From 2cc9b1092744a8a4131683c58c4a68949a84d5b1 Mon Sep 17 00:00:00 2001 From: yz Date: Fri, 28 Mar 2025 09:28:09 +0800 Subject: [PATCH] vault backup: 2025-03-28 09:28:08 --- .../18_Simulation_and_Visualization.ipynb | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/补课/多体动力学/18_Simulation_and_Visualization.ipynb b/补课/多体动力学/18_Simulation_and_Visualization.ipynb index 1b9e38e..69ac607 100644 --- a/补课/多体动力学/18_Simulation_and_Visualization.ipynb +++ b/补课/多体动力学/18_Simulation_and_Visualization.ipynb @@ -1305,36 +1305,36 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ - "result = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,))" + "result = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,), t_eval=ts)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [ { - "ename": "ValueError", - "evalue": "x and y must have same first dimension, but have shapes (10,) and (6, 10)", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_38236\\1859627624.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mt\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[1;32mc:\\Users\\13063\\.conda\\envs\\MinerU\\lib\\site-packages\\matplotlib\\pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[1;34m(scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 3706\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3707\u001b[0m ) -> list[Line2D]:\n\u001b[1;32m-> 3708\u001b[1;33m return gca().plot(\n\u001b[0m\u001b[0;32m 3709\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3710\u001b[0m \u001b[0mscalex\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mscalex\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\Users\\13063\\.conda\\envs\\MinerU\\lib\\site-packages\\matplotlib\\axes\\_axes.py\u001b[0m in \u001b[0;36mplot\u001b[1;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1777\u001b[0m \"\"\"\n\u001b[0;32m 1778\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmlines\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mLine2D\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1779\u001b[1;33m \u001b[0mlines\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1780\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mlines\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1781\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\Users\\13063\\.conda\\envs\\MinerU\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, axes, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 294\u001b[0m \u001b[0mthis\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 295\u001b[0m \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 296\u001b[1;33m yield from self._plot_args(\n\u001b[0m\u001b[0;32m 297\u001b[0m axes, this, kwargs, ambiguous_fmt_datakey=ambiguous_fmt_datakey)\n\u001b[0;32m 298\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\Users\\13063\\.conda\\envs\\MinerU\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[1;34m(self, axes, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)\u001b[0m\n\u001b[0;32m 484\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 485\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 486\u001b[1;33m raise ValueError(f\"x and y must have same first dimension, but \"\n\u001b[0m\u001b[0;32m 487\u001b[0m f\"have shapes {x.shape} and {y.shape}\")\n\u001b[0;32m 488\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (10,) and (6, 10)" - ] + "data": { + "text/plain": [ + "[,\n", + " ,\n", + " ,\n", + " ,\n", + " ,\n", + " ]" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAsTAAALEwEAmpwYAAANT0lEQVR4nO3cYYjkd33H8ffHO1NpjKb0VpC706T00njYQtIlTRFqirZc8uDugUXuIFgleGAbKVWEFEuU+MiGWhCu1ZOKVdAYfSALntwDjQTEC7chNXgXItvTeheFrDHNk6Ax7bcPZtKdrneZf3Zndy/7fb/gYP7/+e3Mlx97752d2ZlUFZKk7e8VWz2AJGlzGHxJasLgS1ITBl+SmjD4ktSEwZekJqYGP8lnkzyZ5PuXuD5JPplkKcmjSW6c/ZiSpPUa8gj/c8CBF7n+VmDf+N9R4F/WP5YkadamBr+qHgR+/iJLDgGfr5FTwNVJXj+rASVJs7FzBrexGzg/cXxhfO6nqxcmOcrotwCuvPLKP7z++utncPeS1MfDDz/8s6qaW8vXziL4g1XVceA4wPz8fC0uLm7m3UvSy16S/1zr187ir3SeAPZOHO8Zn5MkXUZmEfwF4F3jv9a5GXimqn7t6RxJ0taa+pROki8BtwC7klwAPgK8EqCqPgWcAG4DloBngfds1LCSpLWbGvyqOjLl+gL+emYTSZI2hO+0laQmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqYlBwU9yIMnjSZaS3HWR69+Q5IEkjyR5NMltsx9VkrQeU4OfZAdwDLgV2A8cSbJ/1bK/B+6vqhuAw8A/z3pQSdL6DHmEfxOwVFXnquo54D7g0Ko1BbxmfPm1wE9mN6IkaRaGBH83cH7i+ML43KSPArcnuQCcAN5/sRtKcjTJYpLF5eXlNYwrSVqrWb1oewT4XFXtAW4DvpDk1267qo5X1XxVzc/Nzc3oriVJQwwJ/hPA3onjPeNzk+4A7geoqu8CrwJ2zWJASdJsDAn+aWBfkmuTXMHoRdmFVWt+DLwNIMmbGAXf52wk6TIyNfhV9TxwJ3ASeIzRX+OcSXJPkoPjZR8E3pvke8CXgHdXVW3U0JKkl27nkEVVdYLRi7GT5+6euHwWeMtsR5MkzZLvtJWkJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNTEo+EkOJHk8yVKSuy6x5p1JziY5k+SLsx1TkrReO6ctSLIDOAb8GXABOJ1koarOTqzZB/wd8JaqejrJ6zZqYEnS2gx5hH8TsFRV56rqOeA+4NCqNe8FjlXV0wBV9eRsx5QkrdeQ4O8Gzk8cXxifm3QdcF2S7yQ5leTAxW4oydEki0kWl5eX1zaxJGlNZvWi7U5gH3ALcAT4TJKrVy+qquNVNV9V83NzczO6a0nSEEOC/wSwd+J4z/jcpAvAQlX9qqp+CPyA0Q8ASdJlYkjwTwP7klyb5ArgMLCwas3XGD26J8kuRk/xnJvdmJKk9Zoa/Kp6HrgTOAk8BtxfVWeS3JPk4HjZSeCpJGeBB4APVdVTGzW0JOmlS1VtyR3Pz8/X4uLilty3JL1cJXm4qubX8rW+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmBgU/yYEkjydZSnLXi6x7R5JKMj+7ESVJszA1+El2AMeAW4H9wJEk+y+y7irgb4CHZj2kJGn9hjzCvwlYqqpzVfUccB9w6CLrPgZ8HPjFDOeTJM3IkODvBs5PHF8Yn/s/SW4E9lbV11/shpIcTbKYZHF5efklDytJWrt1v2ib5BXAJ4APTltbVcerar6q5ufm5tZ715Kkl2BI8J8A9k4c7xmfe8FVwJuBbyf5EXAzsOALt5J0eRkS/NPAviTXJrkCOAwsvHBlVT1TVbuq6pqqugY4BRysqsUNmViStCZTg19VzwN3AieBx4D7q+pMknuSHNzoASVJs7FzyKKqOgGcWHXu7kusvWX9Y0mSZs132kpSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmhgU/CQHkjyeZCnJXRe5/gNJziZ5NMk3k7xx9qNKktZjavCT7ACOAbcC+4EjSfavWvYIMF9VfwB8FfiHWQ8qSVqfIY/wbwKWqupcVT0H3AccmlxQVQ9U1bPjw1PAntmOKUlaryHB3w2cnzi+MD53KXcA37jYFUmOJllMsri8vDx8SknSus30RdsktwPzwL0Xu76qjlfVfFXNz83NzfKuJUlT7Byw5glg78TxnvG5/yfJ24EPA2+tql/OZjxJ0qwMeYR/GtiX5NokVwCHgYXJBUluAD4NHKyqJ2c/piRpvaYGv6qeB+4ETgKPAfdX1Zkk9yQ5OF52L/Bq4CtJ/j3JwiVuTpK0RYY8pUNVnQBOrDp398Tlt894LknSjPlOW0lqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpoYFPwkB5I8nmQpyV0Xuf43knx5fP1DSa6Z+aSSpHWZGvwkO4BjwK3AfuBIkv2rlt0BPF1Vvwv8E/DxWQ8qSVqfIY/wbwKWqupcVT0H3AccWrXmEPBv48tfBd6WJLMbU5K0XjsHrNkNnJ84vgD80aXWVNXzSZ4Bfhv42eSiJEeBo+PDXyb5/lqG3oZ2sWqvGnMvVrgXK9yLFb+31i8cEvyZqarjwHGAJItVNb+Z93+5ci9WuBcr3IsV7sWKJItr/dohT+k8AeydON4zPnfRNUl2Aq8FnlrrUJKk2RsS/NPAviTXJrkCOAwsrFqzAPzl+PJfAN+qqprdmJKk9Zr6lM74Ofk7gZPADuCzVXUmyT3AYlUtAP8KfCHJEvBzRj8Upjm+jrm3G/dihXuxwr1Y4V6sWPNexAfiktSD77SVpCYMviQ1seHB92MZVgzYiw8kOZvk0STfTPLGrZhzM0zbi4l170hSSbbtn+QN2Ysk7xx/b5xJ8sXNnnGzDPg/8oYkDyR5ZPz/5LatmHOjJflskicv9V6ljHxyvE+PJrlx0A1X1Yb9Y/Qi738AvwNcAXwP2L9qzV8BnxpfPgx8eSNn2qp/A/fiT4HfHF9+X+e9GK+7CngQOAXMb/XcW/h9sQ94BPit8fHrtnruLdyL48D7xpf3Az/a6rk3aC/+BLgR+P4lrr8N+AYQ4GbgoSG3u9GP8P1YhhVT96KqHqiqZ8eHpxi952E7GvJ9AfAxRp/L9IvNHG6TDdmL9wLHquppgKp6cpNn3CxD9qKA14wvvxb4ySbOt2mq6kFGf/F4KYeAz9fIKeDqJK+fdrsbHfyLfSzD7kutqarngRc+lmG7GbIXk+5g9BN8O5q6F+NfUfdW1dc3c7AtMOT74jrguiTfSXIqyYFNm25zDdmLjwK3J7kAnADevzmjXXZeak+ATf5oBQ2T5HZgHnjrVs+yFZK8AvgE8O4tHuVysZPR0zq3MPqt78Ekv19V/7WVQ22RI8Dnquofk/wxo/f/vLmq/merB3s52OhH+H4sw4ohe0GStwMfBg5W1S83abbNNm0vrgLeDHw7yY8YPUe5sE1fuB3yfXEBWKiqX1XVD4EfMPoBsN0M2Ys7gPsBquq7wKsYfbBaN4N6stpGB9+PZVgxdS+S3AB8mlHst+vztDBlL6rqmaraVVXXVNU1jF7POFhVa/7QqMvYkP8jX2P06J4kuxg9xXNuE2fcLEP24sfA2wCSvIlR8Jc3dcrLwwLwrvFf69wMPFNVP532RRv6lE5t3McyvOwM3It7gVcDXxm/bv3jqjq4ZUNvkIF70cLAvTgJ/HmSs8B/Ax+qqm33W/DAvfgg8Jkkf8voBdx3b8cHiEm+xOiH/K7x6xUfAV4JUFWfYvT6xW3AEvAs8J5Bt7sN90qSdBG+01aSmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElq4n8BzPZculjwdYoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAAsTAAALEwEAmpwYAABfb0lEQVR4nO2dZ3gbVdqG71GzLRdZ7r2n9wIJSSCVVCD03mtgacsusJRvYQssS4el9957T0iHhJDeE/febbnIktXn+zGOk0BCmq2R7XPnmmuU0Wjm0Xj06Og973mPJMsyAoFAIOi5aNQWIBAIBIJjQxi5QCAQ9HCEkQsEAkEPRxi5QCAQ9HCEkQsEAkEPR6fGSWNiYuSMjAw1Ti0QCAQ9lg0bNjTIshz72+2qGHlGRgbr169X49QCgUDQY5EkqfRA20VoRSAQCHo4wsgFAoGghyOMXCAQCHo4wsgFAoGghyOMXCAQCHo4wsgFAoGghyOMXCAQCHo4wsgFAoGgu/F5ofQX+PHvYK3p8sOrMiBIIBAIej2OFihcCrk/QP4iaLeARgdpE2DA7C49lTBygUAg6ApkGWq3Q8FiyF8M5WvA54GQKOg3UzHv7GkQbOryUwsjFwgEgqPF1gBFy6FwmWLgbR1hk4RhMOEm6DcLUo8HjbZbZfQoI9+1uoqawhayRseRMsCMVidC/AKBwI+47EpLe49512xVtgdHQtYU6Hcy5MyA8AS/yupRRm5rdpK/oY6dq6oJMurIGBZD1qhY0oZEodN37zeeQCDog3hcULkBilcqS8Va8LpAo4fUcTDtXiVckjiy21vdf4SkxuTLY8eOlY+2+qHH7aViVxOFm+oo3tKA0+7BEKwla1Qs/Y9PIHmAGY1G6mLFAoGgT+BxKsZdsgpKfoLyteBpByRIHAGZJ0HmZEgbD0FhfpcnSdIGWZbH/nZ7j2qRA+j0WjKGx5AxPAav10dlbhP56+so2ljH7l9qMEYY6Dc2ngHjE4hNC1dbrkAgCGRcNqhYB6WrlaViHXgcgATxQ2HM5ZAxETImQYhZbbUHpce1yA+Gx+WldHsjeWtrKdnegM8jE5sWzuCJifQ7Lp4go75LzycQCHogdguUrYGy1Uped/VmJbNE0igdlOkdpp12Ahij1Fb7Ow7WIu81Rr4vDpub/HW17Pi5isaKNrR6DTmj4xg6OZmErK5P/REIBAFKc1mHcf+iGHf9LmW71gBJoyF9gmLeqcdDcIS6Wg+DPmXke5BlmfoyKztXVZO/tgaXw0tcRgQjpqWQPTpOZL0IBL0JnxfqdimmXbZGWVorlOcM4YpZp5+gDMhJHgP6YHX1HgXdZuSSJKUCbwHxgAy8JMvyU3/0Gn8Z+b64HB5y19SwdVkFzbV2Qk0Ghk5OYejkZIJDRdhFIOhxuB1Kx+Qe4y5fC84W5bnwRCU8knaC0jEZP0TVrJKuojuNPBFIlGV5oyRJ4cAG4HRZlnce7DVqGPkeZJ9M2U4LW5aWU77TgiFYy7ApKYyYkUpImEEVTQKB4DBob1LMunS1Yt5Vm5RUQIDYgfsbd2QaSL0ve63bslZkWa4GqjseWyVJ2gUkAwc1cjWRNBLpQ6NJHxpNQ0UbG74vYcPCUrYsq2DYScmMPDkNY4QwdIFAdVqr93ZKlv0CtTsAWcnhThoF4xYoMe7UcQHZMelPujRGLklSBrASGCrLcutvnrsWuBYgLS1tTGnpASeDVgVLlY3135dQsL4WrV7DyJPTGHVyGobgHpedKRD0XJpKO9IAf1bWliJluz60I749QWlxJ48Bg1FdrSrR7Z2dkiSFASuAB2RZ/uyP9lUztPJHNNfa+fXrIgrW12GMMHD8qZkMmpCIRis6RQXdi7e1FceOHaDRoouJRhcdjcZkQuqF4QFAKTDVVAIlP0PpKmXdUq48FxypZJKkn6CYd8II0IpGFXSzkUuSpAe+ARbKsvz4ofYPVCPfQ01RC6s+KaCmqIWopFAmnpVD2pBotWUJehHuykraVq2ifcsW2jdvwVVY+Pud9Hp0sTGET59B5DlnE9y/v/+FdiXNZVD8kzLUveTnvRklxhjFsDNOVNZxg0EjGk8Hojs7OyXgTcAiy/Kth/OaQDdyUFIXizbVs/rzQlrr28kZG8ekc/oRagpSW5qgB+OuraPhuedo/vRT8HjQRkYSMmIEIaNGEjxsGJJWi6ehEU9DPd7GRlwlpbQtX47sdhMyahSR55xDxJzZaEJC1H4rh8Za21GjZIUy3L2pRNlujFEG3WRMUsw7dkCv7JjsDrrTyCcBPwHbAF/H5rtlWf7uYK/pCUa+B6/bx8ZFpaz/vgS9QcsJZ2QzeGISkqjnIjgCvM3NNLz8Mk3vvIvs82E+91zMF12EITPjkOETT1MTLV98SfPHH+MqKkJjMhF/198wzZ8fWKEXR6sSJilaoVQH3DP4JjhSMe3MkxTjjhskjPso6ZMDgrqSphoby9/NpSq/mcQcE1MvHog5IVRtWYIAR5Zlmj/4gLrHn8DX1obptFOJuekmDCkpR3Ws9g0bqHviSdo3bCB81iwS7r8PnVmlGiBet5LHXbgMipZBxXqQvaALUVIAs6ZA1mRIGN4rcrgDAWHkXYAsy+xaXc3qTwvwuH1MPCuHoZOTA6tVJAgYZJeLmn8/QPNHHxE6cSJxd97RJXFu2eul8bXXqH/6f+giI0l88AHCTjyxCxQfBpYiKFiimHfxSnBZAUlJB8yeqph36jjQiRBkdyCMvAuxtThZ+tYuynZYSB8WzbRLBoncc8F+eJqaqLz5Fuzr1hF93XXE3nIzUhd34Dl27aLqjjtw5hdgvvhi4v92J5Kui7M7nFbFsAsWK/NP7olzR6Ypdbizpynhkj6ex+0vhJF3MbIss3VZBb98VoghRMv0ywaTPlRktgjAmZ9P+fU34KmrI/GBBzCdekq3ncvndFL32GM0vfU2EXPnkvTwf4/NzPedd7JgiTIQx+cBQ5gS495j3lFZIs6tAr2mHnmgIEkSI6alkjLAzKJXd/DNM1sYMSOVE87IRivyzvsstl9+oeJPNyKFGkl/521Chg/v1vNpgoJIuPtu9HFx1D36GLLHQ/JjjyLpj6B+kKNF6ZzMX6SYt7Va2R4/DE64UZm6LHUc6MSvzkBFtMi7AI/by+pPCti2opKkfpHMvHqISFPsg7Rv30HZpZeiT04m9eWX0Cf4d97GxjfeoO6h/xI2fTrJTzyOxnAQ45VlqN8NeQsh/8e9s70HmZQ4d7+TIXs6RCT6Vb/g0IjQih/I/bWG5e/sxmDUMfuaoSTmRKotSeAnXKWllFxwIZrgYNLffx99fJwqOizvvEvtv/9N2OTJJD/9FJqgjgaFu10ZjJO/EPIWQUuZsj1+KPSbqZh3ynGgFZVAAxlh5H6ioaKN71/cRlujgwln5zB8aorIaunleBoaKLngQnxWK+nvvUdQVqaqepo++JCa++8nbOJ4UhaciFTwoxI6cdtBb+yY7X2mspiSVdUqODJEjNxPxKSEce5dY1n8xi5+/iifhjIrUy4aiFYv4ua9EW+bjfJrr8NTX0/6G6+ra+KyDNVbMCcUI08Lo3bpGuotPxJ3khlGXQz9Z0H6pB45oYLgjxFG3g0EGfXMXTCMdd8Ws+7bEloa2pmzYJiod97LkF0uKm++GUduLinPPkPIyJH+F+F2KMPfc7+D3B/AWgVIRI05HqcnhcaVuwm+5r9EzJ3rf20CvyGMvJuQNBLHn5qFOSGUJW/t4pOH1jPvhhFEJYnRoL2Fuscew7Z6NYkPPED4lCn+O7HdonRU5n6nZJm4bUqp15xp0P9eJWQSFkvCJS6cl11O1T33YsjKInjgQP9pFPgVESP3AzXFLXz3/Da8Li8zrxlKuqik2OOxLl9OxYLrMV90EQn/d2/3n7CpBHZ/p5h36WplKHx4IgyYAwPmKoNyDhAycdfVUXL2OUgGAxkff6TecH5BlyA6O1XGanHw7XNbsVS2cdIFAxh6kuhk6qm4a+soPv10dHFxZHz04d7MkK5ElqFmK+z+Vllqtyvb4wYrxj1wLiSOOqxyr+1btlB68SUYjzuO1Jde7PrRnwK/IYw8AHA5PPz46g5KtjUyelY64+dniSqKPQzZ66Xsqqtp37KFzE8+Jig7u+sO7vMqIyl3fwu7v1Hqd0saSB0PA+cp5h2VdVSHbv70U6rvuZfoa68l7rY/d51mgV8RWSsBgCFYx5wFw1j5QR4bF5bS1uRg2qWD0OpERktPofHV17CvWUPiv//VNSbucSqpgbu+VsIm9kbQBikDc066QwmdhMYc82kizzqL9s2baXzlFcKmTsE4atQxH1MQOAgj9zMarYbJFw4gPDqYNV8UYWtxMue6YQQZxUCMQKd982bqn3qK8DmzMZ111tEfyGlVRlTu+lpZu6wQFKF0Ug46RRkSHxTedcI7iLvzTtpWraL6rrvJ/OJzNMEiDbG3IEIrKpL7aw1L39pFZLyRU28aQZhZfLACFW9bG8XzTwcg84vP0YYfodHaLZD7vWLehUvB64TQWCXePeg0yDzRL6VfbatXU3blVURdcQXxd97R7ecTdC0itBKADBiXQKjJwHcvbOPThzdw6k0jRXpigFL/1NO4q6pIf/fdwzdxa41i3Lu+VuaolL1gSoXjroJBpyqFqPw84ULohAlEXnA+ljfeIPzkGRhHj/br+QXdg2iRBwD15Va++d8WvB4f8/40gsRsk9qSBPvQvm07Jeedh/n880n4+//98c5NJXvNu3wtIEN0jmLcg05TJmBQuWSDz2aj6LT5oNOS9cUXPWP+TwEgslYCntaGdr56ejNtTU5mXT2EzBGxaksSALLHQ8m55+Gpryfru28P3Bqvz4VdX8HOr5SUQYCEYYpxDzotICcXtq35lbLLLyfqskuJv+suteUIDhMRWglwImJCOOv2MXzzzBa+f2EbUy4ayOBJSWrL6vM0vfsujp07SX7yib0mvifHe9fXink35CrbU46Hk/+ldFgeZZqgvwgdPw7zRRdheettwk8+GePY33mDoAchWuQBhsvhYeHLOyjb0cjxp2Yydu6hZ1kXdA/u6mqK5p1CyNgxpD7/PFLluo6wyVd7c7zTJ8Lg+Uqed0TP+uL12e0UnXIqmrAwMj/7VAwU6gGIFnkPwRCsY+4Nw1j+9m7Wfl2MrcXFSef3RyMGDvmdmn//G9nrJmGihPTEIGirBa0BsvbkeM+F0J5bbkFjNBL3tzupvPkWmj78kKiLLlJbkuAoEUYegGi1GqZdNgijKYiNC0uxtziZedUQdAb/Zjj0SVx2KFyC9dM3aFuyk9gRrRgqvoZ+M2DgqdB/JgT3ns7o8JNPxjh+PPVP/4+IuXNFLZYeigitBDhblpbz88f5JGabmHv9cIJDxcChLsdugbwflKHxBUvwORwUfh+PNiyczGfvQxowA/S9N7PDkZdH8RlnYj7vXBL+/ne15Qj+ABFa6aGMmJaKMcLA4jd28tkjGzjlphFERPdeU/EbTaXKkPjd3+6tJhiRDKMvwbJZg8f2FUnPP4c09Hi1lXY7wf37Y77gApree4/Ic88V5W57IKJF3kOozG3i+xe3odVpmPen4cSlR6gtqWfh80H1JmXyhdzv9lYTjB20tyBV0mg8FguFM2dhHD+e1GefUVezH/G2tFA4azZB/fqR9tabooM9QBEt8h5O8gAzZ/5VSU/8/LGNzLp6KBnDj72YUq/G3Q7FK/fOntNWs7ea4MwHDlhNsOHZZ/E5HMT95S8qiVYHrclE7K23UnP//Vh/+IGIOXPUliQ4AkSLvIdha3Hy7bNbaSi3ctL5/Rk6OUVtSYFFS2XHTPELoWgFeNrBEAY505Usk34zwRh1wJc6i4opOvVUIs89h8T77vOzcPWRvV6Kzz4Hb3Mz2d99K0Z8BiCiRd5LCDUFcfpto/jx1R2seD+P5rp2JpyZjUbbR0vhej1QuR7yFylLzTZle2QajL5EmXA44/AKUtU99hia4GBib7yxm0UHJpJWS8I9d1N68SVY3nyLmAXXqS1JcJgII++B7Klr/vMnBWxZUo6l2sbMq4b0nYyWtnooXKIYd8EScDSDpFWKUM34B/SffcTD4u3r19O2ZAmxt96CLrrn5oYfK8axYwmbOpXG117DfMH5aE29J9WyNyNCKz2cnT9XseL9XMKjg5l7/XCiEnth9USvGyrWQcFiZaneomwPjYN+JytL1lQIiTyqw8uyTMl55+OprSX7h+/7fEjBkZtL8fzTxWxCAYgIrfRSBk9Kwpxg5PsXt/HJf9cz86ohZAzrBZ2gliKlbnfhMqXD0tm6t9U97f+UmHfCiMOas/JQWL//HsfWrSQ++GCfN3GA4AEDiJg3D8vbbxN1ycXoYkUBt0BHtMh7CVaLg+9f2EZ9uZXj5mYwdm5Gz4qbtzcphl24DIqWKeVgAUxpyrRnOTMga3KXj6qU3W4K585DYzQq9Ua0YvQsgKu0lMK585TSvf93r9pyBB2IFnkvJzwqmDP+OpqV7+Wy7tsSKvOaOfnKwYE765DbARVrlfkqC5dB9WaQfUqGScaJMP5PSqs7KqtbS8C2fPUV7vJyUp57Tpj4PhjS04k86yyaPvqIqCuuwJCSrLYkwR8gWuS9kNxfa1jxXi4ancT0SwcFRm1zn1eJbRevUMy7bA14HEq4JOU4yJqitLyTx4DWP522sttN4Zy5aE0mMj75WAyC+Q3umhoKZ84iYt48kv7zoNpyBIgWeZ9iwLgE4jMiWPTqDr57fhvDpqZwwhnZ6P1ZdEuWoSFPyeUuXgElP4GjRXkubjCMuUIx7/QJEKzOKNWWL7/EXVFB/D13H5aJyz4Zt8uL2+HF5fDgcnhxO73IPhlZlpF9SscpgFavQafToNVr0Oo06IO0BBl1GIJ1SD2kkqU+IQHzhRdieestoq+6kqCcHLUlCQ6CaJH3YrxuH798XsiWpeVExIYw5cIBpA468GCYLqG5TIlzF61Q1m01ynZTGmSdBJlTIPMkCI/vPg2Hiex2Uzh7DtqoKDI++hBJknC7vDTX2mmutdNSZ8fa5MTe4sLW7MTe4sRudSP7ju3zIklgMOoIMuoJCdMTagrCaDIQajJgNAURZg4iPCqYsKhg/37xHgRPUxOF02cQOmkSKU8/pbacPo9okfdBtHoNk87tR8aIGJa/u5uvntrMwPEJTDy7H8FhXRC+sDVCyUolVFK0ApqKle2hsUqcO2syZE6GqMxjP1cXIssyFe9/RaUzFunEa9n+zBYsVTbampz77RcSrscYEURopIGYlDCMEQaCjHr0wVoMIVoMQTr0QVokrYQkSUgSSmtbBq/Hh9ftw9Oxdjk8OO0enHZ3x9pDu9VFc52dyvwmnDbP73SGhOsJjwomIiaEiNgQTLEhmGJCMMWFEGoK8kvLXmc2E3XFFTQ8+yyOnTsJHjy428/Zm/G4vN1SjrpLWuSSJL0GnALUybI89FD7ixa5//G4vKz/roRNi8owGHVMOjuH/scnHJkZuNuVSoFFy5WlZhsggyEcMiZ1GPdJSugkgOLNbqeX2pJWagqbqS5oobakFaddMU6NRsKcFEp0cijmeCOmOCPmBCOmWCP6IP+1iL1uH7ZWJ20WJ1aLY+/S6KC1vh1rowPfPr8GdHoNprgQTHFGIjvW5ngj5oTQrvmS3leb1UrBtOmETphAylNPdumx+woel5etyyvYuLCU024eedRF77p18mVJkk4C2oC3hJEHNo2VbSx7Zze1xa3EpIYx7rQs0odGHzhG7PMpVQILlyopgaW/gNcJGr2Sz501RTHvpNGgDZwfd852D9X5zVTmNVGV30x9eZsSEpEgKjEUM43oln1Ozs0Xk3LKJHR69UMYh8Ln9WG1OGmtb6eloZ3mOjsttXaa69ppbWjH5937OQ4O1WNOMBKZYCQqMVR5z4mhhJmDjrpDt+6pp2h84UWyvv5KxMqPAJ/Xx+5falj7TTG2ZidpQ6KZdE4O5oSjG7jXrUbecYIM4Bth5IGPzyeTv66WtV8X0drgIDHbxPjTs0jqZ1bCJUXLOkZRLgFbnfKiuMHK6MnsqUoHpSFwRpC6nV6qCpqp3N1EZV4T9WVWZBm0Og3xmREkZptIzIkkISsCg06mYPZsdLGxZHzwQa/IVPF5fbQ2Ojrj+021dppr7DTV2Gi3ujv30wdpiUoKJToplKjkMKKTQolODiMk3HDIc3iamiiYPoPwGdNJfvjh7nw7vQLZJ1O4qZ5fvyqiudZOfGYEJ5yRTXL/Y5uBSXUjlyTpWuBagLS0tDGlpaVdcl7B0eP1+Nj1cyXrvinA3iaTHF7MMO1HZAatRWOMVPK4s6cpBh6RqLbcTrxuH7UlLVTsbqIit4na4lZ8XhmNViI+M4Lk/maSB5hJyIz4XTyy6cOPqLnvPlJffomwE09U6R34j/Y2F03VNizVdixVNizVbTRW2nC07TV4o8lATEo4MalhxKQoS2Sc8Xdht9qHH8Hyxhtk//A9hrQ0f7+VHoHPJ1O4sY7135VgqbJhTjAy/vRsMkfEdEmjQXUj3xfRIlcZl00ZhJO/EPIW4bFa2Gafy1bn6bS5TISGSww6MY0hJyYHxIAir8dHbUkrlblNVOY1U1PUgtftQ5IgNi2clIGKcSfmRP5hpofs8ezNVPmwd7TGjwZZlrG3urBU2miobKOxso2G8jaaqm2dcXh9kJaY1DBi08KVJTWccJ2dopNPxjT/NBL/9S+V30Vg4fP6yF9fx4bvS2iqsWNOMDJmTgb9xsZ16QhrkbXS17E1Qt73ytRmhUuVwThBEZA9DV3/2YzqdzIjgqMo3d7I9pVVrP++lA3fl5Iy0Ez60BjSh0YTGW/0i1R7q4uaopbOpa7UitftAyA6JYyhJyaT1D+SpH6RR1TxsfWHhUre+F1/67MmDiBJEqGmIEJNQaQO3puO6nX7sNTYaCi3Ul/eRn2plZ0/V+FxKddeZ9BgmvIPjFs20m/hLhJHpmOKC+nT19Jpd7NrdTXbllfQ2uAgOjmUmVcPIXt0HBo/jhcQLfLejLUGdn4FO7+EstXKEPiIlL1Tm6VNAN2B46OtDe3s+LmK4s31NNXYATDFhpA2NJrELBNRSaFEJhjRHkNrw+eTaa1vV1qEFW2da2ujAwCNViI2LZyETJNi3DmRR52RIcsyxaefgezxkPX1V0hdUGyrL+DzyTTX2qkvs1JX2kptXiP1pS34tMp9E2TUEZcRQXxGROfaGHHomHtPp6nGxtZlFexeU4PH6SUxx8TIGWlkDo/p1rTQ7s5aeR+YAsQAtcB9siy/erD9hZF3I53m/YWSKoiszEs56FTFwBNHHHFqYEt9O2U7Gind3khFblNn61ijlYiMNxKVFIox3KAMdAnREWTUoQ/S7c2ldnvxuHw42z20NSkpdW0WJ23Nzs4BNpIEkfFGolPCiE0NJzHbRGx6eJdllLStXEn5tdeR+J//EHnG6V1yzL5K5b1/p2rxWoLve4oGi0xtcSuWKlvn3zIsKoj4DBPxmRHEZ0YQmxYeEIObjhVXu4fCTfXk/lpDZW4TGp1E/7HxDJ+WSmxauF80dHuM/EgQRt7FOFph19ew9UNlROUe8x5yOgw+HeK6blZ0r9tHU60dS5XSaWapasNSY8fR5sbV/vtBLfsiaSTCIoMIjw4mLCqIcHMwEbEhxKSEEZUY2i0DJfZQesmluCoqyFn4A5Kh97cYuxNXWRmFs+cQdfnlxN9xO6BkDtWXWaktaaWupJXa4lasFuWXlaSRiE4O7Wyxx2dEYE4w9ojqnF6vj/KdFvJ+raF4SwMet4+I2BAGnZDA4EnJfv/1IWLkvQ2vBwp+VMw793sl5m3OgJNuh6Fndal574tWr+nMbPgtPp+Mu2MEo9vpRdtRa0Rn0KDTa9HpNarUGbFv2oR93TolNi5M/JgxpKURcco8mj74gJhrr0EbGYk+SEtSP6XfYg+2Fqdi6h3mXrihjp0/VQHKgKbolP07U82JxoDI6W9rclC6vZGyHRbKd1twO7wEheoYOCFRqWOUGRFw/QKiRd7TqM+Dze/Alg+grRaM0TDkTBh+HqSMDagRlYFC+Z9upH39enKWLkETGjj57z0ZR24exfPnE3vrLcQsWHBYr5F9Mi317dSWtFJfZlWWcituhxdQbl1TnJHopFDMScpApsg4IxExwQQZu6ciptfto7GqTekDKLNSU9iCpcoGQJg5iLSh0WQMiyFtcBRanfq/IESLvCfjssOOz2DjW1D+q1L6tf9sGHWxMs2Zn8q+9kScBQW0LVlCzJ/+JEy8Cwke0J/QE0/E8s67RF1xBZqgQ09uLWmUPpXIeCMDxiUAHebe0E59mbUjz91GY5WNos317NvGDDLqMMWGEB4VTEiEAWOEgZBwZR0cqkOr0yq//vTKr0BZljv6Z5R+GrfLS3uri7YmZ8eilECwVNk6R8UGGXXEpoUzYHwC6UOjiUoMDbiW98EQRh7I1OfC+tdg8/vgbIGY/nDyv5TWdwBUEOwJNL7yKlJICOaLL1JbSq8j+qorKbv8Clq+/BLzuece1TEkjURknJHIuP1TWz0ur1J+oL6dlnqlDEFLQzuWahv23KbOWjlHQ5BRR2ikUmUybXB0Z3gnIia4xxj3bxFGHmh4PbD7a1j7CpT+rNQ1GTwfjrsK0k4QoZMjwF1VRcs332C+8AJ05mMbGi34PcZx4wgePBjL628QefbZXZrSqTNoD9oXA8ogsXari3arG6fd3dny9rh9eFxeJI2ETq/0zWgNSkvdGGEgNDIIQ3Dvs73e9456Ku1NsOFNWPsytFZAZBrMuB9GXgxhATDDTw/E8uZbAERffrm6QnopkiQRddWVVP3lr7QtW0b49Ol+O7dWpyHMHBwQI48DAWHkatNQAGuegy3vg9uu1PGe+7ASA9eo34PfU/FarTR/8gkRc+agT0pSW06vJWLWLOoff4LGV171q5EL9kcYuVpUbIBVT8Cub5TOymHnwvgFkDBMbWW9guZPPsVnsxF12WVqS+nVSDodUZddRu2DD2LfuAnj6FFqS+qTqJ9P05eQZcj/Ed44BV6ZpgzeOfE2+PMOOP1ZYeJdhOzxYHn7LYzHHUfI0CFqy+n1RJ51JhqTicbXDjqYW9DNiBa5P/D5IPdbWPmIMpN8RDLMehBGXwpB/hna25ew/vgjnqpqEu69V20pfQJNaCjmC86n8cWXcBYXE5QZWFP79QVEi7w78Xlh+6fwwkT48GJwWmH+s3DzZjjhT8LEuwFZlml8/Q306WmETZmitpw+Q9TFFyPp9Vhef0NtKX0SYeTdgc+nGPhz4+GTKxVDP/Nl+NM6ZRDPQSoOCo6d9k2bcWzdStRll4kKh35EFxODaf58Wr78Ek9Tk9py+hziTu9KZFnpvHxhkmLgkhbOeQNuWAPDzw2oeS17K5Y33kBjMhF5+ulqS+lzRF12KbLTSfMHH6gtpc8hjLwrkGXIXwwvTYEPL1ImKD7rVbh+FQw5A0TL0C+4ysuxLl6M+bzz0Bj9MwmGYC9BOTmETpqE5b338LlcasvpUwiHOVbK1ylZKO+eBe0WmP8c3PArDDtb5IH7Gcvbb4NWi/kiMRxfLaIuuwxvfQOt332ntpQ+hfitf7TU58GSf8DubyA0FuY+CqMvE/FvlfC2ttLyyaeY5s5BHx+ntpw+S+ikiRiys7G8+Ram+fN7bO2SnoZokR8p1hr46mZ4bhwUrYCp9yhZKMdfI0xcRZo/+RSf3S4GAKmMJElEXXopzl27sK9bp7acPoMw8sPFZYPl/4WnR8Pm9+D4a+GWzTD5Dgg6cGEfgX+QvV6a3n0X49ixBA8erLacPo9p/mloIyM7a90Iuh8RWjkUPq9i3Ev/DW01SiXC6fdBdLbaygQdtC1bhruykrg77lBbigDQBAcTef55NL74Eq7SUgzp6WpL6vUII/8jin+CH+6C2m2Qchyc+xakjVNbleA3WN5+B11SIuHTp6ktRdCB+cILaXz1NSxvv0PCvfcAylSALe1uGm0unB4vXp+Mxyfj7ViMBi2hQTrCg3SEBukwGrQixn6Y9Cgjf/zHPL7YVIkkgYQSj5MAg05DpFGPKURPZIgBk1FPQkQwaVFG0qKNpJqNhBzJxL6WYvjx/5QJjU2pcPZrynRq4qYKOBy5udh//ZW4v/4FSdejbudehyzL1Lc5KayzUdTQTvTwCbg+/JgF+jFUenRYbC68vsOfWlKnkUiMDCY5MoQUs5HkyBDSo40MToogOzYMfQ+YvNlf9Kg7P9Ucwui0SABklPRtGXC4vbTY3ZQ02Glub6bZ7sbp8e332tjwIAYmhDM02cTQJBNDkyNIizLu/43vtMJPj8Evz4JGB1PvhQk3gj7Eb+9RcGQ0vfMOUnAwkWefrbaUPofd5WFLeQsby5rYVNbM5vImGtr25o8PMo/hcfcKZpf+Ssn0M4gOMxAdGkRUqIFgvRa9VkKrkdBpNGgksLu82FwerA4PNqeHJrubquZ2Kpvb+Tm/gVqro3P6N4NOw4D4cIYkRTA8JZITsqPJiDb22RZ8r5x8WZZlmuxuyix2yix2yi12ihts7KpuJa/Wirtjjr7wYB3HZ0RxQlYUs+WVJK97CKmtBkZcoMTBIxK7TaPg2PE0NVEwZSqm+fNJ/Oc/1JbT6/H5ZLZVtrAir57luXVsqWjpbGFnxYQyKs3M0GSltZwdF0ZiRDDll16Ku6qK7EULj/kXk8vjo7TRxs7qVnZWtbKjqpUdVS002d0AJEQEc0J2NCdkRXNS/1gSTL1v0ok+NfmyJElEhRqICjUwMjVyv+dcHh95tVZ2VLWwubyFhvx1jCh6nhRNHtvJ5tuUZ8lJm8J0XTSRBzy6IFBo/vgTZKdTzMfZjTjcXlbk1fPD9hpW5tXTaHMhSTA82cT1k7MZk25mZGok5tADp96aL72EyptvwbpsGREnn3xMWgw6Df3iw+kXH878kcmA0mgrarDxS2EjvxQ1sjKvns83VQIwIsXEzCEJzBqSQE5c784s65Ut8sPCboGl/4L1r+MNiWJz/1v40H0SKwoaqW11otVIjMuMYubgeGYOSSApUoRXAgnZ46FgxskYMjJIf+N1teX0KtxeH6sKGvh6SzWLdtRgdXowG/VM7h/LlAFxnNgvhuiwoMM6luz1UnjyTPTJyaS/3f3piLIsk1trZcmuOhbtqGFLRQsAWbGhnDYiibNGp5Aa1XPLNxysRd73jNzng83vwI/3gaNFGcgz5S4Iiex4Wvn5uGhnDYt21JJf14YkwfjMaM4YncycoQmEB+vV0S7opPWHhVTeeispzz1L+DSRrdIVFNa38cHaMj7dWInF5iI8SMesoQmcNiKJCdnR6I6yc7Hx1deoe+QRMj//jOBBg7pY9R9T1dzOjztr+X57Nb8WW5BlOD4zirNHpzBnWM/7LPcKIy/ZspG6kiJACZ/QkbUiaTRotFo0Wi2SRllrtVq0ej0anR6dTqesW0vQ/vI0uobtaJNHoZv5d3RJw9AZDGj1+gN2lBTVt/H1lmo+31RBSaOdYL2GkwcncM6YFCblxKDR9M3OFbUpuehiPLW1ZC/8AUkratocLQ63l4U7anjv1zJ+Lbag00icPDieM0YlM3lALEG6Y7+23pYW8qdMJWLOHJIefKALVB8dlc3tfL6xgk83VlLcYCNYr2H+iGQuOSGdockm1XQdCb3CyBe/8hxbfuymYjyShE5vQGcwoAsKQm8I+t3a6tVQbvVQ1OSmzashNCyU0TkJHN8/kciIMIKMYQSFhhIcqqyDQoyiJnY34Ni5k+IzzyLuzjuJvuJyteX0SOqsDt75pZR3fi3DYnORFmXkguPTOHtMCrHhhxc2ORKq77+fls8+J2f5MnRRUV1+/CNBlmU2lTfz8fpyvthURbvby5h0M5eekM6coYkYdIH7me0VRu71uPF5vSCDjAyyrKQgyj58Xi+yT1n7vB68Hi9etwvf7oV4Vz+Lt70Vb7+5eAafjUfS43W78biceFwda7cLj8vVsc2F2+nE43Iqa6cTt9OhLA4HLoeyVpIfD44kaQgOD8cYYcJoiiQkwkSoKZKwqGjCo2M6lljCoqLRihzow6bqnnto/e57+q1YjjYiQm05PYrcGiuv/FTEl5urcPt8zBgUz2UnZDAhO7pbf106CwspmncKsbfeQsyCBd12niOlxe7m4w3lvLOmlJJGOzFhQVw+IZ1LxmdgMgZe2KVXGPkR0VAA394GxSsgaTSc8gQkjeyyw8uyjMfpZEdpHZ/+Wsjy7eX4nA5GxBuYlhlORrgGp62Ndmsr9pYW7K3N2FtasDU34Wq373csSdIQEReHOSGJyIQkzIlJRCWlEJueSWikucs078En+3B5Xbh9bjw+T+fa4/Pgk32di1f27qNRYs8/jUaDXtKj1WjRSlp0Gh0GrYFgbTA6ja5bc3k7Uw5PP53Ef9zfbefpbawvsfC/pQWsyKsnWK/hnDGpXDExg6xY/2VzlF11Nc78fHKWLEbSB5ZJ+nwyPxU08OrPxazMq8do0HLB8WlcNSkzoBId+o6Rux3w8+Pw8xOgC4Hp/wdjr+z22uCtDjfv/1rGa6uKqW11MiA+nGtOyuK0EUm/+6nmardjbWzE2liPtbGB1vpamqqraKqpormmCld7e+e+RlMk0alphCcnYkyJJzg1Dk+4njZPG22uNtrcbdjddtrcbdjcNuxuO3aPnXZP+36L0+vE6XHi9Dpx+bqv6L+ERJA2iCBdECG6EIw6o7LolXW4IZwwQxjhhnAiDBGEG8KJDIrsXExBJiKDItEe5O/V+Mor1D36GJlffUlw//7d9j56A7Iss6bIwtNL8vmlqJGoUANXTszgonHpB00X7E7aVqyg/LoFJD36KKZT5vn9/IfLzqpWXlpZyNdbq5GA+SOTuXFaDpkxoWpL6yNGXrQCvvkzWAph2Dkw8wEIj+/68/wBLo+Pr7ZU8fLKInJrrSRHhnD9lGzOGZuCjJtmZzMtzhaanc2djzsXVwstjmZsLc14G1rR1rcT3OQlokWDuc2A1qe0dNsNXurMTuojndREO2iMcBFsCCFUH7qfaYboQjqXIF2QYrAdi0FrQK/Ro9fo0Wl0nWuNpNlvkZCQkZFlmT3/fD6lte7xefDISkve5XXh8rqULwqvC4fXQbunvfOLZc/a6rJidVlpc7fhk30HvIYSEuZgM1HBUUQHRxMVEkVsSCxxQTGMvvFlpOQEIl58kvjQeIK0XR/P7enIssyqgkaeWpLHupImYsODuO6kLC4cl4bRoF4IT/b5KJozF21kJBkfBv50cBVNdl75qZgP1pXh8vg4vcPQ/fkr5rf0biO3NcCie2HL+2DOhFMeh+zuTUnz+rw0O5tpcjTR5GxS1h2Pm53NWNotFFnqKG6qw+GzotHaQXPwlnCILoQIQwSmIBOmIBMRhoi9S1AEYdpQDE1uqGrBUVZHW0kltvoGAAzGUNKGDCN92CjSho3EnJgU8EOVfbIPu9tOi0v5UmtxKOs919LisNDY3kijo5HG9kYa2hsYtsvO7Z/6ePRMDWsHKL9yooKjSAhNIMGYQGJYIkmhSSSHJZMUlkRSWBKmoJ6RjdBVbCi18MjCXNYUWUg0BXP9lGzOHZtKsD4wMnssb79D7QMPkPHRh4QMH662nMOi3urkpZWFvL2mFJfHx/yRydykkqH3TiOXZaXE7KJ7wdkKE2+Fk/56VLVRPD6PYsAOS6eR7Fn2mLTFYek0mhZni9LhegDC9eFEBiuhAnOQGZcrhNwqLzVNWsL0EcwZlM3codnEGqM6wwlH07K0tzRTvnMbpVs3UbptM631dQCYE5PIHjuenONOILFffzS9YMo5WZYpvvwynCUlNL3zAHXORmpttVTbqqmx13Q+trlt+70uXB9OSngKKeEppIankhqeSlp4GukR6cQZ4wL+C+9w2VHVwmOL8li6u46YMAM3Ts3hgnFpXZI+2JV422wUTJlC2NSpJD/ysNpyjoh6q5OXfyrirV9KcHtlzhmTws3T+/k1ht77jLyxUAmjFK+A1HFw6lMQt3ewgSzLWN1WLO2W/Uy50dH4u20Wh+WgxqyRNJ2GbA42d/7kNwebMQftfRwZFElUsGLMeu3vO3L2xCufWJzH2mILyZEh3DK9H2eOTj7qgRa/PX5LbQ0lWzZSuOFXyrZvxef1YDRFkj3meAZMOInUIcN6rKk7CwooOuVUYm+7jZhrrzngPrIs0+pqpbKtkqq2KirbKim3llPRVkGFtYLKtko8Pk/n/iG6EFLDU0mPSCcjIoNMUyYZERlkmDIIN4T7660dE+UWO48uyuXLzVVEBOtYMCWbyydkqBpCORQ1Dz5I0/sfkLNkMfq4njctX73VybPLCnjv1zKQ4NLx6dwwNYeow+h3cLuc6PSGo25A9Aojd7mdNBRuo7nycyyb3qJRp8cyYBaWmGwszqZOk250NGJxWPb70O6LKcikGHCQmeiQaKKCo/aac7BZict2/N9kMB204+1okGWZn/IbeHRRLlsrWsiMCeXPJ/fnlGGJXZr+5bTbKN60noL1v1K8aR2u9nZCzVEMnHAigyZNJS4zu0e1Rmv++U+aP/mUnBXL0ZmPLpPH6/NSY6+hrLWMstYySlpLKLOWUdpaSoW1Yr8snZiQGDJNmWSZspQlUlnHhsQGxHVrsrl4ZlkBb/9SikYDV07M5LrJ2ZhCAisb5EC4SkspnD2HmBtuIPamG9WWc9RUNNl5anE+n26swGjQce1JWVx9YubvvkR9Xi9l27ewe9UK8teu5ux7/k1ivwFHdc5eYeTfXj4N045qbrxei1e798Nk0BiIDonu7Bjr7CQLjvrd/yODI9Fr1L/ZZVlm0c5aHl+UR26tlaHJEfxt9iAm9Yvp8nO5XU6KNqxj96rlFG1cj8/rwZyUwrCpJzP4pGndkuLYlXitVvInTyFi1iyS/vNgt5zD7XVT3lZOSUsJxS3FytJaTHFzMVa3tXO/cEM42aZssiOzyYnMITsym37mfkQHR/vF4B1uL2+sLuHZZQXYnB7OGZPKn0/u3+Mq/ZVft4D2HTvIWboEjaFnz3VbUGfl0YV5/LCjhtjwIG47uT9nj06mobiAXT8vJ/eXn7C3NBNkDKXfuAmMPeVMolNSj+pcvcLINzx0OsY3cmm6ahLGy/6kGHRINEZdz61D7PXJfLWlkkcX5lHZ3M6J/WK4c/bAbhsy7GhrI+/XVexYsYSq3J1otFqyx4xj2LSZpI8YFZChF8tbb1P74INkfPIJIUOH+PXcsizT0N5AYUshRc1FFDYXUtBcQGFLIS3Ols79zEFmcsw55EQqS39zf3IicwgzdE2HmCzLfLO1moe+301lczvTBsZx5+yBDEjoGSGg39L28yrKr76apIf/i+m009SW0yVsKG3isc/W4Mpdx7D2fMIcTWj1erJHH8/ASZPJHDkW3TF+aXWrkUuSNBt4CtACr8iy/NAf7X+0Ri47Wik++0KQJDK/+qrHmveBcLi9vLOmlGeWFdBsdzN/ZBK3zxpAirn7KrU1VpSzbdkidq5YQru1lfCYWEacPJdh02ZijAiMbI/OlDWzmYwP3ldbTieyLNPoaKSguYCCpgIKmgvIb86noKkAu2fvgK+k0CT6mfvR39y/c0mLSEOnOfwY9qayJv71zU42ljUzKDGCe+cNYmJO1/9y8yeyLFM07xQ0oaFkfvyR2nKOCbfTQf6vq9mxYjFlO7aBLNMYnsKmoBzMg8dw1/zRDEvpms9Ttxm5JElaIA84GagA1gEXyLK882CvOZbOzuYvvqD6b3eR+uILhE2efFTHCGRa2t28sKKQ134uRgaumJjBDVNyujX26fW4KVj3K1t+/I7yHVvR6Q0MmHgSo2afSnymupNMt/30M+XXXEPSI49gOvUUVbUcDrIsU2WrIr8pf+/SnE9JSwkeWemzMWgMnSGZfQ0+OiR6v2NVNbfz3x928+XmKmLDg7h95gDOGpOCtpcUarO89x61//wXGR9+QMiIEWrLOSJkWaa2qIDtyxax6+cVuNrtmOITGHziNCVcGRPHB2vLeGJxPhabizNHJXP77AEkmo4tw6U7jfwE4H5Zlmd1/P8uAFmW/3Ow1xyLkcsuFwUzZ2FISyP9rTeP6hg9garmdh5dlMvnmyqJDNFzy/R+XDQ+vdvnKWwoK2HTwm/Y+dMyPE4nyQOHMPbUM8kefZwqBcDKr1tA+84d9FuyBKkHx1JdXhfFLcXkNeXttzS0N3TuExMSQ39zfzIjciirMbF0qw7ZGcs1J/ZnwZRswoICNxPlaPDZbORPnkLYlCkkP/qI2nIOC6fdxs6VS9m2dBH1pcXo9Ab6j5/I0GkzSRk09HdRglaHm+eWFfLaqmI0ElxzYhbXTT76v2V3GvnZwGxZlq/u+P8lwDhZlm/8zX7XAtcCpKWljSktLT3qcza+/gZ1//1vjxpUcLRsr2zhP9/vYlVBI5kxodw5eyCzhsR3e1jJ0dbG9uU/svH7r7A21GNOSmHsvNMZdNJU9Ab/jKZ0lZVROGt2j89u+CMa2xvJb84nz5JHriWXdVU7qG4vAUnJoNFJOrIiszpb7QPMA+gf1d9vnavdTe1//oPl3ffIWbIEfXxgpiLKskxtYT5bFn/P7tUr8TidxGVmM2zaLAZOPIng0EP3g5Rb7DyyMJevtlTx0iVjmDkk4ai0qG7k+3KseeTeNhsFU6cSOmECKU89edTH6SnIsszy3Hoe/G4X+XVtHJ8Zxb3zBjE8JbLbz+3zeslb8zPrvv6MuuJCQiJMjJ59KiNnnUJwWPeObKt96L9Y3nknoD/kXcWG0ib++c1OtpQ3MzwljKumhqMPqSG3KZf8pnxym3Kps9d17h8VHEU/cz/6RXaEZ6L6k23KJljXs7JXOlMRr7+e2JtvUlvOfrgdDnatWs6WRd9TV1KIPiiYgZMmM2LGHOKzco7qmLtrWhkQHx54eeT+Dq3soe6xx2l89VWyv/8OQ3r6MR2rp+Dx+vhwfTlP/JhHQ5uL00cmcfvsgST7YWSZLMtU7NzGuq8+pXjzBgwhIQyfMYcx804nzNz19aV9djv5U6YSNmkiyY8/3uXHDxQqmuz894dcvt5SRXxEEHfMGsgZo5IPOKag2dFMfnM+uZbcztBMQXMBTq8TUAavpYWnKQZv7kf/yP70M/cjOSy5S8dCdDXlC66nfds2cpYtDYhUREtVJVt+/I4dyxfjtNuISctgxMlzGTRpCkFGdaeJ604j16F0dk4HKlE6Oy+UZXnHwV7TFUburqujcPoMTGefReJ99x3TsXoaVofSIfrKT/7rEN2XupIi1n7xMXlrVqHRaRk6ZQbHnXYWprij+7l4IJo+/Iia++4j/b13MY4e3WXHDRTanB6eX17AKz8VI0lw7UnZLJicdcQjMr0+L+XWcvKa8jpDNPnN+VRYKzpHKgdrgzvz3vuZ+3Xmv8cbuz9Edzi0rVpF+VVXk/jQf4g8/XRVNPh8Xoo3rWfTD99QunUTGq2WfuMmMnLWPJIHDA6I6wTdn344F3gSJf3wNVmW/3A+p66qtVL9f/9Hy1dfk7NsqeqzjqjBbztEb57ej4vGpftthpOmmirWffUpO5YvQZZ9DD5xGuPOOAdzYvIxHVeWZYrnnw5aLZmffRowH6KuwOuT+Xh9OY/9mEe91cnpI5O4Y/bALq/XYXfbKWop6sya2ZNB0+ho7NwnXB9OVmQWOZE5ZJmyyI7MVsXgZVmm6JRT0QQHk/HJx349t8PWxo7li9m08BtaamsIi4pm+IzZDJ8+OyAHyvWKAUG/xVlURNHcecTccD2xN9/cBcp6Jvt2iGZEG7l91kDmDkvw2wfC2tjAuq8/ZdvihXg9HgZMOJFxZ5xLTOrRhbxsa9dSdullJD7wbyLPOquL1arHirx6Hvx2F7m1Vsakm7ln3iBGp/nXLJocTcqApo6BTXseNzubO/cJ1YeSGZFJVmQWmabMziU1PLXbRkU3ffABNff/w2+/wBorytn0w9fsXLkUt9NB8sDBjJp9GjnHjQ/o2bp6pZEDlP/pRtrXr1fiayrHr9RElmWW59Xz0He7ya21MiLFxJ1zBjIh238DR2zNTaz/5nO2LPoOt9NBv3ETGH/m+cRlZB3RcSpuuRX7mjXkrFiOJrhndd4diF3VrTz43S5+ym8gLcrI3+YMZM5Q/33RHg4Wh4XC5o7Rqy2FFLcUU9RStF8Hq1bSkhKeQkZEhlJozJRBeng6aRFpxBnj0EhH/0twT59I6IQJpDz5RFe8pd8h+3wUb9nAxu++onTrJrR6PQMnTg6I8RKHS681cvvGTZReeCHxd99N1KWXdMkxezJen8znmyp5fFEuVS0OJveP5c7ZAxmc5L+5LdutrWz87ks2fv81rnY72WPHMf7M80nI7nfI17qrqymYcTJRl19G/O23+0Ft91FusfPEj3l8vrmSiGA9N03L4ZIT0gOutOwfYXPb9taeaSmmpLVEKTbWWtbZyQpKHD4lPIW08LT9SganhqeSGJZ4WC352ocfwfLmm+Qs/hF9YmKXvQdXu53ty5eweeHXNFVXEWaOYsTMeQyfMTtgRjAfLr3WyAFKLroYd3UVOQsXBtxcgGrhcHt5+xdlyH+rw80pw5O4dUY/sv1YDN9ha2PT91+z8bsvcdjayBg5hvFnnEfywMEHfU3dk0/S+OJLZP/4I4aUY4u1q0Vjm5NnlhXw7poyJAkun5jB9ZOziTSqn5HRVfhkHzW2GkpbSym3llPaWkpZa1ln2eB9TV4jaYgzxv1u0o8EYwIJYcqkIEa9EXdlJQUnzyT6qquI+8ttx6yxuaaaTQu/YfuyH3G120nMGcDouafRb9zEgA6f/BG92sitS5dRccMNJD3yMKZTT+2y4/YGWtrdvLSykNdXleBwezlzdAq3TO9HapT/wlBOu53NC79hw7df0G5tJXXwMMadeR5pQ0fsF17wOZ0UTJ1GyMiRpD73rN/0dRUt7W5e+7mYV38uxu7ycO7YVG6Z0e+Yh2X3NHyyj4b2Bsqt5ZRbyztrw++pE19rr/3dNH+mIBNxxjiueLee1IJWVj97OTHmZGJCYjqX6JDoQ07AIssyZdu2sPGHryjauA6NRkP/8ZMYPee0oy4dG0j0aiOXfT6KTjsNSasj84vPAyr2GCg0tDl5YXkhb60pxeeTOfe4VG6Ykt2tRbl+i9vhYOuSH1j39WfYmiwk5gxg3JnnkjX6eCRJovnzL6i+6y7SXn+N0BNO8JuuY8XqcPP6qhJe+amIVoeH2UMS+Ous/uTE9czKhN2N2+em3l5Pta1ameHJVkONrYZaey0h24q44vkiXpyjZcnI33+O98y+ZQ42ExXUMalLcCThGNHurMe+Ng9nXROGsFCyp5zE0OkziYtLJUgb1Ct8oVcbOdBpAqkvv0TYiSd26bF7EzUtDv63NJ+P1pcjy3DGqGRumOrfGcI9Lhc7Vixm7Zef0FpfR0xqOsfNPxvDE08judxkff11j/jQWR1u3vqllJd/KqLZ7mbGoHhundGv20oQ9wVkWab4jDORvR6M77+ExWnpnLO1ob2BxvbG/ebJddY3k5DvJas8BINHQ0OEk10ZVkoSbXj36YrQaXSdE5HvOzG5QWvonIzcoDVg0BjQaXRoJS06jW6/CckllHtSkiQkJHyyT5mMXPYhy3LnRORen/f3k5L7nLi9blxeF7cfdzvDY4+utEivN/K+Ukyrq6hqbuellUW8v7YMt9fHqSOSuGFKjl/rW3s9HnJXr2Ttl5/QWFFGiNPNiOMncvxf7kAfFLjZKg1tTl5fVcxbv5RidXiYNjCOW2f080vJhL5A86efUX3PPaS98Tqh48f/7nmf10vhhl/ZvOg7yrZtRqPVkT1uPFlTT0KfEk2rq5U2VxttbmWxuW1YXVbaPe2/W/YYrcvrwul14vK68MgevLJXMWSf8lhGRpbl/dZaSYskSWjQIEnSfuavk5T1vl8Qex7fPOpmhsUOO6pr0+uNHPpWMa2uos7q4NWfinl7TSl2l5fJ/WO5+sRMJuXE+K1VLPt8rP3TdWyvKqM5WE9IeAQjZ81j5Mx5GE2RftFwOJRb7Ly0soiP1pfj8vqYPSSB66dkCwPvYnxOJwVTphIyatR+fSVtlka2LV3E1iU/0GZpJDw6luEzZjNs2syAHLzTHfQJI/e22SiYNo3Q8eNJefqpLj9+b6bJ5uLdX0t585dS6q1OBsSHc9WJmZw2Iolgffemy7lraiiYPgPzpZfiOXUu6775jKINa9HpDQw+aRpjTjmdqKSUbtVwMPZMmv3m6hIW7axBq5E4c1QK107O8msGUF9jT/ZS5nffUmmpZ9vShRRtWIcs+8gYMZoRM+eRNWosGm3PSeXsCvqEkQPUPfEkjS+9RNZ33xKUmdkt5+jNOD1evt5SzSs/FbG7xorZqOfsMSlccHwaWd1kXHVPPEnjyy+TvWhRZ8phY2U5G7/9kh0rl+B1u8kcNZZRs08lY/gov9RFt7s8fLGpijdXl5BbayXSqOe841K5fEJGn8tCUYOGnTtYdeMCKpNiaXe7MJoiGTplBsOmzSIyoetyzHsafcbIPQ0NFEybjmn+fBL/9c9uOUdfQJZlVhU08u6vpfy4sxaPT2Z8VhQXjktn5uD4Lmul+xwO5Wf02DGkPvPM7563tzSzedF3bF38PbbmJsyJyYycNY8hk2d0eSU6WZbZWNbMJxsq+GZLFVanh8GJEVw+IYPTRnb/L5O+jsvRTt6aVexcsYTyndsAiLU5GPfXu8iZNLnH5n53JX3GyAGq77+flk8/I3vx4l5fx9of1FkdfLy+gg/WlVFuaSc8SMesoQmcOiKJidnR6I5h1qK9HVtvEDp+3EH383rc5K1ZxaYfvqY6Pxd9cAiDJk1m+PTZR10beg9Vze18vqmSTzdUUNRgI0SvZc7QBC4Yl8bYdHOPyKDpqfi8Xsp2bGX3z8vJW7MKt9NBZEIiQ06aTlZCCo1XXUPcHXcQfeUVaksNCPqUkbvKyymcNZuoyy4j/s47uu08fQ2fT2Z1YSNfbK5k4fYarE4P0aEG5g5L5OTB8RyfGXVErVZZlik+8yzweMj86svDNsyawnw2L/yG3F9+xuNyEp+Vw/Dpsxk48SQMIYfXSi+sb2PhjhoWbq9hS0ULAMdnRHH2mBTmDk/sddOqBRKyLFNTkMeuVcvJXf0T9pZmDCFGBpwwiSGTZ5A0YFDnvVB68SW4qirJWbQISbTI+5aRA1T+9Xbali4lZ+kStJGR3XquvojD7WV5bj1fb61iya5aHG4fIXotE3OimTIgjikDYg852Mi+fj2lF19Cwj//gfncc49cg62NXT8vZ+viH2goK0EfFEy/409g8EnTSR06DM0+kynYnB7WlVj4pbCRpbvryK9rA2BEiolZQxOYNyyR9Gj/5dL3NfaYd96vq8hfu5qW2hq0ej1Zo45j4KTJZI06Dt0BJpWwLl5MxY03kfzkE0TMnq2C8sCizxm5IzeP4vnzibn5JmJvuKFbz9XXaXd5WVPUyLLcOpburqOiqR2AJFMwo9PNjOlYBiVG7Dd5dMXNt2D79Vf6LV+GJuToOxD3mMS2pQvJW7MKp91GSKSZ8MHjqIsfwmqLgS0VLXh8MnqtxNj0KGYNiWfmkIQurwMu2IvP66Uqdxf5a1eTv/YXrI31aLRa0oaOYMAJJ5Jz/AmHnO9S9nopnD0HXXQ0GR+87yflgUufM3LomIF9yxZyli7p0yVu/YksyxTW2/gpv54NpU1sLG2iqsUBgEGrITMmlJy4MIZqbEz+5wJ8515E1J//TExY0BFPiGF3eahsaqeiuZ3KpnbKLXZ2VVhozdtCSsMO0trL0eLDHhJFcP/RDJ90EieOG45RhE26DUdbG8VbNlC0YS0lmzfgsLWh1evJGDGafsdPIHvMuCOe69Xy1tvUPvggGR9+QMiIEd2kvGfQJ43cvnEjpRdeRPzddxF16aXdfj7BgalqbmdjWRPbKlooqGujoL6N2cvf55SiVVwx824aQiIBMIXoiQ0PIixIh14roddq0Gk16DUSLq+PNqcHm9ODzenF6nDT6vDsdx6DVkP/hDCGJJoYnBRBvwjQlm2jbMMvlO/Yjiz7MCcmkXP8BLJGjSWp/6A+l4fc1fi8XmoK8yjdupnSbZuoytuN7PMREh5B1ujjyBp9HBkjRh9238WB8LbZKJgyhbCTTuzV87ceDn3SyAFKLr4Yd2UVOQt/QAqAiV0F4G1rI3/yFOTxkyi/4W80tLloaHNSb1UWm8uDxyvj9vpw+2Q8Xh8GnYawIB2hBh3GIC3hQTriTcEkR4aQYg4hKTKEuPBgtAeYtBiUNMaCdWvIXfMzFTu34fN6CQ4NI33EaLJHH0f6iNE9rja1Gvh8XhrKSqnYtYPyHVsp37EVp90GkkR8ZjYZI0aTNfo4EnL679dHcazU/vdhLG+9Rc6Pi9AnJXXZcXsafdbI21aupPza60h88EEizzzDL+cU/DGNb7xB3UP/JePjjwkZNtTv53fabZRs2UTxpnUUb96AvaUZgJi0DNKGDCd16AhSBg05ZPy2L+B2OKgtKqAqfzeVu3dQuXunYtxARGwc6cNGkj58FKlDhnfrF+GeWuVRV1ze4yccORb6rJF3VlNzucj65mu/jAoUHBzZ46Fw5ix0SYlkvPOO2nKQfT5qivIp27aFsh1bqdq9E4/bhSRpiElLJ7HfAJL6DyKx3wDMicm9Oqfc43LRWFFGXUkR1QW51BTk0VBeiuxTaoebk1JIGTSElEFDSRk4hIhY/47RqLj1z9hWrSJn2TK0YX0zw+hgRt7re30kSSL6mqup+stfsf64mIhZM9WW1KexLl6Cu6qKuLv+prYUACSNhsScAUpt9DPOxeN2U52/m7LtW6nO383uVSvZuvgHAIJDw4jNyCIuI5PY9Cxi0zOJSk5F18NmpfJ6PLTU1WKpqsBSWU59aTH1pcVYqio6TTsoNJSE7P6MG3M8CTkDSMzpr3oBs+grLsf6ww80f/Ix0ZdfrqqWQKPXt8hBSWEqmjsPKdRI5qef9upWVaBTcsGFeBoayP7he6Qe0NEo+3xYqiqoyt9NdX4u9SVFNJSX4XEpU5lJGg2muHjMCUmYE5OJTEzCHJ9IeEwsYVExXV5G4LA0yzLt1lbaLI201NfSWldHS30NrfV1NFVX0VxTjc+7t6M4LDqGuPS9X05xGZlExicG5K/X0osvwVVZSc6ivjmtY59tkQNIWi3R115L9T330LZ8OeFTp6otqU/SvmUL7Zs2EX/3XT3CxEEx6uiUNKJT0hg2Vfk15/N5aaquor60mIayUpqqK2mqqaJi1w7cTsd+rzeEhBAWFUNopJmQsHCCw8MJCY8gOCycIGMoOoMBXVAQekMQOoNhnywaCUmSkGUZn8eDx+3C43bjdbtwO5247DYcNhtOuw2nzUZ7Wyu2piZsLU3Ym5v3M2oAfXAIprh4opKSyTluPFFJKUQlpWBOSu5RfQFRV11JxfU30Pr995hOO01tOQFDn2iRA8huN4Wz56CNiSbjgw9Eq1wFKm+7jbaVP5GzfHmvjHHKsoytyUJzbTVtlkaslkasjfW0NTZia26ivc2Ko2PZE8I4VgwhIQQZwwgOCyPUHEWoyUyo2UxopJmwqGhMsfFExMUTHBrWK+75vj6tY59ukQNIej3R11xDzf33Y1u9mrCJE9WW1KdwV1XRunARUZde2itNHJT+mLCoaMKiov9wP9nnw9lux9XejsflxONSWtlupwN8PmSAfRpYWr0erU6PzmBAq9ej0xsICg0lyBja5/LgJY2G6CuupPqee7CtWk3YJPE5hj5k5ACmM8+g4YUXaHj+eWHkfsbytpKhEnXxRSorUR9JoyE4NKxHhTQCiYhTT6H+ySdpfPUVYeQdBF5vRjeiMRiIvuoq2tdvwLZ2rdpy+gze1laaP/yQiNmz0Scnqy1H0MPRGAyYL70E+y9raN+xQ205AUGfMnKAyHPORhsTQ8Pzz6stpc/Q9MGH+Ox2oq+6Um0pgl6C+bzz0ISGYnntdbWlBAR9zsg1wcFEX3kl9l/WYN+0SW05vR6f04nl7bcInTiR4MGD1ZYj6CVoIyKIPPdcWn/4AVdFpdpyVKfPGTmA+fzz0EZGila5H2j56iu89Q1EX32V2lIEvYyoSy8BScLyxhtqS1GdPmnkGqORqMsvx7byJ9q3bVNbTq9F9vmwvPoawYMHYxw/Xm05gl6GPjER07x5NH/yCR6LRW05qtInjRzAfPFFaE0m6p/+n9pSei3WJUtwlZQQfc3VfS7fV+Afoq+7FtnpxPLGm2pLUZU+a+TasDCirr4K208/Yd8oYuVdjSzLNL7yCvrUVMJPPlltOYJeSlBWFuGzZtH07rt4W1rUlqMafdbIAaIuughtdDT1Tz+ttpReR/uGDTi2bCXqisvFpLmCbiVmwXX4bDYs776rthTV6NNGrjEaib7mauxr1mD7VeSVdyWNr7yKNiqKyDPPVFuKoJcTPHAgYVOn0vTmW3jbbGrLUYU+beQA5vPPRxcXR/3TT6NG3ZneiDM/n7blyzFffBGa4GC15Qj6ADELrsPb0kLzhx+oLUUV+ryRa4KDib7uWto3bMC2arXacnoFDS+8iMZoxHzBBWpLEfQRQkaMIHTCCTS+/gY+h+PQL+hl9HkjB4g85xx0iYmiVd4FOIuKaP3uO8wXXYTObFZbjqAPEb1gAd6GBpo/+VRtKX7nmIxckqRzJEnaIUmST5Kk35VW7CloDAZirl+AY+tW2pYvV1tOj6bxxReRgoOJuuJytaUI+hjG444jZPRoGl95BdnlUluOXznWFvl24ExgZRdoUZXIM85An5pK/f/+12W1ovsarpISWr7+BvMFF6CLilJbjqCPIUkSMdcvwFNTQ/MXX6gtx68ck5HLsrxLluXcrhKjJpJeT8yfbsC5cxfWH35QW06PpOHFl5S671deobYUQR8ldNIkgocOpfGFF/H1oVa532LkkiRdK0nSekmS1tfX1/vrtEeE6dRTCRowgLrHn+hTN0FX4Covp+WrrzCffx66mBi15Qj6KJIkEXvLzbirqmj+5BO15fiNQxq5JEmLJUnafoBl/pGcSJbll2RZHivL8tjY2NijV9yNSFotcX/9C+6KCpo/6JtpTEdL40svIWm1RF0pimMJ1CV00iRCxoyh8fkX8LW3qy3HLxzSyGVZniHL8tADLF/6Q6C/CZ00CeMJ42l47nm8VqvacnoE7spKmj//gshzz0UfH6e2HEEfR5Ik4m69BU99PU3vva+2HL8g0g9/gyRJxP31r3ibm2l8+RW15fQIGl5+GUmSRKlaQcBgPO44QidOpPHll/G2taktp9s51vTDMyRJqgBOAL6VJGlh18hSl5AhQ4g49VQsb76Ju6ZGbTkBjbuqipZPP8N09lnoExLUliMQdBJ76y14m5uxvNn7KyMea9bK57Isp8iyHCTLcrwsy7O6SpjaxN5yC/h8osztIah/+n8gScRce63aUgSC/QgZNoywGdOxvP4G3uZmteV0KyK0chAMKcmYL7qIli++wJGbp7acgMSRm0fLl19ivuRi9ImJassRCH5H7M0347PZaHz1NbWldCvCyP+AmAXXoQkLo+6xR9WWEpDUP/44mvBwYq65Rm0pAsEBCe7fn4h587C88w6eAE177gqEkf8B2shIYhYswLbyJ6zLlqktJ6CwrV1L24oVxFx7DdrISLXlCAQHJfbGPyG7XNQ/95zaUroNYeSHIOriizBkZVH7n4fwOZ1qywkIZFmm7rHH0MXHY774YrXlCAR/iCEjA/P559P84Uc48npnmFQY+SGQDAbi77kbd1kZltdfV1tOQGD98UccW7YSe/NNot64oEcQc+OflDDpQ//tlRVOhZEfBmETJxI+cyYNL7yIu6pKbTmqIns81D/xJIacbEzzj2hwr0CgGjqzmdgb/4Rt9WraVqxQW06XI4z8MIm/8w4Aav/7sMpK1KX5s89wFRcTd9ttYi5OQY/CfMEFGDIylFa52622nC5FGPlhok9OJua6a7EuXIhtdd+cScjbZqPhf88QMno0YVOnqi1HIDgiJL2euDvvwFVSQtP7vWvovjDyIyDqyivRp6ZS8+8H+lzheoCGZ57B09BA/J13IEmS2nIEgiMmbMoUQidMoP7Z5/A0Naktp8sQRn4EaIKCiL/7LlxFRVjefkdtOX7FkZuH5e23iTznHEJGjFBbjkBwVEiSRNzf7sRntdLwbO9JRxRGfoSET51K2NSp1D/zDK6yMrXl+AVZlqn55z/RhocT++db1ZYjEBwTwf37E3neuTS9/z7O/Hy15XQJwsiPgoT7/o6k1VJ9z719Ylq4li++pH3DBuL++hcxobKgVxB7001ow8Ko/r+/94rPsDDyo0CfkED8XX/Dvm4dTb18AgpvSwt1jzxCyMiRmM48U205AkGXoIuKIu6uv9G+eXOvqFkujPwoMZ15JqGTJlH36GO4KirUltNt1D35JN7mZuVXiEbcLoLeg2n+fEInTqT+8cd7/PgQ8ck8SiRJIvGf/0CSJKrv/b9eOVqsfdt2mj/4EPOFFxI8aJDacgSCLkWSJBL+8Q9kWaa6Y91TEUZ+DOiTkoi74w7sa9bQ/OFHasvpUmSXi5r77kMbHU3sLTerLUcg6BYMKcnE3XoLthUraf32O7XlHDXCyI+RyHPPwXjCeOoefhh3ZaXacrqM+meexbFzJwl//z+04eFqyxEIug3zxRcTPHw4tQ880GNzy4WRHyOSJJH4r38DUHnnncgej8qKjh37unU0vvwyprPOJGLmTLXlCATdiqTVkvivf+G1Wql76CG15RwVwsi7AENKMgn/+Aft6zdQ/+STass5JrxWK5V33ok+NZWEu+9WW45A4BeCB/Qn+pqrafnyK1p/6HlTDwsj7yJMp55C5Pnn0fjKq1iXLFFbzlFT889/4amtI/mRh9GEhqotRyDwG7HXX0/w8OFU33tvjxvsJ4y8C4m/6y6Chwyh6m934SovV1vOEdPyzbe0fv01MTdcL4bhC/ocksFA8uOPg0ZD5a1/xteD6ikJI+9CNEFBJD/1JEgSlbfc2qNmFHJXVlLzj38QMmoUMdddp7YcgUAVDCnJJP3nQRw7d1LXg0pWCyPvYgwpKSQ99BCOnTupffA/ass5LHzt7VTc+mfwekl6+L+izrigTxM+fTpRl11G07vv9ph4uTDybiB82lSir7ma5g8/pCnA88tlr5eqO+7AsX07SY88jCE1VW1JAoHqxP3lth4VLxdG3k3E3nILoSedSM0//hHQ3+p1jzyK9cfFxP/tTsKnT1dbjkAQEOwbL6+45Va8bTa1Jf0hwsi7CUmnI+WppwgZOZLK22+nbdUqtSX9Dst772F54w3MF12E+dJL1ZYjEAQUhpRkkh95GGdeHhU33RjQnZ/CyLsRTUgIqS88T1B2NhU33oR90ya1JXXStmIFtf9+gLApU4i/+y4x449AcADCJk8m8YF/Y/9lDVV/vR3Z61Vb0gERRt7NaCMiSHv5JXSxsZQvuB5HXp7akmjfto3KP99G0MABJD/2KJJWq7YkgSBgiTz9dOLv+hvWRYuouT8wi2sJI/cDuthY0l57FU1QEOVXXY0jVz0zb/vpJ0ovuxxtZCSpz78gBv0IBIdB1GWXEX3ddTR//DH1Tz6ltpzfIYzcTxhSUkh79RUASi+4AOvSpX7X0PzZ55QvuB5DejrpH7yPPj7O7xoEgp5K7K23EHnuuTS++CINL70cUC1zYeR+JKhfPzI++RhDVhYVf7qRhhdf8svNIMsy9c89R/XddxM6bhzpb7+FPk6YuEBwJEiSRMJ9fydi7hzqH3+cmr//HTlAOkCFkfsZfXw86e+8TcScOdQ/8QRVt9+Bz+HotvMpdcXvp+Hp/2GafxqpLzyPNiys284nEPRmJK2WpEcfJXrBdTR//AmlV1yJp7FRbVnCyNVAExxM0mOPEnvrrbR+8w2lF15E+9atXX4e25pfKTrjTJo/+ojoa68l8aGHkAyGLj+PQNCXkDQa4m69laTHHsWxYwfFZ5+DY9cuVTUJI1cJSZKIWXAdKc8+g7u2lpJzz6Pytr/gqjj2ySncdXVU/uWvlF1+ObLTScrzzxF3259FiqFA0IWY5s0j/Z13QJYpueBCmj78SLX5CCQ1AvZjx46V169f7/fzBireNhuNr76C5fU3wOvFfMklxFx3LVqT6YiO47FYaPniSxqefRbZ5SL6mmuIvvYaNMHB3SNcIBDgqa+n8ra/YF+3DkN2NnF/vpWw6dO7peEkSdIGWZbH/m67MPLAwV1TQ/1TT9PyxRdIOh0hY8YQOmECoRMnEDxo0AFnsXdVVNK2ZDHWHxdj37gRfD5CTzyRhHvvwZCersK7EAj6HrIs07ZkCXWPP4GrqIiQkSOJ++tfMI79neceE8LIexCO3btp+fIrbKtW4ewYQKQ1m9GnpYLbg+x2I3s8+JwOPFXVAAT170/4jOmEz5hB0KBBIowiEKiA7PHQ/PnnNPzvGTx1dejT0zAedxyhxx+P8bjj0CcmHtPxhZH3UDz19dh++QXbqtV4GhqUErN6HZJOj6TXEzxwIOEzpovWt0AQQPja22n+9DNsq1Zh37ABX2srAPqUFBL//S9Cx48/quN2i5FLkvQIcCrgAgqBK2RZbj7U64SRCwSCvoLs9eLMy8O+bh32deuI/fNtBGVlHtWxusvIZwJLZVn2SJL0XwBZlu881OuEkQsEAsGRczAjP6b0Q1mWF8myvCffZg2QcizHEwgEAsGR05V55FcC3x/sSUmSrpUkab0kSevr6+u78LQCgUDQtznk5IySJC0GEg7w1D2yLH/Zsc89gAd492DHkWX5JeAlUEIrR6VWIBAIBL/jkEYuy/KMP3pekqTLgVOA6XIglQMTCASCPsIxTZcuSdJs4A5gsizL9q6RJBAIBIIj4Vhj5M8A4cCPkiRtliTphS7QJBAIBIIj4Jha5LIs53SVEIFAIBAcHaL6oUAgEPRwVBmiL0lSPVDq9xMfHjFAg9oiDkGgaxT6jo1A1weBr7G36kuXZTn2txtVMfJARpKk9QcaORVIBLpGoe/YCHR9EPga+5o+EVoRCASCHo4wcoFAIOjhCCP/PS+pLeAwCHSNQt+xEej6IPA19il9IkYuEAgEPRzRIhcIBIIejjBygUAg6OH0KSOXJGm2JEm5kiQVSJL0twM8f5skSTslSdoqSdISSZLS93nO21GGYLMkSV+ppO9ySZLq99Fx9T7PXSZJUn7HcplK+p7YR1ueJEnN+zznj+v3miRJdZIkbT/I85IkSU936N8qSdLofZ7zx/U7lL6LOnRtkyRptSRJI/Z5rqRj+2ZJkrptVpbD0DhFkqSWff6Wf9/nuT+8P/yk7/Z9tG3vuO+iOp7r9msoSVKqJEnLOnxkhyRJtxxgn66/D2VZ7hMLoEWZji4LMABbgMG/2WcqYOx4fD3w4T7PtQWAvsuBZw7w2iigqGNt7nhs9re+3+x/E/Cav65fxzlOAkYD2w/y/FyUmvkSMB741V/X7zD1TdhzXmDOHn0d/y8BYgLgGk4BvjnW+6O79P1m31NRZjDz2zUEEoHRHY/DgbwDfI67/D7sSy3y44ECWZaLZFl2AR8A8/fdQZblZfLeKo7+nvHokPr+gFnAj7IsW2RZbgJ+BGarrO8C4P0u1vCHyLK8ErD8wS7zgbdkhTVApCRJifjn+h1SnyzLqzvODyrNuHUY1/BgHMv9e9gcoT417sFqWZY3djy2AruA5N/s1uX3YV8y8mSgfJ//V/D7C7wvV7H/jEfBHTMcrZEk6XQV9Z3V8XPsE0mSUo/wtf7QR0dIKhNYus/m7r5+h8PB3oM/rt+R8tv7TwYWSZK0QZKka1XStIcTJEnaIknS95IkDenYFlDXUJIkI4oJfrrPZr9eQ0mSMoBRwK+/earL78Njqn7YW5Ek6WJgLDB5n83psixXSpKUBSyVJGmbLMuFfpb2NfC+LMtOSZKuA94EpvlZw+FwPvCJLMvefbYFwvXrEUiSNBXFyCfts3lSx/WLQykbvbujdepvNqL8LdskSZoLfAH0U0HHoTgVWCXL8r6td79dQ0mSwlC+RG6VZbm1O86xL32pRV4JpO7z/5SObfshSdIM4B7gNFmWnXu2y7Jc2bEuApajfNP6VZ8sy437aHoFGHO4r/WHvn04n9/8pPXD9TscDvYe/HH9DgtJkoaj/G3ny7LcuGf7PtevDvgcJZThd2RZbpVlua3j8XeAXpKkGALoGnbwR/dgt15DSZL0KCb+rizLnx1gl66/D7sz8B9IC8qvjyKUn/x7OmOG/GafUSgdNv1+s90MBHU8jgHy6eKOnMPUl7jP4zOANfLeTpLiDp3mjsdR/tbXsd9AlE4lyZ/Xb59zZXDwjrp57N/JtNZf1+8w9aUBBcCE32wPBcL3ebwamN0d+g5DY8Kevy2KEZZ1XM/Duj+6W1/H8yaUOHqov69hx7V4C3jyD/bp8vuwW26EQF1QeovzUMz6no5t/0RpfQMsBmqBzR3LVx3bJwDbOm7ObcBVKun7D7CjQ8cyYOA+r72ywwQKgCvU0Nfx//uBh37zOn9dv/eBasCNEl+8ClgALOh4XgKe7dC/DRjr5+t3KH2vAE373H/rO7ZndVy7LR1//3u68TNyKI037nMPrmGfL50D3R/+1texz+XAB795nV+uIUo4TAa27vN3nNvd96EYoi8QCAQ9nL4UIxcIBIJeiTBygUAg6OEIIxcIBIIejjBygUAg6OEIIxcIBIIejjBygUAg6OEIIxcIBIIezv8DhtPCOU5T/c0AAAAASUVORK5CYII=", "text/plain": [ "
" ]