Merge remote-tracking branch 'gitea/master'

This commit is contained in:
gyz 2025-06-23 08:22:58 +08:00
commit 44f72254a9
6 changed files with 344 additions and 151 deletions

View File

@ -266,7 +266,7 @@
},
{
"name": "Translate to Chinese",
"prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n 4. Blade翻译为叶片flapwise翻译为挥舞edgewise翻译为摆振pitch angle翻译成变桨角度twist angle翻译为扭角rotor翻译为风轮turbine、wind turbine翻译为机组、风电机组span翻译为展向deflection翻译为变形mode翻译为模态normal mode翻译为简正模态jacket 翻译为导管架superelement翻译为超单元shaft翻译为主轴azimuth、azimuth angle翻译为方位角\n Return only the translated text.</instruction>\n\n<text>{copilot-selection}</text>",
"prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n 4. Blade翻译为叶片flapwise翻译为挥舞edgewise翻译为摆振pitch angle翻译成变桨角度twist angle翻译为扭角rotor翻译为风轮turbine、wind turbine翻译为机组、风电机组span翻译为展向deflection翻译为变形mode翻译为模态normal mode翻译为简正模态jacket 翻译为导管架superelement翻译为超单元shaft翻译为主轴azimuth、azimuth angle翻译为方位角neutral axes 翻译为中性轴\n Return only the translated text.</instruction>\n\n<text>{copilot-selection}</text>",
"showInContextMenu": true,
"modelKey": "gemma3:12b|ollama"
},

View File

@ -2,31 +2,41 @@
This section provides descriptions of the various modelling options and definitions for simulating wind turbine blades. Bladed provides a versatile method of defining complex blade properties:
· The user can define a series of 2D blade sections along the neutral axes of the blade. At each section, a set of blade section coordinate systems are defined for structural and aerodynamic properties. This approach enables the possibility of defining aerofoil orientations and changing structural properties along the blade.
- The user can define a series of 2D blade sections along the neutral axes of the blade. At each section, a set of blade section coordinate systems are defined for structural and aerodynamic properties. This approach enables the possibility of defining aerofoil orientations and changing structural properties along the blade.
· An aerofoil library is provided, allowing for the definition of aerofoils that can be applied and interpolated at individual blade sections.
- An aerofoil library is provided, allowing for the definition of aerofoils that can be applied and interpolated at individual blade sections.
·Advanced flexibility options are available to accurately capture the non-linear nature of long and anisotropic blades. Options include a finite element model capable of modal reduction, a multi-part blade method for increased accuracy of large deflections and a geometric stiffness model to capture second-order effects.
- Advanced flexibility options are available to accurately capture the non-linear nature of long and anisotropic blades. Options include a finite element model capable of modal reduction, a multi-part blade method for increased accuracy of large deflections and a geometric stiffness model to capture second-order effects.
· A suite of blade load outputs and kinematic outputs are provided in various blade coordinate systems.
- A suite of blade load outputs and kinematic outputs are provided in various blade coordinate systems.
-
本节提供用于模拟风电机组叶片的各种建模选项和定义。Bladed 提供了一种定义复杂叶片属性的通用方法:
- 用户可以沿叶片的展向中性轴定义一系列二维叶片剖面。在每个剖面处,定义一组叶片剖面坐标系,用于结构和气动特性。这种方法使得能够定义翼型方向并改变叶片沿展向的结构属性。
- 提供翼型库,允许定义可在单个叶片剖面上应用和插值的翼型。
- 提供高级柔度选项,能够准确捕捉长而各向异性叶片的非线性特性。选项包括能够进行模态简化的有限元模型、用于提高大变形精度的多段叶片方法以及用于捕捉二阶效应的几何刚度模型。
- 提供一系列叶片载荷输出和运动学输出,坐标系为各种叶片坐标系。
![](images/5f87c99ef88c20595ad615fddccf702456c48f3b014f6f880efb99684c27e361.jpg)
Figure 1: llustration of a typical wind turbine blade.
Figure 1: illustration of a typical wind turbine blade.
Last updated 13-12-2024
# Blade Root and Neutral Axes Systems
In Bladed, the blade sections are defined as a finite series of 2D sections along the blade's span, using the neutral axes system relative to the blade root axes system.
# Origin of Blade Root Axes System #
在Bladed中叶片段定义为沿叶片展向的一系列有限的二维叶片采用相对于叶片根主轴系的中性轴系。
## Origin of Blade Root Axes System #
The root axes coordinate system is a body-fixed coordinate system, which coincides with the blade root centre.
根轴坐标系是一种固定于体body的坐标系与叶片叶片根中心重合。
![](images/824eb32c016cc9943ae4b707dc2ab4af76eb5920d33a6009313b40d8b3371a4d.jpg)
Figure 1: Blade root coordinate system, illustrated for zero cone and pitch.
The orientation of the blade root is influenced by properties inboard and outboard of the pitch bearing, as illustrated in Figure 2 and summarised in the table below. These properties determine the blade's mounting angles relative to the pitch axis. If no mounting sweep or cone angles are applied, the Blade root Z-axis aligns with the pitch axis. Non-zero angles for either Blade mounting cone angle or Blade mounting sweep angle create an orientation difference between the pitch and blade root Z-axis, as seen in Figure 2. All subsequent blade properties are defined relative to the Blade root Z-axis .
叶片根部方向受变桨轴承内侧和外侧属性的影响如图2所示并在下表总结如下。这些属性决定了叶片相对于变桨轴的安装角度。如果未施加安装锥角或安装展向角mounting sweep or cone angles则叶片根部Z轴与变桨轴对齐。叶片安装锥角或叶片安装展向角存在非零角度时会导致变桨轴和叶片根部Z轴之间的方向差异如图2所示。所有后续的叶片属性均相对于叶片根部Z轴定义。
Table 1: Blade mounting properties and their effects on the blade root z-axis
@ -35,33 +45,43 @@ Table 1: Blade mounting properties and their effects on the blade root z-axis
![](images/ce44c82504dfa290180a45842566327c4f398458271c17e4bc8f83c972c947f7.jpg)
Figure 2: Left: Positive cone angle (inboard and outboard). Right: Positive sweep angle (outboard only, inboard not supported).
# Blade Neutral Axes System
## Blade Neutral Axes System
The neutral axis passes through the elastic centre of each blade section. Required inputs can be found in the Blades screen under the Blade Geometry and Mass and Stiffness tabs.
# $\textcircled{i}$ NOTE
中性轴穿过每个叶片(风轮叶片)的**弹性中心**。所需输入可在“叶片”屏幕的“叶片几何参数”和“质量与刚度”选项卡下找到。
NOTE
The neutral axis is also commonly known as the principal elastic axis, bending axis, or simply the elastic axis.
中性轴也被称为主弹性轴、弯曲轴,或简单地弹性轴。
The origin of the neutral axes system is defined using the following variables:
Neutral axis (x) Neutral axis (y)
All structural properties for the section, such as stiffness and mass, are then defined in specific blade section coordinate systems. The blade root and neutral axes system for a blade is showed in the figures below:
以下变量定义了中性轴系的起点:
- 中性轴 (x)
- 中性轴 (y)
- `Distance along blade` or `Distance along blade root Z-axis` (See [Distance Along Blade](https://mysoftware.dnv.com/download/public/renewables/bladed/documentation/4_17/modelling/blades/RootAndNeutralAxes.html#distance-along-blade))
随后,所有剖面的结构特性,例如刚度和质量,均在特定的叶片剖面坐标系中定义。叶片根部和叶片的中性轴系见下方的图示:
![](images/7b38e281ead7cf8f6c91014afb1ac78f3b7a9543e2a605f1f8a3329d1d9ba536.jpg)
Figure 3: Blade root axes system and section planes
![](images/48fbc307f535dd5b80ffae0b20cbac8b5a8785bf84251585a53e3a439e78f68c.jpg)
Figure 4: Blade neutral axes system and section planes
# Distance Along Blade
## Distance Along Blade
Only one ofthe variables, Distance along blade or Distance along blade root Z-axis ,is needed to define the position of the neutral z-axis; the other is calculated automatically.
Only one of the variables, Distance along blade or Distance along blade root Z-axis ,is needed to define the position of the neutral z-axis; the other is calculated automatically.
· Distance along blade root Z-axis refers to the position of the blade station along the blade rootZ-axis.
· Distance along blade is the cumulative distance from the blade root to the current blade station, along the blade neutral axis, which does not have to be a straight line. It must be zero for the first station.
- Distance along blade root Z-axis refers to the position of the blade station along the blade root Z-axis.
- Distance along blade is the cumulative distance from the blade root to the current blade station, along the blade neutral axis, which does not have to be a straight line. It must be zero for the first station.
仅需一个变量即“叶片沿径向距离”或“叶片根部Z轴方向距离”即可定义中性Z轴的位置另一个变量则自动计算。
- “叶片根部Z轴方向距离”指的是叶片沿叶片根部Z轴方向的位置。
- “沿叶片距离”是指从叶片根部到当前叶片位置的累积距离,沿叶片中性轴方向,该轴不必为直线。对于第一个位置,该距离必须为零。
$$
\mathrm{DistanceAlongBlade}_{\mathrm{n}}=\sum_{i=1}^{n-1}\Delta d_{i+1,i}=\Delta d_{2,1}+\cdot\cdot+\Delta d_{n,n-1}
$$
@ -73,11 +93,12 @@ $$
$$
![](images/51a967b7d6bb2cca8e6ba226dca72d52ff10432996c14960e3ded0f5da472535.jpg)
Figure 5: llustration of the Distance along blade definition
Figure 5: iillustration of the Distance along blade definition
Last updated 13-12-2024
# Blade Section Property Coordinate Systems
# Blade Section Definition
## Blade Section Property Coordinate Systems
The blades in Bladed are defined as a finite series of 2D sections along the blade's span, using the neutral axes system relative to the blade root axes system.
@ -85,47 +106,53 @@ Each section has an aerofoil that is oriented according to the Aerodynamic twist
Elastic centre (x') Elastic centre (y')
Bladed中的叶片被定义为沿叶片展向的一系列有限的二维截面采用相对于叶片根部坐标系的中心轴系统。
每个截面都具有一个翼型其方向根据气动扭角确定并且具有一个与翼型弦长轴系统原点相关的坐标该原点位于前缘如图1所示。翼型必须相对于中心轴z轴进行定位该轴穿过每个叶片截面的弹性中心。这通过将弹性中心的位置定义为弦长的百分比来实现该百分比是从翼型前缘沿弦轴测得该弦轴遵循气动扭角
弹性中心 (x') 弹性中心 (y')
![](images/a009793a4f857cdae4b5fe189211b565e4ecffeaf0a6c21e40a9bd99eb585373.jpg)
Figure 1: Blade section principal elastic axes coordinate system
Details on the orientation of the local element frame relative to the blade root axes can be found in Blade Local Element Axes.
Each section then allows for the definition of additional property systems that describe the structural and aerodynamic properties of the blade.
关于局部单元坐标系相对于叶片根轴的取向细节,请参见《叶片局部单元坐标系》。
# $\textcircled{i}$ NOTE
随后,每个部分允许定义额外的属性系统,用于描述叶片的结构和气动特性。
NOTE
Not all coordinate systems are relevant in every model; their inclusion depends on the model's complexity. For example, the principal shear axes coordinate system is not needed if Shear stiffness is omitted.
并非所有坐标系在每个模型中都相关;其包含取决于模型的复杂程度。例如,主剪切轴坐标系在省略剪切刚度时是不需要的。
Table 1: Blade section coordinate systems in Bladed
Coordinate
<html><body><table><tr><td>System</td><td>Description</td></tr><tr><td>Root axes</td><td>Fixed to the blade root, and it does not rotate with twist or blade deflection but rotates about the z-axis with pitch.</td></tr><tr><td>Chord axes</td><td>Located at the leading edge of the aerofoil and follows the Aerodynamic twist.</td></tr><tr><td>Principal elastic axes</td><td>Located at the Elastic centre and follows the Principal elastic axes orientation (xe, ye).</td></tr><tr><td>Principal shear axes</td><td>Located at the Shear centre and follows the Principal shear axes orientation (xs, ys) .</td></tr><tr><td>Principal inertia axes</td><td>Located at the Mass centre and follows the Principal inertia axes orientation (xm, ym) .</td></tr><tr><td>User axis</td><td>Located at the User axis , specified by the user for additional loads output. See Loads Outputs at User Axes for details.</td></tr></table></body></html>
<html><body><table><tr><td>Coordinate System</td><td>Description</td></tr><tr><td>Root axes</td><td>Fixed to the blade root, and it does not rotate with twist or blade deflection but rotates about the z-axis with pitch.</td></tr><tr><td>Chord axes</td><td>Located at the leading edge of the aerofoil and follows the Aerodynamic twist.</td></tr><tr><td>Principal elastic axes</td><td>Located at the Elastic centre and follows the Principal elastic axes orientation (xe, ye).</td></tr><tr><td>Principal shear axes</td><td>Located at the Shear centre and follows the Principal shear axes orientation (xs, ys) .</td></tr><tr><td>Principal inertia axes</td><td>Located at the Mass centre and follows the Principal inertia axes orientation (xm, ym) .</td></tr><tr><td>User axis</td><td>Located at the User axis , specified by the user for additional loads output. See Loads Outputs at User Axes for details.</td></tr></table></body></html>
![](images/dff9b65d9b96fd2f46b068573aae50cd91e1cc692e5b028e22f79c9433505541.jpg)
Figure 2: Overview of blade section coordinate systems in Bladed.
# Definition of Centre Locations and Axes Orientations
The centres, including the Elastic centre, Shear centre, Mass centre and User axis,are all defined with respect to the chord axes, which are controlled by the Aerodynamic twist . The
locations of these centres are specified as a percentage of the chord length measured from the aerofoil leading edge. An example of this is illustrated in Figure 3 for the Shear centre definition.
## Definition of Centre Locations and Axes Orientations
The centres, including the Elastic centre, Shear centre, Mass centre and User axis,are all defined with respect to the chord axes, which are controlled by the Aerodynamic twist . The locations of these centres are specified as a percentage of the chord length measured from the aerofoil leading edge. An example of this is illustrated in Figure 3 for the Shear centre definition.
这些中心包括弹性中心、剪切中心、质量中心和用户坐标轴均相对于chord axes定义而chord axes受气动扭角控制。这些中心的具体位置以百分比表示是根据从翼型前缘测量的弦长来确定的。如图3所示以剪切中心定义为例加以说明。
![](images/d3bf377a07a6b8efaaef59e08fa710e7ae01350c9870cecde3cd20cf7134f467.jpg)
Figure 3: Top: Definition of shear centre (x'). Bottom: Definition of Shear centre (y').
Furthermore,the orientations of the Aerodynamic twist , Principal elastic axes orientation (xe, ye), Principal shear axes orientation (xs, ys),and Principal inertia axes orientation (xm, ym) are all defined with respect to the root axes and are positive in the clockwise direction as shown in Figure 4. In the GUl, the unit of the inputs is in degrees, whereas in the project file, it is in radians.
此外气动扭角、主弹性轴方向xe, ye、主剪切轴方向xs, ys以及主惯性轴方向xm, ym均相对于根部轴定义并在图4所示的方向上呈顺时针正向。在GUI中输入的单位为度而在项目文件中则为弧度。
![](images/63057112612fa63485379386159dd385aa3e2942d152a201451333067ef556e0.jpg)
Figure 4: Definition of various property axes orientations in Bladed.
# Overview of Blade Section Inputs and Associated Coordinate Systems
## Overview of Blade Section Inputs and Associated Coordinate Systems
This section provides an overview of the structural properties defined in the various coordinate systems. For more details, see Blade Section Stiffness and Blade Section Mass.
# Principal Elastic Axes
本节概述了在各种坐标系中定义的结构特性。 更多详情请参见“叶片截面刚度”和“叶片截面质量”。
### Principal Elastic Axes
The following blade section input properties are defined in the principal elastic axes coordinate system:
以下叶片截面输入属性定义在主弹性轴坐标系中:
Bending stiffness about xe
Bending stiffness about ye
Shear stiffness along xe
@ -135,66 +162,104 @@ FlapEdgeCStiff
TorsionFlapCStiff
TorsionEdgeCStiff
# Principal Shear Axes
### Principal Shear Axes
The following blade section input property is defined in the principal shear axes coordinate system:
以下叶片截面输入属性定义于主剪切轴坐标系:
Torsional stiffness
The following blade section input properties are defined in the principal inertia axes coordinate system:
以下叶片截面输入属性定义在主惯性轴坐标系中:
Mass/unit length
Polar mass moment of inertia/unit length
Radii of gyration ratio
# Chord Axes
### Chord Axes
The following blade section input properties are defined in the chord axes coordinate system:
Chord Thickness Foil section
以下叶片截面输入属性定义在弦轴坐标系中:
Chord
Thickness
Foil section
Last updated 16-12-2024
# Blade Section Geometry
# Geometry
## Blade Section Geometry
The blade geometry is defined for each blade station. Select the option at the bottom of the screen to specify either the distance along blade or distance along blade root Z-axis .The alternate value will be automatically calculated using the neutral axis values. For example, selecting Distance along blade will automatically calculate the Distance along blade root Zaxis , and vice versa. For details refer to the section on Distance Along Blade. The following geometry data is required at each blade station:
叶片几何形状针对每个叶片位置进行定义。选择屏幕底部的选项以指定沿叶片或沿叶片根部Z轴的距离。另一种值的计算将自动使用中性轴值进行。例如选择“沿叶片距离”将自动计算“沿叶片根部Z轴距离”反之亦然。详细信息请参阅“沿叶片距离”部分。以下几何数据需要针对每个叶片位置
Table 1: Overview over required geometry parameters for blade definition in Bladed
Variable identifier Unit Description
<html><body><table><tr><td>Distance along blade</td><td>m</td><td>The distance from the blade root to the current station along the neutral axis, which may not be straight. It must be zero for the first station.</td></tr><tr><td>Distance along blade root Z-axis</td><td>m</td><td>The distance of the blade station along the blade root Z-axis.</td></tr><tr><td>Chord</td><td>m</td><td>The distance from the leading edge to the trailing edge along the chord line.</td></tr><tr><td></td><td></td><td>Aerodynamic twist deg The local angle of the chord line. More positive values of twist and set angle push the leading edge further upwind in the direction from which the flow is coming.</td></tr><tr><td>Thickness</td><td>%</td><td>The thickness of the blade as a percentage of the chord at that station.</td></tr><tr><td>Neutral axis (x)</td><td>m</td><td>The distance from the blade root Z-axis to the neutral axis in the x- direction. This would be non-zero if, for example, the blade was pre- bent.</td></tr><tr><td>Neutral axis (y)</td><td>m</td><td>The distance from the blade root Z-axis to the neutral axis in the y- direction.</td></tr><tr><td>Elastic centre (x')</td><td>%</td><td>The distance from the leading edge to the elastic centre along the chord x-axis, as a percentage of the chord.</td></tr><tr><td>Elastic centre (y')</td><td>%</td><td>The distance from the leading edge to the elastic centre along the chord y-axis, as a percentage of the chord.</td></tr><tr><td>Foil section</td><td></td><td>An index number defining the aerofoil section at that station.</td></tr><tr><td>Moving/Fixed</td><td></td><td>Differentiates between fixed and movable parts of the blade for pitch of that part of the blade, or by deploying an aileron, flap or other aerodynamic control surfaces.</td></tr></table></body></html>
<html><body><table><tr><td>Variable identifier</td><td> Unit </td><td> Description </td></tr> <tr><td>Distance along blade</td><td>m</td><td>The distance from the blade root to the current station along the neutral axis, which may not be straight. It must be zero for the first station.</td></tr><tr><td>Distance along blade root Z-axis</td><td>m</td><td>The distance of the blade station along the blade root Z-axis.</td></tr><tr><td>Chord</td><td>m</td><td>The distance from the leading edge to the trailing edge along the chord line.</td></tr><tr><td></td><td></td><td>Aerodynamic twist deg The local angle of the chord line. More positive values of twist and set angle push the leading edge further upwind in the direction from which the flow is coming.</td></tr><tr><td>Thickness</td><td>%</td><td>The thickness of the blade as a percentage of the chord at that station.</td></tr><tr><td>Neutral axis (x)</td><td>m</td><td>The distance from the blade root Z-axis to the neutral axis in the x- direction. This would be non-zero if, for example, the blade was pre- bent.</td></tr><tr><td>Neutral axis (y)</td><td>m</td><td>The distance from the blade root Z-axis to the neutral axis in the y- direction.</td></tr><tr><td>Elastic centre (x')</td><td>%</td><td>The distance from the leading edge to the elastic centre along the chord x-axis, as a percentage of the chord.</td></tr><tr><td>Elastic centre (y')</td><td>%</td><td>The distance from the leading edge to the elastic centre along the chord y-axis, as a percentage of the chord.</td></tr><tr><td>Foil section</td><td></td><td>An index number defining the aerofoil section at that station.</td></tr><tr><td>Moving/Fixed</td><td></td><td>Differentiates between fixed and movable parts of the blade for pitch of that part of the blade, or by deploying an aileron, flap or other aerodynamic control surfaces.</td></tr></table></body></html>
Figure 1 and Figure 2 illustrate a blade station for Clockwise and Anticlockwise rotor configurations. It is assumed that the perspective is from the tip toward the root, aligned to the root axes plane.
图1和图2示意了顺时针和逆时针风轮的叶片截面。假设视角从叶尖向根部观察与根部主轴平面对齐。
![](images/2526e9d979066fcfdf9bae69c8488f1a6fdc2ecce66733e5d7e3ff8668e12f46.jpg)
Figure 1: Aerofoil at a blade station illustrating root axes, principal elastic axes and chord axes.
# Anticlockwise Rotors
## Anticlockwise Rotors
The blade inputs for an Anticlockwise rotor use a left-handed coordinate system, in contrast to the right-handed system for clockwise rotors. As a result, no changes are needed to the input data when switching between Clockwise and Anticlockwise rotors. See Figure 2 for an illustration of the Anticlockwise blade definition.
逆时针风轮的叶片输入采用左手坐标系,与顺时针风轮使用的右手坐标系相反。因此,**在顺时针和逆时针风轮之间切换时,无需更改输入数据**。请参见图2其中包含逆时针叶片定义的示意图。
![](images/3cc6cfd1f03ecbb3adcfd43d1f595acf564b4ea9092e0e59cae083edd801c97b.jpg)
Figure 2: Anticlockwise rotating blade station, where the left-handed coordinate system ensures compatibility when switching between rotor directions.
# Blade Section Stiffness
# Stiffness
## Blade Section Stiffness
To model flexible blades or analyse vibrational dynamics, it is necessary to define the stiffness distribution of the rotor blade. Begin by selecting the appropriate degrees of freedom to include in the model by enabling/disabling the following options in the Blades screen under the Mass and Stiffnesstab:
To model flexible blades or analyse vibrational dynamics, it is necessary to define the stiffness distribution of the rotor blade. Begin by selecting the appropriate degrees of freedom to include in the model by enabling/disabling the following options in the Blades screen under the Mass and Stiffness tab:
Bending stiffness
Shear stiffness
Torsional degree of freedom
Axial degree of freedom
- Bending stiffness
- Shear stiffness
- Torsional degree of freedom
- Axial degree of freedom
It is also possible to include bend-twist and bending-bending couplingterms, and these can be defined using Project info .
It is also possible to include bend-twist and bending-bending coupling terms, and these can be defined using Project info .
为了模拟柔性叶片或分析振动动力学,有必要定义风轮叶片的刚度分布。首先,在“质量与刚度”选项卡下的“叶片”屏幕中,通过启用/禁用以下选项来选择合适的自由度:
# Constitutive Relationship
- 弯曲刚度
- 剪切刚度
- 扭转自由度
- 轴向自由度
还可以包括弯曲-扭转和弯曲-弯曲耦合项,这些项可以通过“项目信息”进行定义。
## Constitutive Relationship本构关系
The blade sectional stiffness inputs all relate to the cross-sectional $6\!\times\!6$ stiffness matrix used in the Bladed beam model as shown in Equation (1). This matrix is associated with the principal elastic axes coordinate system, which is defined by the Principal elastic axes orientation (xe, ye) and the Elastic centre as described in Blade Section Coordinate Systems. The constitutive relationship for the full beam model can be expressed as:
叶片截面刚度输入均与Bladed梁模型中所示的横截面 $6\!\times\!6$ 刚度矩阵相关(见公式(1)。该矩阵与主弹性轴坐标系相关联该坐标系由主弹性轴方向xe, ye和弹性中心定义具体见“叶片截面坐标系”。完整梁模型的本构关系可表示为
$$
\left[\begin{array}{c}{F_{x}}\\ {F_{y}}\\ {F_{z}}\\ {M_{x}}\\ {M_{y}}\\ {M_{z}}\end{array}\right]=\left[\begin{array}{c c c c c c c}{G A_{x}}&&&&{\left|}&&&\\ {G A_{x y}}&&{G A_{y}}&&&{\left|}&&{\mathrm{sym}}\\ {0}&{0}&&{E A}&{\left|}&&&\\ {-}&{-}&{-}&{-}&{-}&{-}&{-}&{-}\\ {0}&{0}&{0}&{\left|}&{E I_{x}}&&\\ {0}&{0}&{0}&{\left|}&{C_{x y}}&{E I_{y}}\\ {-G A_{x}y_{c s}}&{G A_{y}x_{c s}}&{0}&{\left|}&{C_{x z}}&{C_{y z}}&{G I_{z}}\right.\right]\left[\kappa_{z}\right]
\begin{equation}
\left[\begin{matrix}{F_x}\\{F_y}\\{F_z}\\{M_x}\\{M_y}\\{M_z}\\\end{matrix}\right]=
\left[\begin{matrix}
{GA}_x & & &    | & & & \\
{GA}_{xy} & {GA}_y & &  | & & {sym} & \\
0 & 0 & {EA} &  | & & & \\
- & - & - & - & - & - & - \\
0 & 0 & 0 &             | & {EI_x} & & \\
0 & 0 & 0 &             | & {C_{xy}} & {EI_y} & \\
- {GA}_x y_{cs} & {GA}_y x_{cs} & 0 &             | & {C_{xz}} & {C_{yz}} & {GI}_z \\
\end{matrix}\right]
\left[\begin{matrix}{\gamma_x}\\{\gamma_y}\\{\gamma_z}\\{\kappa_x}\\{\kappa_y}\\{\kappa_z}\\\end{matrix}\right]
\end{equation}
$$
where
@ -203,60 +268,76 @@ $$
G I_{z}=G I_{z}^{*}+G A_{x}\cdot y_{c s}^{2}+G A_{y}\cdot x_{c s}^{2}
$$
$\mathbf{\boldsymbol{x}}_{c s}$ and $y_{c s}$ are the offsets between the Elastic centre and shear centre along the principal elastic axes.
${{x}}_{c s}$ and $y_{c s}$ are the offsets between the Elastic centre and shear centre along the principal elastic axes.
${{x}}_{c s}$ 和 $y_{c s}$ 是弹性中心和剪切中心沿主弹性轴的偏移量。
Table 1: Overview of blade sectional stiffness inputs in Bladed, relating them to Equation (1).
<html><body><table><tr><td>Property</td><td>Variable</td><td>Description</td><td>Unit</td><td>Input Location</td></tr><tr><td rowspan="2">Bending stiffness about xe</td><td rowspan="2">EIc</td><td rowspan="2">Bending stiffness about the principal elastic x-axis</td><td rowspan="2">Nm2</td><td>Blades</td></tr><tr><td>screen</td></tr><tr><td>Bending stiffness about ye</td><td>EIy</td><td>Bending stiffness about the principal elastic y-axis</td><td>Nm2</td><td>Blades</td></tr><tr><td>Torsional stiffness</td><td>GI*</td><td>Torsional stiffness about the principal</td><td>Nm2</td><td>screen Blades</td></tr><tr><td>about zs</td><td></td><td>shear z-axis (shear centre)</td><td></td><td>screen</td></tr><tr><td>Shear stiffness along xe</td><td>GAx</td><td>Shear stiffness along the principal elastic x-axis</td><td>N</td><td>Blades</td></tr><tr><td>Shear stiffness along</td><td>GAy</td><td>Shear stiffness along the principal</td><td>N</td><td>screen Blades</td></tr><tr><td>ye</td><td></td><td>elastic y-axis</td><td></td><td>screen</td></tr><tr><td>Axial stiffness</td><td>EA</td><td>Axial stiffness of cross-section</td><td>N</td><td>Blades</td></tr><tr><td>FlapEdgeCStiff</td><td>Cry</td><td>Bending-Bending coupling stiffness</td><td>Nm2</td><td>screen</td></tr><tr><td></td><td></td><td>along principal elastic x- and y-axes</td><td></td><td>Project Info</td></tr><tr><td>TorsionFlapCStiff</td><td>Ccz</td><td>Torsion-Bending coupling stiffness</td><td>Nm2</td><td>Project</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>along principal elastic x-axes</td><td></td><td>Info</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>TorsionEdgeCStiff</td><td>yz</td><td>Torsion-Bending coupling stiffness along principal elastic y-axis</td><td>Nm2</td><td>Project Info</td></tr></table></body></html>
| Property | Variable | Description | Unit | Input Location |
| ------------------------------ | -------- | ------------------------------------------------------------------------ | ---- | --------------- |
| `Bending stiffness about xe` | EIx | Bending stiffness about the principal elastic x-axis | Nm2 | `Blades` screen |
| `Bending stiffness about ye` | EIy | Bending stiffness about the principal elastic y-axis | Nm2 | `Blades` screen |
| `Torsional stiffness about zs` | GIz | Torsional stiffness about the principal shear z-axis (shear centre) | Nm2 | `Blades` screen |
| `Shear stiffness along xe` | GAx | Shear stiffness along the principal elastic x-axis | N | `Blades` screen |
| `Shear stiffness along ye` | GAy | Shear stiffness along the principal elastic y-axis | N | `Blades` screen |
| `Axial stiffness` | EA | Axial stiffness of cross-section | N | `Blades` screen |
| `FlapEdgeCStiff` | Cxy | Bending-Bending coupling stiffness along principal elastic x- and y-axes | Nm2 | `Project Info` |
| `TorsionFlapCStiff` | Cxz | Torsion-Bending coupling stiffness along principal elastic x-axes | Nm2 | `Project Info` |
| `TorsionEdgeCStiff` | Cyz | Torsion-Bending coupling stiffness along principal elastic y-axis | Nm2 | `Project Info` |
# $\textcircled{i}$ NOTE
NOTE
The shear-shear coupling stiffness $G A_{x y}$ and shear-twist coupling stiffness terms $G A_{x}y_{c s}$ and $G A_{y}{\pmb x}_{c s}$ are calculated automatically by Bladed based on the input values.
# Project Info Definition of Bending-Twist and Bending-Bending Coupling Terms
剪切-剪切耦合刚度 $G A_{x y}$ 和剪切-扭转耦合刚度项 $G A_{x}y_{c s}$ 和 $G A_{y}{\pmb x}_{c s}$ 由Bladed基于输入值自动计算。
## Project Info Definition of Bending-Twist and Bending-Bending Coupling Terms
Bending-twist and bending-bending coupling terms can be specified through Project Info. More details on how the inputs are used in the simulation can be found in the theory article Bend-Twist Coupling Relationships in Beam Elements.
You need enough entries for the number of elements in the blade. Each node in the Bladed user interface defines the properties for both the end of one element and the beginning of the next, unless it is a split station so there must be $2N_{e l}-2$ entries, where $N_{e l}$ is the number of blade elements.
弯扭耦合和弯曲-弯曲耦合项可以通过项目信息进行指定。关于输入在模拟中如何使用的更多细节,请参阅理论文章《梁单元中的弯扭耦合关系》。
MSTART EXTRA
您需要足够的条目来对应叶片中的单元数量。在Bladed用户界面中的每个节点都定义了一个单元末端和下一个单元开端的属性除非它是一个分站因此必须有$2N_{e l}-2$个条目,其中$N_{e l}$是叶片单元的数量。
TorsionEdgeCStiff $^*$ list of values TorsionFlapCStiff \* list of values FlapEdgeCStiff \* list of values MEND
For example, for the demo_a turbine (which has 10 blade stations):
# MSTART EXTRA
Torsi0nEdgeCStiff 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
TorsionFlapCStiff 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
FlapEdgeCStiff 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0
MEND
Last updated 05-12-2024
# Blade Section Mass
# Mass
## Blade Section Mass
To accurately model the dynamic behavior of rotor blades, it is essential to define their mass and inertia distribution.This is primarily done in the Blades screen under the Mass and Stiffness tab by enabling the Mass checkbox. Additional options are available to model point masses and blade icing:
To accurately model the dynamic behavior of rotor blades, it is essential to define their mass and inertia distribution. This is primarily done in the Blades screen under the Mass and Stiffness tab by enabling the Mass checkbox. Additional options are available to model point masses and blade icing:
Additional Mass/Inertia Ice on blades
- Additional Mass/Inertia
- Ice on blades
It is also possible to define blade Imbalances and Vibration Dampers, which add to the total blade mass.
为了准确模拟风轮叶片的动态行为,定义其质量和惯性分布至关重要。这主要在“叶片”屏幕的“质量与刚度”选项卡中,通过启用“质量”复选框来实现。 还有其他选项可用于模拟点质量和叶面结冰:
# Blade Mass and Inertia Distribution
- 附加质量/惯性 (Additional Mass/Inertia)
- 叶面结冰 (Ice on blades)
还可以定义叶片不平衡和减振器,这些都会增加叶片的总质量。
## Blade Mass and Inertia Distribution
The following table provides an overview of the inputs required to define the blade sectional mass distribution at each blade station.
以下表格提供了定义风轮叶片在每个叶片位置的截面质量分布所需的输入参数概览。
Table 1: Overview of blade sectional mass distribution inputs in Bladed
<html><body><table><tr><td>Property</td><td>Description</td><td>Unit</td></tr><tr><td>Mass/unitlength</td><td>Mass per unit length at each station along the blade.</td><td>kg/m</td></tr><tr><td>Polar mass moment of inertia/unit length</td><td>The inertial resistance to motion around the principal inertia z-axis.</td><td>kgm</td></tr><tr><td>Radii of gyration ratio</td><td>Ratio of radii of gyration in the principal inertia y- and x-axis directions. See Equation</td><td></td></tr></table></body></html>
| Property | Description | Unit |
| ------------------------------------------ | ----------------------------------------------------------------------------------------------- | ---- |
| `Mass/unit length` | Mass per unit length at each station along the blade. | kg/m |
| `Polar mass moment of inertia/unit length` | The inertial resistance to motion around the principal inertia z-axis. | kgm |
| `Radii of gyration ratio` | Ratio of radii of gyration in the principal inertia y- and x-axis directions. See Equation (1). | |
# Radii of Gyration Ratio
## Radii of Gyration Ratio
If the Radii of gyration ratio is not specified, it defaults to the relative profile thickness given by ratio of Thickness to Chord , but it can be defined explicitly by un-checking the Use default radii of gyration ratio checkbox. It can be calculated with the following equation:
如果未指定转动惯性半径比,则默认值为厚度与弦长的比值,但可以通过取消勾选“使用默认转动惯性半径比”复选框来显式定义。其计算公式如下:
$$
\frac{r_{y}}{r_{x}}=\frac{\sqrt{\frac{I_{y_{i}}}{\mu}}}{\sqrt{\frac{I_{x_{i}}}{\mu}}}
$$
@ -264,39 +345,58 @@ $$
where
$\boldsymbol{r}_{x}$ is the radius of gyration in the principal inertia x-axis direction, $r_{y}$ is the radius of gyration in the principal inertia y-axis direction, $\mu$ is the Mass/unit length ,
# Point Masses
$\boldsymbol{r}_{x}$ 为主惯性x轴方向的旋转半径$r_{y}$ 为主惯性y轴方向的旋转半径$\mu$ 为质量/单位长度。
## Point Masses
If additional point masses are required at specific locations along the blade, click the Additional Mass/Inertia tab and enter the point masses in the table. Additional pitching inertia should also be specified on this screen. Click the Add button to add each point mass, and then enter the data required by clicking on the appropriate entry. Note that masses are automatically sorted by radial position. To remove a mass, highlight it by clicking on its number, and click Delete . For each point mass, the following data is required:
如果需要在叶片特定位置增加额外的质量,请点击“附加质量/惯性”选项卡,并在表格中输入这些质量。在此屏幕上还应指定附加的变桨惯性。点击“添加”按钮添加每个质量点,然后通过点击相应的条目输入所需的数据。请注意,质量会自动按径向位置排序。要删除质量,请通过点击其编号来突出显示它,然后点击“删除”。对于每个质量点,需要以下数据:
Table 2: Overview of point mass inputs in Bladed
<html><body><table><tr><td>Property</td><td>Description</td><td>Unit</td></tr><tr><td>Mass</td><td>The mass required.</td><td>kg</td></tr><tr><td>Distancealong blade</td><td>Position of the mass along the blade, measured from the blade root.</td><td>m</td></tr><tr><td>Chordwise position (x')</td><td>Position of the mass perpendicular to the chord as a percentage of the chord.</td><td>%</td></tr><tr><td>Chordwise position (y')</td><td>Chordwise position of the mass, measured backwards from the leading edge as a percentage of the chord.</td><td>%</td></tr></table></body></html>
| Property | Description | Unit |
| ------------------------- | ------------------------------------------------------------------------------------------------------ | ---- |
| `Mass` | The mass required. | kg |
| `Distance along blade` | Position of the mass along the blade, measured from the blade root. | m |
| `Chordwise position (x')` | Position of the mass perpendicular to the chord as a percentage of the chord. | % |
| `Chordwise position (y')` | Chordwise position of the mass, measured backwards from the leading edge as a percentage of the chord. | % |
The figure below demonstrates how the point masses are positioned relative to the leading edge of theblade.
下图展示了质量点相对于叶片前缘的位置。
![](images/bc2f6f52e725c01ed863ccebb5f9ccd039ecbc45f39ed2ce82aee2b4a379ae99.jpg)
Figure 3: llustration showing the position of point masses relative to the leading edge
Figure 3: illustration showing the position of point masses relative to the leading edge
# Blade lcing
## Blade lcing
Bladed represents blade ice accretion by adding mass to the blade at the aerofoil leading edge. It is defined in the Blades screen under the Blade Information tab. This additional mass will modify the blade mass totals and mass distribution properties such as Polar mass moment of inertia/unit length and the location of the Mass centre .
There are two available methods for the calculation of ice mass on the turbine blades.
Germanischer Lloyd (GL, 2010) IEC 61400-1 edition 4 standard.
- Germanischer Lloyd (GL, 2010)
- IEC 61400-1 edition 4 standard.
For both ice models, the radial distance from the rotor axis is assumed to be a nominal radius i.e. ignoring the effect of rotor cone, blade prebend and blade root mounting angle. The GL 2010 rotorradius $\boldsymbol{R}$ is always half of the Nominal rotor diameter as shown in the Turbine and Rotor screen found in under the Rotor screen in the Bladed GUl. Each blade station radial position r can be calculated using the blade root length added to the blade station Distance along blade root Z-axis at each blade station.
# $\textcircled{i}$ NOTE
NOTE
The change in mass due to blade icing is not reflected in the Turbine Information screen accessed when clicking the Mass totals... . Instead, the mass distribution and blade mass with ice are provided in the verification file .\$vE output when simulations are run.
Ice accretion can also modify the aerodynamic properties of aerofoils. No modification is applied to the aerofoil data that has been input into Bladed. If design standards require these
Ice accretion can also modify the aerodynamic properties of aerofoils. No modification is applied to the aerofoil data that has been input into Bladed. If design standards require these modifications to be made then it is recommended that the user applies these corrections manually to the aerofoil input data.
叶片冰积模型通过在翼型前缘增加质量来模拟叶片冰积,在“叶片”屏幕的“叶片信息”选项卡下定义。 这种额外的质量会修改叶片的总质量和质量分布属性,例如极惯性矩/单位长度和质量中心位置。
modifications to be made then it is recommended that the user applies these corrections manually to the aerofoil input data.
有以下两种可用的计算风电机组叶片冰积的方法:
# GL 2010 Method
- 德国劳氏 (Germanischer Lloyd, GL, 2010)
- IEC 61400-1 第四版标准。
对于冰积模型,假设从风轮中心到径向距离为名义半径,即忽略风轮锥度、叶片预弯和叶片根部安装角度的影响。 GL 2010 风轮半径 $\boldsymbol{R}$ 始终是名义风轮直径的一半如在“风轮”屏幕位于“叶片”GUI 中的“风轮”屏幕下)中所示。 每个叶片位置的径向位置 r 可以通过将叶片根长加到每个叶片位置沿叶片根 Z 轴的距离来计算。
注意:
由于叶片冰积引起的质量变化不会反映在单击“质量总计...”时访问的“机组信息”屏幕中。 质量分布和含冰叶片质量在模拟运行时的验证文件 .\$vE 输出中提供。
冰积还会修改翼型的气动特性。 对输入到叶片模型的翼型数据不会进行修改。 如果设计标准要求进行这些修改,建议用户手动将这些修正应用于翼型输入数据。
### GL 2010 Method
The methodology used for the GL 2010 approach is as follows. The mass distribution increases linearly from zero at the rotor axis to the value $\mu_{e}$ at half the radius and then remains constant up the blade tip. The value $\mu_{e}$ is calculated as follows:
@ -313,7 +413,7 @@ $\rho$ is the ice density with default value $700\;\mathrm{kg/m^{3}}$
The chord length at the blade tip is an input in Bladed. The maximum chord value is computed using the values from the Blade Geometry information input by the user.
# IEC Ed 4 Method
### IEC Ed 4 Method
The methodology used for the IEC Ed 4 is to apply a mass distribution that increases linearly from zero at the rotor axis to the maximum value at the blade tip. The ice mass distribution is calculated Using:
@ -329,27 +429,29 @@ $_r$ is the radial position measured from the rotor axis in m.
The parameter $C_{85}$ is calculated by Bladed based on the geometry information input by the user. Last updated 13-12-2024
# Blade Local Element Axes System
# Local Element Frame Orientation
## Blade Local Element Axes System
Consider a blade element with an inboard node A and further outboard node B, as shown in Figure 1. The difference in coordinates between points A and are expressed in the Root Axes coordinates as $r_{x},r_{y}$ and $\boldsymbol{r}_{z},$ which correspond to the difference in the variables Neutral axis $(\mathsf{x})$ Neutral axis (y) and Distance along blade root Z axis respectively.To fully define the blade local element coordinate system, two of the three vectors that form the coordinate basis are calculated by Bladed from the user inputs. The element coordinate system is defined as shown in red in the diagram below. The element $\times$ direction vector is known based on the difference in positions of nodes A and B. The local element z direction needs to be calculated to fully define the local element coordinate system for the structural model.
如图1所示考虑一个叶片其内侧节点A和进一步外侧节点B。A点和B点坐标之间的差值在根轴坐标系下分别表示为$r_{x},r_{y}$和$\boldsymbol{r}_{z}$分别对应于中性轴x、中性轴y和沿叶片根轴Z方向的距离。为了完全定义叶片局部单元坐标系Bladed根据用户输入计算出构成坐标基的三个向量中的两个。单元坐标系定义如下图中红色部分所示。单元的×方向向量根据节点A和B的位置差已知。需要计算局部单元的z方向向量才能完全定义结构模型的局部单元坐标系。
![](images/092e4b3851df5c65680478b825ea34e4b050992cfc34a048597a3e322679df23.jpg)
Figure 1: Definition of the blade local element x direction
The element local z-direction vector is calculated by applying 3 successive rotations to the local element z-axis. The 3 rotations are about the blade root axes $\mathsf{X},\mathsf{Y}$ and Z directions. The element local z-axis is assumed initially to be aligned with the $X_{r o o t}$ direction.
# Rotation due to principal elastic axes orientation
叶片根部轴向$\mathsf{X},\mathsf{Y}$和Z方向上依次进行三次旋转计算出单元局域Z向矢量。单元局域Z轴最初假定与$X_{r o o t}$方向对齐。
## Rotation due to principal elastic axes orientation
The first rotation is a rotation about an axis parallel to the $Z_{r o o t}$ axis. The angle of rotation is the Principal elastic axes orientation as specified in the blade inputs screen. This is illustrated in Figure 2.
首次旋转是绕着与 $Z_{r o o t}$ 轴平行的轴进行的旋转。旋转角度为叶片输入界面中指定的弹性主轴方向。如图2所示。
![](images/91ff77f81926527d5f74209eb18e4cce08e5d6493f3ccd7e87e9784564ea9bbd.jpg)
Figure 2: Rotation of local element z direction due to principal elastic axes orientation
# Rotation due to prebend
Next,the vector $z_{1}$ is rotated by the prebend angle, by rotating about an axis parall to the $Y_{r o o t}$ axis, as illustrated in Figure 3.
Next, the vector $z_{1}$ is rotated by the prebend angle, by rotating about an axis parallel to the $Y_{r o o t}$ axis, as illustrated in Figure 3.
接着,向量 $z_{1}$ 绕平行于 $Y_{root}$ 轴的轴旋转旋转角度为预弯角度如图3所示。
![](images/399770a68cd1de05543e3b1022dcee54f3b980ba63aa7cfa0859f1d05c485e45.jpg)
Figure 3: Rotation of blade local element z-axis by prebend angle
@ -361,7 +463,8 @@ Finally, the vector $z_{1}$ is rotated by the sweep angle, by rotating about an
Last updated 13-12-2024
# Overview of The Blade Flexibility Options
# Flexibility Options
## Overview of The Blade Flexibility Options
Bladed utilises a finite element (FE) model to simulate the flexibility of the blades. Additionally, it can incorporate a modal reduction technique to enhance computational efficiency. To account for the non-linear behaviour of larger blades, Bladed offers several geometric stiffness models and supports the definition of multi-part blades.
@ -373,29 +476,49 @@ Users have the option to model the blades in three different ways. These are loc
Changing between these three options allows for a convenient way of changing between rigid, modal reduced, or complete finite element blades.
Bladed 利用有限元 (FE) 模型来模拟叶片的柔性。此外它还可以采用模态简化技术以提高计算效率。为了考虑较大叶片的非线性行为Bladed 提供多种几何刚度模型,并支持定义多段叶片。
用户可以选择以三种不同的方式对叶片进行建模。这些选项位于 GUI 的柔性设置界面,包括:
· 有限元 (无模态简化):此方法采用有限元分析对叶片进行结构建模,不进行模态简化。
· 模态简化:此方法将有限元模型与模态简化相结合,对叶片的结构进行建模。
· 刚性:禁用“启用柔性”选项,使叶片完全刚性。
在这些三种选项之间切换,提供了一种方便的方式,可以在刚性、模态简化或完整的有限元叶片之间进行切换。
Last updated 13-12-2024
# Finite Element Model and Modal Reduction
## Finite Element Model and Modal Reduction
The structural formulation in Bladed is based on the finite element method (FEM), which is a computational technique used for solving structural dynamics problems. It discretises a structural system into smaller elements, each with specific physical properties (such as density, Young's modulus, shear modulus and so on). These elements are interconnected at discrete points called nodes, forming the overall structural model which is referred to as the flexible body. An illustration of how the blade is discretised into a flexible body can be seen in Figure 1 using a fixed boundary condition. For further details refer to the introduction to flexible components section.
Bladed的结构公式基于有限元法FEM这是一种用于求解结构动力学问题的计算技术。它将结构系统离散化为更小的单元每个单元具有特定的物理属性例如密度、杨氏模量、剪切模量等。这些单元在离散点称为节点相互连接形成整体结构模型即柔性体。如图1所示可以使用固定边界条件来展示叶片如何被离散化为柔性体。有关更多详细信息请参阅柔性部件介绍部分。
![](images/6d1c0fb8494337058443325adbf994c34d1fff80aa661fe4906acd9bc46c3d1f.jpg)
Figure 1: llustration of the blade discretisation into finite elements.
Figure 1: illustration of the blade discretisation into finite elements.
With the basic finite element method the flexible body is described by six degrees of freedom at each node, which means that the complete flexible body will have $6(n-1)$ degrees of freedom taking into account that the displacement at the proximal node is assumed to vanish (fixed boundary condition). Figure 2 shows the degrees of freedom at each node of a flexible body consisting of a single beam in three dimensions.
采用有限元方法,柔性体在每个节点具有六个自由度,这意味着完整的柔性体将拥有 $6(n-1)$ 个自由度这考虑到的是邻近节点位移被假定为零固定边界条件。图2显示了三维单个梁柔性体中每个节点的自由度。
![](images/89cb461ea9a489fc18ef833084dc90815ac0f584c5b9dfa729cde22183ca65e6.jpg)
Figure 2: llustration of a beam element with the nodal degrees of freedom.
Figure 2: illustration of a beam element with the nodal degrees of freedom.
The flexible body of the blade is based on the structural properties of the blade sections, such as stiffness and mass, which are defined in specific blade section coordinate systems. This will create 6(Sections - 1) degrees of freedom, which can significantly increase the computational effort due to the large number of freedoms involved for long and complex blades. Hence a method to effectively reduce the number of freedoms while still keeping the fidelity and accuracy is preferable and Bladed utilises the method of Modal Reduction.
The user can enable the complete finite element model by using the Finite element (no modal reduction) option found in the Flexibility screen. However, this is not recommended from a calculation speed perspective.
# Modal Reduction
叶片柔性体基于叶片段的结构特性,例如刚度和质量,这些特性定义在特定的叶片段坐标系中。这将产生 6(段数 - 1) 的自由度对于长而复杂的叶片由于涉及大量的自由度这可能会显著增加计算量。因此一种在保持保真度和精度的同时有效减少自由度的方法是首选Bladed 采用模态简化法。
用户可以通过“挠曲性”屏幕中的“有限元 (无模态简化)”选项启用完整的有限元模型。但从计算速度的角度来看,不建议这样做。
## Modal Reduction
An efficient way of increasing the calculation speed is to reduce the number of degrees of freedom that describes the present deformation state of the system by eliminating high frequency modes that do not contribute significantly to the dynamics of the body. This is achieved by expressing the current deformation state in terms of a number of so-called mode shape functions that describe a pre-calculated pattern of the nodal coordinates. This functionality can be switched on by using the Modal reduction option in the Flexibility screen. The number of included mode shapes is determined by the input Number of modes on part , where the "part" refers to the multipart blade definition.
# Mode Shapes
一种提高计算速度的有效方法是通过消除对body动力学贡献不显著的高频模态来减少描述系统当前变形状态的自由度数量。这可以通过用一系列所谓的模态函数来表达当前的变形状态来实现这些函数描述了预先计算出的节点坐标模式。 这种功能可以通过在“挠曲度”屏幕中的“模态简化”选项中启用。 包含的模态数量由部件上的“模态数量”输入决定,其中“部件”指的是多叶片叶片定义。
### Mode Shapes
The flexible body of the blades can be represented as a finite element model with fixed boundary condition at one end, as depicted in Figure 1. By performing an eigenvalue analysis on this structure, we can compute a set of mode shapes corresponding to the number of degrees of freedom in the model. The eigenvectors of the analysis correspond to the mode shapes which
@ -403,28 +526,41 @@ describe the different vibrational patterns. The resulting eigenvalues correspon
The types of mode shapes of a blade are (see Figure 4 for visualisation):
· Flapwise : Refers to the bending of the blade about the Y-axis. Imagine the blade flexing up and down like a flap. This will often be the most flexible degree of freedom with the lowest frequency.
· Edgewise : Involves bending of the blade about the X-axis. Picture the blade bending from side to side. Often stiffer than the flapwise direction.
· Torsional : Occurs when the blade twists around its longitudinal axis (Z-axis). Think of the blade twisting like a corkscrew, changing the angle of attack.
· Axial : It refers to changes along the blade's axial direction (Z-axis). Axial deformation is less commonly discussed in the context of wind turbine blades as it is often a very stiff degree of freedom, having a high frequency and low impact to the overall dynamics.
- Flapwise : Refers to the bending of the blade about the Y-axis. Imagine the blade flexing up and down like a flap. This will often be the most flexible degree of freedom with the lowest frequency.
- Edgewise : Involves bending of the blade about the X-axis. Picture the blade bending from side to side. Often stiffer than the flapwise direction.
- Torsional : Occurs when the blade twists around its longitudinal axis (Z-axis). Think of the blade twisting like a corkscrew, changing the angle of attack.
- Axial : It refers to changes along the blade's axial direction (Z-axis). Axial deformation is less commonly discussed in the context of wind turbine blades as it is often a very stiff degree of freedom, having a high frequency and low impact to the overall dynamics.
In the single-part blade model, only normal modes are used. When the multi-part blade model is selected, the inner parts use both normal and attachment modes, while the outermost part uses only normal modes. For further details, please see the normal and attachment modes and blade mode shapes theory sections.
An illustration of the 1st and 2nd edgewise mode shapes can be seen in Figure 3 and different mode shape types can be seen in Figure 4.
叶片的柔性体可以被表示为具有固定端部边界条件的有限元模型如图1所示。通过对该结构进行**特征值分析**,我们可以计算出一组与模型自由度数对应的模态。**分析的特征向量对应于描述不同振动模式的模态。得到的特征值对应于相关的频率**。
叶片的模态类型包括见图4进行可视化
- 挥舞 (Flapwise)指叶片绕Y轴的弯曲。想象叶片像襟翼上下弯曲。这通常是最灵活的自由度**且频率最低**。
- 摆振 (Edgewise)涉及叶片绕X轴的弯曲。想象叶片从侧向侧弯曲。通常比挥舞方向更刚性。
- 扭转 (Torsional)当叶片绕其纵向轴Z轴扭转时发生。想象叶片像螺旋桨一样扭转改变攻角。
- 轴向 (Axial)指叶片轴向方向上的变化Z轴。在风电机组叶片上下文中轴向变形较少讨论因为它通常是一个非常刚性的自由度具有较高的频率和对整体动力学的影响较小。
在单体叶片模型中,仅使用简正模态。当选择多体叶片模型时,内部分件使用简正模态和连接模态,而最外部分件仅使用简正模态。有关更多详细信息,请参阅简正模态和连接模态以及叶片模态形状理论部分。
图3中可以见到第1和第2摆振模态的示意图不同模态类型的示意图见图4。
![](images/48221080de4e95447fb3332e386ea33e510a1b118829a4b7fb80befbb8015ed3.jpg)
Figure 3: llustration of the 1st and 2nd edgewise mode shapes for a straight blade.
Figure 3: illustration of the 1st and 2nd edgewise mode shapes for a straight blade.
![](images/897f607534aab46bbdde6e0c21d8225f8da4770a0065b57d9c8a38be0c09ff43.jpg)
Figure 4: Left to right: Flapwise, edgewise, torsional, axial
Last updated 13-12-2024
# Multi-Part Blades
## Multi-Part Blades
The simplest approach used in Bladed to model the blade flexibility is to model the blade as a single linear finite element body. Several linear mode shapes that include deflections of the whole blade are calculated to account for blade deflection. This is illustrated in Figure 1.
Bladed中模拟叶片柔性的最简单方法是将叶片建模为一个单一的线性有限元体。为了考虑整个叶片的变形需要计算出若干线性模态其中包括挥舞、摆振。如图1所示。
The simplest approach used in Bladed to model the blade flexibility is to model the blade as a single linear finite element body. Several linear mode shapes that include deflections of the wholeblade are calculated to account for blade deflection. This is illustrated in Figure 1.
Single flapwise mode
![](images/57a0c01d42e6aa97d2f2cefb14762665fce02df79dd207f28e412400391281c4.jpg)
Figure 1: Linear single part blade
@ -433,27 +569,35 @@ Using whole-blade linear modes results in fast simulations as the number of degr
One method to maintain the small angle assumption for the blade modes is to split the blade into several linear parts. Figure 2 shows a schematic of modelling a blade using two linear parts.
使用全叶片线性模态计算可以实现快速模拟,因为建模叶片变形所需的自由度较少,固有频率也相对较低。这种方法通常能准确地表示叶片的动力学特性。然而,为了使这种方法有效,叶片的变形必须很小。许多现代叶片设计都具有很高的柔性,这意味着线性模型中的小变形假设可能失效。这可能导致预测叶片动力响应时出现不准确,尤其是在叶片扭转方面。
一种保持叶片模态小角度假设的方法是将叶片划分为几个线性部分。图2显示了使用两个线性部分对叶片进行建模的示意图。
![](images/3c810e19ec30b80909d3cdcaa799deb6f89c0221e8536d52c7e110b26f981d39.jpg)
Figure 2: Non-linear wind turbine blade model using two linear parts
The outer blade part can undergo a rigid body rotation based on the deflection and rotation of the inner part, as well as including linear mode deflections. The deflections within each linear part are therefore smaller than if using a single linear blade part. Splitting the blade into several parts allows for non-linear load transfer between each linear part, and a more accurate model of the blade deflection.
# Specifying Blade Parts
叶片外段可以根据内段的变形和转动进行刚体旋转,并包含线性模态变形。因此,每个线性段变形的幅度小于使用单个线性叶片的情况。将叶片分割成几个叶片外段,可以实现各叶片外段之间的非线性载荷传递,并获得更准确的叶片变形模型。
### Specifying Blade Parts
The user needs to specify the boundaries of the parts in the blade. This is done in the Flexibility SCreen within the BladePartModalModeller,where the First station and Last station are required inputs. An illustration of a blade with 3 parts can be seen in Figure 3.
用户需要指定叶片各部分的边界。这在叶片模态建模器BladePartModalModeller的柔度界面Flexibility Screen中完成其中起始位置First station和结束位置Last station是必需的输入。图3展示了一个划分为3部分的叶片的示意图。
![](images/eb7bedb2d94e4b2e4837eccae9a4f87a4f5bbff74a4c92fe8729fb08eec37fdd.jpg)
Figure 3: llustration of blade with 3 parts and boundaries
Figure 3: illustration of blade with 3 parts and boundaries
The number of included modes per part is specified using Number of modes on part property which is available for each added part. The user needs to carefully validate the included wholeblade modes and consider whether it includes the wanted dynamic responses such as torsional or flapwise modes etc.
For maximum accuracy, enough blade parts should be specified to ensure that deflections remain small within each blade part. When performing convergence tests for multi-part blade models, it is recommended to run some time domain tests with the maximum number of blade parts in order to establish a baseline converged dynamic response.
每个部件包含的模态数量通过部件属性“Number of modes”来指定该属性适用于每个添加的部件。用户需要仔细验证包含的整体叶片模态并考虑是否包含所需的动态响应例如扭角、挥舞模态等。
# $\textcircled{i}$ NOTE
为了获得最大的精度,应指定足够的叶片部件,以确保每个叶片部件内的变形保持在较小范围内。在进行多部件叶片模型的收敛性测试时,建议运行一些时域测试,使用最大数量的叶片部件,以建立基准收敛的动态响应。
NOTE
For blades with more than one part, it is recommended to use the implicit Newmark- $\cdot\upbeta$ integrator to improve simulation speed while retaining accurate solutions.
对于由多部分组成的叶片建议使用隐式Newmark-·β积分器,以提高仿真速度的同时,保持精确的解。
# Note on Damping and Multi-Part Blades
### Note on Damping and Multi-Part Blades
The user must specify whole-blade modes even when using multi-part blades, as Bladed will calculate the appropriate damping ratios for the individual blade parts based on the specified whole-blade damping. This is also valid for Finite element (no modal reduction) models, as Bladed will convert the whole-blade shapes into finite element degrees of freedom. Explained in further details below.
@ -463,6 +607,15 @@ To overcome this difficulty, Bladed calculates whole-blade modes for the multi-p
The number of whole-blade modes for the blade is equal to the total number of modes on all of the blade parts. For example, for a blade split into 4 parts with 8 modes on each part, there are 32 whole-blademodes.
用户必须指定整个叶片的模态即使在使用多段叶片时因为Bladed会根据指定的整个叶片阻尼计算各个叶片部分的适当阻尼比。这对于有限元无模态简化模型也有效因为Bladed会将整个叶片的形状转换为有限元自由度。 详细说明如下。
当叶片被分割成几个线性部分时会为每个线性部分计算模态形状或有限元自由度。在Bladed的模态结构动力学公式中必须为每个叶片部分的每个模态指定模态阻尼。然而通常叶片设计者并不知道这些个别模态的阻尼值因为这些个别叶片部分的模态在现实中无法单独观察以测量其阻尼。
为了克服这种困难Bladed通过将所有叶片部分一起求解特征值问题计算多段叶片的整个叶片模态。整个叶片模态由各个叶片部分模态的贡献组成。如果每个部分都指定了足够数量的模态则整个叶片模态应具有与线性叶片模型中通常找到的整个叶片模态形状和频率非常相似。然后可以为整个叶片模态指定阻尼比Bladed将计算各个叶片部分的适当阻尼比。
叶片的整个叶片模态数量等于所有叶片部分的模态总数。例如对于一个被分割成4部分每个部分有8个模态的叶片共有32个整个叶片模态。
Last updated 13-12-2024
# Geometric Stiffness Models
@ -471,16 +624,29 @@ Geometric stiffening models account for changes in structural response due to st
There are two geometric stiffness settings available for the blades:
Axial loads only : The effect of internal forces along the element axis on dynamic response is included. This primarily accounts for "centrifugal stiffening" in the blade dynamic response. Geometric stiffness axial and shear forces are included when calculating the internal member loads. See Geometric stiffness due to element axial forces for more details. ·Full model with orientation correction : The effect of internal axial and shear forces on dynamic response is included. This model can enhance the prediction of torsion deflection in the blade. This model should be used with caution as it is only accurate when deflections within each blade part remain small (less than $\mathord{\sim}5\mathord{-}7$ degrees). If several blade parts are used then this model can be activated to improve the accuracy of the solution, and will allow use of fewer blade parts than when using the AxialLoadsonly model. See Geometric stiffness due to element shear forces for more details.
- Axial loads only : The effect of internal forces along the element axis on dynamic response is included. This primarily accounts for "centrifugal stiffening" in the blade dynamic response. Geometric stiffness axial and shear forces are included when calculating the internal member loads. See Geometric stiffness due to element axial forces for more details.
- Full model with orientation correction : The effect of internal axial and shear forces on dynamic response is included. This model can enhance the prediction of torsion deflection in the blade. This model should be used with caution as it is only accurate when deflections within each blade part remain small (less than $\mathord{\sim}5\mathord{-}7$ degrees). If several blade parts are used then this model can be activated to improve the accuracy of the solution, and will allow use of fewer blade parts than when using the AxialLoadsonly model. See Geometric stiffness due to element shear forces for more details.
When evaluating the geometric stiffness effect of shear forces, it is crucial to consider to account for the change in orientation of the torsion axis of the blade elements due to deflection.
几何刚度模型考虑了结构变形(相对于参考/未变形状态引起的结构响应变化。Bladed 提供包含单元轴向和剪切内力贡献的模型。这些模型可以在“灵活性”屏幕的“模拟灵活性”设置 -> “叶片几何刚度模型”下选择。
针对叶片,有以下两种几何刚度设置:
- 仅轴向载荷:包含单元轴向方向上的内力对动态响应的影响。这主要考虑了叶片动态响应中的“离心刚度”。在计算内部构件载荷时,包含几何刚度轴向和剪切力。详情请参见“由单元轴向力引起的几何刚度”。
- 完整模型,带方向校正:包含内轴向和剪切力对动态响应的影响。该模型可以增强对叶片扭转变形的预测。使用该模型时应谨慎,因为它仅在每个叶片部分的变形保持较小(小于约 5-7 度)时才准确。如果使用多个叶片部分,则可以激活该模型以提高解决方案的准确性,并允许使用比“仅轴向载荷”模型更少的叶片部分。详情请参见“由单元剪切力引起的几何刚度”。
在评估剪切力引起的几何刚度效应时,至关重要的是考虑由于变形引起的叶片单元扭转轴的方向变化。
Last updated 13-12-2024
# Whole-Blade Damping
Bladed is able to introduce modal damping by applying a damping ratio for each whole-blade mode. The user can choose how many whole-blade modes to specify damping ratios for using the Modes with damping defined variable in the Whole-blade modes found in the Flexibility screen. Any higher frequency modes will be assigned frequency proportional damping, based on the damping of the highest mode with damping defined. This approach applies high damping to high frequency modes and effectively excludes the higher whole-blade modes from the blade dynamic response, so that they do not cause erroneous instability. See the theory section description of blade damping for more details. Note that Bladed will then automatically calculate the damping values to assign to each individual blade part (see multi-part blade definition).
叶片能够通过为每个整体叶片模态施加阻尼比来引入模态阻尼。用户可以使用“挠曲性”屏幕中“整体叶片模态”变量定义的“具有阻尼的模态”来指定要施加阻尼比的整体叶片模态数量。所有更高频率的模态将被分配频率比例阻尼基于已定义阻尼的最高模态的阻尼值。这种方法对高频模态施加高阻尼有效地将更高的整体叶片模态排除在叶片动力响应之外从而避免产生错误的失稳现象。有关叶片阻尼理论的更多细节请参阅理论部分说明。请注意Bladed 将自动计算要分配给每个单独叶片部分的阻尼值(参见多部件叶片定义)。
<html><body><table><tr><td colspan="8">Modal analysis results and damping inputs</td></tr><tr><td>Whole-blade modes</td><td colspan="5">Tower modes</td><td></td></tr><tr><td></td><td colspan="4"></td><td>View blade mode</td><td></td></tr><tr><td colspan="6">Modes with damping defined 10</td><td rowspan="8"></td></tr><tr><td>ID</td><td>Damping Ratio (%)</td><td>Name</td><td>Modal Frequency (Hz)</td><td></td></tr><tr><td></td><td>0.491</td><td>1st flapwise normal mode</td><td>0.3851219</td><td></td></tr><tr><td>2</td><td>0.507</td><td>1st edgewise normal mode</td><td>0.5186781</td><td></td></tr><tr><td>3</td><td>1.336</td><td>2nd flapwise normal mode</td><td>1.059886</td><td></td></tr><tr><td>4</td><td>1.364</td><td>2nd edgewise normal mode</td><td>1.487568</td><td></td></tr><tr><td>5</td><td>2.749</td><td>3rd flapwise normal mode</td><td>2.21401</td><td></td></tr><tr><td>6</td><td>2.857</td><td>3rd edgewise normal mode</td><td>3.203897</td><td></td></tr><tr><td>7</td><td>3.555</td><td>4th flapwise normal mode</td><td>3.676734</td><td></td></tr><tr><td>8</td><td>1.896</td><td>5th flapwise normal mode</td><td>3.980007</td><td></td></tr><tr><td>9</td><td>5.689</td><td>6th flapwise normal mode</td><td>5.300175</td><td></td></tr><tr><td>10</td><td>5.109</td><td>7th flapwise normal mode</td><td>5.769784</td><td></td></tr><tr><td>11</td><td>Frequency proportionall</td><td>1st torsional normal mode</td><td>6.413283</td><td></td></tr><tr><td>12</td><td>Frequency proportional</td><td>8th flapwise normal mode</td><td>7.315367</td><td></td></tr><tr><td>13</td><td>Frequency proportional</td><td>4th edgewise normal mode</td><td>8.718863</td><td></td></tr><tr><td>14</td><td>Frequency proportional</td><td>9th flapwise normal mode</td><td>9.455891</td><td></td></tr><tr><td>15</td><td>Frequency proportional</td><td>10th flapwise normal mode</td><td>9.527341</td><td></td></tr><tr><td>16</td><td>Frequency proportional</td><td>11th flapwise normal mode</td><td>11.50475</td><td></td></tr><tr><td>17</td><td>Frequency proportional</td><td>5th edgewise normal mode</td><td>12.21184</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr></table></body></html>
Figure 1: Example of whole-blade modes screen for specifying damping ratios for each mode Last updated 13-12-2024
@ -488,27 +654,33 @@ Figure 1: Example of whole-blade modes screen for specifying damping ratios for
# Output of Blade Loads
View available Blade outputs ,as seen in Figure 1, by clicking the Calculation Outputs... button on the Calculations screen. The outputs must be for either the First blade, All blades , or not at all( None ). The output settings defined here do not affect the Aerodynamic Information , Performance Coefficients and Steady Power Curve calculations, as they produce a pre-defined set of outputs. A customised blade load output file can also be created and is described in the section on Load Configuration File.
点击“计算输出...”按钮可在“计算”屏幕中查看可用的叶片输出如图1所示。输出必须针对“首叶片”、“所有叶片”或“无”None。此处定义的输出设置不会影响气动信息、性能系数和稳态功率曲线的计算因为它们会产生预定义的输出集。还可以创建自定义的叶片载荷输出文件其详细信息请参见“载荷配置文件的说明”部分。
![](images/6888e33ebcba011d4005e6543319e51ee10295490e27fa883b79a2581dcc5753.jpg)
Figure 1: Calculation Output Specification screen for Blade Outputs
Read more about the coordinate systems where the loads outputs are available in the following links:
Principal elastic axes Root axes
Aerodynamic axes User axes
- Principal elastic axes
- Root axes
- Aerodynamic axes
- User axes
For each of the output categories in the Blade outputs ,the information may be generated at any or all of the blade stations. Click Select Output Stations to determine which information is required at which stations. Click Add to define additional points where interpolated loads will be Output.
对于叶片输出中的每个类别,信息可能在任何或所有叶片站生成。点击“选择输出站”以确定需要在哪些站生成哪些信息。点击“添加”以定义额外的插值载荷输出点。
<html><body><table><tr><td colspan="7">Blade Outputs</td></tr><tr><td>Distance along blade, m</td><td>Blade station number</td><td>Aero data?</td><td>Blade loads?</td><td>Blade motion?</td><td></td><td></td></tr><tr><td>0</td><td></td><td>Yes</td><td>Yes</td><td>Yes</td><td rowspan="12"></td></tr><tr><td>2.756</td><td>2</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>4.1343</td><td>3</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>5.51253</td><td>4</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>6.89437</td><td>5</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>9.65766</td><td>6</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>12.4153</td><td>7</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>15.1714</td><td>8</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>17.9279</td><td>9</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>20.6845</td><td>10</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>23.441</td><td>11</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>26.1973</td><td>12</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>28.9534</td><td>13</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>PP</td><td colspan="6"></td></tr><tr><td colspan="6"></td><td>OK</td><td>Cancel</td></tr></table></body></html>
It is important to note that the principal elastic axes and root axes stations coincide with the underlying finite beam element model nodes. The root axes coordinates have the same origin rotated to align with the blade root. The aerodynamic and user axes potentially have origins that do not coincide with the underlying finite element beam model nodes. These load outputs are found by transforming the finite element loads (in the principal elastic axes coordinates) to the aerodynamic or user axis coordinate centre. The transformation accounts for additional $M_{x}$ and $M_{y}$ bending moments that are generated at the aerodynamic or user axis centre by the element axial force $F_{z}$ in the principal elastic axes system, due to the offset in the aerofoil plane between these two coordinate centres. This effectively estimates the load that would have occurred if the load was carried through an axis at the aerodynamic axis or user axis centre. There is some approximation in this method as the aerodynamic and user axis loads are not the true load path. Any changes to the blade dynamics (e.g. deflections or loads) that might result from such a change in load path are not accounted for.
An additional set of blade root loads, using a coordinate system fixed to the blade root in the hub (i.e., inboard of the pitch bearing), is output as part of the Hub loads (Rotating frame) output group found in Other outputs , as seen in Figure 1. For more details on this coordinate system, refer to the article on Rotating Hub Loads.
需要注意的是,主弹性轴和根轴站点的坐标与底层有限梁单元模型的节点重合。根轴坐标具有与叶片根对齐的旋转原点。气动轴和用户轴的坐标原点可能与底层有限梁单元模型的节点不重合。这些载荷输出是通过将有限单元载荷(以主弹性轴坐标表示)变换到气动轴或用户轴坐标中心获得的。这种变换考虑了由于气动面之间这两个坐标中心存在偏移,而气动轴或用户轴中心产生的附加 $M_{x}$ 和 $M_{y}$ 弯矩,这些弯矩是由单元轴向力 $F_{z}$(在主弹性轴系中)产生的。这实际上是估计了如果载荷通过气动轴或用户轴中心的一条轴传递,将会发生的载荷。由于气动轴和用户轴的载荷并非真实的载荷路径,因此这种方法存在一定的近似。任何可能因载荷路径变化而导致的叶片动力学变化(例如变形或载荷)均未考虑在内。
另一组叶片根载荷使用固定于风轮中心即偏航轴内侧的叶片根坐标系作为“其他输出”中的“风轮载荷旋转坐标系”输出组的一部分如图1所示。有关此坐标系的更多详细信息请参阅关于旋转风轮载荷的文章。
# Load Configuration File
A blade manufacturer may specify a customised blade load output format, for a particular blade, in an XML format load configuration file. Customised blade load output files can then be generated, from a dynamic simulation, by selecting the Load configuration checkbox and specifying the load configuration file in the XML Load specification field on the Blade Outputs tab of the Calculation Output Specification window, as shown below (this window can be opened using the Calculation Outputs.. button on the Calculations window, or the Outputs.. Option of the Specify menu.).
叶片制造商可能会针对特定叶片,在 XML 格式的载荷配置文件的载荷输出格式中指定自定义内容。 然后,可以通过在计算输出规范窗口的“叶片输出”选项卡中选中“载荷配置”复选框并在 XML 载荷规范字段中指定载荷配置文件的位置来,从动态模拟中生成自定义叶片载荷输出文件(该窗口可以通过“计算输出..” 按钮在“计算”窗口中打开,或通过“指定”菜单的“输出..” 选项打开)。
![](images/29c2ca8b57ecb66c9fe401917bb13c8cb2e40ee7eeda8a6fb8d54512b80e6cf8.jpg)
Figure 4: Blade load configuration file
@ -518,13 +690,16 @@ Last updated 13-12-2024
# Blade Loads Outputs at Principal Elastic Axes System
· The positive z-axis follows the local deflected neutral axis at each blade station towards the blade tip. · The positive y-axis is defined by the principal elastic axes orientation. · The positive x-axis is orthogonal to the y and z and follows the right-hand rule.
· The positive z-axis follows the local deflected neutral axis at each blade station towards the blade tip. · The positive y-axis is defined by the principal elastic axes orientation.
· The positive x-axis is orthogonal to the y and z and follows the right-hand rule.
· 正向Z轴沿叶片展向各叶片位置的中性轴指向叶片梢端。
· 正向Y轴由主弹性轴方向定义。
· 正向X轴垂直于Y轴和Z轴并遵循右手螺旋定则。
![](images/24f758db790733a60dc39f539c6d58f80746a4808794d81bdeac20d392c2d84a.jpg)
Figure 1: Blade principal elastic axes coordinate system
Note that there is a subtle difference between the principal elastic axes coordinate system and the underlying blade local element axes coordinate system, whereas the latter is used to calculate the orientation of the principal elastic axes. The Principal elastic axes orientation is calculated by taking the average orientation of the two blade elements at the node where the elements join. This is illustrated in Figure 2. The two adjoining local element frames are shown in green and red. The principal elastic axes output frame is shown in blue.
需要注意的是主弹性轴坐标系与底层叶片局部单元坐标系之间存在细微差别而后者用于计算主弹性轴的取向。主弹性轴的取向是通过计算节点处两个叶片单元的平均取向来确定的如图2所示。相邻的两个局部单元坐标系分别以绿色和红色显示主弹性轴输出坐标系以蓝色显示。
![](images/aa7b6f1ae2cd5436fa1cdeb875823bd894b22f669100b6dddb0ee37d77407c8f.jpg)
Figure 2: Principal elastic axes and local element axes orientations
@ -534,7 +709,7 @@ Last updated 13-12-2024
# Blade Loads Outputs at Root Axes System
The body-fixed coordinate system of the blade is the root axes coordinate system. The blade root coordinate system serves as the reference frame for defining the blade's geometry. The orientation of the axes is fixed to the blade root and does not rotate with either twist or blade deflection. The axis set does rotate about the z axis with pitch. For output loads, the origin of the axes is on the neutral axis at each local deflected blade station.
叶片体固定坐标系为根轴坐标系。根轴坐标系作为定义叶片几何形状的参考系。坐标轴方向固定于叶片根部不随扭角或叶片变形而旋转。轴系会绕z轴随变桨角度旋转。对于输出载荷坐标原点位于每个局部变形叶片位置的中性轴上。
![](images/4814993dbb8ef6b27ab526dd8bcdb6bb00a83a5402d1c902c6485ce05406a004.jpg)
Figure 1: Blade root axes coordinate system
@ -548,6 +723,13 @@ Last updated 13-12-2024
For output loads, the origin of the axes is on the chord line at $25\%$ chord from the leading edge at each local deflected blade station. In Figure 1 the $y_{r}$ -component points towards the trailing edge of the airfoil. However, for anti-clockwise configurations the $y_{r}$ -component points towards the leading edge as the airfoil is rotated. Thus the orientation of the aerodynamic axes does not change between clockwise and anti-clockwise rotors.
· x轴垂直于当地气动弦线。
· 正向y轴沿当地气动弦线从前缘到后缘排列。
· z轴平行于每个叶片位置的当地变形中性轴并向叶片末端增加。
对于输出载荷坐标原点位于每个当地变形叶片位置的弦线上距离前缘弦长25%处。如图1所示$y_r$分量指向翼型的后缘。然而,对于逆时针配置,由于翼型旋转,$y_r$分量指向前缘。因此,气动坐标轴的方向在顺时针和逆时针风轮之间不会改变。
![](images/54bb365c212355daaef3331aa88055ba2e977e06a69ded5b94101216b9dce863.jpg)
Figure 1: Blade aerodynamic axes coordinate system
@ -555,10 +737,12 @@ Figure 1: Blade aerodynamic axes coordinate system
# Blade Loads Outputs at User Axes System
The user axes system is a custom coordinate system that can be defined by the user for outputting blade loads. It is defined in the Blades screen in the Blade Geometry tab. At the bottom of the screen it is possible to define the user defined axis directions for the z-axis and y-axis. The y-axis can follow either the untwisted root y-axis, principal elastic y-axis or the aerodynamic twist. The zaxis options and their implications are explained below.
用户坐标系是一种自定义坐标系,可由用户定义以输出叶片载荷。它在“叶片几何”选项卡中的“叶片”屏幕中定义。在屏幕底部,可以定义用户自定义的 z 轴和 y 轴方向。y 轴可以跟随未扭转的根部 y 轴、主弹性 y 轴或气动扭角。z 轴选项及其含义如下所述。
# User axes: Z-axis follows neutral axis or root z-axis #
The origin of the axes is specified as percentages of chord, parallel and perpendicular to the chord at each blade station as shown in Figure 1. The user can specify whether the z-axis is parallel to the root axis or the local neutral axis. Similarly, the user can independently specify whether the y-axis is aligned to the principal elastic axes orientation, the aerodynamic twist, or the root axis.
坐标原点被指定为弦长的百分比如图1所示其方向与弦线平行和垂直于每个叶片站。用户可以指定 z 轴是否与根轴或局部中性轴平行。类似地,用户可以独立指定 y 轴是否与主弹性轴方向、气动扭角或根轴对齐。
![](images/a22b168bc2c5c9fa46289ec647b441e516a1a2682208fe21fccfd5ea9cc4be6c.jpg)
Figure 1: Position of the user defined output axis
@ -569,6 +753,10 @@ This option enables the user to create a new custom output coordinate system. Th
The blade element coordinate system is denoted by the subscript e. For the nth piecewise linear element at node $m,$ the $x_{e_{n,m}}$ -axis runs parallel to the line adjoining consecutive neutral axis nodes. Positive direction is from the blade root to tip. The $y_{e_{n,m}}$ -axis and $z_{e_{n,m}}$ -axis are determined by the principal elastic axes orientation around the $x_{e_{n,m}}$ -axis. The principal elastic axes orientation is specified by the user and per node. Hence, the direction of the $y_{e_{n,m}}$ -axis depends on both the element and the node index. When the principal elastic axes orientation is zero $z_{e_{n,m}}$ lies in the $x_{r},$ $z_{r}$ root axes plane.
此选项允许用户创建新的自定义输出坐标系。该坐标系定义为相对于图2所示的局部单元坐标系。提供了一个简单叶片叶片的平面视图该叶片包含带有相邻单元的索引叶片站。在本例中仅考虑中性轴中性轴和用户轴的预弯。预展、主弹性轴方向和气动扭角均为零。靠近叶片根部的内侧站号为1靠近叶片叶尖的最外侧站号为3。在每个站用户提供中性轴节点的位置。连续的中性轴节点通过按升序数值站号的“单元”elements连接起来。
叶片单元坐标系用下标 e 表示。对于第 n 个按分段线性连接的单元,在节点 m 处,$x_{e_{n,m}}$ 轴平行于连接连续中性轴节点的直线。正方向是从叶片根部到叶尖。$y_{e_{n,m}}$ 轴和 $z_{e_{n,m}}$ 轴由主弹性轴方向围绕 $x_{e_{n,m}}$ 轴确定。主弹性轴方向由用户指定,并且每个节点都指定。因此,$y_{e_{n,m}}$ 轴的方向取决于单元和节点索引。当主弹性轴方向为零时,$z_{e_{n,m}}$ 轴位于 $x_{r}$$z_{r}$ 根部轴平面内。
![](images/15c19b0cc9884fe1ab9330a47d7b6b80db0c039de99ca55b7b80ef352d41c4e9.jpg)
Figure 2: Definition of the user axis location and orientation when z-axis follows user axis
@ -578,22 +766,27 @@ The user axis coordinate systems are derived from the element frame. More genera
Figure 2 demonstrates that for intermediate nodes the same $\boldsymbol{r}_{u_{m}}$ vector is applied to the adjoining node for both the inbound and the outbound element as illustrated by the $\boldsymbol{r}_{u_{2}}$ vector. For each element, $\boldsymbol{r}_{u_{m}}$ vectors are added to the pair of neutral axis nodes to create two points that lie on the user axis. The $z_{u_{n,m}}$ -axis is parallel to the line connecting these points as illustrated in Figure 2. Figure 2 also demonstrates that the user axis is discontinuous between adjoining blade stations. It is assumed that the variation of the neutral axis orientation between blade stations is small resulting in the discontinuities being smal/neglible. Finally, igure 2 also shows that the $\boldsymbol{x}_{u_{n,m}}$ axis lies in the $x_{r},z_{r}$ plane.
图3展示了叶片截面并提供了理解用户坐标轴系所需的关键几何信息。该图现在假设在展向方向上存在笔直的中性轴无叶片预弯或预扫。此外气动扭角和主弹性轴方向也被认为是非零。在这种简单情况下诸如主弹性轴方向和气动扭角以及用户轴位置等各种属性都定义在根轴平面上分别用 $x_{r},y_{r}$ 表示。
用户坐标轴系是从单元框架推导出来的。更一般地,用户轴输入 $x^{\prime},y^{\prime}$ 由用户使用弦坐标系定义。这些坐标被旋转和平移到局部单元坐标系从而创建了如图3所示的 $\boldsymbol{r}_{u_{m}}$ 矢量。$\boldsymbol{r}_{u_{m}}$ 矢量位于 $y_{e_{n,m}}\mathrm{~,~}z_{e_{n,m}}$ 平面上。
图2演示了对于中间节点相同的 $\boldsymbol{r}_{u_{m}}$ 矢量被应用于相邻节点既适用于入向单元也适用于出向单元如图2所示的 $\boldsymbol{r}_{u_{2}}$ 矢量所示。对于每个单元,$\boldsymbol{r}_{u_{m}}$ 矢量被加到中性轴节点的对上,以创建两个位于用户轴上的点。$z_{u_{n,m}}$ 轴平行于连接这些点的直线如图2所示。图2还演示了用户轴在相邻叶片截面之间是不连续的。假设中性轴方向在叶片截面之间的变化很小导致不连续性很小/可以忽略不计。最后图2还显示了 $\boldsymbol{x}_{u_{n,m}}$ 轴位于 $x_{r},z_{r}$ 平面上。
![](images/f3988498ac19331c104c599ef9e4290c20cb2d9101182c82ece9a8720834eb1c.jpg)
Figure 3: Local aerofoil cross section at station 2 showing $x^{\prime},y^{\prime}$ coordinate system.
Figure 4 provides an overview of the user axis in the more general case where the user specifies a blade with prebend and presweep, where the aerodynamic twist $\&$ principal elastic axis orientation are non-zero and the user axis values are also non-zero. The direction of the $y_{u_{n,m}}$ -axis is determined by a rotation around the $z_{u_{n,m}}$ -axis of either the aerodynamic twist (if y-axis follows aerodynamic twist is selected) or zero twist(if y-axis follows untwisted root axis is selected) as shown in Figure 4. Note that the aerodynamic twist and principal elastic axes orientation inputs are defined as positive clockwise rotations. The direction of the $\boldsymbol{x}_{u_{n,m}}$ -axis is the cross product of the $y_{u_{n,m}}$ -axis and $z_{u_{n,m}}$ -axis. This defines a right-handed coordinate system.
图 4 提供了用户坐标系在更一般情况下的概述,在这种情况下,用户指定了具有预弯和预锥度的叶片,其中气动扭角和主弹性轴方向均不为零,并且用户坐标系的值也均不为零。$y_{u_{n,m}}$ 轴的方向由围绕 $z_{u_{n,m}}$ 轴旋转确定旋转方向取决于是否选择“y 轴跟随气动扭角”此时旋转方向为气动扭角方向或者选择“y 轴跟随未扭根轴”,此时旋转方向为零扭角方向,如图 4 所示。需要注意的是,气动扭角和主弹性轴方向的输入定义为正向顺时针旋转。$\boldsymbol{x}_{u_{n,m}}$ 轴的方向是 $y_{u_{n,m}}$ 轴和 $z_{u_{n,m}}$ 轴的叉积。这定义了一个右手坐标系。
![](images/056c4dc4daabb366704bef4279219ee0ea9e726fba8e16d03e4017551a11970f.jpg)
Figure 4: User axis illustrated in three dimensions show the twist
To compute the user axis load output the moments from the element coordinate system must be translated and rotated into the user axis frame. Note that the user axis potentially does not coincide with the blade element axis. An additional moment is added/subtracted at each station to accountforthis:
To compute the user axis load output the moments from the element coordinate system must be translated and rotated into the user axis frame. Note that the user axis potentially does not coincide with the blade element axis. An additional moment is added/subtracted at each station to account for this:
为了计算用户轴向载荷输出,需要将来自单元坐标系的弯矩转换并旋转到用户轴系中。需要注意的是,用户轴可能与叶片单元轴不重合。为了考虑这一点,在每个站点会增加/减去额外的弯矩:
$$
M_{u}=R_{e u}\left(M_{e}-r_{u_{1}}\times F_{e}\right)
$$
As the relative translation $\boldsymbol{r}_{u_{m}}$ and rotation $R_{e u}$ between the user axis and the associated element coordinate system are independent of blade deflection, the same values at each blade station are used for the entire time domain simulation. Table 2 lists the coordinate system and location used at each station. The first station reports the loads in the outboard user axis $\boldsymbol{u}_{1,1}$ coordinate system and for the remainder of the stations, the inboard user axis $_{u_{x,2}}$ coordinate system is used.
由于相对平移 $\boldsymbol{r}_{u_{m}}$ 和用户轴与相关单元坐标系之间的旋转 $R_{e u}$ 不依赖于叶片摆振因此在整个时域仿真中每个叶片位置均采用相同的值。表2列出了每个位置所使用的坐标系和位置。第一个位置报告的是外侧用户轴 $\boldsymbol{u}_{1,1}$ 坐标系下的载荷,而其余位置则采用内侧用户轴 $_{u_{x,2}}$ 坐标系。
Table 2: Load output for each station in Figure 2 and Figure 4
<html><body><table><tr><td>Station</td><td>User AxisCoordinateSystem</td><td>Offset</td></tr><tr><td>1</td><td>U1,1</td><td>ru1</td></tr><tr><td>2</td><td>U1,2</td><td></td></tr><tr><td>3</td><td>U2,2</td><td>u3</td></tr></table></body></html>
@ -604,47 +797,46 @@ The combination of both the z-axis follows user axis and y-axis follows principa
Last updated 13-12-2024
# Output of Blade Kinematics Blade Deflection Outputs
# Blade Kinematic Outputs
## Output of Blade Kinematics
Blade Deflection Outputs
Blade deflections can be output at any station along the blade by activating Motion found in the Blade outputs ,as seen in Figure 1, by clicking the Calculation Outputs... button on the Calculations screen. The outputs must be for either the First blade , All blades , or not at all (None ).
叶片变形可以在叶片上的任意位置输出方法是在“叶片输出”中启用“运动”如图1所示通过点击“计算”屏幕上的“计算输出...”按钮来实现。输出必须针对“第一叶片”、“所有叶片”或不输出(无)。
![](images/fcb48a3f01be1e7491e9cdb35d5d412f0feb7f549bfbaedd30fd3f2378e2f7bb.jpg)
Figure 1: Calculation Output Specification screen for Blade Outputs
Blade deflections are given relative to the blade root coordinate system, with or without the pitch.
叶片变形相对于叶片根坐标系给出,可带或不带变桨角度。
![](images/e174eea3e72181c0a9d04c9a183a3bac00f917183fa8df99f518ac3ee85814a2.jpg)
Figure 2: Blade root coordinate system, illustrated for zero cone and pitch.
# Blade Acceleration Outputs
## Blade Acceleration Outputs
Blade accelerations can be output adding the following code to Project Info:
MSTART EXTRA OutputBladeAcc 1 MEND
Accelerations will be output at the same stations as the blade deflections. Accelerations are output in the blade principal elastic axes coordinates.
# Blade Strain Gauge Outputs
叶片加速度可以通过在项目信息中添加以下代码进行输出:
加速度将在与叶片变形相同的站点输出。加速度以叶片主弹性轴坐标系输出。
## Blade Strain Gauge Outputs
The external controller is already provided with a set of loading data, but it is possible to add additional strain gauges at any station on the tower or blade. Although called "strain gauges", these actually report forces and moments. Once specified, these will be updated before each call to the discrete external controller. Strain gauges on the blades are defined with a distance with the following code in Project Info:
外部控制器已经提供了一组载荷数据,但可以在塔架或叶片上的任何位置额外添加应变片。虽然被称为“应变片”,但它们实际上报告的是力矩和力。一旦指定,这些数据将在每次调用离散外部控制器之前更新。叶片上的应变片定义方式,在项目信息中采用以下代码:
MSTARTEXTRA
NUMSGAUGES \* number of blade strain gauge definitions to follow
SGDIST \* Distance along the blade
MEND
![](images/f6c962088ce5379f70a9a7733d30904dbcc3d39f99824ffd4835813839d69662.jpg)
Figure 3: Blade strain gauge position specification
The resulting load can be retrieved in the external controller using the function GetMeasuredBladeStrainGaugeFx , changing the last two letters for the relevant load component.
可以使用函数 GetMeasuredBladeStrainGaugeFx 从外部控制器检索得到的载荷,只需将最后两个字母更改为相应的载荷分量即可。
# Blade Accelerometers Outputs
## Blade Accelerometers Outputs
There are already a number of locations where the accelerations are measured on each discrete controller time-step. Additional locations can be added to the blades in a similar manner as for strain gauges. Accelerometers on the blades are defined in a similar manner to strain gauges with the following code in Project Info:
目前已有多个位置在每个离散控制器时间步内测量加速度。 可以以类似于应变计的方式,在叶片上增加额外的测量位置。 叶片上的加速度计的定义方式与应变计类似,相关代码位于项目信息中:
# MSTART EXTRA
NUMBLADEACCELEROMETERS $^*$ The number of blade accelerometer definitions that will follow. ACCDIST \* Distance along the blade from blade root. This line is repeated for each accelerometer definition
MFNIn
The resulting accelerations are provided for X, Y, Z in the local blade's coordinates.
The resulting accelerations are provided for X, Y, Z in the local blade's coordinates.
结果加速度分别以叶片局部坐标系给出对应X、Y、Z方向。

View File

@ -1,4 +1,6 @@
The following are derivations of the output motions available in FAST for a 2-bladed turbine configuration. The motions for a 3-bladed turbine are very similar. Note that some of the motions are given multiple names in order to support variation among the users preferences.
以下是针对双叶片风电机组中可获得的输出运动的推导结果。三叶片风电机组的运动非常相似。请注意,某些运动被赋予了多个名称,以适应用户的偏好差异。
Blade 1 Tip Motions:
OoPDefl1=TipDxc1=rQS1(BldFlexL)TipRadj3B1⋅i1B1 Blade 1 OoP tip deflection (relative to rotor) (directed along the xc1-axis), (m)

View File

@ -5,8 +5,7 @@
{"id":"01ee5c157d0deeae","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-620,"y":80,"width":456,"height":347},
{"id":"cb9319d24c3e70e3","type":"text","text":"# 5月已完成\n\nP1 Steady Operational Loads求解器编写测试 \n- 变桨算法测试完成\n- 转速算法基本完成\n- 两个结合点测试 完成\n\nP1 Steady Parked Loads求解器编写及测试\n\nP1 simpack多体对CAE的需求梳理 分成塔架、叶片、传动链模型 完成\n\nP1 建立IEA 15yaml文件 完成\nP1 结果对比\n- 完成 bladed、fast模型建立工况设置对比\n\nP1 集成yaml解析代码测试功能是否正确 done","x":-240,"y":520,"width":440,"height":560},
{"id":"1ebeabaf5c73ddbb","type":"text","text":"# 4月已完成\n\n多体原理学习 YouTube课程 018\n\n气动模块联合调试跑通\n\n使用python搭建风电机组多体模型 刚性部件主动力、惯性力计算 \n\n编写Steady Operational Loads求解器\n- 稳态工况多体动力学求解方法 --龙格库塔+ed_caloutput 初步方案完成\n- 遍历风速框架 完成\n- 不同风速下转速、变桨角度算法 完成\n- 多体设置参数 完成\n- 每个风速直接是否需要重新初始化 需要 完成\n\n\n\ngenerator torque计算 简单了解,确定方案","x":-720,"y":520,"width":440,"height":560},
{"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\nP1 结果对比\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- Bladed与FAST之间的对比\n\nP1 如何优雅的存储、输出结果。\nP1 国产化适配交给甲子营,对接\nP1 推进气动、控制、多体、水动 耦合计算\nP2 yaw 自由度再bug确认 已知原理了\n\nP1 模型线性化调研\n \n","x":-614,"y":-307,"width":450,"height":347},
{"id":"f893807d40bded89","type":"text","text":"# 6月已完成\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n\nP1 Bladed交流问题汇总","x":240,"y":520,"width":440,"height":560}
{"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\nP1 结果对比\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- Bladed与FAST之间的对比\n\nP1 如何优雅的存储、输出结果。\nP1 国产化适配交给甲子营,对接\nP1 推进气动、控制、多体、水动 耦合计算\nP2 yaw 自由度再bug确认 已知原理了\n\nP1 模型线性化调研\n \n","x":-614,"y":-307,"width":450,"height":347}
],
"edges":[]
}

View File

@ -4,8 +4,8 @@
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 5.5/10","x":-76,"y":-693,"width":456,"height":347},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n\nP1 Bladed交流问题汇总","x":-700,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\nP1 模型线性化原理 this week\n- Bladed 线性化理论手册 仔细阅读\n- 梳理Bladed线性化方法框架\n-\nP1 结果对比\n- Bladed与FAST之间的对比 去掉角度 不能直接比较\n- 坐标系转换 this week\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347},
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架","x":-700,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解 \n\t- 基于本构方程 读孟的论文\n\t- normal mode shape 能否使用?\n\t- F = kx 外载与弹性势能相等\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\n\n-\nP1 结果对比\n- Bladed与FAST之间的对比 去掉角度 不能直接比较\n- 坐标系转换 this week\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-594,"y":-693,"width":450,"height":347},
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560}
],
"edges":[]

Binary file not shown.