwrvn6hRJQfm3CMcPcL57wiIXuf54I+XnIZVtiKYAaU8Yro51fAVDPwiMM/L1/8Te1nUt7UzG3sD5hQfIy+NPcwBu6R3K/31qiRuvEWZVVfV8GxLXJR8Fz2+/XMNDzCugCgqT7xGVm4hW++CRW0nxHX1Twc+5iJSJdfVSLBW0Q8+V+Mw814m5W+RConH2yuqJMCWtLfvOv7cG3vMeil+yomb7jkX
|
||||
|
||||
4pX7jkXn3g5Nbfi1H9jMscKjz9LeKUnzWS2GPMhe0/pNkbHLcwBMgbQBOCCQSkNLBMgsjiwCjARmjwDMA+gEpCcZhq0hVuQw8KoQlY4Aq7ldLg8NsA7McNDkprkIfRlJLojY6wK/bl3AtF3Gbvg8bAWLQsa0IjprYXXoLem8lNozhm2lN2t+CxwNLL5my6oG5CLkbkULtm/st3oVuLQtAd9Cx+jxsi3KDUSVfGV5s3Q5kOzRvj4iPmsT1HMx8lHj
|
||||
|
||||
zy9aUlhoi3O7H6Na1jHRby2i45uB4XQ6N2ZrXQuytbmKSSk69+ncosy+ePb4tAmIfXkiVzkkXD0sxoR96z0rERyRzzNFQdUMH+hKfmY0plQhYHIr4yiF0s9Q5sFBwBpEcE7UFYInbPM6uW18gUrUE7Vu959W6Iy9r7zR3C1qlHSbuwcsi00fKtiQ2EOZEvh0SnjJXETz3bd1MRXMg90Ry91sShrT0HA932zCt3uuMY+4PbCnE9uwg8x9N1Sj6BHx
|
||||
|
||||
PslHnL/t3lMupi1bzdtAHiHHPkXl3H7Lyhi3BW4S/iKwbwIaSFNOlVllxktRXiAf1W4/UFwVTC+0GNirW07Ac7TOSxfO/lnbc4D0AjQHSQ7AXQFZSSwHQF/M5AE4M4CZgzAEYDVA1WqQcyt6OOMSah0CeyjR1vk7NXQgNNMUinwBDlqOa9BBcQO56ozT2Etjixf6VIjum0lP0VBmwC5GbeCxdUELOM1wN110a5+1Wbca7+1m5vqrkCObLNqmtGY1
|
||||
|
||||
ED24SV9MxuPsQgYmnjYILI2zPiZVh5DU2HJaysjjiGHZWvhbAow44uHA5W4doR7MaNPQTfedKMcCGR1ilFxOmQ3vNzYx893MxbEtDLrrOs56v2dUsWHtieuTq5X207px2mPAGvfgVuVgVR6ej71Dci1ISaRW5EAkdwXZahLsONLl0NwyshsJJx8+Kso5Rwx/ZAn5G+yQTgygBriMkXQCuDxAxAJoAlMkgJhC1AE4DsC4A2hmifB1DYo8AyoQiLox
|
||||
|
||||
QJpHugN/T3/C8QL6INa3g+aLc0XPJuGWOnWR9vpZe0iHDJyjO3tzJ8Gusnoa7aqyHhC1ye5TPJwSNKHRIyocCnGTb6qbOHdXQuLjrYG8Ajw6rZB20zdyfSPRgOsvdDaDZQBYcIdhawFsaDuDuEynj7y9qefLV498vCjwtG7NWsjotPn5HIAQbEbNvKIkeZDhQ4OUcTcc41P/atgeQHiRhc9XNsoKuyUDVHMPYheHNw5z4vxHfi3LWLTY+yiR8rOu
|
||||
|
||||
ksO8abCI4nHBf8j4XpLb5b8cSrNuvAfSr+00geJwowFUu1A4wD7BMg3sDwBKwygGwC1A+uA0VE5L0/WdWaAI/BkcUeOsihuQ6Uu2JJ4WnFBSXsxqT/S6hmexMh3bYuSaGkg5jZqqCaoF5wcxT8M8If0n17ZgvTnEhyydSHWWisscnay9dXcDq5/lPkLz1aofT45uVXAinLitdARM+7LozT6hTZcvNkTNCJJ+bKp6Wle53M4ZANNfM44d2Ozh0KNr
|
||||
|
||||
1mEfCvI7rvb+fe8mu9lswjTo0mZi9GEZlfBzgWZKanNtHYaNfjRp7e5Y9XHfwUcdoQ0V0OLiFE4vW+rHfx2sBn2wYwWLry7kTfj78SUfg7AQt1du82R/oHZURSkOVt+569ERDXaQbnXYTsPRMde+c146d311El0NnbLzbldmHacb+ubxfac2FpGwx+rFQp/WMrF7qXyLOWwr5KXin/L8Uvc2WZM6jZl494E7wG3GADeUrxY/jLCuHdN69+Z0JV+S
|
||||
|
||||
e0sGmiOiZKz8E99ddX+wo+BMQPSI+BsTscxBMH1yexUQs02Wb8AfkcRwWxDLjokVfg39OCkg3IFhuv63+r0ooyHtxCaXKOQp7dVsArXs4imgBalyLmODOKx1u2DwgnMw6MizCEifsZcUXlFHQvb3ZrmqR6BOh85V5pk1HHlXtpo1dhAZ2NdgAWlfpY/5yetySDPaYHAXCXT7MK3Q2xNePXttl7bxzDW6Ous9KPXadxBwxtp5YeSZrLfWsbW0oJSB
|
||||
|
||||
02aDL8+B1/t1zNNt3Z4zZLHQ7fqLjK7K4EXhnGylz9twc4nDzkwd6OUa+fVGfiUN2eJRvgAB9yhUa5x9vZspJLYpbCIG6dxRhFwB/ZGUX6fVCGVEux2iEz7g8/nc/Eud7DgCMJx3iErT/DaXerTZhbcdEi/Rpi0B3CumhvvHdd4XeQkdDSxhvZmksFznHGS7RcZn581mfVVWOQzBWUKdAaD0w5ZzwBWUCyAgBWURgJoDNAQgJUAObHG8FLGNDZ+a
|
||||
|
||||
XJEWWPHVAw1aL9NO2qkZbLdIyUjKodXB3qsznXY5zFoTnplwdHmX2C5ZcYzyy0+2feZm3RlRrmy5Zt8D/J4INuXvqiJeaHC49jabQK0XJtduBhwFcMzZhlwQTC68KFcPn1h08slrbyq+cVrsV2VX9Tws9+etrubYXHM9x12c10dKWd2EltqF4MummrNf+N9NZDyEGPrD9UGaU3Da2LfupMSJNm2e0bqDIUBg655kBC513kfZGY63GEMxGF8XPLGW
|
||||
|
||||
3YCtaxc5bBem9so20f1sPR9bHTyNHZHzEPw8Y6NDr/V8Ld/jFHQnGVHQx5I+HXH4Xo8ND3R+7e9Hnt/0EVOPkYDIcrPt1Mgd3iupJOMiyE5S2rU4wVDnAyKdw6JYbQXBFELzmmMBtHEeLamf4bb/QPfEbgJ8PedtVlMQCyOksMMCVA9ACXDjAPAOWIB6sAKzDOSzQDQsUwhjW1HStm9+LG8bm9qRKXO1YyFQtw8odjDlKX9RphSbS6O12E0K0bty
|
||||
|
||||
JmEM9TCbAPuDjjt2ct9TOQAWmwjM6bd94dWBrx0QW7kZdl9Ifsni55yeOqxCwofJNE4zss2bW5wmulglmnudaHB58GC/GTPJQYeK3zEYdQUzaPHU7j8HZDFhXtLoFs+sExVqcYPgs5+dRbBp/WvFXu6nKNB99PeNfK3d8ekf+HhZjBqZb0c1jqmVppjIXdYq6mexJIbvv4JtXuRIp1XhiQ5EMjZ0ubEMKdV6wu0EWcBJSWpI0eL5g1DH6weGIgGS
|
||||
|
||||
lepghPT+VOx+8694HW9HCpXlNINSDZhMosK68IWMHXUTStPG2MzkPWbZOkgiEk1yy/NPyNL+QqmjmFy9PWuUrfpbHF2XpHTzQBdHeYim89Xe8iTdyvsHprxzJYdwir9sgt3Pke6PpFNFx/raTZ85E9D30jVjnag4wCnQFJcAI0BwAAwLI6UKhcCXArg099gBWTmZXk+cb/6dxudAegkhQ9Kh8LvrR1YIO3CiCqNJChzFPmgjt7rKV/q2rMAih5nC
|
||||
|
||||
KAVTSdxTBqn6sYL990wOP3s51ZeYz0z9iPP38h0cVOXyhy5erPdm6hBrAnl99Efou+lsoyD/6ADXPFwmfrJ/at57uMFr+40WtPnEGPk0xXCmR+eRb+p9V1M3bmzg8GP1N6BcZOBs3UdW3/2r8/Ep/z+KN4PYzQ+tda9kJswS0MF3qM8Pib1Q+C9/DHzfOBN3fbNZbCwlG+unMb6W00Pn4wb1cxiO7zHzKIzR+MSv/6+GcCTgY5CQn9Rd7XcuWryJ
|
||||
|
||||
BvyWt+3iH13E+733CNm0wa+EbH/QCcmv1tRy2HgpAGHCdgbqLI4UA7JAaBtAHAOMBxPAEKLJ05a9xyqFPYlwNUTYN6t8EjiLMyq3tFh99lTH3VYzecDJFE1ouxvJodggDPxl+2NIz6byM/zLd7ZIfP3xmzIf5vchx/cWbvJz/fxprlw4qoQLrkA8prK1KFbjKeaL+KE2F52WWDxpHgqd3nFz4g+qnyD7g48U6Unc/9vfU/FfglY7+0cIo1KOuZ46
|
||||
|
||||
IW+Z8lA59y2sOIDn82mSvEZ/f3xnkOEYl20G5IEl93EH38dGv0H7KXZnyB3AB0kZUfoA2UYcH7pwASsPoCVAVlPQC/2FCn/NFPTkMkA048zEfAx2aaO2J2NsmOdwU89wg0+Ord79G+Sc6dax/erUy/FOTnAazx8zn4z+GWQuAn3m+DjOb8OMOXX92J9LP1myGFlvahxQhGAZU2MgCm1IrclZr6IqmQGXip/cuXPPxd2+uc1aW+f3PIJYO8JXdaws
|
||||
|
||||
K+Dat92u4RoK8rMtGMvduUAyVBeDvl8jn4JJlfF7xV+7fnMVrP3vIbMEEGnrn4n0v5nCUB9t3QOan2Jcgk3bTzzkXn5/dOET0F9SNsH4nB3ABoM4BMgHADGOFwlOYk88tJcKzCVAzgCnRtA7rzMD5PXG1N6hqkOAyjZUXLQxzR1djRji3QNLN80zXDq4dwdH5MV0fhTrYGpx80tpJJyU/hl/nXsfiM6IeMnWC0GtNfIa+dVhrqy2dHrLeuWONkLJ
|
||||
|
||||
b1OMXF99JoAHAZUwiDCKa2hcv/o0p7VOCIOsq3Ctvs38oP+bSD9c9l0pj1Y7oPxn04ePPQ75LM8973URMQrUWIF3bm78gQ0jxRDV0q9xpu4rsS7uuyTHmsbzbT+fNyDRMqc7V7NZ1e/vnfItoojPwhTM/WnJ6epXwfyutdHSDQmhM/EnFH9hnSLa9+oOywR4kIst5bNMclRLRFrF3nChsEIqgP4Kn/HDFyRuXzB0xUBKwE4DwAvDSQAaDT3+gMMA
|
||||
|
||||
a4rfyUwmuSkIQAtuol7GhMEZQ/GyQh4KEu3hSgI381w5H6sItU/cVAzWO7KDryqWYF98tVS1otdiis7gh62Mc/QzwwNmXmb7z9q5HX61+C/tl8L/2X3J919rnRM6W9/3Un+gAy/R0FW/Ad0g8ecVE7z0mG0zljkc+MQaWMtIIPnb4+enSFhBsiW0qG/Fso6natam/Db6uHetbb1C5SPvPXhzTLvbGPP5bN5XOLVxZAG3dOkodIVo62ZeIgPYTrIE
|
||||
|
||||
nY97qjeR7YA1sJ4AgVi5dc0Y7vAZDDrXR6UBcgEEAlC4NHWP59rZo7m/DIY9HTboESVUyc4S/zAka3qCeQbZnrb54DNeApjZSwxpYSlKAVDnqrXCTrLlXm60eI96O+GQFZzIgZ7ZAfx7edQI4XIEzwCXAq8ZbNC+Rc24sAzo7w7CzxQqHhS98XtIYrKbY0TA5QcvZq449Gq7mnXXqA9clYUPRNh7vNTwvYRvgmQErCJhB7o4TQc5LGWF5bXEnr6P
|
||||
|
||||
UUATNAzK6MJPaemM5qnXa242eaQIURLW5SiHiiCxGKQkRZ26cPV4B35E/JOpL9BJ+fb4g3IPzkWHBoQBYkqd8XOaVGFoKWMKbDs3VDRVA83rkWVm4LMPRikBTRZ5zVP6ujKKwj9bV4QhGEJhePwrAHV8DnkVV4kaYA5FYJear2fPrzBSxJZce+qqvZpDB3fkoNIDz55jHeYBFXYJheJYEpLbeyq1KJgwyYA4QbVV4jAr97coU4F0NJxJRXBXQCNY
|
||||
|
||||
SZpDGkKl/LIqBfCv5RPU16dtGE5lMcYBu6egA7AegDagIQAGgXqDCAHYAlwOADGlfD5StPqqb3C4Bh1Y6hBQJDKqjSj5c5ZLCDYc0Ll8IXgyqbb5/DZTYNsTjhlZCZBJsZBbVfbTa+rDsZiHJk4WXbN78fNk7H/GZ6TPZc4bLJJrjjdc6TjH9o3/H1TkIGX7DAOX52YLLBK/JHyDHd/7QPQ/CBQVjC5SP/68LLt6AA5aTJuNB5gAgd6ZtbB6JXBL
|
||||
|
||||
bWnXrpmnFzo7aXa6b1LEH+LDAH2zcIEyxJFbDXXI5B/U7CsA+P7U6JnYy1VLqcdVTpMMe5TscV7bQNRwitwXPju3Hb5K0OQphYIgiWGMqS71OxZhDD0H0YXEHUGMyCgxEIYjrFR4weR2z6/H0GIZb5pMvV57Rg8F69YKvZr8AP7+gu/SvvNP74adx4YhIkQaJLLh9AzPqavaJgP9MeZL7JpyJLA+DuiILgGyDYEv9H47+fOi41eF4EwfWVYQAbAB
|
||||
|
||||
GaDoAlMQ8D0ASoB3AA3A+wEpjDAZwBCAQcGDcbkG9/aUiqYfoblIRg6o0ccQDwOpA2ERlDUFfxAwZaf6tae5oeeHAgCmTS7cHRObX3DNy33Hf4ZvUZ6q5INL0g3N60goT5LnOZ4jjBZ7Mgq/6S/ASrS/ZzBy/JOzK+et5I+Rt6qfVKQGpTX5afV5LzfGprSg4XgtkRpr6ocRYRbRUFfnZUFsRRj4RzAmK1HY+rzqLGTmA6IaLpOz5oaKKgzsKXLA
|
||||
|
||||
ad3yHmXg7m2PNBibezpRGJvxk7YDi7g7fZbvMWamnW04+7SLq0Q+LD0Q3mzXvWLrAoFiFAkPcEyEfNqkPG95Zg/C5vvXMF2Ea8p2FMO7+WAYF2RalrJeIwr+WBSF8WUry+ffV5A/T8qZnYL7RPcjZdAXyQ7ATOBHTb1CvgYgBtAEgCswUgD2SEphUICEFGNQj59/WSSWGDHrAkeugWrayB+QcYigaRnALZCWgDLMQFpAqFCiZdp5dyShJ4mQWIEm
|
||||
|
||||
Y8H4ZDj5c/Kc57/MZ4H/akHznHhymbDr6FvfEbFvDc7X/PZb/3TkH4gI5btod9StvGkaCgh4qq/Cshr8B2R9PNt7nPECE6fcK4z1NeAJsaOxQQv/BVrdmxwQp55wlD06qg8aZIA3R4oAsNiq9e8ZYWWq4lYXgEtoQET4rMuZW9Wd5ocUdjGeI3ydwaR4cYY0Z17VArKFPyHpghf6S1K0EpdTxJsTQQHOJcQHpAwKELKUZBgmLPYaXdaGHQ/yFbQ6
|
||||
|
||||
7YhQp/wEJEgGCeSQoY3MF6nQ1aq81DaoZXYF7uA8ypU6FaqJuT6E0QTXYvfMSECrIrxBPblBUXIrw5eOO41Be46U4WGETBCSb3EcHJZ3Ev5qQsv7PAtJKMXRA5NecjZJAVmBFnaoCHgCcD0AImFdALoDNAVkD0AXsEGgRMCW5acGF0JAbdgMEis0frBLgjNALgPZRr4OQjSRU5ZbgktDLETDTmRR6wHgveAHIcvZ/CAvYTQ5N4+rWr7DPfTaUgvn
|
||||
|
||||
5znAX4LnO8GzPTr7n/JkHi/DKGvg9MpJpGX5z4R/7aHGniokQZinnATKWwmU4gdHAiBEbTC6OCpqWHWqFXPJ87QqHwjNQ1mwmfSAFmfBCEcsZWhWfOUJCoAITxvUwahzA/xwXJj5+zSW7BHYaGiAsoga3F8AbYToaqAhlbxw09ZK3ViRxIJ1ZmLNTzxDJR6eCXg5AWZoSMcU0FoVXwHR4DPb3Q/BIEmDRbhzSxZRYSBp4g7jiugyTrXQzaHb5f9S
|
||||
|
||||
TxSgzAaRnBFEB8LzQzUw1YTZB57G0hV7FQidQ/06W7KWG07ceFDsI27+UWarfJJNg7KJuFvbF0EA4I0Zf5SdI/5djhVYWnRG7VnDz5EBKL5fHYX5feGG7QzBHw7HYT5XHZT5PeHOZA+FXwrdYLTE8pBLJBzQZXYFXlOO6vBPKpzAt46AfUyyQHLV5wwoKBRLCBQJeWsFX2Bez3BSGGpcJGEeiYHIpLR4EHDIjYg/SMb4wjlp9eWophgIQC4AH2Ca
|
||||
|
||||
AbOAegSQBJAAYCSwJWD9eVL5EfCap2QaeC2QY6hMHMDIibD4R8wtfgqXfhSDpYrDpIL8QXwIKG2yQF5erWKbyw1N5kg7n4P3ff5Xg0/5TPW8HtfAt4ifJ8G6w1kG7LKX45Qosgmw7Z6oABLAsEV8Aq/UnhZrFjBISSqFa/FqY1lXX5uwnREHIT2ECzNb7tQs34ZzAl5o0Il6vrBjwdmSixcI0rCs0ZxH/uJiz+mdxEqecdSJzLoH8TXMHvfd4jRc
|
||||
|
||||
csGyTFIgTzKA4CAURqQfSVboImVbV/CQBhwH2A5AJIClnJICsqE4CFwBcAIANoBDeWygaHD17r3OyHrALsAUHCCiYwYhLWBITaokNTAiIXxq6IV8AlfCBDGzBEDhVHFxf1ZTb/SRebvqEeBtkdaKeyIRE1fERGcfckE8/OKGSIiMov3LEayI4T54zBRHbLPr4m5Ab7ZQioAy/SsSyfJzYrUMEihIEGoeKa2GlQ/hhFYVcgSg0xG6fQLYkQdcyanB
|
||||
|
||||
w7G/OK4+w7xAXfbd45KEpD4AkTBMA9w6NxYcyRg5eCBwxN62fajwKApwKB/HwaBg7EF3NPfIl7N2w/PDFILvCZKjKdnbPUYcDTRfaGTrRd7U7GeGV7J4QTw2FF+HeFGCghrYhgoJAx2BihHycibzvAY5oWAIZAaFgw8cEoH1rHUFU6GOrXqdHY4ERYghA6jp/IlzBBw17D92VTYkWFnZKta34NbHDjrVLrSxMOTAxA5Qg+AzUyVw7Di9YbgiWYHA
|
||||
|
||||
jKyMOam+Tq4NbXpFdIfpGFYKtCKRIBYIlHzbuOLbDHUWlidwXVE5AhC57WQ1H+2DbAmovpElZC1F/rESE5gqKL5g3KxdKBYYl3YD4obYsGORVlKeWGSGiWKYEQhENElg7O6+WIlo+cEJIQIjLyPHDUSGRcqwoIw15oItsFaQt4HkbAZGEAAYATgJSCZwJVZsAXADskUYDpYaoCjABOgfRGyEFPKEHUI3TApEEKLNIAk64OMDJ1ohnBtYHRHXI/pL
|
||||
|
||||
8KfXbnlL3jYGdOo/xAgF5DDlBw5QRFGXcc4mXM8HcfK1rKw+KFLLI/7qw+ZH3grWErnC/7pQpRErPdkFlATQwy/WAbbI0U4rUfeL+EQdwSVUG4lQ6SpjkCkJnPJ2H3nf/5mI8CEO0Tq6gAvkbgAtqE6VX2Gbff2GxA89TxAv2Gl2JlHPIuh4OIr9ZR9TUHWAyQJBOSgRm0GXRWAzyrOnFAb0vLCGTmcWYzmHxFFYRtgBQ2pHzlFh5RObPLWkLDCr
|
||||
|
||||
YBWiwYiWZbwzfI7w51LEY1DGkY+/L5A7CF0oACZuQXIHzpKdLNqN3q2dOOFOVeswEYxDK0GEdguAtcwuzdCH8mfbI6dOVgErBdbwYxXT4A+Mx8Bd+pEVebrJ5Vl4tPRaFGzcP4FbZCgKxeQEHvRQF7lYMGSWOEEEg74CcoybJQYqF7tzbrBiotfBoOBDbR/BIFIoW9RmYu1GQJRviIcWBLOdC3rWVE26lIM25JEOQpySL8EZEaW4LCMGabVdLKHU
|
||||
|
||||
TVQyKR/Kcox7qMlKHC2o9grJASTik2NzH0MLZp7hJ9YgYhLGahUrKGCGXRY7VHrA3Z2aoaH+JcCUKwJBYHYxzX6HDLWgrEFRrIjGCrELCJMFGVOrK1YxyHDFBlFY6ARQMAj5E+2OgplYprIdY1XxkCJeH3CFeE1YodHdZFjAUNaTze+EbFMMX4zjY9OyTY0dFBI9ko59I0RbpTfqowuDZYCH/Y37eLgefFGGIbHywIwo4IKoOBFReRu6KWS4KxeM
|
||||
|
||||
i5spYBRrAnYGYtcSamRKSH44NxLHYrjRp3c+wkXI+znYr46a1BYL/KWarVg54ANggrDfGcHGdmNnCXZPV5pnfu4aQwe7posH4VAZoCSAbABdAGAB5gWRzskegCyOeIAwAKZiSwAhHtgKhEMKOVpfoIEh81PqJrcGlBION/DloRvKtIuKjldQpA5ZQRgDooQq9EZvjQgPCob/Wk5XtKdFKwrN4qww/40gxdHJQuRGLIot6KHF8FsgrKG3/SBhtAGa
|
||||
|
||||
TqIkB6tgOuR76RpDduP8GBXb+hlYQIj3FYxEdvSUEAAsxyoOVgT2HFb73IzB6mfJ5G3fbDEOdcW5LvOPgWEA3RSePqFhA0x4KPcx79bUIbugiFGm2AoL1IYVRNIUFF6+FOG0SN3yO2O9S0CFQgrKGaEdIKa5AeDl7rsPfR46ZS5ySBPHMvI0GseLOG+YsHFrIe5TyEMdQ9XU75GxYIJbYaFTuTQAovwnmxRHB07g9WPZ3EWeE4o+eHB+Uc586aoJ
|
||||
|
||||
xhIYoeNN0GGPGm4kRYFG/aclF0A6gFwjJz629IYqtoY55cQu3F0WDPhT47PiggWfFpxQhqYNMcJFKJ3yGYY1I20FZQE3I/xYecdRlA/fL/kMnovQ0F66dCBpHtU54vgTeER9KrFmmSHa7MXkoOQHlC2Yud7PueSKH48bC2aKsikSPIyXxYd4QpTrb0YRZRC6J3BEEF/xqzRvy6ZCzGKoxNAQElmhPQgDEnscvZTYJOFneMPHB+dFEIorraqbBULO
|
||||
|
||||
ZJFieAnmxKLYHR2og9TAEuwiU3WAgQvBLAoZMqRmEIAlpzZm7AoNeHOgwZh34tTzLmUlaYwX35zbFAavIFIgkAy67EWb/EgUShLLKSCgWOffFf4wTYC7CQkPWKQm5w4SFvw724eMOSFPHIYL72GJLBFcvqMNdaYeJWhoHpKFQYbLLheorFqejU7H0UF8hnAjxiJVXYHCTaZDw5VSxAHZfbmFGGFWEgrxaEjLgRI3UzKJZLyeEjwoZ/ZfZTzKeYwI
|
||||
|
||||
hSSgfKKzF2UJHfHE2owHFsHauY17I4jsGswUPQlMCcCtsHsHpwYYAVnIQDXTQgDrOVE5Vo7H5IVVzQyXdcynkAFBtPcapNnIZjYYJ5CHUYqGRvYTED+Y3pwLbg5YlcjFWhOWGjI+gZ3eOZYzokXFzo5dELopKFv3FKHyImXGLPFkHLPfr5botFwy/POSq4xRzbUNlA43btz8g0qG76HfFwdG9HafO9GXIp86d5ILKhbTSrew9b4fo6AFY6SKZNrN
|
||||
|
||||
pT18Moi6MUrxUMd/GhmMPrNrczy6BOozkhRbic3Zd7UnKxb+mAnAuYZfHHwU1gW3eW5enZfFM8BQiBTSm4oEypCTZKK6iEQPDCEpCHdEifGEpVRjcCDRgRw2R5CoJ064k4CbokhAGmCahgJYDfDuYltK29coJkrSY4fSMkm0MB7CpY5wEkralbHrVRYgXVEgHrGkk0rdxb90FgiaILYiEkjoHEkgIFTQ3wROA9nqFY69aoaYERfEtjA/EwQLik1j
|
||||
|
||||
BCqbOEtEmCzuYY76JA225DIy779+DUl+QRTECvLroazSuYdwJ8BPINvHLaHOFjidFIisLgTqMFfGazbiRwyW0kEpLghYkx0mrYi7KjonP5PZL4lf7QsFEiLu7Bk5/ol3AlqkiFKpuPGIn+cGMkeMdz78NcGFT7Z0QiJKqzhEgSyf7GDYHpaHJow84hG1ZNHxI+i44wyv4hfROCYACcDmUJIA+wfkLogJkDOAJSBdAUYAp0SQC6NGAAkHYolevDqJ
|
||||
|
||||
J6ZG44UdIjv4NbiDVFDJtkPHQ0MMtaCwumaJ/CP7J/esa3WXoZ5GImRtDCKFLFTn51fVEZl1FgYjE8XFjEz0JS4+Z5TE58HOXfWF/tHKFsqfdFeXHQ7F2bEBDMbtxHIufSSRbNaKDdt7Owg4l1QtU6nkKpFWImCG6nTGJQA556NY7R4gErq4AU+9Z5whwHcdNgLtXJCFm+B2KW/Vq6nCUPx7bYBQCPM9RvPMGQrNWFZIybuJjxF365EdClyzGAn1
|
||||
|
||||
HaQHSkjuIjrDa7E3QJHrXO9ajvUPqkkhOoWCJklMvUOG46RiIj5Xly9KDUG1HUbokk/LIWzLNjlHODRYAtnyCPNbDxbBYSYU1Oob4wI7+zZRZ1CdR4YNUcLjxV3qhdESmwrAjpaBAWGfo5GooY8ioYkz/FQ9J0n71GDS8HL+pYDCugTwHa4YrWbb5bDTjIUBPE0E1MGWsDdTJITMEwAqbp6xOuQV4ignME49QvNZSkFHZlFeU1tQ+UvpSg7T+IQ7
|
||||
|
||||
FMGybWjjZZIHalwj8L1dGnpEJSf7X5AG5MPXZTuDd34W7NbZYUUiiIcK0nZbM3aeDFBJEUHyokUNtC5Usiygw+ijBE0kSF/aqyHYrcjJ9OELrYl4Lpkp4LCTT74HwP24BiLvrqJPfaWideaXlK0QSQ7zhUoOMmySZBiUtRwnn7IsGAIl4KmRbYLsaaJHQ41xLCrdQmg9AH6Ywp4Gpo4smvAlHESAXJL64emD4AQuAp0FVKkAQuBwVA1AnAZwDjAb
|
||||
|
||||
ABk40sZ2NXorCEcyJ3QNbiYOXvhYeOW55jPsT8KSLpE6CjhhTONwNCYuF+CeAFs/C9o33SdH9E3f4Xg9Eaqwi6KCfJdGaw1KF5TWXGHk+XEqIjZFtAUzRnk6t4t0FzgLZOYo0jHEBZrS1hhEDNaOw1kbPkk3H3os3GnkdZCvUIz5NNBUHvoufE4QtSngoDSlXEpJSGtUXLdQiMx8UotoFtPmmM0MfHe7SbpltEWnsBYCbQUwW42/FHSqBGEk04fC
|
||||
|
||||
k2nEOHxU48yiU/DrTvLinVKIuHRCZoS14hLbTvVpRT6SEkY9dhBK0vzLqPbw7j4iIHiYql4J4/OFLQlbTz8ZtgnbJfiokyHqiEuQkJzAq4eESm7OfeOLbXNG5WmHQHO0nAEh0zQI+YO0nBCbElOk4obO0s0kSbQdicowOl2Y3zA+cI/jSEyOn0rXTHUeAGRIk8ggok99YrXVQFR4+4mPAR4lrecsrblIfELNbXqi0jR7iCSm4UWf0yILYLYBCG4k
|
||||
|
||||
C00El4YuWiSeUDGcU/wgt0zokP5HfI5tF3HYOcWLD07eGj0t/72fJLaopWSnUYvIHZmMemwTTOa0ScQbpmWvbuNFDKD47TEgojCnt7IoL9YXTwWeAVhCIHbBOkng6L/fWmxCAIRYyC+mNIXHDEQ2+lNCe+lqkmGRP0miC9Q1+FxVNQkXHC7EJCTV46yaalX2UwlAKVYHZ3Q4G72fYFAKT+EN3bbGSiJMlSUJx5srNERLUwUm7YmYYX9Owp+ouwpM
|
||||
|
||||
NCwqHY64HH9RNFQ5cSFx3DfY37IMkm0EIr1WLlJpVPwhN9X7EW0RAiavYYrVggskBfbalo5dsHJI9AC1AEpiyOYYCNAMOAKQWRzJwZwCYALXDMAQuD2vfUr3U8KTEQcxrWNJjRm0E4lIgv8TysFUk2kYmpdoyOQTwQnaG7T3YXIR5yrMI7xnsDAnibOGbs/CdFRQ1ckDEtEaRNTcmJQj0LrJCYnS4tKFo0iX4Y0t8E5Qoom4zKMJyfby5mEHWSGH
|
||||
|
||||
AGI1TaSoy6H9Bv/KqF7EmqEvk12HSgt3yO8T8mtQ9GIXEtml/ozta/1A0FwrUwgT00JCdwJ6HfjCiGN+QWkUovSm52f5Z3jPvhAaXcLEUlWaQ6QIFIXSXScooilFAorGf0l0njLdGh1w9VGyk9UlG9E1i+UxjAnXOekvhT4m5GBUkbxVLapZSlJ1jX4mzKTmoDrYqREyEexNAo2nJXeAGhAk95AvLWlgYtzq4BZgl5XTrGhxJ36l0XViw3ZviUk/
|
||||
|
||||
K6O/TBqXMjuaAktcwEgEElMPQyk17Bglw0c/xDiJglxbIWJbmeWiaqM/HaAgwiJHELHfQv6TFHMvE0FH84kde8b1M60ZkY2emGBITxV0l3g10/vJ609+lPGW4wILK5pILaiEZCMoT4sU+6IySLpuQIGDaMH5Bk7KFF9CI0Is3Bkp4UbECBIGlCDYvILA0u+m4surpHmBCya0jlmD7SfLD5E5CP0t5TP03+majFHRknYM5VHOla4XeDHurB96d8P8
|
||||
|
||||
krZWWI2zEa4iPfZqtMoEico1ukixBuarxNUlTMgGDwCWZnw6Tlk4sgQ53fHplvaPpkv8GXZJIOXZU7CfGRwkCZOVOm7Z7VjEW3fvgv8D1kaXCVyfSckn0vNia+7ZYQXQgPZorWlgMk1bBvKb0kRnM/oV3CJYiifhrW0ValI4GJYN3EMm5WMMk6WXDZqiKUTDzcTqYtItm1tVgj/w0452PeMll3LfZefK4hKJOV6w4F0SJWXBnyoE+BjUvZpEXI4j
|
||||
|
||||
9zT0ZBokzhkMsSZ0MmmRqTPfpII57EUXJO5RCI4FwM1exR3VwrxWAHHyoPkpcMhInlVJHGg/DsHpwdkigxdkg7AZgDjASqJMgKyglMGABGAKAADAfABWUXJ6Y/T14M5dE4JSekTlbAZEqdN6mt0Op67PMGjsIu1J/Uklnx+G84GtRAHUOEZEkghWFC48Q5DE6ZEtfLcluM8NIeMvcleM6Yly45RF+MrGnwVXGlP/XzQEsG+Ix7dzb/oc86644w4Z
|
||||
|
||||
WFzbnIiGqvkvT68HMGlM06CHpM7SqCjS4kqs0uwR4tfJEQkcxqsnI6U/TSljpdWkMeMply9a+nfsn6Sks7QavE1CHPjUoH3Nf6m/sg+pd0h7RxsxPpb9d1GZVANFEhedkN3A+b/veVBX9YrjLs4H5po9dn8MqzSswFcAcAfAAmocYDKAeD4GlJSAlMCuA/2YYAGrDsm3stL7/SF3inkKECZmCeBvU6pAXCbuBokeII6hRp78vZWTKYysgHtL4zMs
|
||||
|
||||
wWi73Jcl0nexmKwsDkSIiZ5SI6y6v3HckLIuDmo0hDno0pDkGw98F1nNDmmwmKBvme8qbEnfCk07NCKtWixNTJ8m3ommmHE5Jm8ZAEqnE3qYm/TJkirDjmycHgGSRbzEBIuWxgCdZloyNVGB+WLboRfll09DaESAjIEckzLpcA+/Hn4tQpU6RZk+xTIg+CPwGfNQdJAk15nXZd5k3kImpss+Yxk1YZBccimgjcq9ywA9tbcQ8nblAzDRPQ/Ug7cg
|
||||
|
||||
KB7cza6Wgin7hc1lk+cFW48mIMFRYMLn20CLmvctLH0PT9aP1YWpu4VBxMEeEjssw7SRA2yovgf6EUs49HUsxAhak+zG9RRzFGUyzAmU15lMkp0kmY1gTQY8zGm2Yyk1PBWiXOWTnsJNtkOErNmUibBkobFV7vZHqkyWfwkzUwv58dBtl9MZwoavCNG9siEJs4OxLacxHFJEvTnMXCoD0ATABhwOAAlnCgDjWXACSAZwApwbUDskVkD1RfAARhEp
|
||||
|
||||
EEfGtF9/cpC2iFaLMSJjC5fUPBh4T9SQUOpw/SAhzH46FEMs5j7cHQ7adKZ0oJYSIhRcwXHQ088ENfWdEQckHijE6DkxlVLmPg/cmKI2YmrI+Yk7otoCY2ZYlYuD9BgCdMHFc2ZhZrI86OsznTEcj3KkcwLZvFfGLlreUHnE2xG/kmmqndBFZDc406sxEd4Pc65mZqNFEWnP564E68L6k2JyaktuEZwr5554tFCRdO65U1J0nPQuW6gxVBwqMRI6
|
||||
|
||||
7Kewg44LhEs1dpkvYb35+ddpS7eY7a289ileA6oyyoiZBy3Nwb7KW5SoEe5Qgs9G4X4/6Gs3F/6g80nD6o61EXseLF3NYDhN8mLrnbTIJeYqZr78izLTqZvnb82LECqHSRcQRvmX8o/lWom/lGoo/G3XR/mzqEnl8WdamQIysGkXKHF5pYYLmEnlAM8q+ymRaGGp3JKL7BK7FRMWM520dnkYw+HHNgnTk7UvhmC8iQDskCgAcAaE4wACgB1/SoA4
|
||||
|
||||
HDoDjAHYDjAVmBKQZwCckRRnrcRyA+4KPggqAk5T/Sp4reAhL89ASi8I21LU/Sz48o4RSduA9q/XY9rk3FKn2808GO86dFOMjcmaw93nhrd+6eM9LkHknxlZc48lY0/RqBM7MrBMpcYOaS5AwXEqFMIUsqEgXjIrRePklpJJl00ktiWYNJmvojJkZ8ujnFbPJkQsrPFdYt5EUAwgGfM4EnSXQ5x27EdaNHH35XKHvlM1SeCFlAfnAU6ikJ/aymR/
|
||||
|
||||
SFm3jZbD/I/xAPYRKl/XQQUqMJh6lM8Ql+7cNlfqfPmUEkIWLCM6HC5bPZNAyqkJVUsEXlLLgw1KNH7HBLxJUUAXsaFQiUM6KIBeXnnm1TSEC8zBEOoeXmSwDOBCAJIDrQMODYADoAdcOkiswXUCYACHwOcje7UIweDBQRtBRUXraZYF3qaMzBzHEaLjEgVsgNc2DIQIJCYMPF9Z8I3zS8so7k2MiGkngqGlEZGGnO88DkJcmZFSCoX4zIlGmOXb
|
||||
|
||||
xl6w3xnZcnKEYuEPltuaMBpArrITfNhZmGCxwGCiml3LbX6gQhNpkcwth/C1Pkvolmm0crJltcxArnMh5kKzF1l4kzeQSPCd4fcgIFxBGzBM0CpQJ4r66/uUArJUTgTXBT67pYzYXfrapSZbY7ntIDYUA8xh4AvE94gNAoVZWEJ62RSAX59OAUmcA7H1CzamoIqD66cjBGFRdADYAHgDYAZgAGgPNFMgAYDkw6oDVAbUBMgSWQp0OABGAHGkq8yE
|
||||
|
||||
FB1cYVsYRtCpSMrDDlCCl2lbahZ6A5SGCUNSjqXyEJw4QH18i3l7wQ3oLmdzDCCo4XF1RxnrkxZYuMtWHbk9xm7k73nwc+QX3CxQWCnHKE9/PLkaImPC+4VY5SnUspONbs55rKrn7EmrmJ8o4mkSe0aNcj5bp81mmtc7mmRC7wXD845n/M20F89Bq6Igj/H2kkIQ8CO+KushuEBAvtjmktEjxYdpljXEwLmiy7454sERZ42sVmQesUyxSvnWiw0k
|
||||
|
||||
18xW518vHkV86CxV8rsVx9KhquosJF5s4IqP7UIqjU3YGp4MBmr2CO4yWFTl0aBoXZLXkVJI9AXoAdOBJ0aQCkAE4C5JQgCkACKiEAeICYAaoBlnfHijCspGjMZLDrpewTMyfYxvU7RnTwXRlss/RkQIc95I7MGlxuPEXfM0IhDiW0Uxc0DkUgs4XNfN3lQc6QWwcj0VyC33krI/iqPCrGkjC1QV+tQMUsUI/hx8gw4qffDnBQNkS7YSMXVQ9mYu
|
||||
|
||||
whb51cqUTLfI37M05MWQi1MX0csdJkApwWMAr1nwsupm6gwrpzdPYx9lNbr94j24sksoi7crlqbtbC5MEBxiCk1F7LaeEmOzcPDb44zBacTlGD8kP79rNh7JHOjzsAjjBrcl5kcocWIioriA/i9wWEilfi3c/dIvIcdTaSgkW/MmCmsS3soOg1wWvMnSWmS9OE9iwnq8zC+TieXjwvgfLF2nZUngza1k5SW1k57J25BOGFnhUhEnFHDh4gyYzHQs
|
||||
|
||||
sHbl4zIHakl26xHYcWBLABluaDx5uRJkV4hZwm1WRqn66X74uWT7H66JyyUXPhqDA3zzDAu7FJ3KBlheFLz+RQImirOInpnPnmJIpi4tCioAp0Q8DEAIwAcXKyhwADoCkASQD4AWoBKwQgD0qfAC5o42GXitXkZoBtD9saLhQqGLy04/6SAyKzLIoKKgEOevJ3w4VntEiWFaooyyk1NDr7CoQ52Mlcmxc4CXxc0CXMVVxkQS90VdfHWHLI3+4K4j
|
||||
|
||||
kFY05Xn7FIJk7IhaQUCZ6wGXIqGYS4UEvFQFQcUDzRGCyTJAipPku4PjKUclqGWCmjl6nTPkO/V5G8oZwWfIsRhi0G0jmU6GWf4WGX0SvknGMYSUvE5gFmgkwFv1Gen5AnuC4AuiU9YkflHbG3k4uCfmYRVcj6SlgiGSruEUGbjQ4hUnqlxCJgomKhhvmJ/HTwF/EdIqrpyUrCnO/ZtSWYgPBpEQjgkA8SlO/SSlwElYQ/obKgs0TlGwETaUMHd8
|
||||
|
||||
hBIHMX1XdiVwEg2T20GPC0tJh7DYmmijY4Gb+DFkzcyzUyv47hJgcQdI9iOGgvgD/i0EyzA98IrbHyK2WtYG2VrwaPGY7WPEMEhFrZg7oHJVNhnZ3XKrL7P/lHBGKxRot7G8NHjR/Yrlb/KVRJLUydk2ibKyYtJOUVC/hqn7OHFhPeIkoC3hnJE/Tn9g0YDCM/QAUAfQA8ALoDVACUXNAAgDjAZzDVAKFhMw9bgJSLlrYVSlBUoHUVMCwgj/TUGQ
|
||||
|
||||
u8VuDLSs2zWYMiFjk+n4+KSfFZ8VZTFQtj77S7f6iC4XHHS/n4I0tr6S4r3mXSsX7XSiT5rIxXEy/StFIS/c5q4taSbsZHBlNM5ZI+PDlfSruSIZMcTXoqmnVci5GxiurmdsCwUQiyGU2ClIH2S4bZUAtZkQCfrlLHGyraeOPRGA1HROdNJBBOLAnkWEem0Yg+qqmBfju0i4QhshoSkQ2zBjk2aEL40eUz41+nUQfuUIK/IyZKRfFjyl94uov2Xn
|
||||
|
||||
AxSxRy2Ion8v0k3kQ+b0MlM5ilWJEEbbhk8i1AW5yjcUMAIwAlwNoD5wJkCYAdOCSAaoBMgUYD0ALMRCwKABa4KgULIOVq3IFaJPCBOqyXQ86OYLAznSAFDlSEGZYgXFLe04Kj/s2imPCOECtvCeWQ0wCXTyuLlTI84WQcs6VXCyFw3CtdF3CjdFzE26Xbow2FtAdsnbyrZ67yxaLqhTnY/gt6C3kzaRNoCwghi/4UmIkjkmCydzhEdIgPyiiVPy
|
||||
|
||||
qEVpiw7RfIsLqFHe3FmPTiWoiyJVkpFRVPhRcKUMQNnPIBALmnL2mpK+zoZKrRWnZX2XBI+ihctD97yoduxJnc8pgbHyLrpL1EriuA4MK5oX8iiABKQYgDSARlT4gQ8DyisEGkAPNHNAK4ayOOpL1y0RXCYN/DnYgwGCktbitkWgUW03yJQJdKS6hfgVk3PCjVEA9pbIWpCZIdnSE4ACUHSoCWTIy8FGKsCUmKk/7XCyYmeimCU3SzGkSAGX6Mwg
|
||||
|
||||
MXOKwUlBmG3LT6SJmMzcyJWYU2l+K43E3ywJUVpVBwrIF6xgisLaPyn8nPyi/SMQrR4IoLKgKYdWii3eEo60oDGRUIzAkgEzAKy7WmWzTwQFBaGbFBZknbrRzJoJA3ZR7a+HUPLm55taWV+HZVGgxb9SkUqikPcl4DPAbF6hCS4Du4gMH+4xI4wg1jCCWQRgOkvRbSEVQp/Q+gjyhGXQJWYkBwkJl5UilCakio7SgUOHY8vGaLQqfF5EeakVbC9A
|
||||
|
||||
RqtC5A+cZ1bW0BVX7hZ9aSqzBwoPPyCd5FeANMzpkykveRggGyyr8FFBQUJh4gvObl7yUZXD7cZRxhbGVKMHJVE3PeSgUIoj/K3fScoPvEoigPGcSXEB/DSwzp4nJR+qtRaJK8eClEXmLGiPISo3MFGsqqnQ9wVlBM0eASTYFBjhqkC6Rq+UJdNJKgFQrPFiSm35Bqz5S6iOpAPEkvn8Y3kn5YYN7m8BUJ5cTwXmLFJXuq/LBqtTGDLSfxBrefpm
|
||||
|
||||
Dc/LBljaFQ4uVCai0LtUPxfLCJAVuBaqQXTvkph5p0qLDxUUXInwVoKDMF1UiElhj/LGNQpYaeBWZO4i7YTNWq3ANUzq+g4WqobDSdEplsYoaEhw3ZTL+L1U1BcPjmzOrbnq3TAmJEiz04GwlwkxR7h0h5C/+SMyG0HAgKsh75unA7kNOY6hbceGRoKvg4lwtWlBq1JBtgYrCE4UDUg07lnmYSDU1+eOovEXbKWPYYZmsYhUgbcpQ37Iyyg4juzl
|
||||
|
||||
CosGgIpcV2RTnk+WZqlfBFzhrA64ILsqLxhy+anqclYEU8sJioESIkfKGBkHAtlIMM1exUK0BTF/eYG8amYLWkOGEilbO5YoZx5hMfeyuJPQmMaYoUk4SoUs8uLy0a8YjcJYAVKag45jU+pXl/RpV8itMTrQOXl1FUYD2wdOBtAFkCnsn2CcALoBzOERXYgLwTVI9uCeiPsW6i4MATqLjhO4ZVizeH6mRyTp4ekvIwfEaQgHtRAad3JhjFyYuyt4
|
||||
|
||||
HRWHCvRXHCp3mDE2eXw0x5hzIxeXLo8xVXS91prygPl2Knqp3KlYkxQOLAKESPmaInXGny4NSoEGb7AQgiWJMoiWmCvNLfMUGVew5rnWCiJXUS9rngoxI7Na2NifPByWn8WukH03crO09rVm0sk7mowDEZbPZnKsmoHmQT/AiEDGAja2f6rYPITb5V3YO4/JWWCKmjf+FeBTwQWLVjGrZRsuimMknAq+snIX+7KWnvjApnmESenFMqmjINZFEX+F
|
||||
|
||||
tBeI7hgiS4szXa8/yGhEvy+00AQs0T+UkyF/jPa0IivaiFWkuUWjQqgXo+7X7Uooy/wK3dFnF2AM6Ha1IXqXCNmcxY1nfEkKJU0QXbUmVrYcw4WoT+a0Hi1Q7VzydHV7tfq7Y3TQUrKHCjYygGHL+XdpfofdqoEi5BvI1mh+vDClo6lfwY62QiyFAvHYUAJCvIBPEU6ndqr+GnX/sOxrrUb6aE/OQHus7doE66nUEWXtgR4N/CerL8So6iXUs6wn
|
||||
|
||||
X0EapBEvdCr/FPKliU5nVU6zHXtEJPDXBGrBvAUGj3hWHVhs+HUnayPy6yHLytkFzClXH3Y7+JTzhEX9nJwwcRYymBWYoRXVloJ3WVEHqI9sBJDk3RcAjGXpDTY8XXe6zci+6vCg9sJPC4OJzA0axwhe6/pAR6wTkbYMonVETIIzRfm6J6ysjBwlPV7yDrJTYAETHENNjk6x3XJ6l3XZwuQoxMe4goEepDZ6n3V56lTD4GcRXSRQUnAsw7Xh63PU
|
||||
|
||||
V6lTCOYAUwhQFZQgcBrFH5MvVd6v3X5YETZMQErLcaGzFXaubY3a/7XceUChIkAqGBEcR7w6NTE2Um75ooWdV+CJoSbMGlhU0HtEoo5/ScHZaEibKxgzVNQgRCsdJH63lQn6zEqgUYIaLcFozNEQ/X4q3tFqEftEAaxKSKSP3ApOcnUb68IVTsGuiJvRvgLZUnY/aufUva6aJvaiISjq/AHf/Z8CqEevXl6sfXmYfMbZZGGpakM1ni6uHX03PgKg
|
||||
|
||||
gTopLcZPDJoWPRrakqn+QcSFbao/H0HcN52iNPI86q3ldICmX+JGHkdZIBhjhFfx+iXVlzap3ZbQpbX4lRIB4cUVgbUWGYYU3g3z/RbW/uNyaY3ZhT+4cnU87MyoF+IBis6YN7J4GKzU62Eov8Ckr06f8i/uDhSvgYpncjfrBkgWlnF7cho7KTp4IcOwj6fWJgt0w7mV+PuL4GNrBAyQKZOYcnWknfArDavnSjqi2mQUdeKxMY/njwObGIUJgEHK
|
||||
|
||||
cEBHnUDRoSogh9HS04BHemol3A2TWYQkEQXSbo0y9dp3c8pQ+0jjAwgtagBmNajEyHlUr8u1X01BJAZYH1yy6kI4fhU3kWGpLD0Hb4JaceGSpISvjLxFyBvkC2kMuJLC+TZNwhajPWxSr8atG+rDSROTA6yLo1IOI87QkPo0VUopXslIGSdshzgH7CxLQbeqzBWVMkobeqksM0HIUKvvpsa/XQ5Sr76Ea9vpkK24F5VBqmMavpil9Oez4M9ihBy4
|
||||
|
||||
EIaEynC61J45FS3ey1KrjWCapex2iRxKiasLwfYshUFSkoUyaknDAI0RDVK/HDVEFtn7CbO6RFbY0saIHHyaz3gs8qZi1sljST/RSwcaNlLMIatmh9TY3YmiSypsiyKrkGE1+JYSa/KXYGGG/0axFSvJEm0Pp5SmURQvUYF4mnhTgIiHBlslnlUm840l0VqksmmeyUtdOVeMMqRhoulBCNDSY1ShHGNCtdm6awlQIAQuA+wQ8DMAWRysgIwAmuZo
|
||||
|
||||
CNAZQAdAFOjxABe4lwHHIiKrpL2mbBzlE8+Cec3jbOZZ0rheeYJbtfHXK6qXXKbMAkIEuWUpSHZWZQfJEcUcsB7K8RGGKk6VnVeeUyIpLXI0s5XQS1eWsZST53S65VtAFOhlTarCiwwqEAxE+U2w2ZiHwUQ2afKMUJMmMU/KmTLfMpiChKhrUpizlgdreCHBETiGTwrUE+2Ho6+44lWBxOAGd8LfHWZZFXSSrPmblFZkKSrIEyBCylHMsCba3aC7
|
||||
|
||||
k6kx4/jJm5Uq7zoZi0P44Q+xZsSyyUthP2l76N7mB8RJUFGBN7+07kk8E9km4PQplu4gOml8glEVxElWt5NI5woqlEDQmox98dXoH+StVLmifHIK7JSoK5EURqvdXz011lIi7iWHrPXruOZdUrsJ0k4i+7USBGY4n8yZrQ8ogFydfZml2D8W8xLfW8deERu04RBtsNDFKebhEkeCHoek0VjcCQTE+7OTGf1Crm5Ec+7HwoVkZ4dzqliiMFOVFf7M
|
||||
|
||||
7HhHG+XC3g82Tjd81LB8GqQ1SUmOHA6V3jw6Jg1j8ymWJHa9w0qjCkMWlg0gm/c0a+Mjo86iQ0Lal3bNMjyVrmBXbI4Hxp5dT5RF7Mhp/kEfE+7HLoEnPxoazUThJ/QrYiW1aLyWxdUjbOPZVEF9gOQcnC8W65RiWhS1oWL0G98JylDYKoIU/AeKLSO1FW7XNDPUey086laVD5bC0pC83X03TZkTZRSVKA02zki2FZX3A7m7CvAj0imY2P6OOWUX
|
||||
|
||||
LyyqvbwlnYy463Bf7GZslnmKiRKyJW2FQIm0YJvkQ411svqk4iZY0AkbjUQhe41BMKjWByqoWMidSQHHFlk77FEgVWyhmvKMhU5k8hkoMqKJlWw2oqQqqyw4mqlM8hBFFeZ40HA6dmgKd40x3T41spQdlIbMpXkoLYF4bcD7qQ8U388yU1Y5TQCyONoADAHkh0qDgCEATAAnAVkArgNRoNRJIBMgcEHKi2yFjS/SCDVCYitwDwiUoXXmVyMPDAae
|
||||
|
||||
Lxr8V5kyqK0UseMgjp1JOkDsS0nha4kGDPOgYumpNCHS/ZVw0sXHHKukGJch8HLygmZBmwqYhm2xXvgjH6OqJ6UHo7Fy8YXjJHI9XFZrOwjtwLXGU0pU7u5YwVVa+lyZmzcHPooFVhKkFVNapgLmStTpjmkZrQTCpkvGSlGZHHjm9dOm2QXIQFK3ZjBM23ik90pUaUvaaF3uFc0+AoI2MQXsSJGJgEcQgJDnaopmh6jzFCWgQHSch7jc2l4wZ8Nf
|
||||
|
||||
gCsNO4hwiikn1Q5lO4zcJVMliRiEPUH+aLAFF83oj7Q7whsy+cAcyhMWOzRpkx+Rm6ZCh7kLcuyWJwjm0CS/kmbER7WeWuukpHCdYjyi81XkomX2BXrXnGZ2mdNQ3xQEr83BGg2Wi21jFkUoW0hG8sox21i1f8noGeFLexy3AOzKSTMmPlTBm+jJii522JISalEiqa/yLJW4MSl2tSQTUvKo37cJGHY6xIN3JtlzzSa1Ng6a2rinTXrixqUSAP+w
|
||||
|
||||
EHYgBWUHYD4AGE4cAU1CEASWBKQZoAwAGAA8AB6WQASVpHW1UWxoMVR+CaWpjse1ZMC+FCMQZ8AeEUNReaiBAjmiyUeyLg4WkP35OJBbYC5fnEpvDKC/W0ED/Wj00HKr03nRBLUmbcYkXS7WErytLXBm9eWhmu/5tAISovCi5I+KUJClKCj5CggUGHPJt7SDKZCAobQVG46mnfK/G2/Kwm3dTMiVUc8GVYPAs1JKqLbK0KFVq0EHVJXKaZloBCId
|
||||
|
||||
mz2xdmz364ynwV1zZ5nrIdSWdwLIwoU5MGM7Cn5wtf5ojQ+Ix72/6FH2uEAB/FvlNY85rAodh2oNIzLUqgvkicP1lY1E9VkUu6F4GvIXOo1QmiQqKIZ2tyIs8oYqT7GSyuE4EJkauELqOn0YxWu2ghRak3VShlrhPOqVrihqXNK3TR3pA0C2gdkiYABACp0YKDdtSWBCAZwC4ACM3DKmgUg1WjhECTTAnOUPBwUeg0WyKYb+cyOT6ykW19ILDEH2
|
||||
|
||||
6mC+2E/Bv4DfCUs6gZAc7600wS+1um/RVHSz01zyh+2I0v03XgldGMg1+2xrdLU2KhYltAd6rZa0PmHnKPAfqd6URqFPnAOrYlR3AJjJm/CXKnQiVgQs3EIO7M0PIlrl5mnCEBw7gU2fdW3B0h80q2k/DU4LR7KECNhAKt5CwrXQiPWF/6d85lH63FXjTO/NizOjvl0ImOmekxTA4kgZqMEVZ33CdZ2TQ3m0Sk1Onrmvc0fElPLqsk0HcA3nrqyr
|
||||
|
||||
gircyXoEs7uZ22k5kPc5yrm0wxawk/ilbCLAF6sodLS9YXzm2/tRMk3ZqzHDg6MU2EUoeR5kEeDelXdZiUvjKflGGmfn+AsADl2KHXPEkh3lwuVGz8vb4naMkzVYdBoCyqF3aLabYVBAl2p1Il39imJydi0i1RZCF2K2eEX4le5qUszG1T4jF3T8lbls7J5ACEkizzBDIUvOx9insdAmneaxl8u/5kQJb7B0cN9jIMUV3Dc2LKBeKJ3bMVhBp+QR
|
||||
|
||||
322x9iDiOrAuGgjgJ2mV3GnLmWf4M2W8yl1XJC42VQ7GjXrIN/HJ2grgOPbMnNoctmMiMa2Nob7F1gmoU1OG/Y99dqkQCo4JnBCYIZStEIRypIpVSuwnKOviwkMsSbHAkfo08uyJKQljUIMvWpaSOhr4m/yJDk7x4saBokHpB4FcilNH0KnOVNKtMRloyQD5nSnJpIyWCaAJSBJAZoB0qeICEAXNGr3Q63Voue3rAKEBoJJwTO7MwjaCqyBJ6Ego
|
||||
|
||||
O0WJhdaKEAuNZFlOpNekWi67jINbl1TOsdG2M3RVF6JJ3X22KG329J02XEG2nK2QW3CjLkKCzdGFOwPm/pUp2vCtZgUoHgW6Ip3LR84hxR4PCXxMirVpmuB0Zm5FA+9QFVnEnM2US7p3ZMk7nQ0QF0Z4YF2zdMC0MoCC1xYHdXa2AuElAREnTuIunZ0mbE7MF/mLgOjG60t+mPGfwR8vDsXPWnCkcYQXZVEabAu7MDhgK1ekTMh5Ds7Md1CEjD0E
|
||||
|
||||
yrD07KUd0vIHl3h2zY4hW5FqHhBTkzBVeY/KeN3GE0hUTBbhoefKhlaczN2Fk1sFt2kx1piBAD0AfQCsXbADPzFWR0bVkCVAFOhEKS/A+wPD51ukokytLYCSWWewiYKuZvUjoizimrCKcbpFKK3ugP4t6HDu1sAEyXrlfaxRU9E4DkLiGd3umud2A2hKEuij3lZTUG05O0X4Q2t+1Q2j+0w2nKF3U3+15lTxJISVrCfCnDnxm5Hy0sXuBlalM0Xu
|
||||
|
||||
2B2tOgm03ulg51a6xHL1Lp0o1UCmJqgNnRs1bXCk+uEaosVAhEAW2XakOl8q6rGN0wmTGeym62q/lWFeoz2lSb7VxSplayO3faVshpygIhAXd3eY2Ng0U3ICox3cevGHNK8YCOSaWT6AaoD4AJkA+wRoCjAJkC1MQ8AdAIQCNAVRoiKyYX0CHRAk+JtCPik6zNIkQrfUsYq5Mg35xuNgnOrYIa6dcGl7Sqd3Om0KBX2yz2w05xmSC8CWmK70Jpc1
|
||||
|
||||
d1eiqxX+8zd12Km6I0IHeU5a3gAiZeFL91UmnGQTUxY2z5UwOgJVXujDDtOvt7kSh93hKqiW1qUgm1COi24qyFaPbBwa0A/WZoAjymo8qISWsw2lnMzb3CO7dqoel8DxsBwU9muIUxWK0TrEf6C2Cr3FcQHb3cccN6U+3H2P+GuH7+A2086PJk/ADpTMG7pQI0YzL6gqn3s+0fkcWqmUMix/oTW+qz+u84HeuuexpESq07avR25/Zq3/KL0YOEs4
|
||||
|
||||
3puipWqQpAUt2hpU5uua2dtSQB2vFcDKAemHskYtHlu4YBYAH2BwAHYCYAQgBqQYZW9MFoY6Ix/LZYN6klcLZ3gCLDDaCnzQfM9aXXcfFkGskdJn24REX2k73JO6LViCx0V8fedFXek5VmKgM13ei5UFOq5Vf29uqvepxXveuowsIVAiHuoaik0wgzWlKB3la5p2VayL3wO6L2IOtPkQ+sm1Q+2FVdQrMWyuts3a2hEXATe83DddFbtm7CZCWyUk
|
||||
|
||||
xbczwIe6Qo0ulw6/OxBZPOuWmGgi505HU3Uj+yZlj+40ET+ij34K4pUp26qkCWOSRwwhLzqatf2S+2AWb+s4gRWDN0a+rGE8MyRo6+8jYDAA0AGgXXBJjCAyypOADskb+YrgNH5KwYYBKi69mlI463oGeVpfTNJAGCWnE3i8nCzVGljqEM+5QUp9FxuB1m/+RymvdUz0JO8z0h+2d3neiQXZOy4Ux+m71QS+P2Q2zc4Za98FNLHd1/2sbRGYtZBo
|
||||
|
||||
WnQXBgT6WBere29ESZXY2ub4tOwGUaDUH2Ji986k2sErk2o67mCcpQAozuloqlm1Uk5W28StW0BxHL3S2qkkkW/c0TO1jhTOgbnDqnUyNsKBU/u+EASBnXx8kqOlECeQOUTdOmF0rOnKE6/zAB39wWs2D2xUl4zCB+mpu/HXYW7FQNRwjjBgBuXbZUWI1l8wlFcQdi1c+qmVG09I3+2EmqSbcmpKull0jwAynbcjI1uB/bkN8pl1w80nAI89DXvw
|
||||
|
||||
qSwK6WziF29u7DsqqwKTOvo+o0SwFWi4JJS8Sh0e8SgDUkoVUyWLxxW2tqzU/R3QHWqUzW+qVdetMRlMZooDAXADVy+ySjAKmDCi5a1KQEuDUbGzVggdDbmCbwTrmPyAvs5ICdy9NWgaT9kQIUKmlHTxqjJX23T4pUhOmn62wBs72nCuLVA22z3nSpeUv25z35O9+2YBnKE+tRxXAPdP3J4PwR3EgL1vQQeVGHB7hPIOYrQO6+VA+kv3Xulhjl+8
|
||||
|
||||
EWMBjsrQi90n4os52+9XbWaKtL0FYk1UMCUG7Cct4NfSD4OrvRVUSqqd70kvbXfSHFWs200Xs2xyXLa1L0MUsEnGAsh3tbVV21qSBXgW1ti/uq+rLMnPmTcywZsTHxDgXNiY4EuwNoh790YhuQN/c4DGA8uv158pUlHOmbY0hrYzb80Ho/dSAPKPQHXiMXKhA3L4NNMjiUTvCx6fB3F3fB4rGcA1I3C+6ewlWzyJMMy8qi5X12siWUPnGtPLRB9Q
|
||||
|
||||
lH7NO3JB5UQUMtO0eiTfp8ms4gmJDu78a+AUka0J5TWg/3Zuo/3t25pXagaoCVAEpgkADgAFutgC3+oRnKAJZy4AEpgarWb1ggAN4sULsw4wEf7z6M4S0CMLJsiVJBbtTvWQabvU++5RWGBqANb/KYOumuAOzBtJ3xaxd0aw7J0pavJ18nRP3IcsM0AdHAPObQjiHKbP1Fa0gMRSgZGNO891F+y91XBkH1l+jp024x5HV+wUMp+XkNLvGZpOBsSm
|
||||
|
||||
eGtJzeGmP6DQpiUt0gi0469f5NXWCnNocg0C+xwPMW7BUoK/226skfWRhtA2QUki0oG0fVR6k3oy0vC1/0ytq1eo4jJ+EBlxYB100iFKVhIk8MokIa0Zy00NbU80NttS0NpiNkjqlVMaSwBAATgYRn4ABU3AOPyR0kWoAqCl/2q8ht2F0J4DgeojyCMUJADkk3goDeMJzYR0SXWcKVhUkYN7wGs1Iq3fF9uwP29Eiz0pOgG0XexAPR+pd2x+ld0W
|
||||
|
||||
Ktd3eijd1J+pXH2crYPqCnfCsWalDZ+oB3no9hahEf6Cgi8w5he6sMRemgOAAugN3uprmdOxrXNhlzqo+gh3sh2TBA67B3gutfGQuhl3z0t1VF0jF1D8oc2R+dF7graGXyU+l0azJCM74lFXcPYcKSyxSkfPJ6722bGXcE6la849FKAeZEkDbKEO9i+wHmPablqeeF5T/BR5jh8j32RpSPmotApgU+cIuRlQn/03cOGcLK1GiBwk0MgyL525zihR
|
||||
|
||||
nESeos/axB7nl79GSZaa7GHa+u8OEqNoDKAHYBQ/EyhlJJSBMgWsCkACH4UAfkDagLLWyezslmle30OBR32VGZ31dLQcnUGDDKjk7zRsHe2l827YVPWvv2TBxJ3TBzCM326z1R+4G3phhz2ZhlYPZhtYNPe98HkjLz3lkVKQS0YVAeKTYnSVV5EBIZiNxMq+XRi9iPqDTiP1hsH3IO4FVMB/iPwuwc3yS9Lr8huyM82QtXkPAyN/hbsXO2mEN209
|
||||
|
||||
EVlKXuA8EBa6YCBvHw9YxY2s5zxu8ewVqk3v3Fsfv1fIL6MKSr21xYGS114pqM9pQGNB2w+TSO3yOjiuERnhzKVy+zqlpWWNFX2eNFBMdwnCm2IkGOrOUdexKM8ewlSIAOACZwIwA+wfQATgQByEIipiHgRoCsgPRo7AXLnFRxznjCulUrKInkh444A2NefRcSAmhZYd4A6IghyAG5P79CbYXRYeHk94lDJnoiLWRQ6d2dRsP0zylMPzBn00S4p+
|
||||
|
||||
1LB1dGpa1YOue9YNY09jYUR56UfoCnCeaSU4HB3FillOTa+YVZWUBgEXUB9aNtOzaP0B1b7xeviNPux4MoQkgiuB+7m9mlEOLc5dbmg4IL2MAehYy5kPjHJa49+gcXUupjHYlId2eCXy1VBbHW7QkcPnculnSW8WULh53X1IIHlixozESxv6O8OycnqYxzQwtLvEb8jxpIW8iyCxzTjCxxnbA88WNg8y10OcZ/bKTNKXnA1IP+eaIqpWioWomokJ
|
||||
|
||||
NehUSZBk0PN2s0MJI4x2lBqU0QOSQBlLdOClMBADVAKADOAGACSAJkCkATQCLWVDmMxsYV9/Mo04bfQGVGXjE1Ete2mmrgRatbe3N4fy3Rh1VTbIZWTiYcwTzKgJpfW+MMdRxMMzB2LUKxmz1Kx10Uwc5+1qxrMPifEaOkRmX6lTCaPXQPChIUdOOnouM2lQ0pQecMcKXynG2fFa2PtTYtZcRnQZW48H28R3M2Je9jw0/TMVSzRiXpXLPHEh/3zn
|
||||
|
||||
m8YPL4p6NPdMHqvRxSM2298j7Qk+MI+g3T3RrEXd2IGPeW9OkhS5IEhUuCPDBqKVkRGKWWovpQtiyYQbYEpQYirI2PRvFH9HRm07bTILCJh6OVKP3GcSjLBiYu6OLzGRMFqt9UiMFZogx+tbGRpHqmRyEkSeYLoSFXlXadR/EBWmONXRs0VOatITv8x5qf8ksV4kssX386xPRdWxMqu/l0eBw/kuJ0fE6R9fF6Rz7lFxkHm94lSMCyqWVooWf698
|
||||
|
||||
5mqBCsl26RpD3U+o9rLK9dJDisq4HR1daegp2zr2l2yKtWROuJsV37qE2XQ7KeD+MRW3wu8R0o7c+O4OKPiKtNkRJC4IUPcwxnfTYxmVbWlJJJxENYJ1gkccdeEcEo12YJhSNX4p0G7e2Bp1xxdmRul/Z9WwyzFscnmRR4/ociqqz9sgu1srbMmCm/zjqh3Wj6hvfp4aqalrJ6KNRcXKy5WXSxVWConHG1fbXGiqx/vVV7HJi41rDILiokOUPxRw
|
||||
|
||||
/23h/GNY5LICyOLoDMAR6CkAA0CaACzU8AQgCyOTUrOAQ8CSAFeN/hlUXwDCarJ6HLxC8ViSTYbx2VyV33hEd32iG2CMAyUzHbsJf4kDR2IyB8kNxO8dFHehMN/Wx+PiCp0WXevqNI0jMNx+wiP3ev3lwSpQVhm8mYAJj9A0yhO0Fa0sNbE3/yhhx8lNO3G0Aym2NRem4MNhh54JewDEdco4TmQOkmD0rgMXacVU6qqPrZeyW2RFQQMXaSHm/y0+
|
||||
|
||||
1B0gRGI81bAOY1FMiBwBViBlIjqplFOtsT91NsMkOG7CkPLlZFM48wXREdKQOu0k1MwKwZOsiYu1rzDK1o4F4j1e54jkaNnDiJL+GOEFN0im7GNFB1u14x4eNY5ZwAGgFVbYAcYBk5eayZwXi5KwbTQrgMbh0kZAzDKkFDnQmNQ+5M+AG/KyAVI0b5DYdIjYYBqN2pHXX86hCMdPDgSbOstVEg+J13xmAMPxrqNWe7CMOepAN4RlAPg2rZYuejAO
|
||||
|
||||
jRnKFXs+G1qCvWMgdVAiXII2NHyt6Asp6SpZKO6CK6f6VtTfhYIJu2PcRpMWV+3aPOx9B24houwAehiEaKr6QUk0Y7G3H81/yh0ZFe0qQKETC2rSpfIM+SFWiR4BjIy+i0c+xi3k0uC2FixC05x1XZK63XVs69gSYkhC1YUUuPFmEtOs6gXWQU79MOk8VglA8UPjWjqkFIZNlpk9/Ywbdtk+JH+Fsey8P9x68ODxzr15LfTnu1e+bKAGABwGCcAL
|
||||
|
||||
xz+ZaNbACSwO1xalERV8qHwhPgH6R28rpZNndui16y1IR5MEa+VTpHEVA9q4JUKHP+Cd0HC6WPHe+tNyxgxXzu1MPJct0Wqx3J1DR7+Oax7tNY0w5b0p0PCecMIjuK5sjR887BPgbDmVczlOwJ4v0cR22N8praNgynaMPBtdOvB2mV1q2pOLOlQSITNyOMCGv1Tw/GUDuy0LiFMFVt+xv1+Jp7nfcl7mAwPLJmZ0mqvOywN/+awM8+w22rqzjMPQ
|
||||
|
||||
2uFlw+SOHR+QmM+6hLIEtRN3Q2LNhQ5n1FDTrWtiyxP2Big2y7QLP9G4PwAx0JMO7NLAZYQFSdwfaHAiCDDrVY4C6k+koeZgCE+8bzPHyTD3b5bD26B/g76B4PzH5ZjG7wgK3YsvQPOjSj0CTX1PmEuuiT9bnlwZq+wYx9YKi+hIr5/HE2a1DwXKasA6QqWk0/KEHHtU9E28JAMkbTVDPci9DPBpzDNMKyQD0AFcBKwQuCsweICsXWRxsAMOBKQY
|
||||
|
||||
paT23oCGaKgUPIVrBJcDahOmaRWVyRIAfUy2znlZ1njkpS1TkwrbKbajgA7aKlGWJsrDInFORamWMCZ+0UnCp+PCZxWMZOheUqx5LXkp9WPDR6TO/xtoBJrAsOxhRwgCMEBPGx3uhzRzaRJYzrJLR84OrRy4O6Z3lOpYW4Mk25dPGZgbVQApikDhcWkqg9dMjHHzN+BumXZGqlIVpn9NbOnwNa21h7Ih/l3aR1SPYU5DG02opOGnKMHNYp959NTs
|
||||
|
||||
McsYVN8A1CNqjf80kAtXPjQjXM027dP0Ug7XXOxthjQrrn8BuVNT0im0ZITrmipj82KjLsrmPTdNs56gIc5xCGxhnCEORoq41J2Fb5ZyCmEJpfFNJ294wyTCF6MSUyHdfF1IsmjFEe+Cl9sVubBA0DXwKqgz5GELFd+5oE7QsWoJx3Igp53VmvXGVUAidjnqeTv3zhyhIiwnpD+mGPOiPNua6siRSUsjSRTqDTOadNYiYy6Yiz61tCY2nsxYoBvO
|
||||
|
||||
ICWO0d6gIil5srL0QiOnw6XBL95sWFcJjOnIk0D1h6vvNibMvOD54BLB4y8xc7afOI3XIwD5vgI3mDnQdBbPWPgNfNj5zvFxxsWoPcWOPJdDPM1OqxPAcZl2ZYOMLX0lC2UyoyWEeiswB2rTGOBX7QN0ryV3cjHxX0kunaqisyIEcfPqBi+U/5jLFccf/PQu5Gjo9GnB7p781RAw9NGmUFmECf1hQWvxE8ItSIgZosXbOpyoOG1+qqxaQPohj2lm
|
||||
|
||||
GqS2vaivGWZgRiEFinbEFo1OYpggs3wjLAAJbdj+MHObaByTEh5mxgBCRjkY9eNXuS+kOeStQPAejQMkAqVN/5s+lf0sVk/0p0m+5y76iFr/Mv0ljnB5xDGh5o1nT+tII86u/PsZ5s1BOQAvF0roQ7g3iF0QopRvWi0nVi8guXciCHtAjL2vpqxNJxygtATDoGy0uf0yO2GOTDeR1EiH96gkfY0VWV13DUhyHpBtSRBePfoQMlywkGskIUaoKzIx
|
||||
|
||||
xTni++V4QmgKJx3bfa1Cp1NiTbwsxweIMWFSIsVWYIvd9ZwqSh94JQIo4IlSqcVziljTeBzV4X2Leylg6X0/wwE0OiGj0okQN0vKIwmXlFJnHGxN1LGv1NZWMASHY647S6ZYFO2TR2LswhlBccbMOiYN1hI5Sa39GqnMagrj5FvuNtezX3aa/bOkbDu3oAYgCTOdUpGlKyjlREuCSwNXCVAae4dAIIDkR4FOz20FOEG2gSCxN/x+g3AyJ4XtjE4Y
|
||||
|
||||
nAoMeNjM4jKglJ0+NH4QrNXdTLCahG+M1pyeV4p070Np+ANEpnCMkprJ0DR9HNfx3r6XK3MNf22t2PS/tOI2nQ4eED+rUjCNSsLA4PSVTLCbaw3GF+rlOzpiK63IRBPE2+92oJx93oJ1ykuB4mp8558JVAl1WOCtGWkyjQtYefgtAFyilCOyS0UFq7k6uiq4FZ9wYHKeECL85lUYJ5JMWg8i1t+DHofF7LANmiCLn5tDQE80GhE829MCRvB14xT5
|
||||
|
||||
oNCdHnyl/rPz+tbFLUsyJps7eznGv3BdU1ey9xmSyxF7IsFBmhWGO4oNDxg7NLFiAB7iuADagDVL0AUCD4AEuBKwFcAbAAYCmAWmNw2lqKv+gCPI+OIAJC6Qqt6zmM0Cw5yU1RaVsKbT1/iMGMMhl4ve4bLHio8rLCIdqN1p/FP/F5MOI5l+PI5302o5/00ERjHNSZrtPY54pGwl5CXOKumjlKKp3FlGsv4cjov3QUL1aZ6so05nlOl+/TP2x63E
|
||||
|
||||
Cpp2Okl/8nPF07US2nRGT0qwjHm1klHrWFLi57MU7msugMJYZQ4YPjG2EHBVQUKZjr+QeFzl+bk2Z5V302zISzlv3BU6ID2Z05ksPmnkmnm+WmUWdbnqSuXMXaHXOlIW1YOZqPNP53Vl0u0dRSRriBajRWlw7ZWl2Zks1KFvvjfEnA36zcku7c8zNiY2W1Z407lNm9emCvWs0oR9pk3c3nMgVzVn9sIwuc7HnPuxxCsQx1/Mi9NCsUljCvb6x/MJ
|
||||
|
||||
mOCu+B9Ct+Z7aG1Zlln1Zmku0SukuUAlMH6/frBacZymJg73ObIP/J7BsVgHYOF0YJrgVsB/p3s6+Qp+EYK4J1AFrRC4OFZYwboDYFMtuS+F08V6z5iV/PFQvOuxp4OTZBC2Su8owFH1sGuyF4+uwqVh1PfYTuNW0KakIZ9EJ/GkwrPYuUM+4Kouwmu11+JObOpcRO4dWm/aTiqLhpLOM7Z3KDPiiMouACn5Tb+o+xlF4NgJWmovmli3Q4xq0sYZ
|
||||
|
||||
xYvNK0AyAOKygDALoDxAJkCHgCe6aAFcAWUZoDQgIpZUCyYVIsHpRR8Bk0u+0tAOyR3YqMW6B9nDhFSsrw2A0uN6w8qlkhBwDlQ5vjO/F0P1w5mLWEpyP3Oi1+N2eiNZglyTMQlnMPwSsM3CnPHPXQOHaoOQzCzRrNYPCdHS7ElaOpmtaPwJ2gMLppBNIOwzP3B0WYs5/XNux3Cu9wEhqGez7Unpjy2q+WSVx/YIIzhv23EJ8xPQho8LWVaRMMJw
|
||||
|
||||
a43hCrPiYIMw7KYyU/MhtUdZ7sNK9ETjVVrwOhBj8IuyqbDpZnZSqlwnkV0C4CWyxTzWywGvo+5thyl0Gt4KxwsEKxdkWVzytq1IKuzTRDNlFjGsvGnK2MiUIsxIkKuBprX0Whh5OdtKABWUAYVofC9mswfABGAWs6kw3kJQncqKZV53CKcLVj2sOn5WQTByFBAPp6MpFP+SiKWwsl4ux8C3PhINMvB+2HOzLeHOtVp+69RhYPXe8ty3eilMJ+n+
|
||||
|
||||
NQlpXG7nVP3bBsp0ua2kwmE/6qllZpxFEaR7LRmBMtlhPnpmusMdlxdMMBpnNrVswPIQjatwqoemWR2vl1ijLPMPR2sSp4LFxl3gvPu9pBDBvq4pesEO7puO1R20J3Ks9JXRs4OtLHYW3LwhbGRsqhhB14Nl6V+tlobPK0uErk0+WZZOUaik1RWAZj1OW5M3hr/o2l5pVdATVB2SVkDYAQuAWwdkhhwA31KwMOCaAGmOsgSt6jSgMsKe9uhTIdZC
|
||||
|
||||
NlAWFMC/6TYwF3AtkIl7zVO1LE+7YWGM5fGmEWpXfGTTa3xn4v3xjMuCZ1J3Zl2WsdVxYNo5wsvglmYmwSkmbrIsM0eXIasIlkcQTCb71fCjrQfNVEh0RqnOzV1svzVjaOW1pasV+4kuQ+1dPrV+jFKltH22F8OYt+lnxuUh9xCRoFGQx4GMkAnxDs+9bbYUMiioVxsL2ZieKMyiwyZ4wUnFmyyl0VvrAg1VEFMvb316YiescouSTnYFYxN7LpRs
|
||||
|
||||
EMwgIN5SWxJqrBsEWrC4UAykPwqhP2WOrASsiDONof43qWbuMJFOTVH2WeaQqVfgefMJLcNlbP1WKDP3A/OsceuhV7Z4mshpzto+wFOg8AZwCjAZoAUAOAB/A6pIcAUgDchO4CYQAg5UC3yj+CcZSp6fAEOw3eNuaYTVpEOowecmMu0lCYpPOA8uT5/RuQ5yd3Q5/jML15qvh+hZZtV4lNy15AMK11ANK19AOZQ7HOAPXWPwlvXmcoeuio27hCn1
|
||||
|
||||
l4pibZPAr+GdN8LPEuai++uElniONhwVNxKqiUbKAW0jlyf2khxfj2ptmpvuy21+xtFnA1DFkw6ln3fO/5ZWNkD2aB7H2YA/5ZCJ+hMtI8CvaU7eLz4xcuzh86ua21zNi5s81tNs6uB5nyM7hpwuw5RE1mVhLxPYxYIN21xIIbP40akLE2GcWuwxosD47ZrN2iN+5PiN8jY2UU9maAAaXOAAYDskDqC64UYDJVicBxVlNOt10FNNnGBKusc6RHwW
|
||||
|
||||
nENsYRBrvKPjheUquRyGZ3t8/Z3eY5Tajw/4TV7OMNz19Mt/FxetYRhAPNp3CP9R5d2K1osu9VlWv9Vr+0bPDWuURlzVTwUrMeKMBPSVKzCmBG85X18L031udMLVhJuxer8kQAlJv5moTC29YZ18S+o7C1octS21Enu5n9ZqptG57Oi5Q6i1fEfalGSQCEr0rO95sst+wF4Fu1OYh8070tsUk8F4S07m54MSJpyU5oD8vIMK2lDO3gOjO4WrkViL
|
||||
|
||||
l/pxCE8Bz/N8BxFFcu0j3jug9YUtzVtK0YnUnwUnXl8PVsKt/iWYo5vHYo/PMnO9Vuq2xVsTxHZAk60ihblyflqVngWxC8QlzyfH2aiikWN01GWIY+ksFZ+whFZ+LI73FunUVwNu0V4NupYd4slZ8WkMNqCgLUgyL+NHUM4194h8ic41UMGytNUnotDMBcVbBbYaUXKAVL2AtszBMttL2Q0Mm0UZuIiMqVN22YsDxoskLFqv5MKhkimuUYB3ARoA
|
||||
|
||||
lMKXmFwYgDNAVmB0kU9kdcEpgMxo4v1ui5vJYO7KeiKoikMK61/iV9l76d9nMUGVRUSTP0bvabCvW66sNNthli1jCNAt7qNNpi4Vgt0lOgljes9VreuQl2FtK4lusBN88lYgEGrtojxQq/C9GqalmjTVk2sKVHTNtl64P05/lM2ItBOAY3p28V+Suktp4PiJq07x1lbXwh8Vvgd+I3HdLc0rvN1vco4Dt8o8r17V4mSu5nmlAVzI2kV+uIiRzkMw
|
||||
|
||||
qspufaPJmnVohP9NzK44+syOPhV83Q+ptUKRZ505JnW3mR+jvZK3c2St3SnMdzSI7Otvnmoj5vmQKjuE3FjtK22wj6th1uEO4TyGRr53Edqn0DnbVlr6jik4Ylpu0J0pTKJ/cOIN9v23RqRPbty4DJ10k0HHAa12EqIpMUWbDupogYeFgjSRJNK24WaeaB4RZsCJAtmRBqHFY1yMmXJ4MRo14JZ08t0Yte/GvFVdr1hV5tulkioB3AMODNAAT3sk
|
||||
|
||||
TOBdAEgAUAUE6vJ5gBoHCe6bBsdtyehs4EgBpHRUjfBOqgckYCHCjZtvIwRvMgwg5qKkKbel7p1UjsB5uqt2Nhqvz1wFtON+WPL19qu5l5WMpc9euQtzeuIckiOq1mX4yfW9t40y86/AV/J618Js+O8LzVoM90zVnFtm14H3v4AkuEt6jmoOjqF5e4xN6e32vn80oQCcyTnvy49MYdlul8W53aL/f+UhOSNjiBv/iFd+Tb0cT1sI9Xptkdp0mSwg
|
||||
|
||||
9gYiqHDxcai1Ll3JS57OPYZsMvMcmDRnoWsYPld5Ot1ttURK1fho4hH+FrG4MQjFo4g8mx7IF11ZtF1iKtpiUhTEAJWBpwCUX3pfADh8Okh9CssAcgKgUVI3S3XBEDjiYYKg5piCPJ+HijHKN8XN4d83bC7PO7t2WO1doTM9Rhrtphk9sQtrxtQti9t9VmlNf24b7yZ2ZjaSEK6QPUspIq7jSEB7FtsR3FtxNhaW/tgzP1ap+tV+l+stHDW2Kltt
|
||||
|
||||
aQV8d5qLAUNeJqXMXEK5mWmZvNCk4x4SRtSO6sDSNSSvfHBZgSl1N72titlzOKdva520ovNTmkiQ3mkIKUJ11tUkhm0Qd8Ts8BSTujlqlbjltwFN5oSUt533uPm1wG0rQPsBx4PvVer25+Rs8p9F1kTg9+uPKhpHCOE/DXOV3KyKO912nGlYaxJbP5Jo4Rsrsi2oIHYutpiOki9kXAAnAH2BHNpkDpwSoAUANgATgaoDOAVkDVANqqaN5LA91E+C
|
||||
|
||||
fqb9Bztx6AgCYrOybV5l658cn14shNsh8J3Oyc8tqSt5m09iWv+rNckuNmWtM90TPvx8TNOejtMaxksuddo4CiDDuxpYc7zE5nP1DdyuRiWAwgxNqUF6Z6XudllBPJNnsuAY8GQVHKn2h28CmqVsZlxAiZnUlp9wStz3sd+0Vup5+tZU9j/OmLJ6Gj91kPjqVSWUOt5laqkAs0i851/lmZlPQoQvUhxHVykeUmms6GODNxGslcLZOFWnOsfKNkVb
|
||||
|
||||
BV41J3IgcQw2jXUKgmtimoNNiNkvuEqf+wDAAYAp0ZgDWc+E4lwHYAwAJZyswHYArgBmC451eNXiv8QJIYqv7ul3yxMqyBytbDCXWwDR+4Ahy55oBofXA9q2/Rsz72g72b/f5vi1xxuS1lqsR+pftuN1evy1l71ntjfuY5rftXtzQDpYCkaNIE7bIllhagO1T5MoIjx/Z42tUBr9u31y/u3uh+t3Bm2sDTHCE5bKn02Dfs1Idwh4/oj/tIQ7+tCB
|
||||
|
||||
+xOZe2TuHNRlxGkoLnI0FTHfRsONCmSwtaSm0Z+VLpFoWlSWAs/ukWWhDieiCp39YPgKKDnIf2sig2ANd655CBTzOSoLruyFumyDioevO4ocGJ6PtWPV755k3lbWdivrmdzNuqvAYtAmqNFmu2tpL+8ge+duYsJR6gdw9wlTcKjoCEAERkypeACZwTOD0kfQBJAVRqZwLcVUC4+BYtfeUl61n6c1r7OWsT6ltgZPB81j+KcJkWNHgtCNme9Qc1dz
|
||||
|
||||
QfON3j46DoEvuN1tOeN9tPf3aFtY57fu2+g+uJ4GJjDFOiM0jZ9vRqTZjBbLT0A+i4OTd2sPTdxauJNpdNy9ldO9l1XMJZwKpQdo3MGBiIfi+Dmnc+iO0x10bFx1zXM09dVMBSyUxD5vyVnDgOuidYgF6V7zvPEZ45RceGN53IBlAbWjXQ9ptsTDltu2ll2pOhoQC5I+Zw+ANoCyOEuD4AbADagFTS3TTYdPAFSt10EeDOlfb2c1uICrCPkTXImh
|
||||
|
||||
IcC0GZ7NCD0YwcWHXcBwMnbdBKfW74u4p6rtNVu4d1dxnu6Dxrtvxz3ktdtnttdzLkdd0wefAMqbpINDo2N2p2AMLNYCUXbCHKc/um4unPuD2EfW1+EfM5yUtVm3PlMhlkuqu8wucWMIcvPKIV9OkDvW2nkNdmLgsBguq5sSu51IVysUp0kSvxj1DvdqCsXJ0j60hjs7l20gsfvW4wv8y8l2vlwwtViyBtLdBXM8OzTt0J1TuNNq3OWldXMbYOUn
|
||||
|
||||
TM9Adtj03O25s2kytz53ex9l3yoyFHmG5OOc3fJtSqT5o87Xkt3KAUuuU7Zk7KHUfj8obr7RlpM9JzLOTh3UfYjuIY3O9MeNXV348lhfmGGhcdY6J2lfVoIM1V1l3MOu0F5ilUuBWupTMVoUsPjoPFdGJfMgKxcdTTEsfVKN8cNIdczL5n3bPl7XswaP8ch4t8wxA/ssYqjZXvjgCefj/8kNj39FZDlJyDjr8v1jt/vBDnZTvl6EmfluVsOFmGNY
|
||||
|
||||
DtzSgm7URzDQ2iHY2wmNspbPOcPAc/yAKMrJhk0leWZMm0T1OUKh13zMcYsk4QYdmEmX0b2UZPeFJkfrJt/Z8T9u579EyvOFYvrqWVR06Ooq2ICzOWE1+YvsjwLsSATUr8kFcDVAPHGnU0gCcKyoAeocyEFiEaV8Dt/05eU2SNEYJgkWGFPz6FrD3KMFCnwKsZbeBF3Lc0ccvF53PN02fsaD+fsOixftUglesWjzqsyC1rvnt9rvWK3+OXAUQbzB
|
||||
|
||||
I+ByVCSrjpzaR5Oa5Dvt5wc1h2nPtlq/tW1h2MZtADupNrL2E4e/pAuzmXj0i3O5e2CLZT1fi5Tq20MtsbWTjnKfvuvKfxxCc2YdvIKj12qdi0ym7eAxF0cuzKetTxyfYuiEqJtqJHhWiIPDBR42IwuotavJTneffPv7+tDNsjtZs0DrHJMqa6YGgEybRADInMAVmAZiFOgmAKCA6xpLslRkxprq5ij79DPBUs0BZUoWUiqEQrAKhJgj2TqCdDy3
|
||||
|
||||
gBKy1uUqysw4qDgXFHMPdv09petmjp4d6DjxsGDgKdGD4su+N7fvWQnrvoc8nAKkQKY1TVrQTV1uAb4aBMJTuat4tu+spTjweM5oMe21khtBCStNb8qBs/luAe3hJsUAuqqcFNrHWn5+7icE0Br9Q7rDu7BpOScNhlRJnxMxJ7S5PCPDjnYBEFY+w6sOTiuHdT+jD3T7aVFcZ8fmsEcfcz2Dh2mr8SrYYpn7Qzqdcz5F0WMoV0zYLkRZ44116Y+p
|
||||
|
||||
MVbWmc6diMduJqmdGM1Wck7QpWalgYIXh7vrdDyu272Hif8UY0ugKCtvcoNIucKC2djJwou513IP1tgNOUDomszTyYdY5V8MnAfKPZAMdrNFJSDDAYgB5osOCrT+ID/x85toGK0RDVV7DwmWzjD9pgUHD1b1fUk4cxlpAewD5yfYTvw2ytr4v1V5ckON24ceTqWvaD7yfL9xLX5lslOGD94cc9mFtc9yBg/AMqY78UGTWD2mYAjsB1llE/Aa4uGd
|
||||
|
||||
WxlweIztwcxeu5E397ssZT0DutNv3tPmyY6ypmlurm5fnJUV6GX4riBZXF3OU3QAfTyHvP2IoEPSpvkPq9k6OSpmzM/BlF1ys8I5IF1jszlm3Z7lgAtMl7QvG50aE252WGUukTGseP5myuqofStnCfZzp+e6ugcdvzocctDjDUuF4SwRojLwyTp45DT4SjI1iyvCarewNxpZsNtqadcegLvaQjlq1ARpbxPb2rGUTQB3zUYD6AGADagD1DlkiVpY
|
||||
|
||||
/XacNnYuwJAcspb9SI0uYNbhsID1OhqJ3DA9jb2e4ik4RTKk7hcZ6fn2t6cmjhnuHt4xXPD8Fv4Rv6dVzoKePekKcGT8stverWsAYcgMN5ogNllY90hWc4g+j2ml+j/ufIJ7aOrV7wcrd1VO8+1AHK5tccS09+v/11AK6L1FWCR6Uvi2v4lC+gbP4adnDupptBGdu2hLsgvvZyxSeILxOCuhqyh5wfXBY4kuDPTSoA2TeERWUO4AppV1wLAJYDwO
|
||||
|
||||
I/jKCKFQoDNvycxnrA4hWrBO7Y84vNtpF3WbILkDadwcmEc6EG5cY2mMrIGqtMvS1zhcfT7hdHK3hcs9/hc2jwKd2j4Kfb9tRE/DmKBgoaJkFagQ30RswzIqyoyrjS2P+KyEdJT6927YAFUozoktlVekC3gKCAVAWCCOAeKDToNMrqyTCCaAJZDagOPQ3gD9S4AZyiQgNCDiheIC4ATQCtYIJzYAEL01nFiBsQdxhsMOdRP4QSAmwJKNY5UdrVAN
|
||||
|
||||
oB+1BlQsK0WDpwG16NAE4C9g4YDB8iOfcbXpiJ2YrMoMGECdJZ3BxFLowgqG0VmN9dhISBWdlqlZAHtXya8ExfkyVatO5z6Lm7KzMsI5z6egt4Evlz09sCLnr7Vzz4cOjvdEgz/LljaNtAqy0Jv7wIXvR2C2SVh8bvi9npfftkH2Xk+erX9tRdeDpUEuxkZrFII6jwCQSv4pEedC2U8hmCnjiBEa7IVqblf9B5tALGLdRtodmj5OXBz720MwSr1u
|
||||
|
||||
BSrg5q58b9DjKAVgQoJxJQ0ZVeVkLRVYCdaFciSzClZrDCUL1WKoTXz3CKSTg2kBa5J6qSwRsAFf4rZDh8oLch5DSC1ge+1eJ7aKwOeIrCtKIbDVI/aFt2E1eahT/Dj96D3+4aDLC7assyr+7Ce8HwE1Yf6EWYSNcjA4Q28JzOLFIL7Iss7vsvsBTzz2UarF2gk7OsS1f5pzzi12R8gYt0jw5UBQix2NI7toA4SqM5S66rqzCSrg1dc+bJX1r/ob
|
||||
|
||||
zQgvOnIWVeaFpNDisZ1garuHL4AxsoqjtIyWrxdhisJFhPl08jgoe/r1giZm9rrbifU6Ohlq1vgKsTBLmAxghHfUIaoTABJTR7KuUxSdfe6r/22rvdcygp9VYnWLLl7MTanrm1eUkhhvz/OZu8T0HHmidqkcaoBRmzvUsnA+jVr+jhvRWoBkxypIOjZokSJspiiePf+dyO3UtsiRPt2E9zsfwvGusj+BcuLjNGGTJSADAGADKwQgArgceDjAUb0l
|
||||
|
||||
LFOjg+IwADeERUM6Z4BXxOoznwRVpTKhKT2NHRFYYL9CBOiBDbABIytsMIrdgQeUNjelUT5bS0TU3aWqDw0djI6KH1fdFclL06VlLkEus9t4d4roRfUp30UbIoNCfg0QQY4J9ullWhrs0aRdi9nEuxNmeqGCAzDLdgMdpTiRZ39zKf5IRo0dBuHBWkJ75W8DYbQkbVFxYbLKd0rdQKhX6VqkDtUkF6gyjqDzhlqsXXwu1zfnEdzfCEE6syoK0Rok
|
||||
|
||||
ddJCILh0gCGoLheHRHBbtoyG7Hoii5O4h+bjBMBb2Ld7YNNiPkbxXwpJjC2EMiYudbRhUmA5qeiBUKPkYI3H4ZXhpsVSnJAeeybsZDh73ITkHzk5ZJbkKxrXGOJ2b6SKgyPkuhENbq25SvLt0BzSmGkOKdbhfS76ePHACUbcObnrc4O2iJTb7rcTbwDGs+KBDz2Rgv7xTDLtM81UX0sbeObwWsjNIrdrbsLdBQFzcdIwLdxbrLfXkIrdTwYJVy2J
|
||||
|
||||
l5lG2nQYwONWbKhZ0KhEgqi0PMb4Au7cEab5SE4ZthtgF7ckESf5jILVd6zhGsL+8KyqhxBGedgrxdWh41mlyeaQIybNpeJHdclZTXcxUDf+WVO1khOyJ2REac6ls/pr7GUTQL/1OFB12cKT92ccj5pW6NOOgdATOCjADoCfJ01x8kIwBMgTQB3AVnfGjv0v/h0FMLIOnElsFpF5GU7a0b3thrmYwLrkF8C3OIrf1b9CrzgLUfKK5BgneHLwxWHI
|
||||
|
||||
RXD6AN9E/duNpkFtHtrFfNdgsu4ry/7VL4Rfb9xCViLtP0SL3ohucxeaQzyuT61xOrzgWlcft8GoMr1wfpqfTfdPRmkDztldozjRecrprW1bt7dbOu3Vmp+H3tHLzcoEG5FMq1EPbYMFADb61YAiBeRS71p7HogBICEBXeTaiLdokBPd1bpPeNbpcyhbxXcZ7sGthBhKU93GpwOzou7BRrfbFs2N3Oz0nd+dqgcU7pSfoARoAlwTACkAVmDVAFcA
|
||||
|
||||
rgdkivJo1B2UB7CZwbCVkbyYXHCVJAzt4nCcwnJqTt4zw53aoiYwFdvnxmnBRIj+omQGckmheVgc4ZfHqhAtKq72tPq796fAtwEuYryTfYr6TfLB/6cfDkwe1zswdT2qFwI2u9va15pANGk+tol6NSmBbKii97EvaZxKeMriwzXIVPDRXVlcrV9ldoO1+tpxebfjbpzep7/eKMMPkvHUV9Wyhpzfkm4VBqRBXewH6yX1Tunrz2dcymrunQ2R/reM
|
||||
|
||||
2O7nx7tLE5b5ffbSfvWAY3TCkHj9Qr7ig8M+MPfs0DuyCxMnrYHjHDZY2nQvCMrYx7wg9Dbx2nR73S1EpNlmOmt24EHvxREH4bdLdW3UXCd2GeTSoT3bn7dPb4YrQBCA+7b2A2iMV7dTplZCnwYrDQBLTik/OEi91cimNGxDKYFAgGJJ7cPx9WPvjWiysZ3ZSRoMq7I7HNlYDYRZPyvM/qCTr/ZuF6/bYhLO0jDuJEiN6aew9yndpiO4BqpPX2LO
|
||||
|
||||
UYDskE4AckJIDamjgCYALoCdCn+1fLjqLs+y1IAT1D2EFcaqHUXrBCr0LCV0sGkMfNjexOvI9cb0ir+74rfrbxcFi1mZaFzrQdeT0XE5l5ntSbipcybg3frumpcOjreWm7zWu7uzG6xO63eaI9TepYFzhYtr/em1vG1QjkDjpVctcy9uL3pTkkuAY7YAK79DZr4ZiiiksVAHbl5CVHhULWEIo98SzjdR9TY/0iMLc7Hg/x7HjjfC6qGhHHkreGZD
|
||||
|
||||
Utg7tzz5VY40KiQ2czFl2f17t2eBHpvc3AMOAkgCgBdAZQAAnicBQVB4Cqmy32aAZNMiK5iigoAPDPRpTy0butGaYSuk81F60xloMunbjLceb6EZ6HyMwGHnzg5zyrt5z0kHjIsRGa7o/fa7k/e67iuf679dFUpnesbynYAHW7o+It5HxVoDLBE06qZZrOJKvYFmiKL2rn02N3ftwBnNDLoecLHjqfRbtzfnbuYVS2bE+BTAJ1oT7zrpbgjGYn/G
|
||||
|
||||
Qyn8vicceU8WHkcWETnbA2HuoWyTq8O7ZgI/F9j2edtaZwlwFRtXZicB7s1mAW5UUUQOBkDNAX0sz28dvwOXNBZoVGjw4M+zVEzRkN0Cjf7IZNCGbnzRXqCChsHkrKDIOXfRwYw8CmbP4/Gao9pvCZEHtrXc8L76cvD36eVLi/f4rq/cKb65U7AYJf1L3zSGpCogjpt0e90LNZqEdw191LpdfKiXt6b65AmBUiWP12/vDznCFLHyo85UXnFokCtT
|
||||
|
||||
XH7Y/X6r3opqnA/sH0VhwWKM/fNetffGFg8hnvpBhnoc8qn15kmHmM/jn4vdWHp+JZSzkRaJYtkMjnzt+HwvtNC4/0ctbyRtAFJ7EAfr14ItgBWUfYu1AVhVWUZQC1AW/fOn5Ltqi1LtLsWVj960pC0b/GhVbZGg4wItPU/RU9Bbu4ixucxlTCmliMH0ar4n3jOEnkDlorwpcNHnydNH0/ctH8/eCLw3fyb7c6cg0sSiDCVA0MF1YSVEgNbE9Tgg
|
||||
|
||||
MKs+A+53e9z13d1npUJ/tx2PNnzRfTyP8/nb9HBwWFQ8zbmIF0XzLcMX+g/HUbzcR7riuABVi8NZP7OICBg8+blZB4Xe48DBKdunG6HeEXAztbn2hU7niU1XLztrctIwCSwJkBsAEpjKAZgDqmvi7NMcT0PpSWBOnwhdMx2NCuaD8wkFf7GQJ2jdqtMeBGkUiyRLXyGG7LChl0eX5lpxPA8bzbRisJfif4OM+iImKEAl1xtfT3ydr1vXfpn5C/tH
|
||||
|
||||
o3cOj25XErwMXQZKNzSLoqFot4mzRSKChdz7pcTH3pfQ3Os+ixSi/zH5+uIjyIV8X+LeznnA9qnww9ugtNh32bLD7OgknkTZY+oTMwQ0A6TC1Rzji/sA3RLq/PcrHhq/rH1s+coDTBwHm5DlXka7mk6q8JbjykpocPjszwWoWboVRw4MGjZb0my5b2g8Fbn+uJ70LD8sfpYjsc4/MSTULKH7bfTbxbfC0Zq85rb4zMUXa8xefa9k8e/srb5aR5DS
|
||||
|
||||
bCOiJ1cthVU+4nvIQnbmLdKnoq+PXtgOynuUR+tpq6i5KTjDXucxXH1bdbHo7fP5xtV1X30S1IRq+YEJi8TbuOyQ31Y+BZJq/HUQ2StX0693xRG9dX70+h71G8tXiVBtX5Os2EuYa6hmmTjJ1Tnk3qxI+HykTU3wyy033eYltuLgRk1wv03/XR2V+xKHY1DZXHAOWXlQ2vxnZDeJEkoOzTztoFEgYXFFSoDMAUYDEAEpjnUsODEAcYC9ceIBrOER
|
||||
|
||||
VkgFLAGAqPA992jfT78TywyIRADB5vBxAKQ/W7UKz87CftrSRfe7YGg/kH/MVsLoP01Hrj6mj8TfemoK/6DnKYSZjM9ybuk+f2uudFRpk8DpmKAUCeLCRTw/tAjswzMIeMJ+eoi8Qj9K+/7qY+0MIrA5XkzfUX33dpxPQ8GyDNj4AswiUxdlCSoX7fTuGpC6HrI0OBEYjs0DyOyhkixiH3g/9EVa8Nb40RNb4M8rKTCGXTlvnXXhNjVoY3XR2VDR
|
||||
|
||||
UHha9kH/Lf7QsEDTX3ZfHKeezzXpfdW3vu9W8Qe/CcX4DSl7u9j30eDW33iZWLlx6S6G4EvY4KwhynER7Jr1MsTnyLMmkncWl0KsN7z4+uLioBMgDoDFLHUpo4uABWUdOBKQfACswFOCVAAMD74ERWpdpR0K0CJjK9LI/rMeOqp6d7smJH89qj64LwmFsjSjom1xuVkSCxQwQ9w4Go+X4k9+XrMsYr8k8pnvhdtppC+yblC9e39z2Kblx35npmW4
|
||||
|
||||
cYs8yL9gWjp6SpmUmiCujpwfdzn/cu7onz6b8U6w1T3fAH73ccrkzPTyI2/TRfmqrC7o453x7cjA6OgtTqYWmpmQ9nwuLqiHwbdYCOynlH6XfJ7+u/9nkVduB8jtY6NE9vX/89SntEWb75XyMoNDUjrQq8Xbu75gCTbnq6+34jrDh8yH029ZDnswNO2B92syf3xUKx8wPoDTA1M6/2bhbeXX5xaGP8WLGPs8dIj3h9Wkfh/DFNUmc7ZeDwEDHD+m
|
||||
|
||||
PdimcJA/bSFeBMRAKIiIMeCZ8MWHWELG/Q39Y8BuSChfZExJkXSCbmnLa+hYC0HpP+J+hP7J9GRg5wGsfY+ahIJ8ZPhJ9hPnJ/4TzAfg7/yOw72KKNWjUOQ7j45W7qEKRotK0mdzBlhn4SbdPxRKE9lRJkT/hqjPqqzycshV1taJEC31dmzWxS/kbKACNBhmDagPM4nATQA8j1kBEAEuDq4KyhMgbrs7T4y+Nu5LCc+c6Tao8jlTK+bhZ7BUKi6/
|
||||
|
||||
W+HnWUgZp6LjsmQC/LVMECl0ZER1GaZvgXw732Nok8ibhfsPDkufmj+C+UnnFehXzB/hX1C9rPHM++lzZ49H3ANiYc1G9vQ/tOaV/cwPdZBgCLEusRnTcX9si+TIJwmJ32CHJ3th968Gu/oVCWgBIkc+mHtkxbqMx8r7Cx9rNKkaBQVthAaVROIH1EiGGyeD1HJPDYS1rC5odX5x2PJ/dgbh9ZDjbnIp6evMJBNWRPjl+x8vemf5d5/qSqol3crP
|
||||
|
||||
fq/Na/vYDLMlmBV9b7342vqvx953gR/4yrV9XJL5/omag8L3u0SYlXYDvkAbCUOpSTYWBYgJ1V3xxhT5orta18UoFzB2vkg8938e8zVBTxWPtpJCqFhC/X/SOOXxTDOXvMfGLTx8VEQTQmP+/EnLJy9vmCN9SFqN9FcVJAClxNuuPP+GKOsSelWFuNq6JkfTNmvrDJnY3tU85PM8np+huuKxOz14917sYd3Jk+9ob8H4DAV4QTgQuBMgKcCbW8YB
|
||||
|
||||
hweyZdACUKVAZQC+36e1GXteONu4N7s0IRa5oUrpdLeEhSw2K+MbrgSYg/g9RP4GRyv5ycJICwjs48a4LER7iz1oTf77opeH7gK/H71B/lL9B+fxqpeQv7B8LEnYBJH6K/OKivJctGM3FlTxXEuCPBOCLfq8n2+X8nus9f6oA+y9ps+ingVdAUul8m3pgFz3y2/mv1fe58PV+KH+ef2P6B+kMJx+2PvcfsvwQ9cvkOHrv2zhWYLd+i5Qa8CHoJAr
|
||||
|
||||
v+o4TqDd/YfyFDbv5OvtD2BFo7/KUOVmt+H3+SfjDxven3iQCSwGACEHO4AIAE8WVADIlSpCcDGUAYAB0QsTD7yrBjZYEhLA65FTK6ECloA0hoiVDXD1xvQ36Sr6X6CrsQXlFdTyjXf+Xx4fHvl28/Tt2/r9sK/ERjo/X7w5e89o/Dt5SsoSVKB6BetIjTRMlngj6nMkXvEv0PmOeEv78kIjpbfKfqGg36PSsXY2Z9F93GHC38jY7AdkhJAFRvxA
|
||||
|
||||
OoCYAVD6jkegCFwPhWj2jgC/hod83skd/hSOnFOCKKnFyEw9TKlbzpfsLLxhe8wxl668VHk48gA0ZY9BvlBePmN/KDqWOQX4TcOMouf1H4YnAvlftWjkK+tHmk/b1yha71u/47Abd13v973nyzbZLRmkaJXsO/tYeZipX6s+Of2s8R1LMKzHoltvowD84QqUzdnkr8eRmD8BPgu/rKVb+lb6l5lP9jfbX5zOFbkG/HH3b98PZPTWlCKhwgbwMuqo
|
||||
|
||||
r+Hbs7+f0lN/ePrbk7f24+Pfir/RvtN+iXgieNPjxi1WmpyVvxuPmd9bwvrkrjedvz+7nhZ8ctCgBnskphWUfQB/9ChSEGOAAlMNH4lMcYArDsjdpfv4ZQJTL84XrI9bDn9CY4Xbg2kBZULVJ69yn+cvOT9Uj3YcYKs1oKDwP/5+eTwF+wX0ueP20F9n7898e3rB9df+k+ee/M9C7MnjNz5X7615RLHHS+tjHz9s0P0i90Pus/8bVz/Et0zdAf1M
|
||||
|
||||
VcH+HDiYGS7Nsau8nfm49VH+vihvzMyJvjjFATin/qnqn9KCGiDEgGjicX9rNNdE38Bcf6GuvogjuvlZRG/239fX0q94n4WqfKMTZkXJAjg343/u/3E804L3+0/t5T0//38DNyw9DN8lD+Pqakr+mvoQLvZFLU8ztCrPf1yTsneMfht97U9AAlwKAzKAPxdskdOBCAUYB0kO4AwAMNM+wMe4+wKcHJHpCoreTAqpId5XqCLpaK6bex0iZohHwTuA
|
||||
|
||||
yqDffciLffaPphe4sK19O/oRAu/lXa233on23hM+kno98oPnT+pnvT+JNW0eXv3n/e3swcGD+/e9doagOmY9qotj0fmRLY8O7+Gc1no8b0Pin4K/xb95XwDvAXtG8E35duXb7X89nhPEqPiU9sXgS8LzuG9k8Z1gbfv7fzz5/9nbzLdu9teW32653rB+VOgN3pASq/AqdNQS5R73fhtuJEQW/nkYIKi8ZCkO+SBw3lAez8j+vi0iP0iO8MxWr25A
|
||||
|
||||
7h9uBwgKeBty3zTG6nHoLfLyHiABAT6/+PjKyaDiora+rlgtHFA+xwhYAQ1Cwb4JzB/+vW4ePh9+qb6SoLq+D27+Pj/+SarlfjfEn368Ack++8SdXqk+ON4yxOEiRj5VfmuaQr6VPuZ4wT7YEOeUTSDtri8YigEWgj3+3oh9/u2iux4FGsUepP6xBJo+GPT6AUue0f42EAhuyGaSiHVacxpuPNP0V2RQ5M4BLqZGiJZ2wViTFgVYkyYKOiokObYO
|
||||
|
||||
cBmytbQdFpyKk06GnihuTH6NvhUAMIA+wNgA9ADYABOAE7TVADf6ksDpwKLITIDhdh0Amzj3nkQu4wq4OLSOFRCZYGOuH2a8AIQaF1qNlGtE+9wxlh0Q+v4R4I2iymxI4P5QGSAj1Iz+9X51Hiz+TX6BXiC+YmbWju1+liq0niv+OD45nin6xUAVlun6YtCSYEbWRUKh3h1osagmJKpuUd4OfjHetD6FhPQ+Tc7n/lYKxL5gHl3weAHBIMDun26Y
|
||||
|
||||
0Hb+v25f/vwB+r6BPnCk0r5ofrQwT/7Rbm9u51gg7qPeEH55blB+IcQHAcH+O2ymAdvuOj4h7jIBT36CaA7Ik96vMpZuvxDWbn6+gsQYvsOAXRibbk7YcfBD3jPe9zobci7gS/B1btfSvkDnXm4+nAH4VrQBNr4evgwBW3TnAQR+coQavnZArCgv6qNSfigGAbJgRgGXHnc0JH64UGR+uH5nHoYBFT7kQgfmUFBVbFd0JiRHAQoem37/Ql9mA9AV
|
||||
|
||||
oAEwoViF3iVeQf5m/o3CVLRaFB/UzpQSspzmeKqzYFseMhBpsCgBA94AgTNeQIEj3hPEiuiFBKTgB1ZTXiqBMIHAgRqBTnSsYNqBGA5R/tqeCrwpsjBmAohHpArohVhn7KzemIhzDE6Be/Sk3tlabRYFWJuespBDsvYuv7yg9tJCbDYQhNG6WMa1vo22YQFZ/h2CHQBWUPegmcDsDrUASTzrPvgAksAwgNs2GC41/oZOAZYLIFJ+rrCBTG9oYBbj
|
||||
|
||||
VNMgcxiZ8JUYCLBzXoV+MAGg3g9+2woUAXw+f27UAbvuag6T/iSemn5Avh0BLX72epz+7t4Gfg96UL7lvD1+2Ab9fhIu1mDS+JVCNIwvKsS4MTh8lhymVYY4vr6Osv6TIPMEHu6qLsw+AH6X/mZud34VgW9+qsTf/tO45CTbfg/+a37Z3scBih67gb/O4QZ2zkXa04qOLiEBKzZGngF+Jp7kbFrgwwBWais4pAD0AD5I8YwnAFAAmACLLiuAQ3rD
|
||||
|
||||
7q6+ZaB5oCNWIAJWQL8QWLSZfua62jB3Pi5qQ/50AdiBrl5O5HE+IT5ZPvvmfzZ7vo2BiD5ibkmepS4nvs0eZ76dgRC+hn4RXsZ+iXZ9piMBEi4Hrglg+hwovrYO+HLq1Fxw6Er2ftfW034n/nWeEGANnp4OLD6gHi4+XW6QHntu/2iKAWJsnIGUAbWBO8YfPKweU57uYEvwpr7evpB+dB6EMCB+JBTPNKj0Zr6PAfJBQthT3rNeI9gTnoq0TEAd
|
||||
|
||||
gNwk11zVgQIB+d6CPkdeDpKWEBAq0e5q/o4QbCCa/i802wHvbvAQmqj39qxujIEXHhaCKj43AbsBBwiCvm5Bh34kFg5BtwGfbsnW2jrUTr4SoGhwmjTIVPL1WH0ORwTETlxol4ETNlDgGmreVnR+FA7vHuTu4YH6crPGwwAkbgaAFACHgBQAroaNAOnAowD21P7UJ4Bkbs5gMmCOvhBQ9rCT7rwAYVDEGIi+tdhLsN3+LSS6AVo+j7YXDi8BooHj
|
||||
|
||||
/tcOGEGibjBe7QHafp0Bq/bdARg+bR5EQT2Bg3xmDvmGA4G7ukDo7jzKZmtI+tai0G+ABvzabt/uCM5OfnWeI9jodEw+/74inquByv4C5mnu4W4dnirun17CgZT+y84mmg9wmMCHKJkEw56B/rdB52zvAf3+L0E3Qab+lNw6AVeSXUE77tdB+h5vQRYBhE46EhEWupbcpLFBMC5vHnW+hdbGnkEehKhJAJIAPyYvhuMAIDglwOnAsVaUbJUAksDh
|
||||
|
||||
mrUA80GHPil+63BYwH5QQg6VGJ4c+YFzgF8MhNKmcPgCJJw+VK2gxTIdwFMMymxCPtIe9L43Rv1Bau6DQQC+jXwjQbP+Y0GtflSe4L5TQd2BV747ojsAhxZkQeIuu7qjqFoeMai/iC++HWgHCGQMlZ5MQRN2iwEy/ssBe0FIUGsBEMry9vleo3LVAeG+GlZizGS+x6IHYLoIKgFRuKg4TLgthBwBs25dhozB5OBdGEiwdganIIpBsh4dmMQBzMHu
|
||||
|
||||
wZUIht6TKBzBJt7KQfU+ZoG/fiXcTcb2VtMWLlh8NlJQ4UYH3ulBcMEw9gjBXx4wAHcAWzZo/CQK1QBKwL8meqyPDD7Ah4pnNumBPO7WNAVWBPoRWAMisS4dFAHKZ9jnYsUgBDijKor4MQi6IDjet07Kgd9B9v7NAUmGWEFknsmec/5oPq8Ok0Edfpe2xn7jRvmeByhkcKIgSsFrQayyOiLxTtQ+O0EzfrZgP2D6wfN2diLs9KpBS15PfNI+Oe51
|
||||
|
||||
3h4apsiDMImgHNBC8DZu2hpLwM3BpLJL8F2e+4FnfrHGapD1IFfB0gHmwbfBtx7UjnBugqC2LuOyjMiuVmlBow6hgYLe1pb3gRy0wFRJAGXKI7TYAAaAQgBHAL1449yFwB6WtQD8/iXB8DjR6AnUt0D53iqwa3DWlFmgTNBCoAPW36ysHKV8sgGVfmPuB7S4gvMEAKBpYCwY3z6Cbr8+UF4afkg+Tt732kLB7YGIXlz+XYF9AdDa175yZhPBEnAJ
|
||||
|
||||
1OyeLCzRTmYYd2BmQD3WW0HjHtymSwGZXjgINlhrwbbie0agNI7BwAiaQWqBAQ6KIXteaIGrqiiBrj58QeWaZVzUGGWgi/xaOF924B4aIbohRPpKIZjQaAFckiQ2gcEk7MdeFkE8QTtuzF7SYHo+gAH/kl7Boj4T4oJBgNwjbmYhcWDuPrBMFW5UGIsQpWaSvsd+N17t3hzQxojvfiIBPAF/AX7iFV6x6L8AN7pJrg8+nKBPPhngvZ7zIK5BFIEV
|
||||
|
||||
PsKWcQBInjhYGmAQFL5BeSHuQZ805CFGYHdwq1Bbfro+6J7vXvo+53IiiHKqVCGMBHkoFsG57gToZAY1IdQhwkE1gSZB3SEUIb0h7SG5Pn5B+T4PjmygGSGbMFkhCeK5IeU+FSEwaFMhOohcEO+odx4/fuyUUG4JVB/BBGhcNpXcgdxAbochwC5X2MchQTCBFml4m95clCnKGXgo7jkWb66DPrJCGO75Wk8hGbaQHBD+Cl4k1uRsrujxAOVEhcAi
|
||||
|
||||
ju0AbQAVunAAhAAnAPZQ+gDkALqaxaoqMEiwMTpfdpU8S3CJYubGDgTKLA5eXRhhvob+CEHFAfdYL2aKSMEgcxQ1fmp+fz4tAfcO/MGu8hJuuEEIXvhB+n6EQeLB/QHXvrwOft6BNuIohWDAaLEyNIxEPkYcldKVCkBC2L7bQcf+Aiz6bnkOcoKcQSuBhsFCplZBlV4pIcIUh4FcgYIB5IELIf5B0B4ucPVetSCV0vKhB34TIaNeixAG/q/irv5a
|
||||
|
||||
Bik+ax7PwTy+jUJgPucIta6SHkBqcer5oKZSVT5VjLbBTSCMAS7BJAEswYMwKr5jbLXesu40AW6+I/5uclI+ljDfBFWg0SEPXgBYyyEjRL8YRlimsAYhVqGbvCYhjiYtIZQhKrDEEloGWgGfNE3BBXwFoL3AqW6VYvPYi5YxMEzQVHS7KP4hk4ExjiZUKaq5odUQirRc1IAsKyikeE6q6qGUgcKWs4LnYrZB9jTfBBE+Q14SbKkhI8LdJAjgYCjM
|
||||
|
||||
HvKYUaFFwsYh/VwJIDjAQKii7rqIGFLaIbxBASHogXpifSCdBtNgnNJOIRdec6GwcKOhGpCM4BOhPuQroZohj7AboUmw3W6n7KDuGyGhWsiENs747myk4WCOJGW+16FXoaAiY06xwXROkkKQweDBAiTRFppyyuhWgfVYBA6qWCw2/QIBgT0CSG5OLrjGqG7Z/hAAE4BCAG0AmcATwAaARgBLOJLAPADjADCcSQCFwAMAwwCxpm/e8rAecP12+X5d
|
||||
|
||||
Bi3+iDi91MOAJBTQqMkuBt7swcbeb24RnpoiQ1RooTqhLl7dwQSmxc6s/s1+Zc4c/mwhBEFiwZwhbnrXvjCWMsFm7nLBzwjhEAMeeF7phArQi0JGIpL+Tu5awbtBpDD7pHIhTYYK9nuBqr613hS+fW5M8My+Gv4SHvohQcGUYfQkWqEJvrqhis4UYZw+VGEGYeihRmHvwc8gplZ41uMangGterDBACFzPkLewCGJwPmIJTD0AFM41GyS3tUApADK
|
||||
|
||||
ACcAdJDYAFD8CjQ8IcghW1h04gK4aWCNIEaK1cGSjur4aexyotBBqACDiD8BY4gD/tGAh8FX5IG+OAGMYdBezGECwf3BLCFdVpXONKHcYVrGOZ5llvxh8L51aDbQ2U5nIgYcY4GbjGIUtl6fvubWf+68oI8qCmEktj06JmEiPiK+hEjbgQI+prCvbk8g6GwvsM/BPV4F7pdBN3bXAaNhITY4nJte4yGk/lr+KmEy7inuBHhbwYvetm5FoUiw0ZZf
|
||||
|
||||
bB9B5gGmPpahQ6E2oVwBcSHPfiq+bd6BoQ3+v7hMAVlh2AFkFvKYI2EW0vNhz8HwfswBHQZBvss6uogvaswa3gbD9t8B3AEXYUqS2ErKsL0gR5xd/mdhcgFffuiYwRoPQTZYuTQZZilhQOHyAbDheQjWrndAiOGdjsIB0OFiAaDBEcGJStYB8f5Q5AhmtDCIxli0gPYTPslBVxyudrlYv8FjFh+hldIFvlHB5KDjijDBIYFwLoAh4VaIwVjktQYH
|
||||
|
||||
ACUwrMDgGKW6KcDYAEpAtQClnFLejQB9fkTB/A6GMLiANmBrmJkIr55FAXkImGqCMDNEmpBk/kQhqWFlqmQhYyjVIdQU1CG5YQwhvcEz/oVhbYHFYdSevQGdflwhksGDVgtBCL7/QCXQBvxFQlZ+4CZISBYY0JCtYVN2cd7bsHChs3YoOvIhSmHGPGgB1ODqYdZBLL52QVK+segyvoR+D9JIQZk+iT7hPpjeEgEqoYahD+ZGvp8+5whMPEZB+r7K
|
||||
|
||||
sOOohSHcaMUhU6aV5G6hMj7qvm/y8aEjIXUhDuZ4gcgevogwaEUh2eEl4b9WmgFLYUoBpthN4XdyLeHx0v2eoZ7uYB7gAVpd4VuQXRit4ZBcEkG4HjKORsxEgcMUJIGmHic6KaFLIcSBDCTz4fWh+SGTIcvhM0Sr4fjh2xwNFiV41OEleK6B2ohUTof0Tnbr3viI+2K1UoD+nIj6dvmSIGH+dmBhHYLwnKHorMAlwBnQowAihPgAPsB4ZtqAisiE
|
||||
|
||||
IkCmSX7+ljzu1MFuJJ5M/DBBIKY2+YEkgHpgaQzO8BXsZGHAgEu+seHofqFyGzC5GGH+fv76jsiuDvIm4cNBZKHO3kVh/k6iwSPBnPbZnj1+6tbDAbLBCL6UDA7I3o6hisf29WieTPpgh/6LwfyhKlT6bhyYljgB4UZm6M4n1J0h+8FKoVNhyu4t8ltuqIHjboEhkKwHYSxQtL66YaZhYOxL4bPhK+EIsEEKz2HnYlv03CRr8mgRPv5vqAqw7TJc
|
||||
|
||||
Hvh+nL6XASH+6BG+/kKuehFIERcBq77mMN7+dP6YEdSO8fasoOchMwSh3On2oCizsnRovh5yXs4u4QHgYcQAtQDpwOW60gBQAA5MyMEdAKUU+gArgEpAIX5DKrX+MrTJIOXs+mCbMNci3CRTKp8MJYFlYHFgMo5JYXYhwj70vmP+kD6ZYY4+pFjrUMbhB+6Jnn3BOEEDwae+Q8HsIaVhNuE8YZLB+9YO4XmU3zStbIReh/bKwexAirQbEKMevKES
|
||||
|
||||
IbiWy8EJsK9S835zdkHhRsGy8LvBar7nYBlm4AEKPvMYSj7HxFCBQSAwgaWBQUrCcM1Y137xhNthYhGzoauqd2FFEawgzkDbETohuxEAsg4+iH7FEUcRO+GhWhaBEz7TJoiQlOEm6JchwYH0fhn+9b6pwcx+6AAp0PgAmADy3to06zjVAB0A3IQDeMoArIBtAMwAMopv3jbY+PbJGuCaUypdJGto7wA8xOkQCBFhrNnuUxFqYdsKVQFwPPEEbQYq
|
||||
|
||||
prY2qn44EWUR0/5afoLBFuFEET0BREa0obbhhsK/AkcsUzBlZOrBo6Z6IgwRBLAUNo4O4iFS/kvBrEG8oCjgwqGozqKh7n6ZTkV+5eHTEfgeGmHq/uYIfqHokaphG15gTIlumep4kT4G/BGYkfKROJHJbqT8ydZ19IIkymq6vNtmsC6hAVzhCC4RARIATIC1AArIzAD4AF0A3xEKNEYAOwAkIpIAPsB+SKyAJTphYVN4CIB6YHkazNCOsiQ+zmof
|
||||
|
||||
emieqMhGIU+qku4ykeS+cpH6ekOAFhH4gSgepREHvuURZuGVEYQRkEqUkZSm9RHlYT1+8LaUEQJhuAafoHTK0Ta4XhNWHYBlUpN+xF4yYYMR1pT8kcKe/7ZLfjReESq54aABZeF7waqRQxx14dE+KUiNkRiR4ZFmPK2RQh7ydpqe8UrLnqfA0oZepiNaUVhnHBNO6f4ZQZn+HxEmkegAYvIbAPKk7QrsKs0Ax2YDAL7oE4C4ABOAlWFc7iCmsoSu
|
||||
|
||||
aoZg6JC0cDi4qRE10KlIzaB1yEie7UHHov9BZgGAwRGRNGEnLK5sBJxrRLGRtR4koS7yhyrkoVUReEE1EZxhJBE1zmQRdc43toyhD+7z6PdejLgUrqN+HWidKH4IisHzAcxBZZE8kaRIBOBdYUr+PWFuIQFBElAXCM0Q3SA2/vqhqeFQ3unhghHoHslQmB6XrMEh/5BJYnWBJRDYHkjc+kEhYO9Bvf4AwafqzW7GMqzGE14kAn9BNQS3kSxR2JG7
|
||||
|
||||
9GfA1RCmgVqeBOGYmBROkODJFBv0Z/Rk4YqGVbbs4a8RU5HvEXeBPOGdtGHAdJCIYW3urMCihC6gxRSSwAaAh4CyOJUAqw5dHoAR3O6unul80QjUQFmm4QKVPG6eKOA4bCqIjxYZYZgBn2E5YVWBVkHRWDZBrL6vkQ7eXC7YQV+RSZEfxn+R1uGjwYBRZg4HPlVhzJ7IqiXIN5wjfh6OLnCVDFOBdK4zgUouc4GkSOdwqFEbAe2hEeHlElo8ZkHo
|
||||
|
||||
3uTOlWItboqRKW4emBoe2FGHCDoeLpgIAUQQ3RCrES2REpGeUVHhnGKZYQG+D2EPcqr+HlGR4dphPux3Ya1RrAE3rv9enVFaYeshDT5ueHGoijqtPj8Qb6EBut+uqMibnu8h8z6fIRy0SsC+6JLAOjRCAJEeE9xNVM0A4wBKwPLyh55pgTLhb/oTClxINtCzVKfAY1bTvoT+5xAT7mngHeFrCgOISEGqAU4kbcFPOOABdFFSXAQhBKFEkXGRJJEt
|
||||
|
||||
gaNB5JHJkcPBwVGkEWheim489vmeqrChOuEyz7761hyUgug8oc2WXJFsEVSwHBEpEJWRSTbHQWKhmU71kdyBriENIf+e6OADbCbBGKHh4UNRtkHdUdaST1H2oc/B71F6QZ9RlNyFPnQWagG00f2eH1FQAdSOtmHWNPkGdhIK+n98WdYOYRzhhpHOYUAhylHkbBHANdb0wmTkmAB92gKQgJElMMZouADEAFsibpFmlL964VBzVNVgXRjcPvChWyB1
|
||||
|
||||
GIqwpHhYAQzBvsFuwfpgcKFPOB1RmmEU0TPWBo50IXV+PcF4EZ+RBBGA0YFR1KFcYWmRMmbXKqLAogwg1Gnih8olnrIuDBGR4G5yJZHR3pIh2sHSIaRIeOgZUTWRKd5nQQRRSN4w3oQEr36Lgmjh3ghqMJjhY5BWITthn/6bmCbRpAHxYGXeTL6Skay+PsEcoM6hB8yxoZbRJdFNUf2RNXqWATSOyfbPEKORUIqyXpaWx94zkeBhXQCSAKQAMAAQ
|
||||
|
||||
nFRAhcBKwG0AlSxsAKXA5Zyj2qO2JlG7kfWIMdQIbBMa4SBtJCvaQ0iEEK2gFvCi5IWUW3gKjrVg+8TAaObSXzZavMF6NpjMUCgQbk4Fzj5RxS5+Uc7RbGFdAW1+wNFUkWVhntF3/AcgZUzMYOIMNLAFNKTS37q61vBRmsHh0bJhxxAzHn++cx5J3rHRJL6hmPwRnqFmbjkRwcENlMohc57RnmOe5h482OAB/eHMIBrMk2EkUdSIjFJ3YWCBRoEA
|
||||
|
||||
4ZdoF36W/kgBYNAUJDlkoUBDiPvEVDBuDO0EChDhEAawjFIifhKBDtCREOOoaoR0CAdgsOwyEJXwQarUZjMBqMg3Rg1s9QHu4K5gNOBJCt6GjODQarEwIiDdoSBooAiAQnouLzytBm++a2jwkHkyksKyMYSA8jED8lvR5OC/ekmg53wTxFFchuzAZPFwuWbseDoxuloM6FCSFeI8MRKgfDGmMdMa+s7ItI3MYlEEsDze/yhQhCUWnjHeMavedJrW
|
||||
|
||||
YWUW7N7nxj0WKdbLivfhHdFKUV8e7pZhwOCR6cCTAJXAh4CFwNUAzy48AE0Uw3pIIUdRAZaCDnEksIA1PNbsUyr8+gaaNNBvFDhShCFtImwxBmBvXLqIfAp4gP9AyjgkslgRBJ6EoUaODtH5YfgRzCEu0Wv2i/4XvtNBEsGGwq8APtFhvKIgtEZu4ROmu2A9mGP+nJHSYX/Ry8Eg1ETa3BHqLqw+mwEgNlCBwME/XuC6liFbgUeBVAHhIcH4yOHn
|
||||
|
||||
YTG+VaGL/IygWgTh8E9ChT4OCNO4jRA0QOxwcoGX+P4QPHDtMuB+i17daCJwTaG1Mee4DzEyEeSGfWGvMTUxMoLDEJ8xfiE7ES4hoyi2VHOw68Q6gTikBqHI3l626dGkEOCgpzH2viahTr4f1NQxnwhsMgaQnojYygMUd17nAJqwMEad4jYRGBFmEduUFv7FILXEBLGM7ESxphG6EX92LOFWvibOYkx0jouKAG6hoqWCQG6/ofgOMcEXBNyxxkTI
|
||||
|
||||
muPste7yUcnBt4Elkp8REACNAGwA5NxKwBwAt75jtorAsoSkwS5AIlBloLToa3DvTIuwguiDMM5kK7YwgKWgmPI4DmPW+wDeUVP+zYEsYa2B19HjQbfRtRHu0SFRYNFe0ReKzRErUENEIEgrQX+I7irSVNcIvoj7PD/R9K6IUQKh6eClIAMuRm5dllhI8rESAIQAqAAAALw3QIPAPAAAADprWlGxfeCoAHTA2gDEAGwA2oDMANoAzACmTH7UzAB5
|
||||
|
||||
AInQOwCpgEmx6WAJsQmxObFKNHIAqABKAKgABoBcgHeAqAB74KgAGbGoAJUABoAAABQAAJTUANfgjID6AKgAhBwEAMEA9ICoAMbAqAAGoH5h4QBQAKgACYySwKgAOcgJsVWxNbFKwHpouAAwAM2x2oAzsYXAc7F7QOYA4QCjsWwAo7GogKgAEoBMwIwAqADtsVkA2y7BAMQAnbFbsZLAEQAjLhuAzABlsW1UfgCLANOxeQCeKENQqYCvsXAA+gAG
|
||||
|
||||
AF8C/CDjAKZMaACAABTqgABf6oAA/uYXsdgwqACFwHexgAAgmoAAjK6AAFzmgACMQYAAgAyAAIvKgACsrqhxgAAxKoAANvGAAAragADlcoAA+K6AACFugADyCoAA2UqAAJfuKYDOAL+xvaaVgGzAHMDhsSWxsbEJsRGx0bEhgCmxcABpsRmxWbEVsXmxBbGDwMWx/HE7AK+xYnFLsQoAtbH1sc2AjbFYsBuxrbEdsd2xvbEGAAOxiwD6gFOxB7Hj
|
||||
|
||||
sYKAygD6cbOx87FkIIuxzADVsQpxK7HkAOuxLbGmcbuxYgCWcWOx6gAIACex2ABnsW5xl7FtVJoAN7F3sbOxj7EQQOEAr7FewMoAH7EpgN+xRwCscYuxAHH6AEBxkaagcagAkHEwce2xcHEIcagAKHEYcThx+HHEceRx1HH0cUxxeQAscQmxiED8wILAwsAgdHzA2QDSwKagxuAskRTA2kAGwGrAFQCawJs4usDmAAQATXFGwCbA1wBmwFEAlsCk
|
||||
|
||||
AFuiXIAOwG1UD96ccegAfHExscZAvHElsT2xqbHpsZmx2bG5sXIAEnFFsSWxMnEcAOWxy3GWcTWxdbGmTMpxTbEtsW2xXbE9sZmA2nGDsXpxI7FjsROxxnEjsQ5x5nEG4Dtx1nGrsXZxm7H3cY4ATnEGca5x7nGecRexV7G+cc2A/nHbsYFx6iAvsZtxb7FhcbeAEXG0gD+xf7GxcfFxIHFQAOBx0HGwcWSQ8HFIcWhxWHF4cYRxpHGUcbRxjHHM
|
||||
|
||||
caxxFYBewL7A/sAVcWgAQcDGSOHAcbyykF8eVlCPAImA5aKfgUUkGqQG4HcATjpxjMDOGTGgpq7gyejMGqjorshR1NO+0BH1yEtwK0T6GI5RyPhavF6ObYDRcOthLxZxLhl2e0JhatimjTE/UW+Rjt6X0e0xFrHCwWC+KZHK1gSu1+48AM5MAv5PCFuQzySC9gwRUBb2CJbqVD5pXtMxrEEKJi5AMdEnQct+K27ZUKJgw6YsrhpBtHDfoF465NzX
|
||||
|
||||
crVuHvFtYF7xUnJB8fFggD4pSB+Yk96bwNdk5wCYFPiRoe6pSNg424zDol9uOaAK0DO2QIwkNLyI8Mh3clv0QGjtXhoRrDB63j0USraCaElYr7C3QEy86pDHECXxmMBl8Vq2wZgbwAq0yPokEtLx+hiy8d+gTW5bIJ0orcHBJKHicdjF8ZEUDfHy8fRg5qossvBQNEAOaC6qQWA8xIsQdCLWYN2hAEJT8XcQ2kH2QecI5FDXBCG2NjFg4ttK7uCE
|
||||
|
||||
GG+YLm6b8Zzs2/GpYLvxffGToVeSg/HXEVR6ujr6lsW+1laImhUWEwSuAR8ob/HcoC/xc9g9WpxO8UEFWGzhH6Jt0UfeHx6d0R2CSJw6lAKOjQAL3FZQPAA+wK/MDJ53AFZQGRJErtzxkc4NoIvMxxxCoHLcrkJPIJwomAhFZj9U7UE8cKIxbLKCJGYyJoR1osDIhObxDsFsxrFNgYwhWvEhpOz+N9EiwfrxPjZHkqFRPAAq4vmeBwjp3i7hKJaN
|
||||
|
||||
YV0RQDC3KN7hkx4tkHSIgugu8djRp0GJbNwk7hBrwG+AJaGizJO2eQgLZCQQlv7KkRASnvFQkJviYOIPFjjACKxbhqJKzxBEQEMRZBC2YMnCeglpUbk0lhgpDrXxMvGl8WPxebBlmPZYXKppENYQ4KAk+NEIHJhoWBYwtBErwK7g2hTWEMPxXfGN8cnRZZgBcDGoLkLDYSfxdWCWJFma9/42Tj5wUQkzRFnuckhIsJqwKtr7AVFS1wigyI02xmFM
|
||||
|
||||
EKYQ2Bgs1B5Bfgl5jAEJP6BBmMfxD0BusIWU+hj2Ahnx00TyKlU4WSZlXMUyvjRpEHUJqpIWrq2gTQnEWHmgI1HhwWNR655T9B/xmIhiUUtwhpY4iIo6P/IobNDBJ2LfrtGiwApMEMD+o/SMyJ8WfpILUS5hYtEctBwAUsGR0CbgNKgZiFAAbwBHstKaNMLpMVPRxxaRzmMw52DmCexuh8CpERNgirC8EkHqQD6rJFoJIfE6CenUQEZjZNF0CWBT
|
||||
|
||||
YDxmPz5VdvbRTGGNfm0xTAmZOpShv5Fu0f+RhvGcCUsSE8EOCOyIAiG0zJ0RCmYIkCgMogkZXn/uCia1IFIJQpEyCeHxkCbfBJvxa3TosfDIuUi4OKiq+XQkiaHxYxBw4TX4+UKtwNQSJERi/v8Jj+TVNqLMvwl0iGfknIlCUQORDdHb9G5E294uVvSx9Vr6kY5hnOEi0dzhXx5dALI41ZydSqMAjQbGcfXWXSBwAM4AsjgcACUw9uGoCfWIf2B6
|
||||
|
||||
YJjh3ygYtELxWR6TCoFuVBznqO8JkZ6x8fHoJAH7sAe0EijN8fEEctxwod9RIgq4Ea0xTtHa8cwJlrGsCXfRqZG2sdC+T9Gnko6xRch1GMlQ/tEyLkIh0wEDIB6SiVGO7jws3JH+sX8usTLzMSAeC3ZZNgkAm9Kssq2QxbBpCTWh58A35ogqxSidFPiwnBFANBH+mVzykOt48fEbaqmhnRSlKJLcyhAC3Lo8NYlx8X6CjvBVwijgotDvsFVgMfEJ
|
||||
|
||||
sHaJRhqbggn8DBS6MC6Jp8B2UndC1wJvIE5gzCBTieISM4lQvAqwgeAUftFBGfYqJLMJ9ViP8QXcBb7M3lJQslGJwf/B0on+fqKxs5FEqEpAKdAPAAgASsADAD5IRgCZwJUAPsBCAJgAy0gd7k9mHpGsspiKE2w3nCmQaRH0vGjyX6DykLBG7Il8idvGLz4LRPKE9rDrtK2gyo50CZhBjtF32pCJKObsYVShXTHc/sv+NJHS/DwAz/oRUf7exQFe
|
||||
|
||||
jB+oH9FW8UQSbyoLwfbxAxGO8fFkVmQEicGOHSG6ICzBmQlssgIQGhGMuFyIByjLXoachQnTIB9chZQWgioJ3gjL4ghsr2AsHmCgBpBu+MxIfTzkPK3B+tGvbLNg0WJliSQJPeJGmodeqUjXIv9g0QLblKBJZDHgScOeOQl+iLCAwSSKRBTwa66R4EZYvpGICMUyNfiMuCd4nwFcEgVW3RDGeD+QSdQM+FZJWDFCunZJtv60cMVgCq4mJLEqNsSi
|
||||
|
||||
sG2gyQkUCKkJJDYQrtVgGmFR8OWJqESFCepJEphdaDFJakmAyPFJqW5PrsTe2ZJ83omSn6FuRDmyZIjw7vYkZb4RWoMCzT5peMpqHxBbIQVwMAp/wdue3hFZQUwquABGTCnQ1QBKQHF2PACNALZQr4ACevgAI1gp0Heew778Dhj0AxAk/gv0fiicxuygF8FRmudg3QwxlnPxTza+NNcEFtiBamawE2xHUAT84/bcwXvuvMHM/qSh3onISXmWqEkw
|
||||
|
||||
iehJHCEe0b/GpcplTGUg9OhPvi3OpOZh3lC82EpablJhSYko0QhI4glk9hxBApFY0YSJbvFB8QKa55Qa/PvOK35O4K2w30xR8VmhZzLtiUOJ9Yn39uFJbBDAZI3kYkHtHG5Jw6KOamRRS2BWSVvxRBBBwgzEfUTjqkqxT4BugndRp9ILSUp8AVoKMNXqu+oKliyqhMnzSQTQJMmM7Lxg0hDNoYHqufCNCWYJdlpGzIQQFfHNieawrYkBgqzJWfGn
|
||||
|
||||
4BzJjYkIsPVgLYknoaNRoVqV7nCE/tzX4acEwomcTryxXLEACisJUz7/kBEiWwmi0V8efkhJgcoA3b6SALTuJ1KC4e6WXQCBYfgAYhhZAUc+0gwPqpygPSge+mUQUypRqmqQV5J+GrLx9k7oyafxmMnCKLCunpFssuyixOA5ZPBJQ0FeiUhJ6UwoSSwJevEBiQbxWZ52sU/RABF37nCWoFEXIMigvirMkd/QWaw0AjUBodELAQ7xKYmFlO3AtEm8
|
||||
|
||||
EV8BGx5AyRsMZRCOspTRrlKBSYxJYRBZCSOwngnrpN4JLnCy2H5MkUmZBF4hDYotPN5ix5y8cBvxcoQeyYtwXsl3NPWitIGEEt4G1QmBQHEJA8lAZlFgYeBrRBMIq/B+vCoRsQmsSFPJIcKzyb7JjOD+yX2Rkf7CUeyUAToSTGpyZyYSTv5YLh6dUkGB3KAVSihmBpE3gWGBoAn6ctgAak6SwCXACAAUALnA/wLNAMoAowCKpHPcfQqfLqrRe06G
|
||||
|
||||
Ms2g3gjMvrZgKuFbIL0g79CFsKBkMZZ/TM2wDcmElHth95EPICdsQvDmQATgrC7uiXaKv1GmsQVhiZEdMRNB1rFwidHJwYmQMKTkYU4kWAIwdZbnLHDRosT91tiJsd6vSVk+Bck+7mAxL8HB8UWJZImM0C3JcMlHpKlS4VARSTwp5YkCEPXJTknqfLPx2YnwiAvxTKqHOA/m0dCf6sDIElBD8XXxI/Fy8U1uuyhg0OK8YyrGeO1eIin/QLMUqmKP
|
||||
|
||||
IFp4GaH1IFWJWOj2CZ3xjglqKZKOknBv4ILQXgTmEVnMaKF0IjIp04lFcLOJK4mtCVTJkiklINIp5wCuKYc4y4nIcJ4pO8mCieaBDnaeWHjuQxTk4W6m2pbMsXTgUVquprve9FAQHGw0GsmyiWKx7JCoHM0AmACXiYQA6cCHgG0AzgA5scKOTIClyus+T2brMGqQLuD0vFPA08nwoQ8gwqheqkE4f1SpzlYJ1AnDKAz+Isb0HKUgjMkR5IHqgcl8
|
||||
|
||||
wR+RIcnSIk124ckdgbCJINEAUTHJpCl/ySBRm/6pILQxjEGpyZGoVvHarqVg5ElTfn6x7BFkEHewwxFAMQt+6wGgMZsBraqmCQLJFgnHrr0JbMktCXwe9diZmOuQtMlU+vYJ8gkoDEE42MonKZnxzQnnKc6uDAhQoDOwGmBa/ukJBBL/SYMy5qJTDIqQ9tDG6gOJtYl+grmun+Si0Fy0/Nx6yL4hBvbcKQ4I8MlpIcrIvzTC8POC/d78KbDJaKm8
|
||||
|
||||
KcLUDMlVkH0p0fFhSd0p3FGEgHXBMQLcSWmq88EL6ESpPSkkqdSpe7DUyfcpujqXjsPJV+Sx6GPJB/i6Kd4JS0o9ZsgwhSDYqYK2Lxj8qQgp0+G8bO+YoqnB7nXRMfYN0euJe6R/8Y6Be/StyozeaISrGjuJtVgX7PZhJdw37FzeiXDA/mjGclFJwU5hp4m7Uh2CmcAh6Fo0QgDw/kpAbAA3gHkS7JAQ/NUAWdD+NnqJHrgucMnoUCaC6FQYVxYp
|
||||
|
||||
hKpgKOADIhWh9rCZ6AOiJgkfKf0Jx5H1gehB8Z70CabhpJHm4TrxrCFoSZ/c7Pae3nShO6JxjGFOUjEoMK6xomGbSG1gqwhNltOBfKEsQbnJbxSW4stWR0HVka7xtZGpiobeSUmyrocoAjpFye8pfQkn8Di4Ue78yc0JAwn2ERqpFViBMb96LOFpKcaR4GFwAJLAXYJoQEdMeCiaAJgASAl2vMUwJwADANuRFsnEwerRQ9JZpglYYUygQeQcDtB/
|
||||
|
||||
YIq4rODhqdsKlAn6CTYJtAmxqXbR+74a8b5RFRH+UfgpVrFBUffRJ0mddotYFIzHKKQaAx5QUSLAt0AWXgmJR/4Vqdsp3OIB4MwpizGK9vKQpggFoFiKC4mEMEjJNkk25KpSYxBlmOJJZtA3qNZmsfLtKQWgRgkygY7MmGk8EDQJRgmJtr48lOAJKV4S7qbKsPverdFjqY/h+nJ3AI+JISCFwEnQgWFkwoPRs1jYAKyA/Urmyf1JRk7aXFupcpA7
|
||||
|
||||
qXO2JkAZmGWq4bB5jCepLxYCSQ7QjrJsoNhKAynbSUMpC7qPqf6JhCmTKfCJ0ylLxv6KYYmbQOcgpGFsoRGohalD1HfqFaAbKaWROcnAaYakybhgadxBJDYdqVcp/akkNlJpagmJeNhKtahOaUxALmlXEaeBJe6lgjW2eoabYtRc14GcekaRtGlMKtnAHQATgCFA7b60qOWcE9o+wF0AE4B9eFAAATKeqYzkctx6YF5o5dCuPlghFSJ/bnQSOKLS
|
||||
|
||||
LrqErQajwMtwIYhQUBxm2YkBKe5gQSlIrmrxHonEkTgpEImhyftJYykcYRMpL6lBib2BpCkm7nhJTKHJYdPAlq6usWEgov6D/E7gY3aJiTr8fJ5kXuQGzlLWaZmJTlR4qcMad7CEqSOwcgn9IAoJrykxCTUJnQl/QPUJyGliSdaUaGmhIMWulylnKfzmvbAmSeLQZkmzxE9hVQxLIDtpXo7Y4eTgjhBFYIP4KY6TdFXJGQk1ycxJcKklaRLOqhBQ
|
||||
|
||||
ULS+pWqy6tXxd85+JsSpVKmTGjXxDkleCc5J22qZZqipy2m/KXHYEqmDxPDpoDZrRJn6gtAMUXuup2mfKfzmIyA9iedw1wj9iYOoEMky6PaJI4nZCkTpGq5vYDJKnpHbaZjAu2ndCadCNOl9ic5krKlzSeypi0niEmzpJOkc6XypcCmiKX8YRsyJAHzp8dQC6QM0KGmHaZ0oPkKLiW4pgSkRmOiY+GkGCbowb2FCGgrp1WlK6eJEl2lBKawgBeYj
|
||||
|
||||
IEuJWuljwMZJ0Gp66UvwfAQa6VVpc4km6bfxAkxHnCqpSODfoTZwtOE4iPTh0wmbiUMWlIiN0XXaViRe6YZY7bLTURfJeO4lSaDkOyGbsEHpHjD2HkTukPaBaZORwrG3yRExYrFzUDeehcAtkrUAUCH8eh8mbUliyEpAsjh4Pv/JxC5XPjbJTuBvZlR48KG6sabwWAh5iRBQJvJg4lamwqgu8MaKIsaOYGUQ6OCqbAhQNtHYEfVp2CkMCfepV9G+
|
||||
|
||||
ibrx4ylHSXURnWmzQZPau/bCShVCGxLqbufAeKFZyQhR5mmo0Tsp3wS1aodBwDFEvkcpnOlhvtzpdMnsPs2pGkljGHj00ulYfiVk/yyzScc8IkjUiaJJvOIy6Wfp34QbMDqw9a5YcmYxWgYhCZYpugkq6RepOGkeIVgYdKklCbs0WQgxWK5kCtC1qFBJAjCJChHk5rAUBIjpUUmbsAp407aCks+cshBctifpEkm12Ja+8Klr8M4EIUSM0RYwyRRO
|
||||
|
||||
YIxuZsETqFypbSQ8qWPhoCqPIH2iCinCEOXxTYmiyTzJGFK58dhSEvGOEGtsc8l+yYvJyulUCQRpHSlvYU6JA+al0G34pkF/6cUJfEmfNKpgEeC76Nwkr7Au8FCpHYmU6RIZvGwDyfCxdDEFCaIZvEkGfI6CbelVDArOVRrHfoCpf0kIqb+4rekqGR3p+hnd+niqK8AR5KoZnektHKYZNhnmGa7+DDbjbkeG9LEEaj0W3Q7jUa4UcMJkfGsC48yU
|
||||
|
||||
XAEZhLTXIVfYIRnCUHZ22JrDkctmPnx4mn+uwKja0T/shfzHJjRpPhEdgoMqSsCYAABARgDeiHI06cA+wJIAdJAowalG48GF6dQi0dDjME0g4TDo4Jhg2X52QGyIMTBtBhzQQAao6QzoFTyHeAPe3cB0JgDApjHyaQ1+bQFNaSMplo6pqYdJ6alL/j0xWal9McZR8cnkQbu60Kh5jMHeyykr2kc8A2C44Ibs9ClSIbiJQiiGfOvpBykGwV9JDamr
|
||||
|
||||
poDJSQlRSPv0yKlFyZsBRxm/SUxJ+84wyUtpcBk7McYMsBltyf1h5ilsSYakkul7jr2p/QmJ8aP6jiKCqLJUSinZUPbQo8AFslcoYNBkQqqh9hAl8i0ZpdCsMYYpHSkTia8yKOlC6XoprRnjqA4ZZtA6yHbCU6rS8XTsOiLhIKaJ9GAFYJQYOXhDKBygX263KUTJDymPsMSZScmUlIMw6s4Jqmyp+ro86Ya2e/FGkPSZ5JnUjr0+toEACQze+fSg
|
||||
|
||||
LhCE4RZXIZ6B7E7RFmKZ2pa5FqfhFkTJLFeB8enmqZD+S1GJwNqAt4l3AGW6j8yjAI2S5lCJpoaA4JFzAPXK70zvqB5qujrl6SmQIUBpJp24wT6NlNaJOwqYqSKpsM4nQkgpYulgmMTpEukVPJgpUWoNaX3pCZEPqSmpluHEEWppxCldaUvGjJ69aaBREKCrkAouGEqk0o9Y6lwsERRJum5USfkB2xlLgbWpVF5b6WTptokU6QnxvgmFCSnx/5A1
|
||||
|
||||
6ePJGMl8oAkJNFFgoK4J8T7/9mYpMOnwKfopCBk1BNnhBfGybMoUrcFTDJkExCRq0hswfyD4OnJslMnt8e/pDfEvkIyplKlMyWSppj7A6YakoOn4Mez6Txlu+HzKF+ifaUCpxhl3QuLpdOkeCSiZjcno6c6ZOwHs6UmhpaFw4RAmRtD0wbzpLpm06aTpMPS66cwgg+oWSdTpp5m7mQpJxAlybKQJ80IrmXeZ/Ol7mRywX2b79gdgykmWIkYGuUiR
|
||||
|
||||
1JYQujCjHI+ZP5lGYipJBWYAWWFkQFmPWFqRrLEahluJakgKSKlBdbIxGTDiwz4zDB6IMSkK6CkWNVLuGYW+Hh4OgayIfU5XyVKJwtEWqWgKtpYrgM9MdwBk1q8udwAlMJUkzgD6AFAAguHUqCzuVAqE4OMwEumWkjRu076YOOMo7wC/erQRNpmwKY5JqJk+CdUx1hnt6XoZgKIbSQ2B8akIScHJSml+mRSRkcnsCQ8KRvF5ntpp6uIEsGIUtEa0
|
||||
|
||||
QcVqY2gUIX5M6xkR0ZsZa7QpmTWpG+lufnRJxjzk6XWJsKlxdBSJ18RHTkEKtKliGVoZ5zp/GT7kyCQsyXjpxFhfKYEGpBk6IgmCLfLmKfXxqimW6R0oTxjFyBquOJkwmYKpeKpSGZ6I1SmdqnfEiVmIKWKB0lm6GZjhFhnt8ZlZBikoKYJoKrFsssiZ4lkCqVlZyHqVaVZgxukc3BlZG5mSqf4ptVk26fVZ3mmDkQkWaoiptl/s9LEF9Pn0hyHP
|
||||
|
||||
EV8E+GqjsobUfgGC0UKxCpkfIes2HLQlMCcA6cAUALUAdVRwAJIARcCviW0ArIBMgL22sAkMoVcJLp71iF+g4zCIUE6UG+ANQakg5eyNEFyI3gatoEAGA5nRcEOZ1PZliRNSxbCNsCp+wIm1fjep59GHvkmpeCmqWUDRqmkdaaDRJClLxg4qcymgzsEgLRATARGoP6ldyJgUc2CmaWHRlEkpic8+jD6pmTZZiv6ZUXuB7CmkiYwQ/ZRA6dmgIOmi
|
||||
|
||||
IGDpetxWSWfABqq3iqSA/lmnKX2pPxkHzi4JxIiVme0yEVkqKSCo1WaliVkIQvDPWX4CgJkWKYOZrNlfmRng8QQLNtHgydZSTgCQ8wm1WDbOK3BHhqchpqnHieRZipnTWYnADEDMAHcAAaDskIeA9fzpEq8uJSzDcFZgnFmIDFWKMVhRLoqQ2X7WXp8othB58ZVCPmizSTvpLJl76WbeWKGrUES8bSReBDu+ttEgiR9ZJrHemd9ZvpmD6cMZaZ5s
|
||||
|
||||
CZ2mgM6mDtPck+m/emNsFK4xiexAG5AhRByRj0mTaV++02mtbPH4c2kbwZYZ++n+CanxjLjgug5ZMKk02fzZ9W60NK2wS8l9yZPJO/FfkPWi8/AsMLlkuOlU2YFZBOlW6S1ZHilsvsyZxMl+Dh0Zw5bTMqYxBMlc6XbZfg5lGkpITIxwgGAIPdm22W3Z+6EWMBLQqWDD2aU2YcG7yRdkefbahmf0TE6upnEpFnDuMdEsB+FW0K7pR4k1SaBhqRn6
|
||||
|
||||
coRA9ABCAPnpMvwcAEkA3bSVABh8mcBVnETGKtGpaSY0GJxROtNUS/BQqJJ+Qalu+FawjyrMbjP8y0np3hKcrZDpYTdAhYGRKP7xgJC9Ga0BO0nDKUlyv1mu0SPpNrGA2cGZPACDvtMZVBF5lMwa4Nn8CcWUUwEvFOuQUwznIGZZu0Ex4PUga+mo2bsZ68FQypIeGhl5COIZgGJSaYeZsTBNQhQwgUmCzjfEpxnT0nIpgJA0GV9kN8HHGWw50Qk6
|
||||
|
||||
FvWinOwqEBQIYfEsOZEJIUlnGbJaf9nlRhTBjpnSnr7x2AjVEICQCuwAWbI5yKryORsIkGl+8VyIAfFakXEZeoYoWQZEy9kJwTf00RbKuIjGKRl1SbaWApBsgLeAzy6EAAWgOOCSAOyQBRLO1FQKcoTbYKhU9LxwkKkR/FD4CdHghAlmNqOhMOys0Bqmlcb3kYEgk6j91lk+ajAQOe+RIEoqWX7Z/pmB2Zv2wdlG8QXpoNkkrgfMTc4FaiUxX/yo
|
||||
|
||||
lCxQ8NnZyYjZwGlu+MOAqdmUOQYZVxnfafvOF+nJoHpEnOiSzmUJPEk0OV5ZKA6GCDIQ0RKp6KPZdylTaig4YJmuWT34DckuqvQ5RmJG0Ew5qSaWGCBwn5bvqFI5oMagWdyM+Abn6QqOddnmCXhOwfg8iY80AImdLP+wQhqKcEpIDSAcqtQmcxi8iTpJgIkEENUgDW5cCHCAbNDd2NpJPGC6SUKwNdCs0DbQFv6/cjNiiznPmXLpzWCjqmCQeR6S
|
||||
|
||||
oNmgC1yXmddpETmVsOq6vZixMEKo/jDKFAeZ4zmMOXYGMIKnwPcx1jQWCeVZsOlo6bQEdkC7rOTcT1ha6qr4dmkCyU5ZQfSF4X4ojLwiID4+Anju8TU5wKn0ECUIMTmZ8GowN+mRmOLQf/rTyahc9LlWcLE5VZkWmK2ZIxhGYh+oAQhROeroXLmMuanmaUnaqf5wQ1I1WovZHT7HyYYU/jE79FvZ7Ip6qc3Rken1AU3RUpkWcAEBAog6uZvZVGn+
|
||||
|
||||
Acq5FtBQ4p3cYZJWOXfJTCoNVNaGOElR0KsuasAlwOyQPXonAJtZ0QH62bpgbaILSvGErbwpkFE5bviG7I8IAyBa4YdwBdjOHoLQREClfqswI+6f2dcITiTxzPJZcam+XkHJ4Im7Sc1poyl+iRHJ/1mBiYg54+mwvgi2+EnnFhgJVClI+GeiRzw6sGWqrLKEObWeMeAVEpU5oKriqY1ZmLm8ORHxIMk61D7mj1nAGZaSCMlaOYo5c66TGuLKufH9
|
||||
|
||||
IuF4HhDsQgPePblgObP6yFoFVq1scQmdaG/+RxnNuWXJcpAYUiE5R+wrCQUcI2oUqQWUbeqIARu5wsmV8coQkqrUuaw5KQnzOcWYnMn0GVU45rCSqk2pmdkFmdnZZOxRIrQw9mJgud7iOYmNOfPYh5iREHXIl7C/btjJtk63IHjJPLneVJw5+FgUoFzSJZggeSZ4iikscqCprom6XMbq7BlRskpqouzLlELwD0EM6MkRP+IiRnc6d162Zqh59rAe
|
||||
|
||||
tvawVdGrOVGp6zmpGhdo4BnoeZE2VdH7OZyg5blyEGyI25RoeYR5mHlCsAkgxxAqiFfClzhsTJR5LHlHUAQQTwANuduMnkkUeac52zn8ifQQlTiqASCO7wgPmQfKpNSduWABK7R7WGXQqLmkWKbpmfCXMiso884wglx57kSY4diKbSm8GdhpIkTYudzEuLlUISc6t1ks2Z3w0BF8oCPYw6Ko6CIZ+NmTmYTZ+DF2eXGu5LlOeQOJnHDz2EkRHsLt
|
||||
|
||||
EKS5DnmMuN556fhoGUdp/yzCucGYTnRiuZtua9oyqQ6ZVPqIDI0BgyBvgHie/d7xeVipiXnfhM7gYPKhEA0gUBbJ1t4B0k40Tn3MZGm1FiXatroJWqn+lXnngeFE2QZBcAsQYlFTCRqGrVoQbhEZP8jZSRqIJ+EWcI4SY1myTEqpfjCeHrVY5yakeHm+OujOFMaGikJGOVyUGdZzUpAiMtlpRHqp5rlJ6eeJDwAp0KzATob4AGHAQgD7QAJ6YvI/
|
||||
|
||||
hvoASpShiQ/Zm9zoFE+AsIA/YLVgAanI+DUg91i0sFpgROCokcugin7bCnnor1m0IR7ZW0l9GVA5STlQiQdJAdnqWUHZHAkaabSou/ZzlopwBWroiQ+AS7nP7kRelPHJUSzYRDnCoLJstbnMBhfor3mEBN5+dumlpHLZpVQI+SnBjFzsJNnoySmYFsJCvhHu0FAAOwBGAEXAeuC3+sVERuCZwKmMa5GZVk/olSZSiEBonOxqsWFQmXxTDPawsOy3
|
||||
|
||||
OJj595HvefE5mvH96T6J/3mtaWmponwIOVMpQNk8AK6RWTmBiukQhyggcONWVvHL4hdOWL7j1AT5/RH9kKWQyPn2EG9qwbGDznWp0gns0p5+1+jIoCTyBp74+aQAwcDwwUT5pPlsMO95fEDiQOAAK0AUIHAAYIJBcdwAUkDQAKiAmQAtcZOI0wAMAIQAL8ndtgmpGUDagDH5sflagJ2CIgDVQF0AG4D6AEaA16krFAn5emgagMn5GQCR+UpZi/aZ
|
||||
|
||||
+Un5KfmSwAMZkADYAIn52fkp+Wn5vC6F+ZX5GQDV+UPpYci1+dkAOfn6ABZqsgrN+clpKfmFwF/Gnfmt+ZLAUsAywHVxpZ6FAH35xfllcQHAlXGj+eX5Wfkt+Sn5zsDKwKrA6sCtcfH5M/lF+fX5UQCmTDZxbAAUAKiAStG30GP5GQCHgHKA2/m7+SEAicCCgIyAdCiH+foAp/mswPk8J0Dx+axAjID6gBGaQ4BNuq0kwkl0iF+YzoAXLvqAbTA+
|
||||
|
||||
TEZApAEPFgWmofk9eAYAfvmjgAQAwcAGeuJ44dpDODf57fkI2vHJ8fnSgCQA5XEiwHNACLjoBRuAwkAj+SNIJABXZvtAx/nXsWzY2AXcfNSQOpRmyRUAfmHigO2xM0Q9sQwFH3o9gC3gnbEVgH7A98wTsTQFygB0BdaQjAUk0sUBMPFQIGwFodCd+Q350poIGAOAmtarIn7AxYD2wFMuaADUkP9xN7HcALr5pQDYAEQAeAWjsfb5EDBtVEH5FPE6
|
||||
|
||||
BaGA3sCfgIHAOgWiBXYAmcAIAB5xIoptVP7UjqkIACQFAPGUuBQgHnGEAIwAm3nY9ooFVaJhAMEArgXb4L1xUEDGwAj+hjRVkTtMSsCuBe4FbACeBVbU4AApiOM8/EzAAGJAIABiQEAAA===
|
||||
```
|
||||
%%
|
1
InterestingStuffs/杂项/清洁 Logitech 设备.md
Normal file
@ -0,0 +1 @@
|
||||
https://support.logi.com/hc/zh-cn/articles/360023416333-%E6%B8%85%E6%B4%81-Logitech-%E8%AE%BE%E5%A4%87
|
BIN
Pasted Image 20250120103502_252.png
Normal file
After Width: | Height: | Size: 119 KiB |
BIN
Pasted Image 20250120110208_931.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
Pasted Image 20250122185202_369.png
Normal file
After Width: | Height: | Size: 20 KiB |
@ -687,20 +687,30 @@ Thus, both the load summation method and the constraint method are equivalent.
|
||||
|
||||
There are 10 output loads at the tower top / yaw bearing location. 5 of them are the 3 components of tower top force $F_{N a c,R o t}^{o}$ (2 components are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). The 5 other loads are the 3 components of the tower top bending moment, $M_{N a c,R o t}^{B@O}$ (again, 2 components are expressed in a nonrotating frame, 2 components are expressed in a rotating frame, and 1 component is independent of rotation). All these loads are given relative to point O as indicated. Note that none of these loads include the effects of the yaw bearing mass (YawBrMass), which would affect the forces but not the moments. The new generalized active force for the equations of motion resulting from these new loads is:
|
||||
|
||||
在塔顶/偏航承载位置有10个输出负载。其中5个是塔顶力的3个分量$F_{N a c,R o t}^{o}$ (2个分量以非旋转框架表示,2个分量以旋转框架表示,1个分量与旋转无关)。另外5个负载是塔顶弯矩的3个分量 $M_{N a c,R o t}^{B@O}$ (同样,2个分量以非旋转框架表示,2个分量以旋转框架表示,1个分量与旋转无关)。所有这些负载相对于点 O 给出。请注意,这些负载不包括偏航承载质量(YawBrMass)的影响,后者会影响力但不影响矩。由于这些新负载导致运动方程中的新广义活动力为:
|
||||
|
||||
$$
|
||||
F_{r}\big|_{N a c,R o t}={^{E}\nu_{r}^{o}}\cdot F_{N a c,R o t}^{o}+{^{E}\omega_{r}^{B}}\cdot M_{N a c,R o t}^{B@O}\quad\left(r=l,2,...,22\right)
|
||||
F_{r}\big|_{N a c,R o t}={^{E}\nu_{r}^{o}}\cdot F_{N a c,R o t}^{o}+{^{E}\omega_{r}^{B}}\cdot M_{N a c,R o t}^{B@O}\quad\left(r=1,2,...,22\right)
|
||||
$$
|
||||
|
||||
This generalized active force must produce the same effects as the generalized active and inertia forces associated with everything but the tower and platform. Thus,
|
||||
|
||||
$$
|
||||
\begin{array}{r l}&{\left.F_{r}^{*}\right|_{N}F_{r}^{*}\right|_{R}+F_{r}^{*}\Big|_{G}+F_{r}^{*}\Big|_{H}+F_{r}^{*}\Big|_{B I}+F_{r}^{*}\Big|_{B^{2}}F_{r}^{*}\Big|_{A}}\\ &{+F_{r}\Big|_{A e r o b I}+F_{r}\Big|_{A e r o b2}+F_{r}\Big|_{A e r o a l}+F_{r}\Big|_{G r o w N}+F_{r}\Big|_{G r o w H}+F_{r}\Big|_{G r o w M}+F_{r}\Big|_{G r o w B I}+F_{r}\Big|_{G r o w B2}+F_{r}\Big|_{G r o w B2}}\\ &{+F_{r}\Big|_{S p r i n g Y a w}+F_{r}\Big|_{D a r m p Y a w}+F_{r}\Big|_{S p r i n g R F}+F_{r}\Big|_{D a r m p R F}+F_{r}\Big|_{S p r i n g T e e t}+F_{r}\Big|_{D a r m p T e e t}+F_{r}\Big|_{S p r i n g T e r}+F_{r}\Big|_{S p r i n g T e}+F_{r}\Big|_{H}}\\ &{+F_{r}\Big|_{E l a s t i c B}+F_{r}\Big|_{D a r m p B I}+F_{r}\Big|_{E l a s t i c B2}+F_{r}\Big|_{E l a w p B2}+F_{r}\Big|_{E l a s t i c B\cap r e}+F_{r}\Big|_{D a r m D D r i v e}}\end{array}
|
||||
\begin{aligned}
|
||||
\left.F_r\right|_{\text {Nac,Rot }}= & \left.\left.F_r^*\right|_N +F_r^*\right|_R+\left.F_r^*\right|_G+\left.F_r^*\right|_H+\left.F_r^*\right|_{\text {B1 }}+\left.\left.F_r^*\right|_{B 2} F_r^*\right|_A \\
|
||||
& +\left.F_r\right|_{\text {AeroB1 }}+\left.F_r\right|_{\text {AeroB2 }}+\left.F_r\right|_{\text {AeroA }}+\left.F_r\right|_{\text {GravN }}+\left.F_r\right|_{\text {GravR }}+\left.F_r\right|_{\text {GravH }}+\left.F_r\right|_{\text {GravB1 }}+\left.F_r\right|_{\text {GravB2 }}+\left.F_r\right|_{\text {GravA }}+\left.F_r\right|_{\text {Gen }}+\left.F_r\right|_{\text {Brake }}+\left.F_r\right|_{\text {GBFric }} \quad(r=1,2, \ldots, 22) \\
|
||||
& +\left.F_r\right|_{\text {SpringYaw }}+\left.F_r\right|_{\text {DampYaw }}+\left.F_r\right|_{\text {SpringRF }}+\left.F_r\right|_{\text {DampRF }}+\left.F_r\right|_{\text {SpringTeet }}+\left.F_r\right|_{\text {DampTeet }}+\left.F_r\right|_{\text {SpringTF }}+\left.F_r\right|_{\text {DampTF }} \\
|
||||
& +\left.F_r\right|_{\text {ElasticB1 }}+\left.F_r\right|_{\text {DampB1 }}+\left.F_r\right|_{\text {ElasticB } 2}+\left.F_r\right|_{\text {DampB } 2}+\left.F_r\right|_{\text {ElasticDrive }}+\left.F_r\right|_{\text {DampDrive }}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Since $\varepsilon_{\nu_{r}^{o}}$ and $\varepsilon_{\pmb{\omega}_{r}^{B}}$ are equal to zero unless $r=1,2,...,10$ , the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower top loads (since also, Fr ElasticB1, Fr DampB1, Fr E $\left.\phantom{\frac{1}{\mu_{2}}}\!\!\!,F\right|_{D a m p B2},\left.F\right|_{S p r i n g T e e},\left.F\right|_{D a m p T e e},\left.F\right|_{S p r i n g R F},\left.F\right|_{D a m p R F},\left.F\right|_{S p r i n g T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{P a n p T e}$ SpringYaw, Fr DampYaw, $F_{r}|_{E l a s t i c D r i v e}\,,\;F_{r}|_{D a m p D r i v e}\,,\;F_{r}|_{G e n}\,,\;F_{r}|_{B r a k e}\,;$ , and $F_{r}|_{G B F r i c}$ are equal to zero if $r=1,2,...,10\rangle$ ). So,
|
||||
Since ${^{E}\nu_{r}^{o}}$ and ${^{E}\omega_{r}^{B}}$ are equal to zero unless $r=1,2,...,10$ , the generalized active forces associated with blade, drivetrain, yaw, rotor-furl, tail-furl, and teeter elasticity and damping as well as the generator torque, high-speed shaft braking torque, and gearbox friction do not contribute to the tower top loads (since also, $F_r^*|_{ElasticB1}, F_r^*|_{DampB1}, F_r^*|_{ElasticB2}$ $\left.\phantom{\frac{1}{\mu_{2}}}\!\!\!,F\right|_{D a m p B2},\left.F\right|_{S p r i n g T e e},\left.F\right|_{D a m p T e e},\left.F\right|_{S p r i n g R F},\left.F\right|_{D a m p R F},\left.F\right|_{S p r i n g T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{D a m p T e},\left.F\right|_{P a n p T e}$ SpringYaw, Fr DampYaw, $F_{r}|_{E l a s t i c D r i v e}\,,\;F_{r}|_{D a m p D r i v e}\,,\;F_{r}|_{G e n}\,,\;F_{r}|_{B r a k e}\,;$ , and $F_{r}|_{G B F r i c}$ are equal to zero if $r=1,2,...,10\rangle$ ). So,
|
||||
|
||||
$$
|
||||
\begin{array}{r l}&{\left.F_{r}^{*}\right|_{B I}+F_{r}\right|_{A e r o B I}+F_{r}\big|_{G r a v B I}+F_{r}^{*}\big|_{B I}+F_{r}\big|_{A e r o B2}+F_{r}\big|_{G r a v B2}+F_{r}\big|_{G r a v B2}+F_{r}^{*}\big|_{H}+F_{r}\big|_{G r a v H}+F_{r}^{*}\big|_{R}+F_{r}\big|_{G r a v B}}\\ &{+F_{r}^{*}\big|_{A}+F_{r}\big|_{G r a v A}+F_{r}\big|_{A e r o A}+F_{r}^{*}\big|_{N}+F_{r}\big|_{G r a v N}}\end{array}
|
||||
\begin{aligned}
|
||||
\left.F_r\right|_{\text {Nac,Rot }} & =\left.F_r^*\right|_{B 1}+\left.F_r\right|_{\text {AeroB1 }}+\left.F_r\right|_{G r a v B 1}+\left.F_r^*\right|_{B 2}+\left.F_r\right|_{\text {AeroB } 2}+\left.F_r\right|_{G r a v B 2}+\left.F_r^*\right|_H+\left.F_r\right|_{G r a v H}+\left.F_r^*\right|_R+\left.F_r\right|_{G r a v R}+\left.F_r^*\right|_G \quad(r=1,2, \ldots, 10) \\
|
||||
& +\left.F_r^*\right|_A+\left.F_r\right|_{G r a v A}+\left.F_r\right|_{\text {AeroA }}+\left.F_r^*\right|_N+\left.F_r\right|_{G r a v N}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
When using the results for the rotor-furl and tail-furl loads, this equation can be simplified as follows:
|
||||
@ -712,97 +722,120 @@ $$
|
||||
Thus,
|
||||
|
||||
$$
|
||||
{\bf\mu}_{c,R o t}=^{E}\nu_{r}^{V}\cdot F_{G e n,R o t}^{V}+^{E}\omega_{r}^{N}\cdot M_{G e n,R o t}^{N\omega V}+^{E}\nu_{r}^{W}\cdot F_{T a i l}^{W}+^{E}\omega_{r}^{N}\cdot M_{T a i l}^{N\omega W}-m^{N}\nu_{r}^{U}\cdot\left(^{E}a^{U}+g z_{2}^{U}\right)+\nu_{2}^{U}\cdot F_{T a i l}^{W}
|
||||
$$
|
||||
|
||||
$$
|
||||
\varepsilon_{\nu_{r}^{W}}\cdot F_{r a i l}^{W}+^{\varepsilon}\omega_{r}^{N}\cdot M_{r a i l}^{N\bar{\alpha}W}-m^{N\;E}\nu_{r}^{U}\cdot\left(^{E}a^{U}+g z_{2}\right)-^{E}\omega_{r}^{N}\cdot\left(\overline{{\boldsymbol{I}}}^{N}\cdot^{E}\alpha^{N}+^{E}\omega^{N}\times\overline{{\boldsymbol{I}}}^{N}\cdot^{E}\boldsymbol{\epsilon}_{\omega}\right).
|
||||
\left.F_r\right|_{\text {Nac,Rot }}={ }^E \boldsymbol{v}_r^V \cdot \boldsymbol{F}_{G e l, R o t}^V+{ }^E \boldsymbol{\omega}_r^N \cdot \boldsymbol{M}_{G e n, \text { Rot }}^{N @ V}+{ }^E \boldsymbol{v}_r^W \cdot \boldsymbol{F}_{\text {Tail }}^W+{ }^E \boldsymbol{\omega}_r^N \cdot \boldsymbol{M}_{\text {Tail }}^{N @ W}-m^{N E} \boldsymbol{v}_r^U \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-{ }^E \boldsymbol{\omega}_r^N \cdot\left(\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N+{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^{\boldsymbol{N}}\right) \quad(r=1,2, \ldots, 10)
|
||||
$$
|
||||
|
||||
|
||||
However, $^E\pmb{\omega}_{r}^{N}$ and $^E{\omega}_{r}^{B}$ are all equal when $r$ is constrained to be between 1 and 10. Thus, when grouping like terms:
|
||||
|
||||
$$
|
||||
\cdot F_{\mathit{r a i l}}^{\psi}-m^{^{N}\,^{E}}\nu_{_{r}}^{U}\cdot\left({^{E}a^{U}}+g z_{_{2}}\right)+{^{E}\omega_{_{r}}^{B}}\cdot\left(M_{\mathit{G e n,R o t}}^{\scriptscriptstyle{N}\oplus V}+M_{\mathit{T a i l}}^{\scriptscriptstyle{N}\oplus W}-\overline{{{\overline{{{I}}}}}}\,^{N}\cdot{^{E}a^{N}}-{^{E}\omega^{N}}\times\overline{{{\overline{{{I}}}}}}\,^{N}\cdot{^{E}\omega^{N}}\right)
|
||||
\left.F_r\right|_{\text {Nac,Rot }}={ }^E \boldsymbol{v}_r^V \cdot \boldsymbol{F}_{G e n, R o t}^{\boldsymbol{V}}+{ }^E \boldsymbol{v}_r^W \cdot \boldsymbol{F}_{\text {Tail }}^W-m^{N E} \boldsymbol{v}_r^U \cdot\left({ }^E \boldsymbol{a}^U+g z_2\right)+{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{G e r, R o t}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right) \quad(r=1,2, \ldots, 10)
|
||||
$$
|
||||
|
||||
Recognizing also that $\begin{array}{r l r l r l r}{^{E}\psi_{r}^{U}=^{E}\psi_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o U}\,,}&{\quad}&{^{E}\psi_{r}^{V}=^{E}\psi_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o V}\,,}&{\quad}&{\mathrm{and}}&{\quad^{E}\psi_{r}^{W}=^{E}\psi_{r}^{O}+^{E}\omega_{r}^{A}\times r^{o V}\,.}\end{array}$ ωrB×rOW , when $\begin{array}{r l r}{r}&{{}=}&{1,2,...,10,}\end{array}$ , this generalized force can be expanded to:
|
||||
Recognizing also that ${ }^E v_r^U={ }^E v_r^O+{ }^E \omega_r^B \times r^{O U}$ , ${ }^E v_r^V={ }^E v_r^O+{ }^E \omega_r^B \times r^{O V}$ , ${ }^E v_r^W={ }^E v_r^O+{ }^E \omega_r^B \times r^{O W}$, when $\begin{array}{r l r}{r}&{{}=}&{1,2,...,10,}\end{array}$ , this generalized force can be expanded to:
|
||||
|
||||
$$
|
||||
\begin{array}{l}{{\bf\Pi}_{r}=\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\nu}\Bigr)\cdot F_{\epsilon{e n},R o t}^{\gamma}+\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\psi}\Bigr)\cdot F_{\epsilon{u i l}}^{\psi}-m^{N}\Bigl(^{E}\nu_{r}^{o}+^{E}\omega_{r}^{B}\times r^{o\psi}\Bigr)\cdot\Bigl(^{E}\nu_{r}^{o}\Bigr)\cdot F_{\epsilon{e n},R o t}^{\gamma}}\\ {{\bf\Pi}_{{\bf\Pi}+}=^{E}\omega_{r}^{B}\cdot\Bigl(M_{G e n,R o t}^{N\bar{\omega}V}+M_{T o l l}^{N\bar{\omega}V}-\overline{{I}}^{N}\cdot^{E}\alpha_{r}^{N}-^{E}\omega_{r}^{N}\times\overline{{I}}^{N}\cdot^{E}\omega^{N}\Bigr)}\end{array}
|
||||
\begin{aligned}
|
||||
\left.F_r\right|_{\text {Nac, Rot }}= & \left({ }^E \boldsymbol{v}_r^o+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O \boldsymbol{V}}\right) \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+\left({ }^E \boldsymbol{v}_r^O+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O W}\right) \cdot \boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{v}_r^O+{ }^E \boldsymbol{\omega}_r^B \times \boldsymbol{r}^{O U}\right) \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right) \\
|
||||
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{\text {Gen,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \alpha^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Now applying the cyclic permutation law of the scalar triple product:
|
||||
|
||||
$$
|
||||
\begin{array}{r l}{\mathrm{~\boldmath~\sigma~}_{r}=}&{{}^{E}\nu_{r}^{o}\cdot\left[F_{G\!e n,R o t}^{V}+F_{r a i l}^{W}-m^{N}\left({\}^{E}a^{U}+g z_{2}\right)\right]+}\\ {\mathrm{~\boldmath~\sigma~}_{+}=}&{{}^{E}\omega_{r}^{B}\cdot\left(M_{G\!e n,R o t}^{N\!\langle~}+M_{T a i l}^{N\!\langle~}-\overline{{{\cal I}}}^{N}\cdot{\}^{E}a^{N}-{\}^{E}\omega^{N}\times\overline{{{\cal I}}}^{N}\cdot{\}^{E}\omega^{N}\right)}\end{array}
|
||||
\begin{aligned}
|
||||
\left.F_r\right|_{\text {Nac,Rot }}= & { }^E \boldsymbol{v}_r^O \cdot\left[\boldsymbol{F}_{\text {Geln,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)\right]+{ }^E \boldsymbol{\omega}_r^B \cdot\left[r^{O \boldsymbol{V}} \times \boldsymbol{F}_{\text {Gel, Rot }}^V+r^{\boldsymbol{OW}} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E \boldsymbol{a}^U+g z_2\right)\right] \quad(r=1,2, \ldots, 10) \\
|
||||
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left(\boldsymbol{M}_{\text {Geln,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @W}-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
which simplifies to:
|
||||
|
||||
$$
|
||||
\begin{array}{r l}{\mathit{\Pi}_{\mathit{c},R o t}}&{\overset{\cdot}{=}\varepsilon_{\nu_{r}}^{\bigstar}\cdot\left[F_{\mathit{G e n},R o t}^{V}+F_{\mathit{T a i l}}^{W}-m^{N}\left(\mathit{\Sigma}^{E}a^{U}+g z_{2}\right)\right]}\\ &{\quad\quad+\ ^{E}\omega_{r}^{B}\cdot\left[M_{\mathit{G e n},R o t}^{N\vec{\omega}\gamma}+M_{\mathit{T a i l}}^{N\vec{\omega}W}+r^{O V}\times F_{\mathit{G e n},R o t}^{V}+r^{O W}\times F_{\mathit{T a i l}}^{W}-m^{N}r^{O U}\times\left(\mathit{\Sigma}^{E}a^{U}+g z_{2}\right)-\mathit{\Pi}_{\mathit{c},R o t}^{I}\right]}\end{array}
|
||||
\begin{aligned}
|
||||
\left.F_r\right|_{\text {Nac, Rot }}= & { }^E \boldsymbol{v}_r^O \cdot\left[\boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g z_2\right)\right] \\
|
||||
& +{ }^E \boldsymbol{\omega}_r^B \cdot\left[\boldsymbol{M}_{\text {Gen,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O \boldsymbol{V}} \times \boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{r}^{O\boldsymbol{W}} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right] \quad(r=1,2, \ldots, 10)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Thus it is seen that,
|
||||
|
||||
$M_{N a c,R o t}^{B a O}=M_{G e n,R o t}^{N a V}+M_{T a i l}^{N a V}+r^{o V}\times F_{G e n,R o t}^{V}+r^{o W}\times F_{T a i l}^{W}-m^{N}r^{o U}\times\left(^{E}a^{U}+g z_{2}\right)-\overline{{{\cal I}}}^{N}$ ⋅EαN−EωN×IN⋅EωN
|
||||
$$
|
||||
\boldsymbol{F}_{\text {Nac,Rot }}^O=\boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{F}_{\text {Tail }}^W-m^N\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)
|
||||
$$
|
||||
and
|
||||
|
||||
$$
|
||||
F_{_{N a c,R o t}}^{o}=F_{_{G e n,R o t}}^{V}+F_{_{I a i l}}^{W}-m^{N}\left\{\left(\sum_{i=I}^{I I}\varepsilon_{\nu_{i}^{U}}\ddot{q}_{i}\right)\!+\!\left[\sum_{i=J}^{I I}\!\frac{d}{d t}\!\left({^{E}\nu_{i}^{U}}\right)\dot{q}_{i}\right]\!+\!g z_{_{2}}\right\}
|
||||
\boldsymbol{M}_{\text {Nac,Rot }}^{B @ O}=\boldsymbol{M}_{G e n, R o t}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{G e n, R o t}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left({ }^E a^U+g z_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \alpha^N-{ }^E \omega^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \omega^N
|
||||
$$
|
||||
|
||||
amdMB@O $\begin{array}{l l}{{\displaystyle M_{G e n,R o t}^{N\vec{\omega}V}+M_{T a i l}^{N\vec{\omega}W}+r^{o V}\times F_{G e n,R o t}^{V}+r^{o W}\times F_{T a i l}^{W}-m^{N}r^{o U}\times\left\{\left(\sum_{i=I}^{I I}\varepsilon_{i}^{_V}\ddot{q}_{i}\right)+\left[\sum_{i=I}^{I I}\frac{d}{d t}\Big(^{_E}\nu_{i}^{U}\Big)\right]\right.}}\\ {{\displaystyle\left.-\overline{{{I}}}^{N}\cdot\left\{\left(\sum_{i=I}^{I I}\varepsilon_{o_{i}^{N}}\ddot{q}_{i}\right)+\left[\sum_{i=I}^{I I}\frac{d}{d t}\Big(^{_{E}}\omega_{i}^{N}\Big)\dot{q}_{i}\right]\right\}-^{E}\omega^{N}\times\overline{{{I}}}^{N}\cdot^{E}\omega^{N}}}}\end{array}$ qi+gz2
|
||||
Thus,
|
||||
$$
|
||||
\boldsymbol{F}_{\text {Nac,Rot }}^o=\boldsymbol{F}_{\text {Gen,Rot }}^{\boldsymbol{V}}+\boldsymbol{F}_{\text {Tail }}^{\boldsymbol{W}}-m^N\left\{\left(\sum_{i=1}^{11}{ }^E \boldsymbol{v}_i^U \ddot{q}_i\right)+\left[\sum_{i=4}^{11} \frac{d}{d t}\left(\boldsymbol{v}^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g \boldsymbol{z}_2\right\}
|
||||
$$
|
||||
|
||||
Or, $\begin{array}{l}{{F_{N a c,R o t_{r}}^{o}=F_{G e n,R o t_{r}}^{V}+F_{T a i l_{r}}^{W}-m^{N^{\textit{E}}}\pmb{\nu}_{r}^{U}\quad\left(r=I,2,...,22\right)}}\\ {{\phantom{=}}}\\ {{F_{N a c,R o t_{t}}^{o}=F_{G e n,R o t_{t}}^{V}+F_{T a i l_{t}}^{W}-m^{N}\left\{\left[\sum_{i=4}^{I I}\frac{d}{d t}\!\left(^{\textit{E}}\nu_{i}^{U}\right)\dot{q}_{i}\right]\!\!+g z_{2}\right\}}}\end{array}$
|
||||
and
|
||||
$$
|
||||
\begin{aligned}
|
||||
& \boldsymbol{M}_{\text {Nac,Rot }}^{\text {B@O }}=\boldsymbol{M}_{\text {Geln,Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{\text {N@W }}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{\text {Gel, Rot }}^V+\boldsymbol{r}^{OW} \times \boldsymbol{F}_{\text {Tail }}^W-m^N r^{O U} \times\left\{\left(\sum_{i=1}^{11}{ }^E \boldsymbol{v}_i^U \ddot{q}_i\right)+\left[\sum_{i=4}^{11} \frac{d}{d t}\left({ }^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g z_2\right\} \\
|
||||
& -\overline{\overline{\boldsymbol{I}}}^N \cdot\left\{\left(\sum_{i=4}^{11}{ }^E \boldsymbol{\omega}_j^N \ddot{q}_i\right)+\left[\sum_{i=7}^{11} \frac{d}{d t}\left({ }^E \boldsymbol{\omega}_i^N\right) \dot{q}_i\right]\right\}-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
and 22
|
||||
Or,
|
||||
$$
|
||||
\begin{array}{l}{{F_{N a c,R o t_{r}}^{o}=F_{G e n,R o t_{r}}^{V}+F_{T a i l_{r}}^{W}-m^{N^{\textit{E}}}\pmb{\nu}_{r}^{U}\quad\left(r=I,2,...,22\right)}}\\ {{\phantom{=}}}\\ {{F_{N a c,R o t_{t}}^{o}=F_{G e n,R o t_{t}}^{V}+F_{T a i l_{t}}^{W}-m^{N}\left\{\left[\sum_{i=4}^{I I}\frac{d}{d t}\!\left(^{\textit{E}}\nu_{i}^{U}\right)\dot{q}_{i}\right]\!\!+g z_{2}\right\}}}\end{array}
|
||||
$$
|
||||
|
||||
and
|
||||
$$
|
||||
\boldsymbol{M}_{\text {Nac, Rot }_r}^{B @ O}=\boldsymbol{M}_{G e n, R o t_r}^{\text {N@V }}+\boldsymbol{M}_{\text {Tail }_r}^{N @ W}+\boldsymbol{r}^{O \boldsymbol{V}} \times \boldsymbol{F}_{G e l, R o t_r}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tailt}}^W-m^N r^{O U} \times{{ }^E \boldsymbol{v_r}^U} - \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \omega_r^N\quad\left(r=I,2,...,22\right)
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{array}{l}{{M_{N a c,R o t_{r}}^{B@O}=M_{G e n,R o t_{r}}^{N@V}+M_{T a l l_{r}}^{N@V}+{r^{o V}}\times F_{G e n,R o t_{r}}^{V}+{r^{o W}}\times F_{T a l l_{r}}^{W}-m^{N}{r^{o U}}\times^{E}\nu_{r}^{U}-\overline{{\overline{{I}}}}^{N}\cdot^{E}\omega,}}\\ {{M_{N a c,R o t_{t}}^{B@O}=M_{G e n,R o t_{t}}^{N@V}+M_{T a l l_{t}}^{N@U}+{r^{o V}}\times F_{G e n,R o t_{t}}^{V}+{r^{o W}}\times F_{T a l l_{t}}^{W}-m^{N}{r^{o U}}\times\left\{\left[\sum_{i=d}^{I I}\frac{d}{d t}\big(^{E}\nu_{i}^{U}\big)\phi_{i}^{2}-m^{N}\right]\right\}.}}\end{array}
|
||||
\boldsymbol{M}_{\text {Nac, Rot }_t}^{B @ O}=\boldsymbol{M}_{G e n, R o t_t}^{\text {N@V }}+\boldsymbol{M}_{\text {Tail }_t}^{N @ W}+\boldsymbol{r}^{o \boldsymbol{V}} \times \boldsymbol{F}_{G e l, R o t_t}^V+\boldsymbol{r}^{O W} \times \boldsymbol{F}_{\text {Tailt}}^W-m^N r^{O U} \times\left\{\left[\sum_{i=4}^{I I} \frac{d}{d t}\left({ }^E \boldsymbol{v}_i^U\right) \dot{q}_i\right]+g z_2\right\}-\overline{\overline{\boldsymbol{I}}}^N \cdot\left[\sum_{i=7}^{I I} \frac{d}{d t}\left({ }^E \boldsymbol{\omega}_i^N\right) \dot{q}_i\right]-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N
|
||||
$$
|
||||
|
||||
qi+gz2−IN $\sum_{i=7}^{I I}\frac{d}{d t}\Big(^{E}\pmb{\omega}_{i}^{N}\Big)\dot{q}_{i}$ EωN×I ω
|
||||
|
||||
The output loads are as follows,
|
||||
|
||||
$Y a w B r F x n=F_{N a c,R o t}^{o}\cdot d_{I}\ ⁄I,O O O$
|
||||
$Y a w B r F y n=-F_{N a c,R o t}^{o}\cdot d_{s}\it{//}\it{I,O O O}$
|
||||
$Y a w B r F x p=F_{N a c,R o t}^{o}\cdot b_{I}\ensuremath{\,/\,}l,000$
|
||||
$Y a w B r F y p=-F_{N a c,R o t}^{o}\cdot b_{3}\it{//}\it{I},O O O$
|
||||
$Y a w B r F z n=Y a w B r F z p=F_{_{N a c,R o t}}^{o}\cdot d_{_{2}}\ ⁄I,000=F_{_{N a c,R o t}}^{o}\cdot b_{_{2}}⁄I,000$
|
||||
$Y a w B r M x n=M_{N a c,R o t}^{B@O}\cdot d_{I}\ ⁄I,O O O$
|
||||
$Y a w B r F x n=F_{N a c,R o t}^{o}\cdot d_{1}\ ⁄1000$ Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN)
|
||||
$Y a w B r F y n=-F_{N a c,R o t}^{o}\cdot d_3/1000$ Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN)
|
||||
$Y a w B r F x p=F_{N a c,R o t}^{o}\cdot b_{1}/1000$ Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN)
|
||||
$Y a w B r F y p=-F_{N a c,R o t}^{o}\cdot b_{3}/1000$ Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN)
|
||||
$Y a w B r F z n=Y a w B r F z p=F_{_{N a c,R o t}}^{o}\cdot d_2/1000=F_{_{N a c,R o t}}^{o}\cdot b_2/1000$ Yaw bearing axial force (directed along the zn-/zp-axis), (kN)
|
||||
$Y a w B r M x n=M_{N a c,R o t}^{B@O}\cdot d_1/1000$ Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), $\left(\mathrm{kN}\mathrm{\cdot}\mathrm{m}\right)$
|
||||
|
||||
Rotating (with nacelle) yaw bearing shear force (directed along the xn-axis), (kN) Rotating (with nacelle) yaw bearing shear force (directed along the yn-axis), (kN) Yaw bearing for-aft (nonrotating) shear force (directed along the xp-axis), (kN) Yaw bearing side-to-side (nonrotating) shear force (directed along the yp-axis), (kN) Yaw bearing axial force (directed along the zn-/zp-axis), (kN) Rotating (with nacelle) yaw bearing roll moment (about the xn-axis), $\left(\mathrm{kN}\mathrm{\cdot}\mathrm{m}\right)$
|
||||
|
||||
|
||||
$Y a w B r M y n=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot\mathbf{d_{3}}\left/\mathit{I},000$ $Y a w B r M x p=M_{N a c,R o t}^{B@O}\cdot b_{I}\;/\;I,O O O$ $Y a w B r M y p=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot b_{3}\mathit{/1},000$
|
||||
$Y a w B r M y n=M_{N a c,R o t}^{B@O}\cdot d_3/1000$ Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), (kN·m)
|
||||
$Y a w B r M x p=M_{N a c,R o t}^{B@O}\cdot b_1/1000$ Nonrotating yaw bearing roll moment (about the xp-axis), (kN·m)
|
||||
$Y a w B r M y p=-M_{\mathit{N a c},\mathit{R o t}}^{\mathit{B@O}}\cdot b_{3}/1000$ Nonrotating yaw bearing pitch moment (about the yp-axis), (kN·m)
|
||||
$Y a w B r M z n=Y a w B r M z p=M_{N a c,R o t}^{B@O}\cdot d_2/1000=M_{N a c,R o t}^{B@O}\cdot b_2/1000$ Yaw bearing yaw moment (about the zn-/zp-axis), (kN·m)
|
||||
|
||||
Rotating (with nacelle) yaw bearing pitch moment (about the yn-axis), $(\mathrm{kN}\!\cdot\!\mathrm{m})$ Nonrotating yaw bearing roll moment (about the xp-axis), $(\mathrm{kN\cdotm})$ Nonrotating yaw bearing pitch moment (about the yp-axis), (kN·m)
|
||||
|
||||
$$
|
||||
Y a w B r M z n=Y a w B r M z p=M_{\scriptscriptstyle N a c,R o t}^{\scriptscriptstyle B@O}\cdot d_{\scriptscriptstyle2}\slash{I,00O}=M_{\scriptscriptstyle N a c,R o t}^{\scriptscriptstyle B@O}\cdot b_{\scriptscriptstyle2}\slash{I,00O}
|
||||
$$
|
||||
|
||||
Yaw bearing yaw moment (about the zn-/zp-axis), (kN·m)
|
||||
|
||||
Like the LSShftTq, LSSTipMza, RFrlBrM, and TFrlBrM, it is noted that the yaw bearing yaw moment can be computed differently using the yaw drive spring and damper, though the load summation method and this other constraint method are equivalent. This can be demonstrated as follows. First of all, the equation above is equivalent to saying:
|
||||
|
||||
$$
|
||||
\begin{array}{l}{{\imath\nu{\cal B}r{\cal M}z n={}^{E}{\omega}_{Y a w}^{N}\cdot M_{N a c,R a t}^{B@O}\ /\ I,000}}\\ {{\vdots}}\\ {{{\imath\nu{\cal B}r{\cal M}z n={}^{E}{\omega}_{Y a w}^{N}\cdot\bigg[{\cal M}_{G e n,R a t}^{N\ @V}+{\cal M}_{T a i l}^{N\ @V}+{r}^{O V}\times{\cal F}_{G e n,R a t}^{V}+{r}^{O W}\times{\cal F}_{T a i l}^{W}-m^{N}r^{O U}\times\left({}^{E}a^{U}+g e n^{E}a^{U}\right)\bigg]}}\end{array}
|
||||
$$O Y
|
||||
|
||||
)−IN⋅EαN−EωN×IN⋅EωN/ 1,000
|
||||
\text { YawBrMzn }={ }^E \omega_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Nac,Rot }}^{B @ O} / 1,000
|
||||
$$Or,
|
||||
$$
|
||||
\text { YawBrMzn }={ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left[\boldsymbol{M}_{G e n, \text { Rot }}^{N @ V}+\boldsymbol{M}_{\text {Tail }}^{N @ W}+\boldsymbol{r}^{O V} \times \boldsymbol{F}_{\text {Gen,Rot }}^V+\boldsymbol{r}^{\boldsymbol{O W}} \times \boldsymbol{F}_{\text {Tail }}^{\boldsymbol{W}}-m^N \boldsymbol{r}^{O U} \times\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right)-\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^N-{ }^E \boldsymbol{\omega}^N \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right] / 1,000
|
||||
$$
|
||||
|
||||
Now applying the cyclic permutation law of the scalar triple product:
|
||||
|
||||
$$
|
||||
\imath=\left[\begin{array}{c}{E_{\omega_{Y a w}^{N}}\times r^{O V}\cdot F_{\epsilon\omega,R o n}^{V}+^{E}\omega_{Y a w}^{N}\times r^{O W}\cdot F_{T a i l}^{W}-m^{N\,E}\omega_{Y a w}^{N}\times r^{O U}\cdot\left(^{E}a^{U}+g z_{2}\right)}\\ {+\;^{E}\omega_{Y a w}^{N}\cdot\left(M_{G e n,R o t}^{N\bar{\omega}V}+M_{T a i l}^{N\bar{\omega}W}-\overline{{{I}}}\,^{N}\cdot^{E}a^{N}-^{E}\omega^{N}\times\overline{{{I}}}\,^{N}\cdot^{E}\omega^{N}\right)}\end{array}\right]/\,I,000
|
||||
\text { YawBrMzn }=\left[\begin{array}{c}
|
||||
{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O V}} \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O W}} \cdot \boldsymbol{F}_{\text {Tail }}^W-m^{N E} \boldsymbol{\omega}_{\text {Yaw }}^N \times \boldsymbol{r}^{\boldsymbol{O U}} \cdot\left({ }^E \boldsymbol{a}^U+g \boldsymbol{z}_2\right) \\
|
||||
+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left(\boldsymbol{M}_{\text {Gen,Rot }}^{\text {NaV }}+\boldsymbol{M}_{\text {Tail }}^{\text {N@W }}-\overline{\overline{\boldsymbol{I}}}^{\boldsymbol{N}} \cdot{ }^E \boldsymbol{\alpha}^{\boldsymbol{N}}-{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\omega}^N\right)
|
||||
\end{array}\right] / 1,000
|
||||
$$
|
||||
|
||||
Recognizing also that ${}^{E}{\nu}_{Y a w}^{U}={}^{E}{\omega}_{Y a w}^{N}\times r^{O U}$ ${}^{E}{\nu}_{{\scriptscriptstyle Y a w}}^{V}={}^{E}{\omega}_{{\scriptscriptstyle Y a w}}^{N}\times{r}^{O V}$ and ${}^{E}{\nu}_{Y a w}^{W}={}^{E}{\omega}_{Y a w}^{N}\times r^{O W}$ , this can be expanded as follows:
|
||||
|
||||
$Y a w B r M z n=\Bigg[^{E}\nu_{Y a w}^{V}\cdot F_{\epsilon\epsilon_{n},R o t}^{V}+^{E}\omega_{Y a w}^{N}\cdot M_{G e n,R o t}^{N\vec{\omega}V}+^{E}\nu_{Y a w}^{W}\cdot F_{T a i l}^{W}+^{E}\omega_{Y a w}^{N}\cdot M_{T a i l}^{N\vec{\omega}W}-m^{N}\boldsymbol{\varepsilon}_{V a p}^{W}\cdot\boldsymbol{\nu}_{X a w}^{T}\Bigg]$ vYUaw⋅(EaU+gz2)−EωYNaw⋅(IN⋅EαN+EωN×IN⋅EωN)/ 1,000
|
||||
$\text { YawBrMzn }=\left[{ }^E \boldsymbol{v}_{\text {Yaw }}^V \cdot \boldsymbol{F}_{\text {Gen,Rot }}^V+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Gen,Rot }}^{\text {NaV }}+{ }^E \boldsymbol{v}_{\text {Yaw }}^W \cdot \boldsymbol{F}_{\text {Tail }}^W+{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot \boldsymbol{M}_{\text {Tail }}^{\text {N@W }}-m^{N{ }^E} \boldsymbol{v}_{\text {Yaw }}^U \cdot\left({ }^E \boldsymbol{a}^{\boldsymbol{U}}+g \boldsymbol{z}_2\right)-{ }^E \boldsymbol{\omega}_{\text {Yaw }}^N \cdot\left(\overline{\overline{\boldsymbol{I}}}^N \cdot{ }^E \boldsymbol{\alpha}^{\boldsymbol{N}}+{ }^E \boldsymbol{\omega}^{\boldsymbol{N}} \times \overline{\overline{\boldsymbol{I}}}^N \cdot{ }^{\boldsymbol{E}} \boldsymbol{\omega}^{\boldsymbol{N}}\right)\right] / 1,000$
|
||||
or,
|
||||
$Y a w B r M z n=\left(F_{Y a w}\big|_{R o t o r}+F_{Y a w}\big|_{T a i l}+F_{Y a w}^{*}\big|_{N}+F_{Y a w}\big|_{G r a v N}\right)/\,l,000$
|
||||
$\text { YawBrMzn }=\left(\left.F_{\text {Yaw| }}\right|_{\text {Rotor }}+\left.F_{\text {Yaw }}\right|_{\text {Tail }}+\left.F_{\text {Yaw }}^*\right|_N+\left.F_{\text {Yaw}}\right|_{\text {GravN }}\right) / 1,000$
|
||||
|
||||
$$
|
||||
3r M z n=\left(\begin{array}{c}{F_{Y a w}^{*}\Big|_{N}+F_{Y a w}^{*}\Big|_{R}+F_{Y a w}^{*}\Big|_{G}+F_{Y a w}^{*}\Big|_{H}+F_{Y a w}^{*}\Big|_{B I}+F_{Y a w}^{*}\Big|_{B2}+F_{Y a w}^{*}\Big|_{A}+F_{Y a w}^{*}\Big|_{A e r o\theta B I}+F_{Y a w}}\\ {+F_{Y a w}\Big|_{G r a v N}+F_{Y a w}\Big|_{G r a v N}+F_{Y a w}\Big|_{G r a v H}+F_{Y a w}\Big|_{G r a v B I}+F_{Y a w}\Big|_{G r a v B2}+F_{Y a w}\Big|_{G r a v B2}}\end{array}\right)
|
||||
@ -811,14 +844,14 @@ $$
|
||||
From the equations of motion, it is easily seen that this is equivalent to saying:
|
||||
|
||||
$$
|
||||
Y a w B r M z n=\left(-\left.F_{Y a w}\right|_{S p r i n g Y a w}-\left.F_{Y a w}\right|_{D a m p Y a w}\right)/\left.I,000
|
||||
\text { YawBrMzn }=\left(-\left.F_{\text {Yav }}\right|_{\text {SpringYav }}-\left.F_{\text {Yav }}\right|_{\text {DampYavv }}\right) / 1,000
|
||||
$$
|
||||
|
||||
and thus,
|
||||
|
||||
Y $\iota\boldsymbol{w B r M z n}=\left[Y a w S p r\left(q_{\gamma_{a w}}-Y a w N e u t\right)+Y a w D a m p\cdot\dot{q}_{\gamma_{a w}}\right]/I,000\qquad\qquad(=M_{N a c,R o m p}^{B a o})$ ⋅d2/ 1,000)
|
||||
$\text { YawBrMzn }=\left[\operatorname{YawSpr}\left(q_{\text {Yaw }}-\operatorname{YawNeut}\right)+\operatorname{YawDamp} \cdot \dot{q}_{\text {Yav }}\right] / 1,000 \quad\left(=\boldsymbol{M}_{\text {Nac,Rot }}^{\text {B@O }} \cdot \boldsymbol{d}_2 / 1,000\right)$
|
||||
|
||||
Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate YawBrMzn if various DOFs are disabled, it is best just to use $M_{N a c,R o t}^{B@O}\cdot{d_{2}}\,/\,I,O O O$ , which will always work.
|
||||
Thus, both the load summation method and the constraint method are equivalent. Thus, to avoid using 2 different methods to calculate YawBrMzn if various DOFs are disabled, it is best just to use $\boldsymbol{M}_{\mathrm{Nac}, \mathrm{Rot}}^{\mathrm{B@O}} \cdot \boldsymbol{d}_2 / 1,000$ , which will always work.
|
||||
|
||||
# Tower Base Loads:
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
{
|
||||
"nodes":[
|
||||
{"id":"4b7faf7953451d56","x":-140,"y":-160,"width":250,"height":60,"type":"text","text":"1、debug转速"},
|
||||
{"id":"24b6d0ae8c62a4eb","x":-140,"y":-20,"width":250,"height":80,"type":"text","text":"2、Kane原理理解\n- 模态叠加法理解"},
|
||||
{"id":"d0a44ee1cb295fda","x":-140,"y":120,"width":250,"height":100,"type":"text","text":"3、增加自由度,对应的广义主动力、惯性力如何推导"},
|
||||
{"id":"e52009c9149e427f","x":160,"y":-160,"width":250,"height":60,"type":"text","text":"模块稳定性"}
|
||||
{"id":"4b7faf7953451d56","type":"text","text":"1、debug转速","x":-140,"y":-160,"width":264,"height":60},
|
||||
{"id":"24b6d0ae8c62a4eb","type":"text","text":"2、Kane原理理解\n- 模态叠加法理解","x":-140,"y":-20,"width":264,"height":80},
|
||||
{"id":"d0a44ee1cb295fda","type":"text","text":"3、增加自由度,对应的广义主动力、惯性力如何推导","x":-140,"y":120,"width":264,"height":100},
|
||||
{"id":"e52009c9149e427f","type":"text","text":"模块稳定性","x":176,"y":-160,"width":264,"height":60}
|
||||
],
|
||||
"edges":[
|
||||
{"id":"2a6d49446576cbc8","fromNode":"4b7faf7953451d56","fromSide":"right","toNode":"e52009c9149e427f","toSide":"left"}
|
||||
|
BIN
多体+耦合求解器/images/Pasted image 20250120111003.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120111631.png
Normal file
After Width: | Height: | Size: 5.5 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120112122.png
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120141307.png
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120141352.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120142238.png
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120144724.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250120155301.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250123103518.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
多体+耦合求解器/images/Pasted image 20250123103848.png
Normal file
After Width: | Height: | Size: 8.0 KiB |
21
多体+耦合求解器/rust 经验.md
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
# array2 debug
|
||||
![[Pasted image 20250123103518.png]]
|
||||
|
||||
aug_mat矩阵大小600
|
||||
|
||||
0,12-24 表示矩阵第0行,12-24列数据
|
||||
|
||||
例:
|
||||
```rust
|
||||
let matrix: Array2<f64> = array![
|
||||
|
||||
[1.0, 2.0, 3.0],
|
||||
|
||||
[4.0, 5.0, 6.0],
|
||||
|
||||
[7.0, 8.0, 9.0]
|
||||
|
||||
];
|
||||
```
|
||||
![[Pasted image 20250123103848.png]]
|
13
多体+耦合求解器/yaw.md
Normal file
@ -0,0 +1,13 @@
|
||||
|
||||
机舱偏航
|
||||
FAST 可以通过将 YawDOF 设置为 True 并将偏航弹簧常数(YawSpr)和偏航阻尼常数(YawDamp)设为零来模拟机舱偏航作为一个完美的铰链,没有抗力。您还可以通过将 YawDamp 设置为非零值来模拟具有偏航阻尼的自由偏航装置。
|
||||
|
||||
对于指令偏航位置保持不变的偏航驱动涡轮机,可以通过将 YawDOF 设置为 True、YCMode 设置为 0,并将 YawSpr 和 YawDamp 设为非零值来模拟偏航驱动装置中的柔性和阻尼。FAST 将使用输入参数 YawNeut 作为中性偏航位置(即恒定偏航指令),NacYaw 作为初始偏航角度。在这种情况下,通过偏航承载传递的力矩 YawMom 是:
|
||||
$$
|
||||
\text{YawMom} = \text{YawSpr} \cdot (\text{YawPos} - \text{YawNeut}) + \text{YawDamp} \cdot \text{YawRate}
|
||||
$$
|
||||
其中 YawPos 为即时偏航位置。
|
||||
|
||||
对于固定偏航模拟,将 YawDOF 设置为 False、YCMode 设置为 0、TYawManS 大于 TMax,并将 NacYaw 设为固定机舱偏航角度。
|
||||
|
||||
您还可以在仿真过程中主动控制机舱偏航运动。有关主动偏航控制选项的信息,请参阅控制章节中的“机舱偏航控制”部分。
|
260
多体+耦合求解器/坐标系.md
Normal file
@ -0,0 +1,260 @@
|
||||
# 惯性坐标系 (xi yi zi)
|
||||
- Origin The point about which the translational motions of the support platform (surge,
|
||||
sway, and heave) are defined.
|
||||
- xi axis Pointing in the nominal (0°) downwind direction.
|
||||
- yi axis Pointing to the left when looking in the nominal downwind direction.
|
||||
- zi axis Pointing vertically upward opposite to gravity.
|
||||
- 平台不运动时与xt yt zt相同
|
||||
![[Pasted image 20250120111003.png]]
|
||||
|
||||
## 代码中
|
||||
z1 = xi
|
||||
z2 = zi
|
||||
z3 = -yi
|
||||
![[Pasted image 20250120111631.png]]
|
||||
|
||||
```rust
|
||||
coord_sys.z1 = Array1::from_vec(vec![1.0, 0.0, 0.0]); //Vector / direction z1 (= xi from the IEC coord. system).
|
||||
|
||||
coord_sys.z2 = Array1::from_vec(vec![0.0, 1.0, 0.0]); //Vector / direction z2 (= zi from the IEC coord. system).
|
||||
|
||||
coord_sys.z3 = Array1::from_vec(vec![0.0, 0.0, 1.0]); //Vector / direction z3 (= -yi from the IEC coord. system).
|
||||
```
|
||||
|
||||
# tower base/platform 坐标系
|
||||
|
||||
Origin Intersection of the center of the tower and the tower base connection to the support platform.
|
||||
xt axis When the support platform has no pitch or yaw displacement, it is aligned with the xi axis (pointing horizontally in the nominal downwind direction).
|
||||
yt axis When the support platform has no roll or yaw displacement, it is aligned with the yi axis (pointing to the left when looking in the nominal downwind direction).
|
||||
zt axis Pointing up from the center of the tower.
|
||||
|
||||
![[Pasted image 20250120111003.png]]
|
||||
|
||||
## 代码中
|
||||
|
||||
a1 = xt
|
||||
a2 = zt
|
||||
a3 = -yt
|
||||
|
||||
```rust
|
||||
coord_sys.a1 = trans_mat[[0, 0]] * &coord_sys.z1 + trans_mat[[0, 1]] * &coord_sys.z2 + trans_mat[[0, 2]] * &coord_sys.z3; // Vector / direction a1 (= xt from the IEC coord. system).
|
||||
|
||||
coord_sys.a2 = trans_mat[[1, 0]] * &coord_sys.z1 + trans_mat[[1, 1]] * &coord_sys.z2 + trans_mat[[1, 2]] * &coord_sys.z3; // Vector / direction a2 (= zt from the IEC coord. system).
|
||||
|
||||
coord_sys.a3 = trans_mat[[2, 0]] * &coord_sys.z1 + trans_mat[[2, 1]] * &coord_sys.z2 + trans_mat[[2, 2]] * &coord_sys.z3; // Vector / direction a3 (= -yt from the IEC coord. system).
|
||||
```
|
||||
|
||||
# 塔架节点坐标系
|
||||
t1 t2 t3**基于a1 a2 a3 加上塔架节点变形角度** 计算得到
|
||||
|
||||
# Tower-top/base-plate
|
||||
![[Pasted image 20250120112122.png]]
|
||||
|
||||
加上塔顶变形
|
||||
|
||||
Origin A point on the yaw axis at a height of TowerHt above ground level [onshore or
|
||||
mean sea level [offshore] (see Figure 14(a), Figure 16, or Figure 20).
|
||||
xp axis When the tower is not deflected, it is aligned with the xt axis.
|
||||
yp axis When the tower is not deflected, it is aligned with the yt axis.
|
||||
zp axis When the tower is not deflected, it is aligned with the zt axis. It is also the yaw axis.
|
||||
|
||||
## 代码中
|
||||
b1 = xp
|
||||
b2 = zp
|
||||
b3 = -yp
|
||||
|
||||
|
||||
# Nacelle/Yaw Coordinate System
|
||||
|
||||
在p坐标系基础上加变桨角度
|
||||
![[Pasted image 20250120141307.png]]
|
||||
|
||||
This coordinate system translates and rotates with the top of the tower, plus it yaws with the nacelle.
|
||||
Origin The origin is the same as that for the tower-top/base-plate coordinate system.
|
||||
xn axis Pointing horizontally toward the nominally downwind end of the nacelle.
|
||||
yn axis Pointing to the left when looking toward the nominally downwind end of the nacelle.
|
||||
zn axis Coaxial with the tower/yaw axis and pointing up.
|
||||
|
||||
## 代码中
|
||||
d1 = xn
|
||||
d2 = zn
|
||||
d3 = -yn
|
||||
|
||||
```rust
|
||||
// Nacelle / yaw coordinate system:
|
||||
|
||||
c_nac_yaw = (x.qt[DOF_YAW as usize - 1]).cos();
|
||||
|
||||
s_nac_yaw = (x.qt[DOF_YAW as usize - 1]).sin();
|
||||
|
||||
|
||||
|
||||
coord_sys.d1 = c_nac_yaw * &coord_sys.b1 - s_nac_yaw* &coord_sys.b3; // Vector / direction d1 (= xn from the IEC coord. system).
|
||||
|
||||
coord_sys.d2 = coord_sys.b2.clone(); // Vector / direction d2 (= xn from the IEC coord. system).
|
||||
|
||||
coord_sys.d3 = s_nac_yaw * &coord_sys.b1 + c_nac_yaw* &coord_sys.b3; // Vector / direction d3 (= xn from the IEC coord. system).
|
||||
```
|
||||
|
||||
# rotor-furl 坐标系 后续删掉
|
||||
|
||||
|
||||
# 主轴坐标系 Shaft Coordinate System
|
||||
The shaft coordinate system does not rotate with the rotor, but it does translate and rotate with the tower and it yaws with the nacelle and furls with the rotor.
|
||||
The nacelle inertial measurement unit uses this coordinate system for all of its motion outputs. Shaft bending moments at the hub and at the position denoted by ShftGagL use this coordinate system or the rotating hub coordinate system shown below.
|
||||
|
||||
机舱惯性、主轴弯曲 tilt
|
||||
|
||||
![[Pasted image 20250120141352.png]]
|
||||
|
||||
Origin Intersection of the yn-/zn-plane and the rotor axis.
|
||||
xs axis Pointing along the (possibly tilted) shaft in the nominally downwind direction.
|
||||
ys axis Pointing to the left when looking from the tower toward the nominally downwind end of the nacelle.
|
||||
zs axis Orthogonal with the xs and ys axes such that they form a right-handed coordinate system.
|
||||
|
||||
c1=xs
|
||||
c2=zs
|
||||
c3=-ys
|
||||
|
||||
# 方位角坐标系统 azimuth coordinate system
|
||||
|
||||
e1 e2 e3
|
||||
|
||||
The azimuth, or a, coordinate system is located **at the origin of the shaft coordinate system**, but it rotates with the rotor. When Blade 1 points up, the azimuth and shaft coordinate systems are parallel. For three bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2-1-repeat.
|
||||
方位角坐标系(或称为“a”坐标系)位于**主轴坐标系的原点,但随着转子旋转而旋转****。当叶片1指向上方时,方位角和轴坐标系是平行的。对于三叶转子,叶片3在叶片2之前,叶片2在叶片1之前,因此通过给定方位角的叶片顺序为3-2-1-重复。
|
||||
|
||||
e1 e2 e3在c1 c2 c3的基础上,加上 DOF_DRTR DOF_GEAZ的角度
|
||||
```rust
|
||||
// 方位角坐标系统 azimuth coordinate system
|
||||
|
||||
c_azimuth = (x.qt[DOF_DRTR as usize - 1] + x.qt[DOF_GEAZ as usize -1]).cos();
|
||||
|
||||
s_azimuth = (x.qt[DOF_DRTR as usize - 1] + x.qt[DOF_GEAZ as usize -1]).sin();
|
||||
|
||||
|
||||
|
||||
coord_sys.e1 = coord_sys.c1.clone(); // Vector / direction e1 (equivalent to xa from the IEC coordinate system)
|
||||
|
||||
|
||||
|
||||
coord_sys.e2 = c_azimuth * &coord_sys.c2 + s_azimuth * &coord_sys.c3; // Vector / direction e2 (equivalent to ya from the IEC coordinate system)
|
||||
|
||||
|
||||
|
||||
coord_sys.e3 = -s_azimuth * &coord_sys.c2 + c_azimuth * &coord_sys.c3; // Vector / direction e3 (equivalent to za from the IEC coordinate system)
|
||||
```
|
||||
|
||||
# teeter 坐标系 用于两叶片 后续可以删掉
|
||||
f1=e1
|
||||
f2 = e2
|
||||
f3 = e3
|
||||
|
||||
# hub / delta-3 coordinate system:
|
||||
|
||||
The hub coordinate system **rotates with the rotor.** It also teeters in two-bladed models.
|
||||
**Origin Intersection of the rotor axis and the plane of rotation (non-coned rotors) or the apex of the cone of rotation (coned rotors).**
|
||||
原点在轮毂
|
||||
xh axis Pointing along the hub centerline in the nominal downwind direction.
|
||||
yh axis Orthogonal with the xh and zh axes such that they form a right-handed coordinate system.
|
||||
zh axis Perpendicular to the hub centerline with the same azimuth as Blade 1.
|
||||
|
||||
![[Pasted image 20250120142238.png]]
|
||||
|
||||
g1 = xh
|
||||
g2 = yh
|
||||
g3 = zh
|
||||
**这里变了,不再是2对应z方向**
|
||||
|
||||
默认 cos_del3 = 1.0, sin_del3=0.0
|
||||
g1 = f1
|
||||
g2 = f2
|
||||
g3 = f3
|
||||
```rust
|
||||
// Hub / delta-3 coordinate system:
|
||||
|
||||
coord_sys.g1 = coord_sys.f1.clone(); // Vector / direction g1 (= xh from the IEC coord. system)
|
||||
|
||||
coord_sys.g2 = p.cos_del3 * &coord_sys.f2 + p.sin_del3 * &coord_sys.f3; // Vector / direction g2 (= yh from the IEC coord. system)
|
||||
|
||||
coord_sys.g3 = -p.sin_del3 * &coord_sys.f2 + p.cos_del3 * &coord_sys.f3; // Vector / direction g3 (= zh from the IEC coord. system)
|
||||
```
|
||||
|
||||
|
||||
# 锥角坐标系 Coned Coordinate Systems
|
||||
i1 i2 i3
|
||||
|
||||
There is a coned coordinate system for each blade that rotates with the rotor. The coordinate system does not pitch with the blades and it also teeters in two bladed models. For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2- 1-repeat.
|
||||
Origin The origin is the same as that for the hub coordinate system.
|
||||
Xc,i axis Orthogonal with the yc,i and zc,i axes such that they form a right-handed coordinate system. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
Yc,i axis Pointing towards the trailing edge of blade i if the pitch and twist were zero and parallel with the chord line. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
Zc,i axis Pointing along the pitch axis towards the tip of blade i. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
|
||||
加入锥角,原点与hub坐标系相同 三个叶片,有三组
|
||||
|
||||
i1[k, ..] = xck
|
||||
i2[k, ..] = yck
|
||||
i3[k, ..] = zck
|
||||
![[Pasted image 20250120144724.png]]
|
||||
先把轮毂坐标系根据方位角,变换到每个叶片,再处理锥角
|
||||
|
||||
```rust
|
||||
for k in 0..p.num_bl as usize{
|
||||
|
||||
|
||||
|
||||
g_rot_ang = p.two_pi_nb * (k as f64);
|
||||
|
||||
c_g_rot_ang = g_rot_ang.cos();
|
||||
|
||||
s_g_rot_ang = g_rot_ang.sin();
|
||||
|
||||
|
||||
|
||||
g1_prime = coord_sys.g1.clone();
|
||||
|
||||
g2_prime = c_g_rot_ang * &coord_sys.g2 + s_g_rot_ang * &coord_sys.g3;
|
||||
|
||||
g3_prime = -s_g_rot_ang * &coord_sys.g2 + c_g_rot_ang * &coord_sys.g3;
|
||||
|
||||
|
||||
|
||||
// coned coordinate system
|
||||
|
||||
|
||||
|
||||
coord_sys.i1.slice_mut(s![k, ..]).assign(&(p.cos_pre_c[k] * &g1_prime - p.sin_pre_c[k] * &g3_prime)); // i1(K,:) = vector / direction i1 for blade K (= xcK from the IEC coord. system).
|
||||
|
||||
coord_sys.i2.slice_mut(s![k, ..]).assign(&(g2_prime.clone())); // i2(K,:) = vector / direction i2 for blade K (= ycK from the IEC coord. system).
|
||||
|
||||
coord_sys.i3.slice_mut(s![k, ..]).assign(&(p.sin_pre_c[k] * &g1_prime + p.cos_pre_c[k] * &g3_prime)); // i3(K,:) = vector / direction i3 for blade K (= zcK from the IEC coord. system).
|
||||
}
|
||||
```
|
||||
|
||||
# 叶片坐标系 Blade Coordinate Systems
|
||||
|
||||
j1 j2 j3
|
||||
|
||||
These coordinate systems are the same as the coned coordinate systems, except that they pitch with the blades and their origins are at the blade root. For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given azimuth is 3-2-1-repeat.
|
||||
|
||||
Origin Intersection of the blade’s pitch axis and the blade root. xb,i axis Orthogonal with the yb and zb axes such that they form a right-handed coordinate system. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
yb,i axis Pointing towards the trailing edge of blade i and parallel with the chord line at the zero-twist blade station. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
zb,i axis Pointing along the pitch axis towards the tip of blade i. (i = 1, 2, or 3 for blades 1, 2, or 3, respectively)
|
||||
原点位于叶根,在锥角坐标系基础上加入变桨角
|
||||
|
||||
|
||||
j1[k, ..] = xbk
|
||||
j2[k, ..] = ybk
|
||||
j3[k, ..] = zbk
|
||||
![[Pasted image 20250120155301.png]]
|
||||
# 叶素节点坐标系
|
||||
n1 n2 n3
|
||||
m1 m2 m3 不包含叶根 叶尖节点
|
||||
|
||||
## 问题:
|
||||
- p.c_theta_s
|
||||
- p.s_theta_s
|
||||
- p.twisted_sf是什么
|
||||
- n1 n2 n3的计算公式
|
||||
- m1 m2 m3的意义
|
||||
|
||||
# tail-furl 坐标系统 删掉
|
83
多体+耦合求解器/填充augmat.md
Normal file
@ -0,0 +1,83 @@
|
||||
# yaw
|
||||
|
||||
p.dofs.ptte // Array of tower DOF indices contributing to QD2T-related linear accelerations of the tower nodes (point T)
|
||||
npte 塔架 Number of DOFs contributing to QD2T-related linear accelerations of the tower nodes (point T) 计数漂浮式基础自由度+塔架自由度
|
||||
|
||||
nptte // Number of **tower DOFs** contributing to QD2T-related linear accelerations of the tower nodes (point T)
|
||||
|
||||
|
||||
```rust
|
||||
for l in 0..p.dofs.nptte as usize{
|
||||
|
||||
// Loop through all active (enabled) tower DOFs that contribute to the QD2T-related linear accelerations of the yaw bearing (point O)
|
||||
|
||||
for i in l..p.dofs.nptte as usize{
|
||||
|
||||
// Loop through all active (enabled) tower DOFs greater than or equal to L
|
||||
|
||||
// [C(q,t)]T of YawBrMass
|
||||
|
||||
aug_mat[[p.dofs.ptte[i] as usize - 1, p.dofs.ptte[l] as usize - 1]] = p.yaw_br_mass *
|
||||
|
||||
dot_product(&rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[i] as usize -1, 0, ..]).to_owned(),
|
||||
|
||||
&rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[l] as usize -1, 0, ..]).to_owned());
|
||||
|
||||
// println!("{}",aug_mat[[p.dofs.ptte[i] as usize - 1, p.dofs.ptte[l] as usize - 1]]);
|
||||
|
||||
// println!("{}",p.dofs.ptte[i]);
|
||||
|
||||
// println!("{}",p.dofs.ptte[l]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
tmpvec1 = -p.yaw_br_mass * (p.gravity * coord_sys.z2.clone() + rt_hs.lin_acc_eot.clone());
|
||||
|
||||
for i in 0..p.dofs.nptte as usize{
|
||||
|
||||
// {-f(qd,q,t)}T + {-f(qd,q,t)}GravT of YawBrMass
|
||||
|
||||
|
||||
|
||||
aug_mat[[p.dofs.ptte[i] as usize - 1, p.naug as usize - 1]] = dot_product(&rt_hs.plin_vel_eo.slice(s![p.dofs.ptte[i] as usize -1, 0, ..]).to_owned(), &tmpvec1);
|
||||
|
||||
// println!("{}",aug_mat[[p.dofs.ptte[i] as usize - 1, p.naug as usize - 1]]);
|
||||
|
||||
// println!("{}",p.dofs.ptte[i]);
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
p.dofs.diag Array containing indices of SrtPS() associated with each enabled DOF
|
||||
srt_ps // Sorted version of PS(), from smallest to largest DOF index
|
||||
ps // Array of DOF indices to the active (enabled) DOFs/states
|
||||
```rust
|
||||
if p.dof_flag.as_mut().unwrap()[DOF_YAW as usize - 1]{
|
||||
|
||||
for i in p.dofs.diag[DOF_YAW as usize -1]..=p.dofs.n_actv_dof{
|
||||
|
||||
// [C(q,t)]N + [C(q,t)]R + [C(q,t)]G + [C(q,t)]H + [C(q,t)]B + [C(q,t)]A
|
||||
|
||||
aug_mat[[p.dofs.srt_ps[i as usize -1] as usize-1, DOF_YAW as usize-1]] = -1. * dot_product(&rt_hs.p_ang_vel_en.slice(s![DOF_YAW -1, 0, ..]).to_owned(),
|
||||
|
||||
&rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.srt_ps[i as usize -1] -1]).to_owned());
|
||||
|
||||
// println!("{}", aug_mat[[p.dofs.srt_ps[i as usize -1] as usize-1, DOF_YAW as usize-1]]);
|
||||
|
||||
}
|
||||
|
||||
// {-f(qd,q,t)}N + {-f(qd,q,t)}GravN + {-f(qd,q,t)}R + {-f(qd,q,t)}GravR + {-f(qd,q,t)}G + {-f(qd,q,t)}H + {-f(qd,q,t)}GravH + {-f(qd,q,t)}B + {-f(qd,q,t)}GravB + {-f(qd,q,t)}AeroB + {-f(qd,q,t)}A + {-f(qd,q,t)}GravA + {-f(qd,q,t)}AeroA
|
||||
|
||||
// + {-f(qd,q,t)}SpringYaw + {-f(qd,q,t)}DampYaw; NOTE: The neutral yaw rate, YawRateNeut, defaults to zero. It is only used for yaw control.
|
||||
|
||||
aug_mat[[DOF_YAW as usize-1, p.naug as usize -1]] = dot_product(&rt_hs.p_ang_vel_en.slice(s![DOF_YAW -1, 0, ..]).to_owned(),
|
||||
|
||||
&rt_hs.mom_bnc_rtt) + u.yaw_mom;
|
||||
|
||||
// println!("{}", aug_mat[[DOF_YAW as usize-1, p.naug as usize -1]]);
|
||||
|
||||
}
|
||||
```
|
@ -3,14 +3,26 @@
|
||||
{"id":"9461f7dd96103316","type":"text","text":"Kane方法","x":-120,"y":-280,"width":250,"height":50},
|
||||
{"id":"0c8534c8ba68c9a6","type":"text","text":"**广义**主动力","x":-280,"y":-140,"width":250,"height":50},
|
||||
{"id":"5eaa425c204bf600","type":"text","text":"**广义**惯性力","x":40,"y":-140,"width":250,"height":50},
|
||||
{"id":"7351d2bbb065d539","type":"text","text":"动力学 ","x":-210,"y":40,"width":250,"height":60},
|
||||
{"id":"e398416e55019686","type":"text","text":"运动学","x":-210,"y":220,"width":250,"height":60},
|
||||
{"id":"38d3d1a313c094ee","type":"text","text":"广义坐标","x":-280,"y":340,"width":250,"height":60},
|
||||
{"id":"8ec17237cebe7433","type":"text","text":"广义速率","x":60,"y":340,"width":250,"height":60}
|
||||
{"id":"8ec17237cebe7433","type":"text","text":"广义速率","x":60,"y":340,"width":250,"height":60},
|
||||
{"id":"c20eeff7484d8a39","type":"text","text":"叠加法","x":185,"y":140,"width":250,"height":60},
|
||||
{"id":"a729b7930412f0b1","type":"text","text":"需要保持边界条件一致","x":520,"y":140,"width":250,"height":60},
|
||||
{"id":"d405163cb9ecd804","type":"text","text":"叶片多段拆分,小段做模态叠加?","x":520,"y":250,"width":250,"height":60},
|
||||
{"id":"7351d2bbb065d539","type":"text","text":"动力学 ","x":-210,"y":110,"width":250,"height":60},
|
||||
{"id":"da500b2b12ed0901","x":290,"y":-30,"width":250,"height":60,"type":"text","text":"填充augmat矩阵"},
|
||||
{"id":"20ce8d75f0f35588","x":580,"y":-30,"width":250,"height":60,"type":"text","text":"解出来q"},
|
||||
{"id":"6094c53caf966263","x":-165,"y":-40,"width":340,"height":80,"type":"text","text":"由F + F^* 的形式转换到 [C(q,t)],{-f(qd,q,t)}形式"}
|
||||
],
|
||||
"edges":[
|
||||
{"id":"647c1b45edc92b02","fromNode":"9461f7dd96103316","fromSide":"bottom","toNode":"0c8534c8ba68c9a6","toSide":"top"},
|
||||
{"id":"e3d4293dd3262f2d","fromNode":"9461f7dd96103316","fromSide":"bottom","toNode":"5eaa425c204bf600","toSide":"top"},
|
||||
{"id":"9a803fcaec81414e","fromNode":"38d3d1a313c094ee","fromSide":"right","toNode":"8ec17237cebe7433","toSide":"left"}
|
||||
{"id":"9a803fcaec81414e","fromNode":"38d3d1a313c094ee","fromSide":"right","toNode":"8ec17237cebe7433","toSide":"left"},
|
||||
{"id":"7ff52c30a0b0347d","fromNode":"a729b7930412f0b1","fromSide":"bottom","toNode":"d405163cb9ecd804","toSide":"top"},
|
||||
{"id":"d97ef554530b15b5","fromNode":"c20eeff7484d8a39","fromSide":"right","toNode":"a729b7930412f0b1","toSide":"left"},
|
||||
{"id":"034d145edd7cfce0","fromNode":"0c8534c8ba68c9a6","fromSide":"bottom","toNode":"6094c53caf966263","toSide":"top"},
|
||||
{"id":"da18b7fa4859fa6f","fromNode":"5eaa425c204bf600","fromSide":"bottom","toNode":"6094c53caf966263","toSide":"top"},
|
||||
{"id":"5d5f4fef281a656e","fromNode":"6094c53caf966263","fromSide":"right","toNode":"da500b2b12ed0901","toSide":"left"},
|
||||
{"id":"5573fa12a3a02ee0","fromNode":"da500b2b12ed0901","fromSide":"right","toNode":"20ce8d75f0f35588","toSide":"left"}
|
||||
]
|
||||
}
|
34
多体+耦合求解器/计算position.md
Normal file
@ -0,0 +1,34 @@
|
||||
|
||||
rz Position vector from inertia frame origin to platform reference (point Z).
|
||||
r_zy Position vector from platform reference (point Z) to platform mass center (point Y) [m]
|
||||
r_zt0 Position vector from platform reference (point Z) to tower base (point T(0)) [m]
|
||||
r_zo Position vector from platform reference (point Z) to tower-top / base plate (point O) [m]
|
||||
|
||||
r_ou Position vector from tower-top / base plate (point O) to nacelle center of mass (point U) [m]
|
||||
r_ov Position vector from tower-top / base plate (point O) to specified point on rotor-furl axis (point V) [m]
|
||||
r_vimu Position vector from specified point on rotor-furl axis (point V) to nacelle IMU (point IMU) [m]
|
||||
r_vd Position vector from specified point on rotor-furl axis (point V) to center of mass of structure that furls with the rotor (point D) [m]
|
||||
r_vp Position vector from specified point on rotor-furl axis (point V) to teeter pin (point P) [m]
|
||||
|
||||
r_pq Position vector from teeter pin (point P) to apex of rotation (point Q) [m]
|
||||
r_qc Position vector from apex of rotation (point Q) to hub center of mass (point C) [m]
|
||||
r_ow Position vector from tower-top / base plate (point O) to specified point on tail-furl axis (point W) [m]
|
||||
r_wi Position vector from specified point on tail-furl axis (point W) to tail boom center of mass (point I) [m]
|
||||
r_wj Position vector from specified point on tail-furl axis (point W) to tail fin center of mass (point J) [m]
|
||||
r_pc Position vector from teeter pin (point P) to hub center of mass (point C) [m]
|
||||
r_t0o Position vector from the tower base (point T(0)) to tower-top / base plate (point O) [m]
|
||||
r_o Position vector from inertial frame origin to tower-top / base plate (point O) [m]
|
||||
r_v Position vector from inertial frame origin to specified point on rotor-furl axis (point V) [m]
|
||||
r_p Position vector from inertial frame origin to teeter pin (point P) [m]
|
||||
r_q Position vector from inertial frame origin to apex of rotation (point Q) [m]
|
||||
r_j Position vector from inertial frame origin to tail fin center of mass (point J) [m]
|
||||
|
||||
r_s0s Position vector from the blade root (point S(0)) to a point on a blade (point S) [m]
|
||||
r_qs Position vector from the apex of rotation (point Q) to a point on a blade (point S) [m]
|
||||
r_s Position vector from inertial frame origin to a point on a blade (point S) [m]
|
||||
r_ps0 Position vector from teeter pin (point P) to blade root (point S(0)) [m]
|
||||
|
||||
|
||||
r_zt Position vector from platform reference (point Z) to a point on a tower (point T) [m]
|
||||
r_t0t Position vector from a height of TowerBsHt (point T(0)) to a point on the tower (point T) [m]
|
||||
r_t Position vector from inertial frame origin to the current node (point T(HNodes(J)) [m]
|
59
多体+耦合求解器/计算力和力矩.md
Normal file
@ -0,0 +1,59 @@
|
||||
# yaw
|
||||
|
||||
|
||||
pfrc_oncrt: Partial force at the yaw bearing (point O) due to the nacelle, generator, and rotor [-]
|
||||
pmom_bnc_rt: 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-]
|
||||
|
||||
```rust
|
||||
// Partial force at the yaw bearing (point O) due to the nacelle, generator, and rotor [-]
|
||||
|
||||
rt_hs.pfrc_oncrt = rt_hs.pfrc_vgn_rt.clone() + rt_hs.pfrc_wtail.clone(); //Initialize these partial forces and moments using
|
||||
|
||||
// Partial moment at the base plate (body B) / yaw bearing (point O) due the nacelle, generator, and rotor [-]
|
||||
|
||||
rt_hs.pmom_bnc_rt = rt_hs.pmom_ngn_rt.clone() + rt_hs.pmom_ntail.clone(); // the rotor, rotor-furl, generator, and tail effects
|
||||
|
||||
|
||||
|
||||
for i in 0..p.dofs.n_actv_dof as usize{
|
||||
|
||||
tmp_vec = cross_product(&rt_hs.r_ov, &rt_hs.pfrc_vgn_rt.slice(s![.., p.dofs.srt_ps[i] - 1]).to_owned()); // The portion of PMomBNcRt associated with the PFrcVGnRt
|
||||
|
||||
let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.srt_ps[i]-1]).to_owned() + tmp_vec;
|
||||
|
||||
rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.srt_ps[i]-1]).assign(&value);
|
||||
|
||||
}
|
||||
|
||||
for i in 0.. p.dofs.npie as usize{
|
||||
|
||||
tmp_vec = cross_product(&rt_hs.r_ow, &rt_hs.pfrc_wtail.slice(s![.., p.dofs.pie[i] - 1]).to_owned()); // The portion of PMomBNcRt associated with the PFrcWTail
|
||||
|
||||
let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.pie[i]-1]).to_owned() + tmp_vec;
|
||||
|
||||
rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.pie[i]-1]).assign(&value);
|
||||
|
||||
}
|
||||
|
||||
for i in 0.. p.dofs.npue as usize{
|
||||
|
||||
tmp_vec1 = -p.nac_mass * rt_hs.plin_vel_eu.slice(s![p.dofs.pue[i] -1, 0, ..]).to_owned(); //The portion of PFrcONcRt associated with the NacMass
|
||||
|
||||
tmp_vec2 = cross_product(&rt_hs.r_ou, &tmp_vec1); // The portion of PMomBNcRt associated with the NacMass
|
||||
|
||||
|
||||
|
||||
let value = rt_hs.pfrc_oncrt.slice(s![.., p.dofs.pue[i] -1]).to_owned() + tmp_vec1;
|
||||
|
||||
rt_hs.pfrc_oncrt.slice_mut(s![.., p.dofs.pue[i] -1]).assign(&value);
|
||||
|
||||
|
||||
|
||||
let value = rt_hs.pmom_bnc_rt.slice(s![.., p.dofs.pue[i] -1]).to_owned() + tmp_vec2 -
|
||||
|
||||
p.nacd2_iner * coord_sys.d2.clone() * dot_product(&coord_sys.d2.clone(), &rt_hs.p_ang_vel_en.slice(s![p.dofs.pue[i] -1, 0, ..]).to_owned());
|
||||
|
||||
rt_hs.pmom_bnc_rt.slice_mut(s![.., p.dofs.pue[i] -1]).assign(&value);
|
||||
|
||||
}
|
||||
```
|
42
多体+耦合求解器/计算线速度 偏加速度.md
Normal file
@ -0,0 +1,42 @@
|
||||
|
||||
# yaw
|
||||
```rust
|
||||
ewn_x_r_ou = cross_product(&rt_hs.ang_vel_en, &rt_hs.r_ou);
|
||||
|
||||
|
||||
rt_hs.plin_vel_eu = rt_hs.plin_vel_eo.clone();
|
||||
|
||||
for i in 0..NPN{
|
||||
|
||||
tmp_vec0 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 0, ..]).to_owned(), &rt_hs.r_ou);
|
||||
|
||||
tmp_vec1 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 0, ..]).to_owned(), &ewn_x_r_ou);
|
||||
|
||||
tmp_vec2 = cross_product(&rt_hs.p_ang_vel_en.slice(s![PN[i] - 1, 1, ..]).to_owned(), &rt_hs.r_ou);
|
||||
|
||||
|
||||
|
||||
let update_value = tmp_vec0 + rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 0, ..]);
|
||||
|
||||
// Partial linear velocity (and its 1st time derivative) of the nacelle center of mass (point U) in the inertia frame (body E for earth) [-]
|
||||
|
||||
rt_hs.plin_vel_eu.slice_mut(s![PN[i] - 1, 0, ..]).assign(&update_value);
|
||||
|
||||
|
||||
|
||||
let update_value = tmp_vec1 + tmp_vec2 + rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 1, ..]);
|
||||
|
||||
rt_hs.plin_vel_eu.slice_mut(s![PN[i] - 1, 1, ..]).assign(&update_value);
|
||||
|
||||
// Linear acceleration of the nacelle center of mass (point U) in the inertia frame (body E for earth) (excluding QD2T components) [-]
|
||||
|
||||
rt_hs.lin_acc_eut = rt_hs.lin_acc_eut.clone() + x.qdt[PN[i] as usize - 1] * rt_hs.plin_vel_eu.slice(s![PN[i] - 1, 1, ..]).to_owned();
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
plin_vel_eu
|
||||
Partial linear velocity (and its 1st time derivative) of the nacelle center of mass (point U) in the inertia frame (body E for earth) [-]
|
||||
|
||||
lin_acc_eut
|
||||
Linear acceleration of the nacelle center of mass (point U) in the inertia frame (body E for earth) (excluding QD2T components) [-]
|
24
多体+耦合求解器/计算角度 大小 速度 偏加速度.md
Normal file
@ -0,0 +1,24 @@
|
||||
|
||||
|
||||
# yaw
|
||||
|
||||
```rust
|
||||
// Partial angular velocity of the nacelle (body N) in the inertia frame (body E for earth) [-]
|
||||
|
||||
|
||||
rt_hs.p_ang_vel_en.slice_mut(s![.., 0, ..]).assign(&rt_hs.p_ang_vel_eb.slice_mut(s![.., 0, ..]));
|
||||
|
||||
rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW -1, 0, ..]).assign(&coord_sys.d2.clone());
|
||||
|
||||
rt_hs.ang_vel_en = rt_hs.ang_vel_eb.clone() + x.qdt[DOF_YAW as usize- 1] * rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW -1, 0, ..]).to_owned();
|
||||
|
||||
|
||||
rt_hs.p_ang_vel_en.slice_mut(s![.., 1, ..]).assign(&rt_hs.p_ang_vel_eb.slice_mut(s![.., 1, ..]));
|
||||
|
||||
let p_ang_vel_en_slice = rt_hs.p_ang_vel_en.slice(s![DOF_YAW - 1, 0, ..]).to_owned();
|
||||
|
||||
rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW - 1, 1, ..]).assign(&cross_product(&rt_hs.ang_vel_eb, &p_ang_vel_en_slice));
|
||||
|
||||
rt_hs.ang_acc_ent = rt_hs.ang_acc_ebt.clone() + x.qdt[DOF_YAW as usize- 1] * rt_hs.p_ang_vel_en.slice_mut(s![DOF_YAW - 1, 1, ..]).to_owned();
|
||||
```
|
||||
|
BIN
多体求解器debug/images/Pasted image 20250120102349.png
Normal file
After Width: | Height: | Size: 36 KiB |
36
多体求解器debug/多体+气动 yaw debug.md
Normal file
@ -0,0 +1,36 @@
|
||||
|
||||
# 问题
|
||||
转速在14s之后一直掉
|
||||
![[Pasted image 20250120102349.png]]
|
||||
|
||||
## yaw求解过程
|
||||
|
||||
|
||||
1 输入yaw_mom from 控制
|
||||
|
||||
|
||||
multibody_solution 1834-1846行
|
||||
|
||||
Elastodyn.f90 8295
|
||||
FAST_Subs.f90
|
||||
- 4835
|
||||
- 4520
|
||||
- 4865
|
||||
|
||||
pmom_bnc_rt 在基板 (point O) 处由机舱、发电机和转子产生的偏力矩 [-] 2方向
|
||||
Partial moment at the base plate (body B) / yaw bearing (point O) due the nacelle, generator, and rotor [-]
|
||||
- 2, 10: yaw 差距较小 3-11
|
||||
- 2, 12: geaz 差距较大 3-13
|
||||
- 2, 13: drtr 差距较大 3-14
|
||||
|
||||
|
||||
pmom_ngn_rt 就有问题
|
||||
Partial moment at the nacelle (body N) / selected point on rotor-furl axis (point V) due the structure that furls with the rotor, generator, and rotor [-]
|
||||
|
||||
pmom_lprot 有问题 (2,10)
|
||||
|
||||
|
||||
|
||||
pfrc_prot 有问题
|
||||
plin_vel_ec 10, 0, 0有问题
|
||||
Partial linear velocity (and its 1st time derivative) of the hub center of mass (point C) in the inertia frame (body E for earth) [-]
|
@ -1,4 +0,0 @@
|
||||
|
||||
# 问题
|
||||
转速在30s之后一直掉
|
||||
![[Pasted image 20250110111923.png]]
|
9
杂项/b450 mortar主板.md
Normal file
@ -0,0 +1,9 @@
|
||||
|
||||
PCI_E1 PCIe 3.0 x16
|
||||
PCI_E2 PCIe 2.0 x1
|
||||
PCI_E3 PCIe 2.0 x1
|
||||
PCI_E4 PCIe 2.0 x4
|
||||
|
||||
当在 M2_2 接口中安装了 M.2 固态硬盘时,PCI_E4 插槽将无效。
|
||||
|
||||
当在 PCI_E3 插槽中安装扩展卡时,PCI_E2 插槽将无效。
|