From 21edf9c30f0ace115ff2da96e961a30902e44394 Mon Sep 17 00:00:00 2001 From: yz Date: Tue, 15 Apr 2025 08:46:02 +0800 Subject: [PATCH] 11 --- .../FASTKinematics/auto/FASTKinematics.md | 4 +- .../auto/Kane-Dynamics-Theory-Applications.md | 35 +- ...NAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md | 4 +- .../WindTurbine_Kane推导_rigid.ipynb | 263 +++++++- 多体+耦合求解器/sympy_test.ipynb | 16 + .../资料收集/FAST 中耦合叶片模态.md | 1 + 多体+耦合求解器/风机模型.excalidraw.md | 559 ++++++++---------- 工作OKRs/25.2-5 OKR.canvas | 4 +- 工作总结/周报/~$71-郭翼泽.docx | Bin 0 -> 162 bytes 工作总结/周报/周报71-郭翼泽.docx | Bin 20367 -> 20304 bytes 工作总结/周报/周报72-郭翼泽.docx | Bin 0 -> 20329 bytes 生活OKRs/25.2-5 OKR.canvas | 5 +- 补课/多体动力学/框架.canvas | 10 +- 13 files changed, 533 insertions(+), 368 deletions(-) create mode 100644 多体+耦合求解器/sympy_test.ipynb create mode 100644 多体+耦合求解器/资料收集/FAST 中耦合叶片模态.md create mode 100644 工作总结/周报/~$71-郭翼泽.docx create mode 100644 工作总结/周报/周报72-郭翼泽.docx diff --git a/力学书籍/OpenFast/FASTKinematics/auto/FASTKinematics.md b/力学书籍/OpenFast/FASTKinematics/auto/FASTKinematics.md index 52e2327..9a5385a 100644 --- a/力学书籍/OpenFast/FASTKinematics/auto/FASTKinematics.md +++ b/力学书籍/OpenFast/FASTKinematics/auto/FASTKinematics.md @@ -177,7 +177,7 @@ The equations for $^E_{\nu_{r}^{S2}}\left(r\right)$ and $^E_{\nu_{t}^{S2}}\left( Angular Accelerations: -Recall that: $^{E}\pmb{\alpha}^{N_{i}}\left(\ddot{q},\dot{q},q,t\right)\!=\!\left(\sum_{r=l}^{22}^{E}\pmb{\omega}_{r}^{N_{i}}\left(q,t\right)\ddot{q}_{r}\right)\!+\!\left[\sum_{r=l}^{22}\frac{d}{d t}\!\left(^{E}\pmb{\omega}_{r}^{N_{i}}\left(q,t\right)\right)\!\dot{q}_{r}\right]\!+\!\frac{d}{d t}\!\left(^{E}\pmb{\omega}_{t}^{N_{i}}\left(q,t\right)\right)\!\left(^{E}\pmb{\omega}_{p}^{N_{i}}\left(q,t\right)\right),$ for each rigid body $N_{i}$ in the system. Note that the $\frac{d}{d t}\Big(^{E}\omega_{r}^{N_{i}}\Big)$ terms are all vector functions of $\left({\dot{q}},q,t\right)$ and that all of the $\frac{d}{d t}\Big(^{E}\omega_{t}^{N_{i}}\Big)$ terms are zero as will be shown. +Recall that: $^{E}\pmb{\alpha}^{N_{i}}\left(\ddot{q},\dot{q},q,t\right)\!=\!\left(\sum_{r=l}^{22}^{E}\pmb{\omega}_{r}^{N_{i}}\left(q,t\right)\ddot{q}_{r}\right)\!+\!\left[\sum_{r=l}^{22}\frac{d}{d t}\!\left(^{E}\pmb{\omega}_{r}^{N_{i}}\left(q,t\right)\right)\!\dot{q}_{r}\right]\!+\!\frac{d}{d t}\!\left(^{E}\pmb{\omega}_{t}^{N_{i}}\left(q,t\right)\right)\!\left(^{E}\pmb{\omega}_{p}^{N_{i}}\left(q,t\right)\right)$ for each rigid body $N_{i}$ in the system. Note that the $\frac{d}{d t}\Big(^{E}\omega_{r}^{N_{i}}\Big)$ terms are all vector functions of $\left({\dot{q}},q,t\right)$ and that all of the $\frac{d}{d t}\Big(^{E}\omega_{t}^{N_{i}}\Big)$ terms are zero as will be shown. $$ \begin{array}{l}{\displaystyle\frac{d}{d t}\Big(\sp\varepsilon\omega_{r}^{X}\Big)=O}\\ {\displaystyle\frac{d}{d t}\Big(\sp\varepsilon\omega_{{r}}^{X}\Big)=O}\end{array} @@ -200,7 +200,7 @@ The equations for ${\frac{d}{d t}}\Big[^{\,E}\pmb{\omega}_{r}^{{\scriptscriptsty Linear Accelerations: -Recall that: $\varepsilon_{\mathbf{}}\boldsymbol{\alpha}^{X_{i}}\left(\ddot{q},\dot{q},q,t\right)\!=\!\!\left(\sum_{r=l}^{22}\varepsilon_{\nu_{r}^{X_{i}}}\left(q,t\right)\ddot{q}_{r}\right)\!+\!\!\left[\sum_{r=l}^{22}\!\frac{d}{d t}\!\left({^{\varepsilon}\nu_{r}^{X_{i}}}\left(q,t\right)\right)\!\dot{q}_{r}\right]\!+\!\frac{d}{d t}\!\left({^{\varepsilon}\nu_{{^I}}^{X_{i}}}\left(q,t\right)\right)\!\left({^{\varepsilon}\nu_{{^I}}^{X_{i}}}\left(q,t\right)\right)\!+\!\frac{d}{d t}\!\left({^{\varepsilon}\nu_{{^I}}^{X_{i}}}\left(q,t\right)\right)\!+\!{^{\varepsilon}\nu_{{^I}}^{X_{i}}}\left(q,t\right),$ for each point $X_{i}$ in the system. Note that the ${\frac{d}{d t}}{\Big(}^{E}\nu_{r}^{X_{i}}{\Big)}$ terms are all vector functions of $\left({\dot{q}},q,t\right)$ and that all of the ${\frac{d}{d t}}{\Big(}^{E}\nu_{t}^{X_{i}}{\Big)}$ terms are zero as will be shown. +Recall that: ${}^E{\alpha}^{X_{i}}\left(\ddot{q},\dot{q},q,t\right)\!=\!\!\left(\sum_{r=1}^{22}{}^E{V_{r}^{X_{i}}}\left(q,t\right)\ddot{q}_{r}\right)\!+\!\!\left[\sum_{r=1}^{22}\!\frac{d}{d t}\!\left({}^E{V_{r}^{X_{i}}}\left(q,t\right)\right)\!\dot{q}_{r}\right]\!+\!\frac{d}{d t}\!\left({}^EV_{r}^{X_{i}}\left(q,t\right)\right)$ for each point $X_{i}$ in the system. Note that the ${\frac{d}{d t}}{\Big(}^{E}\nu_{r}^{X_{i}}{\Big)}$ terms are all vector functions of $\left({\dot{q}},q,t\right)$ and that all of the ${\frac{d}{d t}}{\Big(}^{E}\nu_{t}^{X_{i}}{\Big)}$ terms are zero as will be shown. $$ \begin{array}{l}{\displaystyle\frac{d}{d t}\Big(\sp\varepsilon\pmb{\nu}_{r}^{z}\Big)=O}\\ {\displaystyle\frac{d}{d t}\Big(\sp\varepsilon\pmb{\nu}_{{\pmb\nu}}^{z}\Big)=O}\end{array} diff --git a/力学书籍/力学/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md b/力学书籍/力学/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md index 7a74bb9..ae8c24e 100644 --- a/力学书籍/力学/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md +++ b/力学书籍/力学/Kane-Dynamics-Theory-Applications/auto/Kane-Dynamics-Theory-Applications.md @@ -1088,35 +1088,38 @@ $$ # 2.5 ANGULAR ACCELERATION -The angular acceleration Aa of a rigid body B in a reference frame A is defined as the first time-derivative in A of the angular velocity of B in A (see Sec. 2.1): +The angular acceleration ${}^{A}{\alpha}^{B}$ of a rigid body B in a reference frame A is defined as the first time-derivative in A of the angular velocity of B in A (see Sec. 2.1): +刚体的角加速度 ${}^{A}{\alpha}^{B}$ 在参考系 A 中定义为 A 中对 B 在 A 中的角速度的一阶时间导数(见第 2.1 节): + $$ -A_{\mathfrak{A}}{}^{B}\triangleq\frac{{}^{A}d^{A}\mathfrak{A}^{B}}{d t} +{}^{A}{\alpha}^{B}\triangleq\frac{{}^{A}d^{A}\omega^{B}}{d t} $$ -Since the first time-derivatives of $\mathbf{\mathit{A}}_{\mathbf{\Theta}\mathbf{\tilde{0}}}\mathbf{\mathit{B}}$ in $\pmb{A}$ andin $B$ are equal toeach other, as becomes evident when one replaces v in Eq. (2.3.1) with 4o", Eq. (1) implies that +Since the first time-derivatives of ${}^{A}\omega^{B}$ in $\pmb{A}$ and in $B$ are equal to each other, as becomes evident when one replaces v in Eq. (2.3.1) with 4o", Eq. (1) implies that +由于 ${}^{A}\omega^{B}$ 在 $A$ 和 $B$ 处的首次时间导数彼此相等,正如在方程 (2.3.1) 中将 v 替换为 4o" 时显而易见,则方程 (1) 意味着 +$$ +{}^{A}{\alpha}^{B}\triangleq\frac{{}^{B}d^{A}\omega^{B}}{d t} +$$ + +which furnishes a convenient way to find ${}^{A}{\alpha}^{B}$ when ${}^{A}\omega^{B}$ has been expressed in terms of components parallel to unit vectors fixed in $\boldsymbol{B}$ +这为寻找${}^{A}{\alpha}^{B}$提供了一种便捷的方法,当 ${}^{A}\omega^{B}$ 已经用平行于固定在 $\boldsymbol{B}$ 中的单位向量的组件表示时。 + +If $A_{1},...,A_{n}$ are $n$ auxiliary reference frames, ${}^{A}{\alpha}^{B}$ is not, in general, equal to the sum ${}^{A}{\alpha}^{A_{i}} + {}^{A_{1}}{\alpha}^{A_{2}} + ... +{}^{A_{n}}{\alpha}^{B}$ . Thus, Eq. (2.4.1) does not, in general, have an angular acceleration counterpart. + +The angular velocity of $\boldsymbol{B}$ in $A$ can always be expressed as ${}^{A}\mathbf{\omega}^{B}=\omega\mathbf{k}_{\omega}$ , where $\mathbf{k}_{\omega}$ is a unit vector parallel to ${}^{A}\mathbf{\omega}^{B}$ ; similarly ${}^{A}{\alpha}^{B}$ can always be expressed as ${}^{A}{\alpha}^{B}=\alpha\mathbf{k}_{\alpha}$ , where $\mathbf{k}_{\alpha}$ is a unit vector parallel to ${}^{A}{\alpha}^{B}$ In general, $\mathbf{k}_{\omega}$ differs from $\mathbf{k}_{\alpha}$ , and $\alpha\neq d\omega/d t$ . But when $\boldsymbol{B}$ has a simple angular velocity in $A$ (see Sec. 2.2), and ${}^{A}\mathbf{\omega}^{B}$ is expressed as in Eq. (2.2.1), then $$ -A_{\mathfrak{A}}B=\frac{B_{d}A_{\mathfrak{A}}^{B}}{d t} +{}^{A}{\alpha}^{B}=\alpha\mathbf{k} $$ -which furnishes a convenient way to find AaB when Ao3 has been expressed in terms of components parallel to unit vectors fixed in $\boldsymbol{B}$ - -If $A_{1},...,A_{n}$ are $n$ auxiliary reference frames, $A_{\alpha}B$ is not, in general, equal to the sum $\mathbf{\dot{\alpha}}^{A}\mathbf{\alpha}^{A_{1}}+\mathbf{\alpha}^{A_{1}}\mathbf{\alpha}^{A_{2}}+\mathbf{\beta}^{\dots}+\mathbf{\alpha}^{A_{n}}\mathbf{\alpha}^{B}$ . Thus, Eq. (2.4.1) does not, in general, have an angular acceleration counterpart. - -The angular velocity of $\boldsymbol{B}$ in $A$ can always be expressed as ${}^{A}\mathbf{\omega}\mathbf{\omega}^{B}=\omega\mathbf{k}_{\omega}$ , where $\mathbf{k}_{\omega}$ is a unit vector parallel to $\mathbf{\mathit{A}_{G D}}\mathbf{\mathit{B}}$ ; similarly $A_{\widetilde{\mathbf{z}}}B$ can always be expressed as $^{A}\pmb{\alpha}^{B}=\alpha\mathbf{k}_{\alpha}$ , where $\mathbf{k}_{\alpha}$ is a unit vector parall to $A_{\pmb{\alpha}}B$ In general, $\mathbf{k}_{\omega}$ differs from $\mathbf{k}_{\alpha}$ , and $\alpha\neq d\omega/d t$ . But when $\boldsymbol{B}$ has a simple angular velocity in $A$ (see Sec. 2.2), and $\mathbf{\Pi}^{A}\mathbf{\Pi}_{\mathbf{G}\mathbf{\tilde{D}}}\mathbf{\scriptscriptstyle{B}}$ is expressed as in Eq. (2.2.1), then - -$$ -A_{\alpha}B_{\mathrm{\Phi}}={\mathfrak{X}}\mathbf{k} -$$ - -where $\pmb{\alpha}_{\ast}$ called a scalar angular acceleration, is given by +where $\alpha$ called a scalar angular acceleration, is given by $$ \alpha={\frac{d\omega}{d t}} $$ -Example Referring to the example in Sec. 2.4 and to Fig. 2.4.1, one can find an expression for the angular acceleration of the cone $\pmb{B}$ inreferenceframe $\pmb{A}$ asfollows: +Example Referring to the example in Sec. 2.4 and to Fig. 2.4.1, one can find an expression for the angular acceleration of the cone $\pmb{B}$ in reference frame $\pmb{A}$ as follows: $$ {\begin{array}{r l}&{{\mathbf{\nabla}}_{a{\pmb{\alpha}}^{B}}={\cfrac{a_{d}}{d t}}({\dot{q}}_{1}{\mathbf{k}}_{2}+{\dot{q}}_{2}{\mathbf{k}}_{7}+{\dot{q}}_{3}{\mathbf{k}}_{3})}\\ &{\qquad={\ddot{q}}_{1}{\mathbf{k}}_{2}+{\dot{q}}_{1}{\cfrac{a_{d}{\mathbf{k}}_{2}}{d t}}+{\ddot{q}}_{2}{\mathbf{k}}_{7}+{\dot{q}}_{2}{\cfrac{a_{d}{\mathbf{k}}_{7}}{d t}}+{\ddot{q}}_{3}{\mathbf{k}}_{3}+{\dot{q}}_{3}{\cfrac{a_{d}{\mathbf{k}}_{3}}{d t}}}\end{array}}\,,{\mathbf{\dot{\xi}}}_{{\begin{array}{r}{{\dot{\mathbf{\xi}}}_{{\mathrm{~f~i~s~}}^{A}}\end{array}}}}\,,{\mathbf{\dot{\xi}}}_{{\begin{array}{r}{{\dot{\mathbf{\xi}}}_{{\mathrm{~f~i~s~}}^{A}}\end{array}}}}\,, diff --git a/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md b/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md index 794e7f5..3c3ebce 100644 --- a/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md +++ b/力学书籍/力学/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library)/auto/多体系统动力学(第2版)=DYNAMICS OF MULTIBODY SYSTEMS(SECOND EDITION) (刘延柱 戈新生 潘振宽) (Z-Library).md @@ -6554,7 +6554,7 @@ $$ F^{\,^{*\,(r)}}\;=\;F^{\,^{*}}\,\cdot\,\pmb{v}_{\!_{0}}^{(\,r\,)}\;+\;M^{\,^{*}}\,\cdot\,\pmb{\omega}^{(\,r\,)} $$ -其中, $\pmb{v}_{0}^{(r)}$ 及 $\pmb{\omega}^{(r)}$ 为刚体上任意选定的参考点 $o$ 的第 $r$ 偏速度及刚体的第 $r$ 偏角速度,F和M为刚体上作用的外力主动力主矢及对O点的主矩,F\*及M\*为刚体的惯性力主矢及对 $o$ 点的主矩。设 $\pmb{\rho}_{\nu}$ 为刚体中任意点 $P_{\nu}$ 相对 $o$ 点的矢径,$\boldsymbol{P}_{\nu}$ 处作用的主动力和惯性力以小写的 $\boldsymbol{f}_{\nu}\,,\boldsymbol{f}_{\nu}^{*}$ 表示,则有 +其中, $\pmb{v}_{0}^{(r)}$ 及 $\pmb{\omega}^{(r)}$ 为刚体上任意选定的参考点 $o$ 的第 $r$ 偏速度及刚体的第 $r$ 偏角速度,$F$和$M$为刚体上作用的外力主动力主矢及对O点的主矩,$F^*$及$M^*$为刚体的惯性力主矢及对 $o$ 点的主矩。设 $\pmb{\rho}_{\nu}$ 为刚体中任意点 $P_{\nu}$ 相对 $o$ 点的矢径,$\boldsymbol{P}_{\nu}$ 处作用的主动力和惯性力以小写的 $\boldsymbol{f}_{\nu}\,,\boldsymbol{f}_{\nu}^{*}$ 表示,则有 $$ \begin{array}{r c l}{{\pmb F}\ =}&{{\displaystyle\sum_{\nu}{\pmb f}_{\nu}\,,}}&{{\pmb M}\ =\ \sum_{\nu}{\pmb\rho}_{\nu}\ \times{\pmb f}_{\nu}}\\ {{\pmb F}^{\star}\ =}&{{\displaystyle\sum_{\nu}{\pmb f}_{\nu}^{\star}\ =-\ \sum_{\nu}{\pmb m}_{\nu}\,\ddot{\pmb r}_{\nu}}}&{{=-\ \dot{\pmb p}\,.}}\end{array} @@ -6746,7 +6746,7 @@ $$ (6.3.18) -可见,对于完整系统,凯恩方法中的广义主动力 ${\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ D +可见,对于完整系统,凯恩方法中的广义主动力 ${\boldsymbol{F}}^{(r)}$ 等同于拉格朗日方程中的广义力 $Q_{r}$ 。 例6.2设例6.1所讨论系统中刚体上作用的主动力主矢及对 $o$ 点的主矩为 $F$ 及 $M$ ,其作用线均在运动平面内,弹簧变形前的长度为 $l$ ,刚度为 $K$ ,刚体 $B$ 的质量及相对 $\boldsymbol{e}_{3}$ 的惯量矩为 $m$ 及 $J$ ,质点 $P$ 的质量为 $m_{p}$ 。试用凯恩方法导出此系统的动力学方程。 diff --git a/多体+耦合求解器/WindTurbine_Kane推导_rigid.ipynb b/多体+耦合求解器/WindTurbine_Kane推导_rigid.ipynb index 8407987..6f0d61a 100644 --- a/多体+耦合求解器/WindTurbine_Kane推导_rigid.ipynb +++ b/多体+耦合求解器/WindTurbine_Kane推导_rigid.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 120, + "execution_count": 72, "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -73,7 +73,7 @@ "0" ] }, - "execution_count": 123, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ "cos(q_yaw) a_x + -sin(q_yaw) a_z" ] }, - "execution_count": 124, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -129,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -143,7 +143,7 @@ "↪ _overhang⋅sin(q_yaw)⋅cos(θₜᵢₗₜ) a_z" ] }, - "execution_count": 125, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -159,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -182,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -196,7 +196,7 @@ "↪ w⋅cos(θₜᵢₗₜ) c_z, u_yaw a_y, u_yaw a_y, (u_drtr + u_geaz) c_x + u_yaw a_y)" ] }, - "execution_count": 127, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -217,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -242,7 +242,7 @@ "↪ _yaw⋅cos(θₜᵢₗₜ) c_z + u_ẏaw a_y⎠" ] }, - "execution_count": 128, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -260,7 +260,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -272,7 +272,7 @@ "(d_y, 0, 0)" ] }, - "execution_count": 129, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -287,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -299,7 +299,7 @@ "((u_drtr + u_geaz) c_x + u_yaw a_y, sin(θₜᵢₗₜ) c_x + cos(θₜᵢₗₜ) c_y, c_x, c_x)" ] }, - "execution_count": 130, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -314,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -326,22 +326,22 @@ "(Nx d_x + Ny d_y + Nz d_z, Nz d_x + -Nx d_z, Nz d_x + -Nx d_z, 0, 0)" ] }, - "execution_count": 131, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# U点\n", - "v_U_1 = U.vel(A).diff(u_yaw, A).express(D)\n", - "v_U_2 = U.vel(A).diff(u_drtr, A).express(D)\n", - "v_U_3 = U.vel(A).diff(u_geaz, A).express(D)\n", + "v_U_1 = U.vel(A).diff(u_yaw, A)\n", + "v_U_2 = U.vel(A).diff(u_drtr, A)\n", + "v_U_3 = U.vel(A).diff(u_geaz, A)\n", "U.pos_from(O).express(D), w_D_1.cross(U.pos_from(O).express(D)), v_U_1, v_U_2, v_U_3" ] }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -353,7 +353,7 @@ "(Iₓ d_x + I_y d_y + I_z d_z, I_z d_x + -Iₓ d_z, I_z d_x + -Iₓ d_z, 0, 0)" ] }, - "execution_count": 132, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -368,32 +368,231 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/latex": [ - "$\\displaystyle \\left( L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{d}_x} + (L_{overhang} \\sin{\\left(\\theta_{tilt} \\right)} + L_{t2s})\\mathbf{\\hat{d}_y}, \\ - L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{d}_z}, \\ - L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{d}_z}, \\ 0, \\ 0\\right)$" + "$\\displaystyle \\left( L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{d}_x} + (L_{overhang} \\sin{\\left(\\theta_{tilt} \\right)} + L_{t2s})\\mathbf{\\hat{d}_y}, \\ - L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{d}_z}, \\ - L_{overhang} \\cos{\\left(\\theta_{tilt} \\right)}\\mathbf{\\hat{c}_z}, \\ 0, \\ 0\\right)$" ], "text/plain": [ "(L_overhang⋅cos(θₜᵢₗₜ) d_x + (L_overhang⋅sin(θₜᵢₗₜ) + Lₜ₂ₛ) d_y, -L_overhang⋅c ↪\n", "\n", - "↪ os(θₜᵢₗₜ) d_z, -L_overhang⋅cos(θₜᵢₗₜ) d_z, 0, 0)" + "↪ os(θₜᵢₗₜ) d_z, -L_overhang⋅cos(θₜᵢₗₜ) c_z, 0, 0)" ] }, - "execution_count": 133, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# P点\n", - "v_P_1 = P.vel(A).diff(u_yaw, A).express(D)\n", - "v_P_2 = P.vel(A).diff(u_drtr, A).express(D)\n", - "v_P_3 = P.vel(A).diff(u_geaz, A).express(D)\n", + "v_P_1 = P.vel(A).diff(u_yaw, A)\n", + "v_P_2 = P.vel(A).diff(u_drtr, A)\n", + "v_P_3 = P.vel(A).diff(u_geaz, A)\n", "P.pos_from(O).express(D), w_D_1.cross(P.pos_from(O).express(D)), v_P_1, v_P_2, v_P_3" ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}L_{overhang} g m_{hub} \\cos{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)} + Nx g m_{nac}\\\\0\\\\0\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡L_overhang⋅g⋅m_hub⋅cos(θₜᵢₗₜ)⋅cos(q_drtr + q_geaz) + Nx⋅g⋅m_nac⎤\n", + "⎢ ⎥\n", + "⎢ 0 ⎥\n", + "⎢ ⎥\n", + "⎣ 0 ⎦" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 主动力\n", + "# yaw\n", + "F_yaw = sm.Function('q_yaw, u_yaw')\n", + "# 考虑 机舱重力,轮毂重力\n", + "m_nac, g, m_hub = sm.symbols(\"m_nac, g, m_hub\")\n", + "R_nac = -m_nac * g * D.z\n", + "R_hub = -m_hub * g * G.z\n", + "\n", + "F1 = v_U_1.dot(R_nac) + v_P_1.dot(R_hub)\n", + "F2 = v_U_2.dot(R_nac) + v_P_2.dot(R_hub)\n", + "F3 = v_U_3.dot(R_nac) + v_P_3.dot(R_hub)\n", + "\n", + "Fr = sm.Matrix([F1, F2, F3])\n", + "Fr" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}- L_{overhang}^{2} m_{hub} \\cos^{2}{\\left(\\theta_{tilt} \\right)} \\dot{u}_{yaw} + Nx m_{nac} \\left(- Nx \\dot{u}_{yaw} - Nz u_{yaw}^{2}\\right) - Nz m_{nac} \\left(- Nx u_{yaw}^{2} + Nz \\dot{u}_{yaw}\\right) - \\left(Nac_{YIner} - m_{nac} \\left(Nx^{2} + Ny^{2}\\right)\\right) \\dot{u}_{yaw} + \\left(- \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) \\left(- \\left(u_{drtr} + u_{geaz}\\right) u_{yaw} \\sin{\\left(q_{drtr} + q_{geaz} \\right)} \\cos{\\left(\\theta_{tilt} \\right)} + \\cos{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)} \\dot{u}_{yaw}\\right) + \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) \\left(u_{drtr} + u_{geaz} + u_{yaw} \\sin{\\left(\\theta_{tilt} \\right)}\\right) u_{yaw} \\sin{\\left(q_{drtr} + q_{geaz} \\right)} \\cos{\\left(\\theta_{tilt} \\right)}\\right) \\cos{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)} + \\left(- \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) \\left(\\sin{\\left(\\theta_{tilt} \\right)} \\dot{u}_{yaw} + \\dot{u}_{drtr} + \\dot{u}_{geaz}\\right) - \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) u_{yaw}^{2} \\sin{\\left(q_{drtr} + q_{geaz} \\right)} \\cos^{2}{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)}\\right) \\sin{\\left(\\theta_{tilt} \\right)}\\\\- \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) \\left(\\sin{\\left(\\theta_{tilt} \\right)} \\dot{u}_{yaw} + \\dot{u}_{drtr} + \\dot{u}_{geaz}\\right) - \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) u_{yaw}^{2} \\sin{\\left(q_{drtr} + q_{geaz} \\right)} \\cos^{2}{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)}\\\\- \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) \\left(\\sin{\\left(\\theta_{tilt} \\right)} \\dot{u}_{yaw} + \\dot{u}_{drtr} + \\dot{u}_{geaz}\\right) - \\left(Hub_{Iner} - hub_{cm}^{2} m_{hub}\\right) u_{yaw}^{2} \\sin{\\left(q_{drtr} + q_{geaz} \\right)} \\cos^{2}{\\left(\\theta_{tilt} \\right)} \\cos{\\left(q_{drtr} + q_{geaz} \\right)}\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡ 2 2 ⎛ 2⎞ ↪\n", + "⎢- L_overhang ⋅m_hub⋅cos (θₜᵢₗₜ)⋅u_ẏaw + Nx⋅m_nac⋅⎝-Nx⋅u_ẏaw - Nz⋅u_yaw ⎠ - Nz ↪\n", + "⎢ ↪\n", + "⎢ ↪\n", + "⎢ ↪\n", + "⎢ ↪\n", + "⎢ ↪\n", + "⎣ ↪\n", + "\n", + "↪ ⎛ 2 ⎞ ⎛ ⎛ 2 2⎞⎞ ⎛ ↪\n", + "↪ ⋅m_nac⋅⎝- Nx⋅u_yaw + Nz⋅u_ẏaw⎠ - ⎝Nac_YIner - m_nac⋅⎝Nx + Ny ⎠⎠⋅u_ẏaw + ⎝- ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "\n", + "↪ ⎛ 2 ⎞ ↪\n", + "↪ ⎝Hub_Iner - hub_cm ⋅m_hub⎠⋅(-(u_drtr + u_geaz)⋅u_yaw⋅sin(q_drtr + q_geaz)⋅c ↪\n", + "↪ ↪\n", + "↪ ⎛ ↪\n", + "↪ - ⎝Hub_Iner - ↪\n", + "↪ ↪\n", + "↪ ⎛ ↪\n", + "↪ - ⎝Hub_Iner - ↪\n", + "\n", + "↪ ⎛ 2 ↪\n", + "↪ os(θₜᵢₗₜ) + cos(θₜᵢₗₜ)⋅cos(q_drtr + q_geaz)⋅u_ẏaw) + ⎝Hub_Iner - hub_cm ⋅m_h ↪\n", + "↪ ↪\n", + "↪ 2 ⎞ ⎛ 2 ↪\n", + "↪ hub_cm ⋅m_hub⎠⋅(sin(θₜᵢₗₜ)⋅u_ẏaw + u_dṙtr + u_gėaz) - ⎝Hub_Iner - hub_cm ⋅m ↪\n", + "↪ ↪\n", + "↪ 2 ⎞ ⎛ 2 ↪\n", + "↪ hub_cm ⋅m_hub⎠⋅(sin(θₜᵢₗₜ)⋅u_ẏaw + u_dṙtr + u_gėaz) - ⎝Hub_Iner - hub_cm ⋅m ↪\n", + "\n", + "↪ ⎞ ↪\n", + "↪ ub⎠⋅(u_drtr + u_geaz + u_yaw⋅sin(θₜᵢₗₜ))⋅u_yaw⋅sin(q_drtr + q_geaz)⋅cos(θₜᵢₗ ↪\n", + "↪ ↪\n", + "↪ ⎞ 2 2 ↪\n", + "↪ _hub⎠⋅u_yaw ⋅sin(q_drtr + q_geaz)⋅cos (θₜᵢₗₜ)⋅cos(q_drtr + q_geaz) ↪\n", + "↪ ↪\n", + "↪ ⎞ 2 2 ↪\n", + "↪ _hub⎠⋅u_yaw ⋅sin(q_drtr + q_geaz)⋅cos (θₜᵢₗₜ)⋅cos(q_drtr + q_geaz) ↪\n", + "\n", + "↪ ⎞ ⎛ ⎛ 2 ⎞ ↪\n", + "↪ ₜ)⎠⋅cos(θₜᵢₗₜ)⋅cos(q_drtr + q_geaz) + ⎝- ⎝Hub_Iner - hub_cm ⋅m_hub⎠⋅(sin(θₜᵢ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "\n", + "↪ ⎛ 2 ⎞ 2 ↪\n", + "↪ ₗₜ)⋅u_ẏaw + u_dṙtr + u_gėaz) - ⎝Hub_Iner - hub_cm ⋅m_hub⎠⋅u_yaw ⋅sin(q_drtr ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "↪ ↪\n", + "\n", + "↪ 2 ⎞ ⎤\n", + "↪ + q_geaz)⋅cos (θₜᵢₗₜ)⋅cos(q_drtr + q_geaz)⎠⋅sin(θₜᵢₗₜ)⎥\n", + "↪ ⎥\n", + "↪ ⎥\n", + "↪ ⎥\n", + "↪ ⎥\n", + "↪ ⎥\n", + "↪ ⎦" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 惯性力\n", + "\n", + "# 机舱惯性\n", + "Nac_YIner = sm.symbols(\"Nac_YIner\")\n", + "Inertia_nac = (Nac_YIner - m_nac * (N_x**2 + N_y**2)) * me.outer(D.y, D.y)\n", + "Inertia_nac\n", + "\n", + "# hub惯性\n", + "Hub_Iner, hub_cm = sm.symbols(\"Hub_Iner, hub_cm\")\n", + "Inertia_hub = (Hub_Iner - m_hub * hub_cm**2) * me.outer(G.x, G.x) + (Hub_Iner - m_hub * hub_cm**2) * me.outer(G.y, G.y)\n", + "Inertia_hub\n", + "\n", + "T_nac = -(D.ang_acc_in(A).dot(Inertia_nac) + me.cross(D.ang_vel_in(A), Inertia_nac).dot(D.ang_vel_in(A)))\n", + "T_hub = -(G.ang_acc_in(A).dot(Inertia_hub) + me.cross(G.ang_vel_in(A), Inertia_hub).dot(G.ang_vel_in(A)))\n", + "\n", + "F1s = v_U_1.dot(-m_nac * U.acc(A)) + v_P_1.dot(-m_hub * P.acc(A)) + w_D_1.dot(T_nac) + w_C_1.dot(T_hub)\n", + "F2s = v_U_2.dot(-m_nac * U.acc(A)) + v_P_2.dot(-m_hub * P.acc(A)) + w_D_2.dot(T_nac) + w_C_2.dot(T_hub)\n", + "F3s = v_U_3.dot(-m_nac * U.acc(A)) + v_P_3.dot(-m_hub * P.acc(A)) + w_D_3.dot(T_nac) + w_C_3.dot(T_hub)\n", + "\n", + "Frs = sm.Matrix([F1s, F2s, F3s])\n", + "Frs" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\left\\{q_{drtr}, q_{geaz}\\right\\}$" + ], + "text/plain": [ + "{q_drtr, q_geaz}" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "me.find_dynamicsymbols(Fr)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\left\\{q_{drtr}, q_{geaz}, u_{drtr}, u_{geaz}, u_{yaw}, \\dot{u}_{drtr}, \\dot{u}_{geaz}, \\dot{u}_{yaw}\\right\\}$" + ], + "text/plain": [ + "{q_drtr, q_geaz, u_drtr, u_geaz, u_yaw, u_dṙtr, u_gėaz, u_ẏaw}" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "me.find_dynamicsymbols(Frs)" + ] } ], "metadata": { diff --git a/多体+耦合求解器/sympy_test.ipynb b/多体+耦合求解器/sympy_test.ipynb new file mode 100644 index 0000000..d263c40 --- /dev/null +++ b/多体+耦合求解器/sympy_test.ipynb @@ -0,0 +1,16 @@ +{ + "cells": [], + "metadata": { + "kernelspec": { + "display_name": "MinerU", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/多体+耦合求解器/资料收集/FAST 中耦合叶片模态.md b/多体+耦合求解器/资料收集/FAST 中耦合叶片模态.md new file mode 100644 index 0000000..0f143f6 --- /dev/null +++ b/多体+耦合求解器/资料收集/FAST 中耦合叶片模态.md @@ -0,0 +1 @@ +https://forums.nrel.gov/t/coupled-blade-modes-in-fast/314/9 \ No newline at end of file diff --git a/多体+耦合求解器/风机模型.excalidraw.md b/多体+耦合求解器/风机模型.excalidraw.md index 28eae37..8e9c2be 100644 --- a/多体+耦合求解器/风机模型.excalidraw.md +++ b/多体+耦合求解器/风机模型.excalidraw.md @@ -10,6 +10,9 @@ tags: [excalidraw] # Excalidraw Data ## Text Elements +Q1: yaw 主动力为何如此计算? +由控制计算,作为一个外力直接施加 ^enHSE5Ed + ## Embedded Files c0166535889251fc00499757c5d32377c8fd6767: [[Pasted Image 20250120103502_252.png]] @@ -1562,560 +1565,496 @@ lqlKnKa84GMCXbT+alNIP8vm8vGppA7SwMm9iK3cTB0l8I66tWWqkFldRPZbawWOkBHQxq1NaoCa48DR QNLM3k/Vcyg5RS3SmsPyCIgDYi8yllj3mkVXBF8Sq0kno/MNGf5mtNqaZ3o95pdEj/JFGWUpSXBoq1p+QxfBGkbngUcjrUFpkxS7Imi+O06WjNemomzdZWkVNMCSd10xoYIJ19vaQe3DacDsakB1XS75RRJNdaS5kPLp9xs5ulRJOPqWyoYCwLUscAguWNPUS92PIEmKQ1fzWULT7GPgEv0iOxVqgzHSUUnU4FryXpo9zhpNTXwcZEDUx0oDwtLK -CKNKb/U12J/9SNynU8M3/kEMf7c89dFMnleL5FKJQsUhcljiqCkRRFOGMcW2WFJT/uEQOJWaYtE4Oe4e5JuH48EFvqrwXYBnUT9aSN4KgXuAnCla6x1+q5MNNEac6018xtvsQzGseJw0c9PRIu1TccW6xmK9yZ7ohMx4kAv/b5c3uiZYIaYCGV5POwhEEzwPoSZIR5EheBEUsho6HXlC0pM848yCEMEpkGvpCROybsILzMyVOsRlCQJid49EQmis +CKNKb/U12J/9SNynU8M3/kEMf7c89dFMnleL5FKJQsUhclj95YinDGOLbLCkp/3CIHErNMWicHPcPck3D8eCC31V4LsAzqJ+tJG8FQL3AThStdY6/VcmGmiNOdaa+Y232IZjWPE4aOenokXapuOLdYzFe5M90VNkxYCnnYQiCZ4H0JMkI8iQvAiKWQ0dDryhaUmeceZBCGCUyDX0hInZN2EF5mZKnWIyhIExO8eiITRWTBqPvIfd0kYxr6i86lSp -mDUfeQ+7pIxjX1F51KlSfi4yOhFmkfx4+JkoEjCwlEGfzYolBQpMB6UCjYHp/1BMOl/cM8kVmXZkJQFSBCau5LqzkKmFMJhR8wOLj5IVxjmnL4+/v0i2mhVPuLsW0/jxJQoqemB0Dj1PT03Nor/16EaUgCe7H3UXwhIwc0ZBRKnaCJxA94SQmYp3BHdN3DMcpMD4poksAQ9ChUBknMaeYxPjom6y9NdCUZUp7p3OToukblNL4Zv/HU41cj60rPDQ +PxcZHQizSP48fEyUCRhYSiDP5sUSg0ukwYyB6f9QTDpf3DPJFZl2ZCUBUgQmruS6s5CphTCYUfMDi4+SFcY5py+Pv79ItpoVT7i7FtP48QYE/rAr/16EaUgCe7H3UXwhIwc0ZBRKnaCJxA94SQmYp3BHdN3DMcpMD4poksAQ9ChUBknMaeYxPjom5i9NdCUZUp7p3OToukblNL4Zv/HU41cj60rPDQzWB8sVXpnJsgek++E16emoyyBHNsCJEzU2 -zWB8sHXpNkggenWnB98Ib09NRlkCObYESJmptvE59x0cceoFvHzeOuKg+gGavNyuGFX0pUXTYrkuyoTFzp4GT4hmhEuJBhV9rCG2S0WWBH9di+trTqAYP70l5q03LM+F7TKEmjESp6faEDXoPvTKRQ1NChSngGKfBQYEhkBpgAKsMc4f6Ox0SOOlXYD0OId0vjE/gD+OjbIEJCpElbc4Vhk+AgmnzP7uxZEEytCjiKkP5KZaU/k8JRmgp0eTOF11 +3ic+46OOPUC3j5vHXFQfQDNXm5XDCr6UqLpsVyXZUJi508DJ8QzQiXEgwq+1hDbJaLLAj+uxfW1p1AMH96S81ablmfC9plCSr2m5tBqaFClPAMU+CgwJDIDTAAVYY5w/0djokcdKuwHocQ7pfGJ/AH8dG2QISFSJK25wrDJ8BBNPmf3diyIJlaFHEVIfyUy0p/J4SjNBTo8mcLrrmfRsYd4nbKdTSmFOwlXPpbSsXSm8AJXaVozRHpxwszcmseKR -zPo2MO8TtlOppTCjPNLr03zmwPSklArxKN6RmoqYyZuTWPE9EMKvn37cTW1dDf3Zs6V9KQYUmZmGKNqyoKhMuOqPkdXOSLMSe60PR8SeZPaBG5xc/PGCVLAqfTcPtYcVhnkgb9Lx9CKgHl4+VTEC68CL2oAJQEihFAAeXEOERnnL+k6Ppl/STunWtGwsCKWfJusuhM+H2XSdiZZrDPpyMj5enZ9LXKdB0syp0nSkBFApIhZvZIcyahbcCdDjdQtM +SY+nHtu1dDf3Zs6V9KQYUmZmGKNqyoKhMuOqPkdXOSLMSe60PR8SeZPaBG5xc/PGCVLAqZTUkVAPLx8qmIF14EXtQASgJFCKAA8uIcIjPOX9J/vSN+kndOtaNhYEUs+TdZdCZ8Psuk7EyzWMfTkZES9Pj6WuU6DpZlTpOlICKBSRCzeyQ5k1C24E6HG6ihktXp1px82QXaPeseZE11JNvTu8Fk6MZCXizMrhcgyHxFoDPM6S0fcoAnBgoiD3oE5Q -WAMnQKEAzNHAXaPeseZE11JLvTu8Fk6MZCXizMrhZgyHxEUDPM6UhkcSAJZlWcjnbToGY1OI9+96BOUCiADRkGSAKkoTTliABRYVcAOuRZAoJ3QiGDJRkHMivOIbYXewNCAh22b0s/4sZRIDVJBl8WLiaYwEoZJkiTlemGeIO8RkUXeSno8NGG6ljBbOX06UglfSifwtLRdKbwAldp8rc0HrHFOy+mcIkLus/S0OqGpKbKRVXGuWFNSI0h9rEDoJ +KIANGQZIAqShNOWIAFFhVwA65FkCgndCIYMlGQcyK84hthd7A0ICHbZvSz/ixlEgNSYGXxYuJpjAShkmSJJl6YZ4g7xGRRd5Kejw0YbqWMFs2fTBEFA9MUsDqopme6X1jinZfTOESF3AfpaHVDUlNlIqrjXLCmpwlTTSCXQSV4cRJDbWEu8XbYIIE6AFAAGB270sdkZRw3Z6SaOA4slakYFoXdMvOMwPCPpDvjhEnmn0cGRh4kFBkXTnumJ9IK8W -HE3eAjgzVNimkEugkrw4iSG2sJd4u2wQQJ0AKAAMDt3pY7Iyjhnz0k0cBxZK1IwLQu6ZecZgeKfSHfHCJPNPrEMjDxIKDIunPdNz6QV4sZkiJkp0BMxlM8QWkiya4dZl0mgDIr6Xr0604aFh1ElYdM0SRrqTjmihS+wamDOCLuYMurOPWT/Jhk9Obsd7klfp4EA1+mIqDaGdOoYQwkgBA8n4pHQkD0ASMWc2AepyRWwIyBPw0/pIYwi7BjDMCGX3 +MyREyU6AmYymeILSRZNcOsy6SX+nWnDQsOokrDpmiSNdScc0UKX2DWQZwRd5Bl1Zx6yf5MUnpzdjvcnj9LVZmjqQPJ+KR0JA9AEjFnNgHqckVsCMgT8JX6SGMIuwhQzTBl96Fr0lQMosM87xLukCYMqGdYAlEpJhFahkc5PqGeJkxoZ65Tmhn7eOLqdhOBqqXASFjGZuBBIEmHLCRu28ghmoWDn8fEMlPx0Ot8y7wWLSHhHXKBOrqsminQbWLKWX -oWvSggyiwzzvEu6QJguYZ1gCUSkmESWGRzklYZ4mS1hnrlI2Gft44up2E4GqpcBIWMZm4EEgSYcsJEAOC0GWKlYHpIbY5/F1DJT8dDrfMu8Fi0h4R1ygTq6rJop0G1iynN9IHGPQsDAZlRg9Cn3/1mLuPIt9SftMMwgsjKvMS4/RFplPTwIA42F9oN8M1CQQtkkxy/+PoQBFKMVAGyNxDaeXRh0Cf0yUxOUxiJiNmFDEJY5U7AxykzulCDPv6elA +0gcY9CwwBmVGD0Kff/WYu48i31J+0wzCGCMq8xLj9EWkU9IyvELZJMcv/j6EARSjFQBsjcQ2nl0YdDL9MlMTlMYiYjZhQxCWOVOwMcpM7p1Ay9+npQLYodxwa4Zki5bhnhdPuGRnkx4Z7AyzSlUuEMrIkTfiAVaxLiG73SpjEOPMrJrZCZ3JA9MEuPn0ugx0uT+AGKKigDr3IWYJ77ilcbbC3VGUKEiQ+E71eYFghyu0Smgk2OxUMFm7uyLwToAH -tih3HB0RmSLkxGeF07EZGeTcRlyDLNKVS4QysiRN+IBVrEuIbvdKmMQ48ysknOWpGWmsYHpglwa+l0GOlyfwAxRUUAde5CzBPfcUrjbYWUYyhQkSHwnerzAsEOV2iU0Emx2Khgs3d2ReCdAA5zvR99o+CJyyDINUnZtvRFvkWMhsJGVSxSk2DPAgHinS8QGOkHBkszR4ACmkTh4dshD/GkCj8AJaRYzUlF0sxxrgl4GY7CfgZZwgY1zVZCzTOjCa +Od6PvtHwROWQZBqk7Nt6It97RkNhIyqWKUlQZEgB5VIppE4eHbIQ/xpAo/ACWkWM1JRdLMca4IyBmOwgoGWcIGNc1WQs0zowmoQdRnbPh1dNRfbcjOFibyMlqpBUC2qm8FPASrT4iQoYllqLYz604QjX5XJppEU5RkGkiy6djUgbOYjTZQkC/yjiXqbMUJvHiKOn29OXyRIAKPOOhJDQBSulIAPgADhOxS8VlqE+nGIL0NdcikxRgxnHdI7aIbse -hB1Gds+HV01F9raM4WJ9oyWqkFQLaqbwU8BKtPiJChiWWotjPrThCNflQxH+jIUcoGMg0kWXTsakDZzEabKEgX+UcS9TZihN48RR093p+ixxIA2wxEegqMizQUecdCSGgCldKQAfAAHCdil4rLUJ9OMQXoa65FJijdjOO6R20Q3Y81oBxkBeyKMi0QPtpFl1Jhi0pQnGeB09LJkHTuCn4GKk6SpkcpB6yEuShpM3qsh8rNghJ+TcjEbjPpKoGM9k +a0EYyAvZFGRaIH20iy6kwxaUoJjPA6elkyDp3BT8DFSdJUyOUg9ZCXJQ0mb1WQ+VmwQk/JaHSCxnWnFSUCK0wYZwBSSxmqoIZCQM3cTmNfSJCGEmOfukkE33e2iTbE56cKkGe9A3YxQFNnXFJD2iGaHbUyeIf0Y1aUJyFsbPU6IZCyU2z6EsE2bo/vKx6k4yHhGJDIs6e0AAiQNxIVkxbyNFqCdQcpJYwAoAAD1FuErFKDW07ckPczJHCZGZuGFk -qhQyVIkrtMtpnGMqBOU/SJCGEmOfukkE33e2iTbE56cKMGe9A3YxQFNnXFJDyqGaHbUyeIf0Y1aUJyFsbPUqoZCyU2z6EsE2bo/vKx6YEyHhENDJQCOJAceaQkzZ6Y3jPdqgRIG4kKyYt5Gi1BOoOUksYAUAAB6i3CVilBraduSHuZkjgmjM3DGaM5EZqecMXHWjPT6Z6ZB7pWfSMSmf9KxKeRU80pf/jZMnLTDY3P2PCxW48VXAz3QKwmV2NYHp +Z5wzU84YuM5GdH0z0yD3S4+kYlIv6ViU8ip5pS//GyZOWmGxufseFitx4quBkYqbKM604OLEm4aRx3ZnnEPVt6mwwaxnvBK1iXmI1CQgkYmGHYADjcNCqXoAsVQEACi1DyOpaMN9J4WSlsYHDM56RqpBeo53SzhnlDJ12sB02TePoc7unETPF6fs49EJ5EyyKk7SJxKTZIk/Ri9wO9Sze1zIlsbDTMvQyAyBFhlxEYeMsVpZNcOYwVlKYBuW4hbB -OLEm4aRx3ZnnEPVt6mwxTxnvBK1iSZpPtY9oRLTpSTOjSIJGJhh2AA43DQql6ALFUBAAotQ8jqWjDfSeFkpbGMIyBekaqQXqOd0pEZMwyddrAdNk3j6HO7pJky5en7OPRCRZMsipO0icSk2SJP0YvcDvUs3tcyJbGw0zEcM3IZJwyAyBFhlxERcM4Apu4zrBHmXQrKUwDctxC2DAQ4gWIG+nwfFH+w/M9AnXVPeGdNQ4ZSaH8GRBhTP6wHxkYVA9 +gIcQLEDfT4Pij/YfmegTrqkLDLx9HxkYVA96EgxpcRilUt0yMmGz/UyO51ADeAXJMvYi6/SQxmDjPCLCpMmgZ+/TBem6VP+Mmxo7SZRdkSJksDLImVF0p4ZMNSggmLpPVcPJYUUhQW4nbK3lDtWgEMliZtkyiyCw119sdfw6W+TOjQFE+pwBIa9fDHS269H1I7e2/UgTUyOOBh9+JGplypWn1M5ayiSDN8YH10retH3fyZnbjkWkYZCWoJ4oSdAp -6EgxpcRilUt0yMmGz/UyO51ADeASlMvYiF/Sexl/jPCLFlM4QZD/SJem6VP+MmxowqZRdlTJnSDPMmVF0vEZMNSggmLpPVcPJYUUhQW4nbK3lDtWjkMzDQeQzESBFkFhrr7Y6/h0t8mdGgKJ9TgCQ16+NYz1cnEZIhDjt7b9SBNTI44GH34kamXKlacMzlrKJIM3xgfXSt60fcJpkUIyp6c9Ub9Iba05pldDQwyEtQTxQk6BTSAnOBkAE0AHTYfG +pATnAyACaADpsPjSMABRZHUjNthKs4/sZgfTaLKgjBSmayMqgJGdTjIjAZIDlDOMkI+XQTenbgZLscRwM5cZAwTF0kt4Eq3KCzYAJX+TPHTX0XzGUCjIHpvnQV4la9IzUQY3BMenrSdM5dfVWermU7Hp96dcRk3VMTprOaPekaYl/SBKkwSEHusZjBg9jLsHMLj96TxyRKZtekvqC7IT56dYMioZwnSz+4nXXjGTpM2PpeUz9JkFTIFGUk0rrgNI -kYACiyN1GbbCVZxP4zY+m0WVBGEdM80ZVASM6nGRGAyQHKSCZIR8ugm9O3AyXY4+QZCEyBgmLpJbwJVuUFmwASv8meOmvouuM44Z4AzrTi+dCgGbX0jDhBjcEx6etJ0zl19VZ6uZScen3p2lGepDPtYsQQ9Zl6KAyvKmkIpoEEwEAD+kCVJgkIPdYzGDB7GXYOYXFH0njk+0za9JfUF2QqL08IZswzhOln9xOuuOMoqZmfSbpmlTLumU6MpJpXXA +AcQlUXneQGQpArJ9fhXEQ1Aj5cDOAoPxJ2i0IxA9KriAqMqXJ5Vcm6GYcJN6QOMe9xPmQ2QnkfUFmRrgjpuoszJqmQzICmWcSP94dognvrkYzFQJF8R4AzgAMgCj72+EVxwraZNeA6nB0jK++KdgRkZtFlNui89O6FHjMxtBhkjj+n5WV0meiU8mZ/IzFxl3TK4KCAhapGPdxKvGI1PCdl3cadA229fhmpHy5mQjUhupDnjsumwfz+0i8EhOJNXD -aQA4hKovO8gMhSBWT6/CuIhqBHy4GcBQfjSliuTP2msD0quIwYypcnlVyboZhwm3pA4x73E+ZDZCeR9XOZGuCOm6FzMmqfrMyaZlRSaelawEJmeUAP94dognvrkYzFQJF8R4AzgAMgCj72+EVxw+mZNeA6nAGjK++KdgY0ZtFlNugi9O6FJ7MxtBhkiX+n5WWKmeiUoOZjoy4JnCzK4KCAhapGPdxKvGI1PCdl3cadA229KRld+BTmWhGNOZCNSG +fQbizKVNq5EhgxfgjXK7r+M5cTgUxYCzU5KhSiAAjFl/QMPeTKF5DZ6OiJXmG4uKZQYyMZkDjKD6QQkdHq+UYoxnt+PoGW6ZOMZRsCLpmskKumZ57Idp69iX8nayMXSXA8QX0gbN6nFcL10sOiWT6ZvnMuZmgFEBGWs3OBJLxTgIlAOMg/hNkrrxWaCLOlRKmY6MxdHvCPABw+qozE2ADJuaW8YlSZlz1OBMGYpM45Sg+UcZmmzKO0QDLfIRbAdi -6kOeOy6bB/P7SLwSE4k1cN9BsXMpU2rkSGDF+CNcruv4zlxuOC+1iymHX6RDqZqclQpRAARiy/oGHvJlC8hs9HRErzDcTtMrsZzszfxlx9IISOj1fKMQ4z2/FiDLdMmOMo2BvMzWSH8zM89kO09exL+TtZGLpLgeIL6QNm9TiuF66WHRLHLM5qZCsyAyAINnpGWs3OBJLxTgIlAOMg/hNkrrxWaDRJngQBthl8Mrtx0u0aQAItVZQD3hHgA4fVUZ +Zk5TOtmc4Ml6JpFS3BkDsOScS48EWghjlhCmtWyDIBzObuZOgUuZn9TVEQaK0rWpgczX2yDNOKvjx9OwRJHMhJQoc3/mSsvJ1pEi8W6lQe1HyExtTAp/mR+uGNTP/6TIoDupnygGJFHIPB0kXtLjaWzTjOk/zOHNlitFfxF5igZmmZwjmW2UozuqCzO+bkbWqMMt08oAd3swrItzDrMuGAGF+3BhmAA11yt8EewTdWOyNt3jHVnpGQbMxdRV6gP0 -ibABk3NLeMSpMy56nABDPSmccpQfK7szR5lHaIBlvkItgOfsyrpnTzPiGS9E0ipSQyB2HJOJceCLQQxywhTWrZBkA5nAQs76ZLUzKQzJ1DB6cb03Tp0z1kPBSfSElCRzcxZB68bWlShKdaRIvFupUHtR8hMbUwKf5kfrhAMykUnR0A7qZ8oBiRRyDwdJF7S42ls04zpPH1TJZYrRX8ReYjWZpmcr5ltlKM7v4szvm5G1qjAlez7WNawTHa+8A26z +kh9JLmWOMkaw5SpLZmpFO6CRJ01MZS4zHZlFRLuydYwP3UuFhbI4DC01SNRkNguNky4iw5WLgaUMMhgC10iO4bTTM+CSltQ9gTQBUGBOaS2MKggRsobwwNwCKqTqACLtPBRckzk2B0jL7yoaCYkk7CBPngWDNxmbvMn5OAizGBkkzOYGXpM+JpUNTv/Ew1M+iY9MsHYIuwtbjZjJw3q1QMf8wxdvZnQtxFOIdCaYJDVcTzHqLM0WePM3vBroz0AA -2LE2MJEIUNkML9uDDMABrrlb4I9gm6sdkbbvGOrIaMgeZi6ir1AfpIT6ZAs4CZI1hylSTzNSKd0EiTps4z4JmLzKKiXdk6xgfupcLC2RwGFpqkajIbBcmpm6LKIWXEWHKxcDTLhkMAWukR3DbGZphNxICB0AqYLXMi6gh7AmgCoMCc0lsYVBAjZQ3hgbgEVUnUAEXaeCiUpnJsANGX3lQ0ExJJ2ECfPBCGR7MiRZPydalkSDP9mVIMkqZ8TSoanf +sqIopkgwWdQ21CtF50IHKQepsSSZo5TqcmgR0bMLL6bCOvQpirjDjOSUM/CbzUYZh4imbBFOyURMo+ZpMyvFkuDLPmdKki+ZksTHply7iu3KukxH2pitQnaAxOwkdAOReKFu9Qena9M7etAEjBZFa1vn4Qw1jHrOfdFO+Cyg2x4qFdVgeYgla/tTSgCh1KYyklhU5w8pMZABC7S3AEFEgcJ4WTTons9KVUFx2YPiDiyGpIteQDiTbVZncfbTqzoO -+JhqZ9EsWZYOwRdha3GXGThvVqgY/5hi7bzO2ULvMgFwIpxDoTTBIarieYsZZEyzaFm94IrGcBUQUwcyz0AAsqIopkgwWdQ21CtF50IHKQepseKZo5TqcmgR0bMLL6bCOvQpirgATOSUM/CbzUYZh4imbBFOycZM2RZAczblkJDMUWdKk5RZksSxZly7iu3KukxH2pitQnaAxO3SH8suns0jIMKDKzJDGeVXdxZY5Dcj6NuIQ/hwzWMes590U6RL +DI8WU4MtNJ84yZr6UzJlqRXiEy0uNxc9GF5MsmS4WRVJO4yvpnWNAQcNaY4ohZri5ClhpzUVD77ZXG6cTG8mpO2wenr0q+gA0zN2ZmjK6KT77cZuEgy/bEYrIrYFHXd1OBDT0YmDZKciXUPEQBSwT/ZE99KD9l6nKs2ZvT/sb4NymmUksvChKSzed6rZMmkSMAaJAv7ixgDYAES+In7dPQFxJGuIssjsmVGoGTMpXB4SA79OuWe6YJes14MKEiCL -KDbHioV1WB5iCVqjZz7WBYHGaZnIgYVmlAFDqUxlJLCpzh5SYyACF2luAIKJA4TwsmnRL56UqoLjswfFjlkNSRa8gHEm2qzO4+2nVnRiGdcsuIZaaSYJkzXxDmTLUivEJlpcbi56MLyfVMlwsiqTMJnyzO0GdY0BBw1pjiiFmuLkKWGnNRUPvtlcbpxMbyak7bB6ZvSr6AIzM3ZpmMropPvtxm4GDL9sRmsitgUdd3U4ENPRiYNkpyJdQ8RAFLBP +JXKVzktgZ9szBRlZFLHiRro5wiw+wtQH0XlsdNoWJRZd4Y1Ol1eLBWSu0kJoNMseimmdIAMS6Mw1hhMwc8nvAFyBEbE3whS1AfzD9ADWUvYw5tc65FRjiVLKPBLKhLhZb2A90yxgOgnCV3QOEUqyhInn9IpmXKsqmZOeSZEkr31/VEmeEYJYJFanjowmYmbuMmtiPbT/ZmyFJXaZbTKWZazTbcnMmPAUXLdA4Jz2ixsmOFPAGQgnRGx6NQ/BbhlO -9kZP0oP2XqcqzZ29P+xvg3LGZ4Ky8KGQrMxgBYHJ9xuihVVkB8GrypNIkYA0SBf3FjAGwAIl8RP26egLiSNcRZZG1MqNQMmZSuDwkFv6Vas90wS9ZrwYUJDqWSuUrnJsgz55nOjKyKWPEjXRzhFh9hagPovLY6bQs/SyXQYArNuaGp0urxYayV2khNBplj0U0zpABjyxnVhHEgAE0WZZgUSUF6NflyBEbE3whS1AfzD9ADWUvYw5tc65FRjiErKP +6abVkpzx5/CzxHM9GiGcBnStZDXQvxm6dLevoV9H5pYt8zLGjI0tsbyTMGZICy4/qqNIYJuKXBAJnqS6Vl6iIifgQHELejwBJbyUlG3IQSgQSMjwBWUAiRCMAMSyWKU1lBUvEsW0FWVwsnbEuyEHqCRjCI8WAIiVZxtolylRamrmVCI1bRPizTKnyrPMqWMk1Ix8AxrigZNzEDrvwd+QTYEa6mKS2iWQvOWFJHLNVAlVME4Jv9jZ3OnXMfj4n+Co -BLKhcpZb2A90yxgOgnCV3QOE86yhIkf9ODmcus0OZOeSZEkr31/VEmeEYJYJFanjowhcmQGsmkZQazvBghrJFoSes4+ZltMy5lrNNtycyY8BRct0DgnPaLGyY4UzAZCCdEbHo1D8FuGU7pptWSnPHn8LPEcz0KoZwGdWNkNdDYmcYsgt+Pb03PFBtMUCeC0S2xvJMdZl2LLj+qo0hgm4pcEAmepLrWXqI80QTQzLxA7rxSWTKfW0ww1pJbyUlG3I +5rkfWSK4LRHY6C01gDreYy3QyA8nymg6RnMT6UklaxacdvbFp0x2tBsw1picTJ8mkrNVCPfY3+6kGyGwY++zPUqtHNngvbc6wnZtKQ2dLpaWOCelaVmilInmQyss0OR4AmDoYQgCMXAgb3g4ed9/z9lI6vtTk7iQx1YSllzwSFWcyMo8CAB5WfTrB1dEfWJepZqU9D1lmSKvkVL0jVxADTAUm2wJy+FrGbACkKicTguSVnacH4gFw0Syo2KA0Ikz -QSgQSMjwBWUAiRCMAMSyWKU1lBUvEsWzHWeUsnbEuyEHqCRjCI8WAI2dZxtolylRagQWVCI1bR9yzTKkrrPMqWMk1Ix8AxrigZNzEDrvwd+QTYEa6mBqB+mWKhc4Z0Ay6+lTUPFoduvTgm/2Nnc6dcx+Pif4KjmwqySeBUc0djoLTWAOt5jLdDIDyfKaDpGcxPpSSVrFpx29sWnZJZnvcM5g++wT0tLHXtu99jf7rZbIbBmVs/FS2IRe251hOzab +gHMOlOgFRBQkYqx1Xrngyj++Dd21kep0gIZeI9jaOdAkjSobWLWeC0d3evwoHUk66UUGbWMzUJDvTDcCOaOHnPabSpyQrw3ehB8BCAAl3NQAFSC2NmZfGKWRcQrjZ7qycJm8bPymPxskpWY0t3FmNLM8WTbM7xZ+dToalwSJpAN+og7x7r8PmxkuNJJIccKncNUy41nroBFusWM8VpX/TgRkBlKDmd/0kkRauTbUmVbL+fk5sg5JwlSeVakADKsO -ls78picTJ8njTNk2Sco+TZlYzeVLNrJoGKqss0OR4AmDoYQgCMXAgb3g4ed9/z9lI6vtTk7iQx1YcVlzwXHWaaMo8CAB5WfTrB1dEfWJclZqU9HNlmSKvkYr0jVxADTAUm2wJy+FrGbACkKicTguSVnaYyMLlZ0A4qkyEG0xqf44/oCwh9GNl0p0AqIKEjFWOq9c8GUf3wbsJsj1OkBDLxHsbRzoEkaVDa9GzwWju71+FA6knXSlgyzxmahI96eB +GAG4keGkvOwTdGc6XhAG0Yuji5Jmk4xOWavgWfA5yyJVQK7CAiKKsqLZbgTUZ76lICUaJslbRqsiktm+LJS2fxo6px+AIqUhl1NCoV/k/tMqBQ8tmArMQUkGSGSeHM91clnHSiGY5sviZlHStQmG4BNMI6IUPguWRBIgv62/lmuAWXatHQelHODjJSB+wCV4/KzKjpn80hAFWpDdZNDkawAXUP14fYMw+ZHFkOCldiL5GQn0wqZKWzEtGLpIixvU -AQOgp8Tc9qqrMc0cPOe02lTkhXhu9CD4CEABLuagAKkEzbMy+Nisi4hC2zANm6TOW2flMVbZJSsxpZXLMpWTcsmeZdyz86nQ1LgkTSAb9RB3j3X4fNjJcaSSQ44VO4vpn7rKDWVjBekZLQzzljkLP64V3onWpMmzRSl0LIbWXeEtXJiOyIdQ8q1IAGVYcMANxI8NJedgm6M50vCANoxdHEpTNJxsas1fAs+AzVkSqgV2EBEKdZ5Oy3Amoz31KQEo +/MrxQyd7mxvcIBWT3MoFZv9ooAkAB102RjskhhL+8O3rOGNU9l49I1Z8jiTVl7L0pKB3UZBRgDSqsEwICnIi/AMiQi4MAuxoTP0cAoCU5Zg2ztVi6rAqWV6s9AoqY1bBnU4z9WRKk8TZrgy2lkANL5yY9MlB4kaUelmEj2SUOugJJQNkz6iA7kSK2fyaJQJh2zpUEvlJTLnW9aHptBtcdmuU0BSBitYyorD01lnNzFEiIsmDgwCWE0C7SeKEADhJ -7bZK2jVZH07IeWYzs/jR1Tj8ARUpDLqaFQr/J/aZUCjc7JAhgCsuEeMk8OZ6QzKAQUoHJTZFcycZngQH92VeYwPZJszc2gmmEdEKHwXLIgkQX9bfyzXALLtWjoPSjnBxkpA/YBK8EdZlR0z+aQgCrUhZsmhyNYALqH68OiGTIsjiyHBSuxEOjJz6fdMxnZiWjF0kRY3qfmV4oZO9zY3uH+rMIWYGsxBS4CY8JlaZK6mUyMz/2azds6iWuK/ThQIZ +Yq85GM0Jl9jI+2eKBFgIDBSrlkoUBuWXzRIXpjXBedmg7LJ8WkUinxnJCZak2UmJcSZFEEiCnSv8lWoFUzDLs6xoL+dLP6OTNsogAslrhp68alGCQ2AWbLjd3RZPT4zFQzMpFIkIRLgl1coAAno3LYsl3avUQfBpU7+SkXWejMio4AqyQjzurOxmVaLF6g/2yf2GXDLchu7s2JpzyyZVlQdKDWb7s1HhX2szhRKGmNFtqA+pASjhttko7PDLq/IJ -wxqnsvHqXrPkcdes0ig4kAkWDpIJygKqsykoHdRkFGANKqwTAgKciL8AyJCLgwC7OpM/RwCgITVl67O1WLqsAlZIGz0CipjUiGdTjCDZEqTdtmJDLpWQA0vnJYsyUHiRpRZWYSPZJQ66AklB7rM92cwhPwEoWyVZmRhI4kaT3TcRRGzuvRMTPKGUg0NFuVQylv4gBxHycZUVh6CqzKxn/mOIgJitU56qqzm5iiREWTBwYBLCaBdpPFCABwksVecj +uG1uN6UY/s0mWQl7SEZV4icV5dCIxGZ/g1sGayyWgC4ZDK4igvHekmwBJ2i7AHIpslMJeiEHiXtmpuBiKO9s0vZn2z7dn1Al+2dXs7dZkqEFymTmWE2YyqGbZKhjP/EnrMSab7s/0uKXCIMExwlSsbKI5mQM3sw9l3vXl2cMMxspOaiIFlaHxLRgssi4+CE8QDlflFPidVsuzeKZc6tFMi0TYdl0V1WITQFM5Ycxh2s3Iy3pSogUFmkLJlmTNMxY -G6kzvxmZ7PFAiwEBgplqyUKDWrL5opL0xrg5+yy9lk+LSKRT4zkhMtSbKTEuJMiiCRBTpX+SrUCqZjf2TBjX8g9RAnGCJ6xQ5kZ0zrmLn9hIa2LNlxu7o8np8ZiDZngQB2SKSwVVZiQhEuCXVygACejctiyXdq9RB8GlTv5KQzZTsyKjijrJCPIBst2ZVosXqAF7J/YaiMtyGVBzYmlOrMXWVB0mDZDBzUeFfazOFEoaY0W2oD6kBKOA92Vwcj/Z +CQJwjAA2aH6ACkrBoAfdRX9aPAEk3An2KDyzCzUHZCYhtvJxs4jeZSzfsDMyU3WVg4C1C2J8Yxn4VLyRg8suLZTyyIukPDIh2W8s4PWraTfbQWJ37Vj2rWFhgXs1poDLL+GcwhHC+Z/CSfa7c2jCQBstepihzbzprLJ60bREvI6deVNsCljCQYCQFYq8+gA9UL0+jRPsFs11Z9CgGDkjbIi2c7sgnx/tk95yCxK4OSDsxvZvBzwdmyrMk6Q7Mvdo -r8gm4bW43pRj+zIJZJWUUFhQ0KsWV3gqohUHtxJHkDOh2QckxoZsoziICw6VVWS0AXDIZXEUF470k2AJO0XYA5FNkphL0Qg8ans1NwMRQM9naHKz2UQc+oEeezDDnWbMlQguUycym2zGVSW7JUMZ/4lzZiTSGDn+lxS4RBgmOEqVjZRHMyBm9pwczk23Byq8xXeKKGfhsxspOainFlaHxLRlKsi4+CE8RjlflAR2aoEjCeoyM6tFMi0TYdl0V1WI +ejpBA5r8HfkM4iPmhJpYAYnSjNy4Tn05hCAQ9VYnXWKgEBrE0fp8wycDkZXhRkGrfZjpeAQXvpGmR9SlV7dxhBTtBN7UHNbwAfspRwn2zVCIOLKLkkwcv7Z5+z2MgsFNBqdfs1EMt+y4jH37Pm2aes4NZjDRrLb9RgCTEOze36gwIdylSHJ9mcwhacQS7SA5nHjPi5tMM0IZhV9RzHKWOuPjgw9ipUn0V1FWZ33EQKE8fZfkCEJ4OuxNzsyYpepJ -TQFM5Ycxh2s3Ix3pSog/FnxLKD2VMskPZryASj6IlAyvECcIwANmh+gApKwaAH3UV/WjwBJNwJ9ig8gUs1B2QmIbbzzbOI3nis37AzMlLNlYOAtQtifEcZ+FS8kb2rOp2Y6siLpOIzK9murOD1q2k320Fid+1Y9q1hYYF7NaaHKyqRkYbIDGcwhHC+Z/CSfa7c2jCUls3/ZIC9ZPoiTMl2dLs51pGJzVVk9aNoiXkdOvKm2BSxhIMBICsVefQAeq +Q9pjkEkwxRohs2Rpquzk9Y6FN15mNXZY5khdCdKNaLn2e+s4ee34SsDklrUwHmccmA5M1MWz7rmHYsVDiOuKDXR+wZbVLuOdwGFGc/q0RanPHO36OAc7Ou/s8ZL7zowZWLccr6aLxzLe5HHKuYACc6exCZRdJ6y5NhaVjsptGf2Mm1nQnM/9oZPXyZ8JzydpPHMBOWOQlmx1uMiMmuDliKB8cotZ5H80TngnPxOZEksE5nFjiTmzDM/ceT0tPZeP -F6fRonwJ2f+s+hQLxzDdmk7LIOQT4/2ye85BYl/HNL2eYcwE5Feyl1mSdIXmXu0PR0ggc1+DvyGcRHzQk0sAMTfRkKS2u2V0cgIeqsTrrFQCA1iUv0t4ZweyAWhqxL5icpsxYCKMg1b7MdLwCC99I0yPqUqvbuMIKdoJve45reBcjlKOCz2aoRY5ZRck3jn57JKOexkFgpoNSKjmohiqOXEYmo5NuzXNmwbMYaNZbfqMASYh2b2/UGBDuUuE5O8y +pvea11xr1tFUJHU2AAQX5xCHOcJVYegUubkBJD9bNPHErcIVZWmZOkwG1E52ddrA2BUfSRNmPLLqGT4E5vZC4zXDlnrJfCE2nQQOICJJDlGyzv9itMDBEDnRkdlPzOYQqhYHmZy7TA5mAOPQOfhssMxmuyWTIRmM+qE77CIZFPASIn1rPCOtBEpL60rSPyZGnI1afAQ0wh6hC1dkxk2r6Q6cgcYHITk/G2CO/mN2shjxrpzDCGBSLZKYDjOW+fsD -ETmbjOYQtOIJdpR8zu9nScieGUzPNAW+h8QXrXHxwYexUsxZWxS9uY6BIFCb4c+mROWyTCli30uSMQsJepJQ8czmia1B2eMc8bhKZcBxY6FN15mNXUs56YRLe5THOHnocIkspzZz29ExLNHnugPcJZHDT1nYtn3XMOxYqHEdcUGuj9gy2qYOc7gMKM5/Voi1LHOdv0Cs5FbwgDkuoz8yPC00c5X01xzmNnNbOVcwAc5K5yEyi6T1lybC0gAOWSTQ +xNbs30oaXcCMlamoiDMGyBN6cSBU6yx6AzhKntABi4LEQen2hmwOkBUYkTsCNgf0aGAlc3IqkhMOUHJMw5vJyThnHCD42b2aKY2ruy9lxZTNF6WKcu4ZEpyGhn8HNb2YIc+q2cO9OamCpXk2RYDeeM4PQw9kfWC6OUms3U5FYzIEkBCIdceoU7qm2DSW1mlNI+Fo+43vRM1wNqbt5BjORirIjJyA8xHGVdDTrmrbPHZV7jCdnq+OpOVd2Y5mQXgY -todvXehlOMPc5n/tuNnHnM3OdPYschLNjrcZEZNcHLEUac5dGzyP7LnKvOU+cyJJl5zOLFvnJeGZ+4inpkhzcGgfnKHOTDAKsZhIRVVne81rrjXraKoSOpsAAgvziEOc4Sqw9Apc3ICSB12aeOJW446ytMydJgNqMfs67WBsC0+lbbIdWcsMnwJlhzYJkCnLc2S+EJtOggcQESwnKNlnf7FaYGCIHOgt7IGWW3s1xaVhlCmlNcwxOSR9JcRhX0Xa +EBogCMCf0AKciMtQ82b/R2yvPmcjkoTOyBtkt+jKWbxCfk5VSyOFzp1M0JkJg1629hyT+m5TOaWafMgyZ58zKeGy/lORCPyVJqxW9JsHsQBLkspsjmZqmzmEK4CKi+mTTJQ5rayHvGqHIgmQys80gfgEQiDFJyCAFaQM8KIqAXt61YNFlvmc51ZhPUizklCS4FH6CdnZApzqlkr0Ou6YGA50JFRycXFVHIk2QXUuCR/5gfx7g/HX4PoYml+UOE6+ -mNG24uWs7MA5JETzznGRMyNsAczVhH5MjznjRJIEYyMpjx+GCwDml6PEuVfdDkJyfjbBHfzHE2Qx4ut6v+zLjZslMBxnLfP2ByAyPjY7fVw6ZpEqB6BmDZAm9OJAqdZYygZkRzcWauK3vWSbgmLgsRB6faGbA6QFRiROwI2B/RoYCVzciqSek5QclGTloXIRGccIFbZvZopjYUHL2XBdMmXp+FysRmEXNWGcCc6w5oJz6rZw705qYKlU7ZFgN54z +S9nLfkGW45qJlYy2YAuTN9ab6LIhZLk9plkvm37WU9zNZZIpIeAB0Yg3AKhrNQBlpELVnXQXAYIIRKg51OTxlDvbMAzBPKThZ/HRZoAWDOYOTXso7J1ASh2gN7NP6Qy0yXpAuzpekDsOtIvrvIDokIxaKkLTDLsE0zfvZGpzmkifLj4uVBo0456ul85aICA6foAgnt2rQd/LlBXMiOVSc2WZqmxzjE4L1eAL2TBmGOVCCIQoaz5uErkHBBublQWC -g9A6OYIgro5H1hozmyFIImYeMyBJAQiHXHqFO6ptg0gs5pTSPhaPuN70TNcDam7eRNRHUZPlCQwnT3SjccPtnZqP7bmrbMfZ6vi/zmGdyvcaqshzRlpF9tZogCMCf0AKciMtQ82b/R2yvJ5cjkoO+zddkt+jxWbxCDC5RKyOFzp1M0JkJg162XJzX+nXTOpWQossqZSizKeGy/lORCPyVJqxW9JsHsQBLkpds5OZ4ZzsJnMIVwEVF9Mmm7FywckX +FnNKWY4ZBxZJ+yq9lbrNYObcmbZ+1BDspkOHPMubnU1gZLezpTm1HKOsUfg9Y8DsCQlkLGMo0O9sHeWkSzxk6/kCm2AaA0ZZ/0zabSxDIsyYE4xRp3T87enObPrGc+8A2E+gyU0ivAAouoxkqNkVpgO8LllE2VtQc+ngAUBtLk4KVX2EKst7ABRyz9m5XNC0Up/DhcH5yrZlNLIS2S0s385guz4rE00Q0hIEMSl8p9D6Ly+tn10eqcsVKLVzZ6og -33TOU3Yn85EhzK5mrmyU0o7IqAwqqzzSB+ARCIMUnIIAVpAzwoioBe3rVg0WWnlzf1mE9R8uSUJLgUfoJD9mYXOJWSvQ67pgYDnQnunJxcZ6cvbZBdS4JH/mB/HuD8dfg+hiaX5Q4Tr5OlcmdymVy35BluOaiUeMtmAvUzfWm+iw7ORN9b5+EMMC6FQ7ICmZR0xWUfawbYbh7IOOZHssNkdGINwCoazUAZaRd4AqakXehI6ngmLm5J4w9Oxm2I4K +rJFobqswOZ8uCefFjTNJ7nLgvca5pyYxExbQbyT9c0BezTSUTkOUzu5h6ck6yWtDRLn48C0vrsczGABXT/saeMzR6b4bTrpkcThzmn/RWwR+U1G5xPT0f4BnJsibBQr2OJCy/Lk2U31wWscmCmkUctgmRR1+ub27aWOCSSM45ZxIhJu6rKAOLtM0WYmaMBemss6BIs8cGYYhEDYAD1OC0YzpFrKEoTGHJo3E3YZHLCONkhbPoOTPWdtoIqyndlir -XoEracq+QRRyrNmfHMlFL4oonhyNyIrl2jKiuUCc/k5TSzBTldcGtIvrvIDokIxaKkLTDLsE0zVw5nRyoyCl2Azmcu04+Z3FTabkvf3zlogIDp+gCCe3atB0duS7clU5v5zXrm49PEJjXMzvaAfk4qi9kwZhjlQgiEKGs+bhK5BwQWLcxXsf6zIbmOGWOWYUcgw58tz0oHdxO2cXAsy6Z3Jy3+kMtIV6VfspXpA7CSAomWnWPA7A95ZCxjKNDvbB +OWkSJdWLZRVyvzn7XJ/OYGs8q5vuyi6mmTKErJzJWq547DMnRHYDZmQK06zxLoM7rlf9V/2SZdTSJz4zbLrlGKUGcTsiJ+9wZGkSqzLVHkCcVwCwY0/gBK3k0JLZQwpZhFy6DlmHLFuUMiNa5OVyFP5K9U08VXMus5PIyGzl8HJcOaIstw5XXAiB522RAcMEsoPZ0etvyAbplcubdcqMgVxY01GKjPKrmQkqG5pIiwAFfHLK2bPsruRUlzkLmGsP -3lj8s97gspzzbkBkDTUfyshvh1QzRjkU3IxyXSjMCJfccElkh7LiOrZcxYCaRBVll/snd/hRdRjJUbIrTAd4XLKJsre459PAAoCAZgnlC8lcdZb2B7TnFHIVuaFopT+HC41rlTzKpWbTsmlZ21zr9nxWJpohpCQIYlL5T6H0Xl9bProhi5POyXKR5P072VjU8Vp8uCefFozNJ7nLgvcaIlz3wQC+CVaSRI0BezTSuLkk8CZ7g/ci+yWtDbblINC0 +CICggJFK+FMekBxpEWwA3LfQAIVkVQBDTjXmYJAbk5y1yuFk+3NP2X7cywBgmzyNacHOB2Z+c4+ZTezGznh3N6CbwUm0OW5TTKCgNPLhJxrRNKZ3i2jlRLNTuTduHEBr99lxFfwMr6UYk1vhYxztznuFPCudOoQ4A8AA1jB97U2ANu9IwA3KMDMaXhQilLFE6g5pAyKbg7bHuwC3cvS570FHdnlnKXrO4EzimhEzRTncHPFORB0yU5ryzmzlCY0G -vvWcpAOSad/saeM3R6b4bTrpAuy1/jbMORicpfanpUlzT/orYPUuUT08ChNVi4lkO3Jspvrg4rZMFNIo5bBMijg3kw4WQJDNcEZxyziRCTd1WUAcXaZosxM0YC9GA5JIi1dKqrOgSLPHBmGIRA2AA9TgtGM6RayhKExhyaNxMhGRywubZhOznjkz1nbaJOs0g506zlpEiXSp2Wncja5a9ytrnQbJIuT6coup1UyhKycyULueOwzJ0R2BE5kCtJZg +ALF0pVZ72lJknBez3KUJARy8ydy01gtXPCgEbo1RZR4zxWnUMIr0YiM3DcNFcZF5u721GfV047mGDzQrmp7O3uYJM1m4NIBwhCegRyGdSKUkOisE4WoMHQz/iwswogN5zm7kx1SjOq78R8543ZUxqgwOgVkTMoO5H9z6zlf3MHuWVciO5MpyVMiUw2qRjX6cZEvt9+Upl7ER3jdcyB5qdzV8DarM1qU9cno54tCpEFQkLviXnc8+6JR9HxmueOQW -RXc0+5YuxoqEPxK3aYoVcoxVgyJ9ndbKhWftoVVZ9wZGkStzLVHkCcVwCwY0/gBK3k0JLZQzFZ4NynjmMnIEeUMiWe5CdzWckaPE08fAs1W5k4z1bl8nKsObI8hg5cHT64HgkVhQZOonDeIxAIPhX4mPue/ssCGX2UdxnitLISQA8pamYADZzlS7OCOfZvT/BrYNqHkBlJiORDqcIgKCAkUr4Ux6QHGkRbADct9AAhWRVAENOQRZgkAULmr7HHWR +W5MknoIqTn9E9vVBVq+3RneDtjdUlG2xUHtHMnjwQT9V1G2nLfwWt3IY5bUSvrnewPg7iDctQJS1MnHlVjIF4c2sntug8yyFkSAAbylUAGAApXFRKD8z3IALXXO0Y271LREcnOFuaYc6LMYtzg+mMPO9WeFY6I8Z8jzpnB3MTGaHc5w5PDzh7liLPcOclwyURhk4hrDijLHcuvcGP0MuyAdYPXOEUXI8+B5aazgkQT92XQVu0p8Z3/9c5aZ+MWAV -48uW5HxyFP66lIB9r8ckvZ61y5FkWHOiuZrc3oJvBSbQ5blNMoKA08uEnGtE0pneNDOb8si65bkyoyBH7CkRKxcxOiCNsBb6GWLb6UYk1vhj1z8nmeJ3tSIMc1VZhwB4ABrGD72psAbd6RgBuUYGY0vChFKWKJ9xyeBkU3B22PdgJp55Sz3oIkHMCuUvWdwJnFMjJl4XP+OQRciDpRFyXVmxXKExoMAWLp66z3tKTJOC9nuUoSAjl5TbkZXPmedV +0Iq05feToHE0QKUsax4/yWtazqTp7rx1GPHsnvmVjzuL488PsefnIFP8Gb8ELnLqM3uU40vEZI796Ti2kAaRCYxUo6yXB6RQEAEOAG+HHfZoQEHgDTVTiZChYDHyrdyZCBxPMFOZS0niEwl0drlCLOumSIszJ5kdzj5Bf003/t3FH0Eiu5MqwE7BpSLGsnbZ68J7rGwPKj2d9peJg3lyc1E7r1WaTWU3A+oJsKMl9kLesUek4m5wJDAbk7qQZ1q4 -CEVpHUyxWmBtRVIa7IwUZNQcaK4yLzd3nGM+rpx3NsXnu3JeuWqcmU2rits6StrNZuDSAcIQnoFBhnUilJDorBOFqDB0M/6FLMKIFNcxp5MdUozqu/HmueN2VMaoMDoFa+zL8ed88yK5vzz+nnBPK1uaRclTIlMNqkY1+nGRL7fflKZexEd7xPLcOcTOLSAujypEFQkLviZk8z0UBVi0HlO9JOqPu0jm58KSnIFJfRsskyElyJohDdUlG2xUHrfM +8l6KzVc914wcwvGd6jfi5yNyYwkdnRAziSnOXWH6cRimoI2crpN/QYpCWA1HlsVMp7pTXNAqKjyqiGU90Mwb8/dPWCCSTCkStO7kU4IlvhbNsenl8hIoTvdonRppG1GdGakNQOa1jbipY8yKNnJLMNYS8MEXePIA+ZaUgH6xtR0fm49JwIxYwIDxaYLclKy6MIJIJrHCdgg4sn7Z2VyWDkXUOC6dYwMo5B6yUnmzjIuyd/clP+Ahy/7lvdLh3v0C -njwQT9V1EGvLfwWt3ZSxuyT37lBHMEuXjkXdS8lyjr62ROe8RKPIXZ2xyMJJT7OIgEws3f8DeUqgAwAFK4qJQfme5ABa652jG3epaIxC5vDyGTnRZgEefH09l5oGzwrHRHjPkTzM/x5UEyLsl/PJT/iCcwF5yXDJRGGTiGsJ6Msdy69wY/RE3LyGeQYcmqyTykXm/wN7xn1k7dp9EzG3nf/1zlpn4xYBXQjnXkg0S/gTRApSxrHj/JacbOpOnuvH +Ji4VN9ndqc1jAuYHfCR5CjkoHkEpmioYBE7O5FEBQ1Lg3L1aUm/NvB35Ns6GHCJLKUxIzm+yMTlL5E3IW5kZotyJvTjf1kovLDlg1wm05tvths4TcMxTvjc9uRQFNUFlrLK2oDszb0AxeodTKmoGt8MrkUWW4UTy/oSf00oIMgDuKASY+FwOLIjIJ6sii5z5zk6pp5zjqpXMwq5fdy9rknzK4KT/c5W5ghyreHD+IMcDhOE/eCGTXESGOTmZDLsk -UYNSifKmOvMQevD/G15xwi5UpGXPHeUekt3pMOyLxngQHhWh3cjK8iqBvzCUgAaRCYxUo6yXB6RQEAEOAG+HTI5oQEHgDTVTiZChYDHyTzyZCDJvKwuZS0niEwl1l7n1LIFmY0swZ5zSyhTlf003/t3FH0Eiu5MqwE7BpSOhs1vZmGy/dTwkHheWFs1WZNdC7rlX3V1eXfvWYB4cSpPAflOg+effAZ+6Dyb7Ff3IBDgSTN151vc0J4NvPg7uh840 +fy2pzujnitJeub04rG5NIRkRlpYAp6PUMI6yhOxNLIcPRWzOpAFb+YiMRhGTvNwqFLHXmBLrBvgCIZhyit489AA6Y4xFa2MVq4vXiAhAA+FagDI43Z6pYswW5xlAluRKvIrRC/yd1Z4YzKllMPOBqa9bdM6urzknkcPJDuVw8sO5GTyIMkj3OT6Rwg27gw4Ib1nQ9EOuEj5Id5LMI5Dk7CJ4kS3ASN57stMvYxF33GK68lxOX380Pmi32xCENbGr -B5Nz8rm4RI7OiBnElOcusP04jFNQRs5XSb+gxSEsD7HLYqZT3SmuaBU1XkH6UMwb8/dPWCCT8zmQfLUJpj0zqmA7y+QkUJ3u0To00jajOjNSGrHNaxtxUmhZ4uyIVk3rN2Of68rgQSByZLbKAB5AHzLDd5I5TmUnUigFOOLkPFp3DyUrLowgkgmscJ2Cxyzc9nx3LaeW5jEGpWxDXTkObMzeXzMyVJWdz9tlb3Le6XDvfoETFwqb7O7U5rCdcwO+ +pTXjOumtPKmodR4n051/QFimAHPk9goTOrp5XTohlqkONqZDE745cLyCZZv2ORefMnXX+UqCEkmw2NwyUM8vSxOAsYv5CfT8iYOsk5RET9CJBwoEwALOoexYsgAP9buiCdIA/1fxQrtDaEBFvHBGHs84/ZHRwjnmUXOQ8QNNPTa5zzpVncPKlObw82o5O/Dc25ZslmqllsqVUMyTNTiPzJTudK4evAI7yBznyPONyW1Pd8Zxq88lEQEOY+WoTJd5 -cryzbkdLJtNOfch7Z5l0/nFqvMFZo9cpxJr9828Hfk2zoS2cnkZuB97v51dMZ/pg8hbmRmi3Im9OPi2d6jJGukMyx5Eadz3GU2c3yB34StjnOLOS+U9ch+ZHwTfXkMLOIgPFs1VZW1AdmbegGL1DqZU1A1vhlciiy3CieX9CT+mlBBkAdxQCTHwuY5ZEZBgNlw3MWucnVNPOcdUU7nhXL5eWrcgV5GtyhXnPvO1ucfIK3hw/iDHA4ThP3ghk1xEh +/Vz6tkWdKIuJFbHq0K+yiCnHo05QDszfAIQtlfOGiuxNtEdwY+2SDImYwrXKLmYI3J85NGl8hEZnV7ubtc+LZLbyXlnGvN/uV6zcW0jhEsYJi4JAufto3Vk0MA3nkD7JAkiNU9q5hfT8Nkm+wY+QCHawxFAhpnl4aN3Obo7ebJdh4CMjySPTEm0Ae76jHREZAkvRnofe8kOEj7zdhLJu3acORc+L5FQynPbp4wM2sl8i55dczvdkZFL4eVwUd/GB -jk5mQVvJameVcDThNbymD6r+JQ+XMLKiZd/gKej1DCOsoTsTSyHD0VszqQBW/mIjEYRiDyn/BSx15gS6wb4AiGYcoqt3PSYEiwe75ivgMrzpjjEVrYxWri9eICEAD4VqAMjjdnqOyzuHnGUCW5Dp8itEL/JANn9jMJWRy84Gpr1t0zrmfIzecN8gJ5o3ygnnEXOFeT6c/PpHCDbuDDgh82dD0Q64SPkVvlELLUGCT9QxZMAyc5ZYpxekSAwtV5ap +lx/Lwe+GpfvtopCgYeBG55HlNqmd8ICN4xty8d7enJaidA0AmpIvif7EE7Lv3vhw5Sh+uC/TkVl0hhmd86MG13y1lnMMNqwWvzbxpm6Nu+zI8gbCBNgENwdbDi3kPvLckoN84nUuBQJblP3MVrsldL16U3ztPn/vN0+dc8+b57hyXhka6PSMPN4PexTCUMGpOBW8GKlfR9ZgPSoyCK1Js+a6Uuz5b8TIx6FrKiwCC9OtxOd823EFKPSUXLgkXxaH -CefExF33GGk8sAOK2DBjkOUycEWHQIa2NXSmvGddM7eUZnE+ZSPSE7gLFOZ+a5U+UhhTDenEnfI2ebLgyGJ2ddO+kv0LfsdL8gvBniSpUEJJNhsbhkyd5elicBYxfyE+n5EzrZHWjR+ggXVi2XT0iHUhEg4UCYAFnUPYsWQAH+t3RBOkAf6v4oV2htCAi3jgjDPeQUcjo4V7z4bnIeIGmnpte95C6zBXlo/Im+SK8rgobh57mSd+lmquzsqVUMyT +8QTkIUJ58dLjLTpUqDXdGFMN6cSyEks2FRDMvoZxyAGcnLE+JEIyq/7fwONSR/gwu5UBykbbuq302X68uEZgo9Hj6o6xcMcXcvZe/SCyJKHAGdtqoAQtoku1p1raQx2AF6IWKZt7ysqgRfPymFF88t5UZ0X3kc7LU+QDLCUB+MD2Hly3P7uU4c5MZpMCYfm1HIlEakY3hcVYx7X64EBEKY1ZFeI5hYZdmnl3TubzMhvhnopGpn1t3c+UAoosJMcs -NTg6LJPuekzFSWpPzwtltV30scxM41eeSiICFy/I9Rmh80fZBXzGwnGPMlINMs4iAYvzObmUiiIuJFbHq0iRyiCnHo05QDszfAIQtlfOGiuxNtEdwY+2SDImYzT3PAWYI3Ba5NGl8hEZnW6eSvcmnZ8iyuCn/PJCeaCcxQZ9cC1ExrjPmMRow3Vk0MA/3mMXIA+SBJEapMfzQPls8Gi2WO8ndSYlz0/nbPNe8NEcztgqqztKx5ySWoARkeSR6Yk2 +SfkfG2D+VMZfxWGgSyDYWJM2SY64p05j+9vg7QvOAGfxI6IZ/TzTjo3jJpdmG8//+6pCNkksLHfGUmtUZ5aRdwKHVfO4acv4qR6ayzKMRbAFx3CndfhEA05gEieKDBADOActBg/8CeB6/MenK5YQ35YiA0JpxfLfeQT4vy+2tktPn+rMZaUrcvT5vuzPfGSiKNcCu4K6Bciyrg7fAgFSt78zAC1WTXXl6nNXudg8jfxuDyLNBR52SIJJUnSsgy5z -gD3fUY6IjIEl6M9DQfkhwnB+bsJZN27ThYbmt/NmGU57dPGBm1O/kPvOQWXQcjIpfvyhTkpDNSMUicacCGtFJ2kz61SUGHgRueSHCtHnfCAjeBt877S169lLnQNAJqSL4n+x6fz6b6wUOUofrg1S5FZdIYYIAtnhKgCtf5jyB0AUZyFVWcww2rBa/NvGmbo277MjyBsIE2AQ3B1sJa+WD8tySV/zidS4FCEea88xWuyV0vXrP/K9+WN8n35EGShn +cC4AGtwCKtOZaw8MtZlNtNg8tmOeeCnXIlPncbNi+a+8+J55syMpkap1luU281L5A9yofltvPH+YIcofxGuiixLGzgx0ThvAVZbmoIHkOvKjIFU/K7xH/TBznS/K8aJH81yph1Ne+mb1OCftmsj4WcuCvqhwAsZLiObS75sRtqPlNt0BecPkA95aEhcUhWaUwIYVYTagYwBIvB9gGblsdQMaxDxjDugGlHIUKDCIVZnCBH7mRbIrOQ0IebR/Ehm/ -kEjI10ekYebwe9imEoYNScCthsiP5CTzt4jM8J8+WvEo6810d2DEZiPqxqIXNkZKk8KiHcWzlwSL45VZkXykVbqRIa+nlc0hiABz4HmWaNUoUy45QFbV0M44oDOTlifExQF5/CvIm7f17Nrk8rL5hl1ndFp1y7kX7s7OZuNjG7Fr/KOLvKM8i0mGk4WrO21UAIW0SXa061tIY7AC9ENtM4H5WVQ6/n5TAb+R18qM6UPyj9mu/IBlhKA/GBvLyJHm +qW/Lf+TwcpMZktTZvnS1MEOdRMyRZDlAqwS+Jg9POlo5kOyUpZ7nNXPABXy4A8Zf0yKvk0k18ljMsnSxaLyONr0DBM2VB7JZ2UAdO24p4JS/qYQtt6i39ZPYmAui/s10lpgsczGwlW3KlgShfbhhRgBugj4SAQEls4Veekrp/tHXVxmsSTlEt5yryn3n33IsOWWctgFz9y/L5TjOH+Xzs49Z1RzH9mCHJMmYuk/kgb8gV9jzGI0YexAe/EBrstvl -9PN5OdOM0mBvvyfTkSiNSMbwuKsY9r9cCAiFMasivEcwshPymLmnl2ruZnM2u5rgKKy71tzz+Tmos+ZTZNkzkfG3qBf3oqjZXby9kEWJM2SY64+AhlH9vg5L/NQGfxIqoZw7zTjoUTJpdgl8//+6pCNkksLGYmUmtbb5Ci9wKE4fKePiLwqR6HgKrdHqXP2eS4AHhZzAAU7r8IgGnMAkTxQYIAZwDloMH/gTwSIFj05XLAxArEQGhNFv5MPyCfF+ +xrKnQJlAWGuPWSvHnYHO0WYsBZzQKKRnoJGxONYQczdlAJwB2Iz4SGe2Vs8yJiDrY/vllvOP2TAtMbZ7AL/QGAZJ1eVNsmoZ+rzLpmSpKsuZJs465xUzRAXcSBffKw4pmZuMEjkwOphl2YsySAFKkTk1nc/ItqeLQhX+gvy0WZYqN6KfbI21xpqTQCFHuydGYmc5QZhrC1T5BAUtGMtrPsAXMtXVHZbUC3pFUfAA6RyqgmyFgTvJ38rU49QLgfmB -X21sp78yDZjLSZHno/IYOZ74yURRrgV3BXQO6WVcHb4EAqUygXT/L++Nlc10psZzz7rgfPayndc7AFxEAPrl4YFVWVHnZIgklSdKyDLnNwLgAa3AIq05lrDwy7mU202Dy2Y554Kdckd+Yts5v50PyU3njzLOmRqncR5PTzV7k9/OdWbm8gF5XrMveB9KhfEh9hX8hOG9R1luamhecTcqMgVT8ejn4TL6OY8faBorQKij7I6xImfJ7Z1JHEdlzrkb +Apj0QWQsy58ty0vlGvMLkZl8j/mbiQXlqUmC4kKiI3cUclMAKJdPDmSU1cq2WLVyMgy4/KgBfj85KOzHjpAH7FPXGO6jNZZbABCQAXGLbvtT039x0XBbDwsim3YF5oWlufXzS3lrHGP2aWcxoFQQKQtQi9MvnnRcj/xMViEmmSZKyeVHc2mZW5kqIwrXxJMPfDFYMjvwLPmSPKv7H+wQppQsyDAWzcKoEaTEjvJHqTDtlqjNzWbxHXiZKezN/nRH -I+FkKCmXJMDNkAWxG1kuQ/Y1ZpaDT53kRHPoWTTc4r60dckDm4pCs0pgQwqwm1AxgCReD7AM3LY6gY1iHjGHdANKOQoUGE46zOEAvPLJ2UFchoQ82j+JDN/RSBVSC7v5fTyOAV9/LeBaCcmyZbSyHKBVgl8TB6edLRzIdkpTTPPLubM81OZ3IK+XDAfO/2aGM6XmvksGbk6WPw+QKIYh5xwt7zq/4NQ2lAHTtuKeCUv6mELbeot/WT2BYLov7NdJ +ISBopzRzpxO53vosrO5eGOsySZfZM0yK5uTv8V36WFwRYZ2kZXqFkmDv0soZtAyDGzsjM5bq/8lL5fAK0nm2/Nk4fb833ZTczRAUxQyfpNXVOb2Uup1DCLMNSBTtsgpUISD3+lTAt1OQzIl9xKwLXXl8lwpeYjTYl5bTyAEZBONXQdi8kXo1QcsV4UvNFvr9/eEh5mz4EEevN1xsWvJMFUyyB8ZLANMnoW08bhh2yXeQZrWjBa68zOOfJNzCn49O -aYPfMzP5EuypPkv718OsHGVVZG7zUEDcMKMAN0EfCQCAktnCrz0ldP9o66uM1iScqtfN0+RD8/jof587QWsnPLHH206ghqdy3QUAnKnGZLUt/50tTQTlVTMXSfyQN+QK+xR/khbnYgPfiA12IAKIwV7zKjBZlAWGuPWTvXmqgqEqeqCuO4AbzFgLOaBRSM9BI2JxrCDmbsoBOAOxGfCQKeyj3mRMQdbDQC9r5BRyYFrG7IdBf6AwDJ1jAEflMaUs +VpiC9aNaBHzmSZ0vPvbIdUzlOWCTEDK4p3v5CpDd8ZTsRrvm5xUUhpE9OX5ET8JgARu0gSA0AFlof7JHTBHUCqaFy7CoAbRjBbnGlWQKBkQquI43VehS3YGHGaqlUcZsidCTlknPq2nZ9N+5N+yOgU1zK6Ba0s6y5/5yzoEHeM8LDfAjjWt2MhtCLxQguUDEzmZfgJ+IDKiPK+Rhwt05swC4NFf+wq2brkhQ+SDSTA6zRMGeUQzYtOOGzrjmQvMa -+Ygs6z5tKzs7m7XMemX6C7iQL75WHGxzNxgkcmB1MgILETmZYVs6pIC7DpIxlAnH6PJB2RrbS+JtEiN2n7sNGBaak0AhR7tSxkWXOsGZWCsGB4hM1zqqrLVPkEBS0Yy2s+wBcy1dUdltQLekVR8ABmnKqCbIWBO8FwKtThvgsYBfaCpes8kCzDnp3NzqTIM8b5XAKX3k63NFmX6Cha4XEhURG7ijkpgBRLp4cySy7n9UFABRkGS25MZzL7mNWOkA +HhOcruphHzWTEjZPqIfu7WN5Zejlq4f3x0oU8EmWh1NyQqkNPKARnhDA8ROzSWumEAvTMVSUF4Y8htumTHAAZFOoAbLaBKAZfr5nMnBYa4PGRGVzqwB6wUR2a7OTKU9OcqznyuxNBdN8tqOm7jv/l/3IkWb6E0fAB5BgbZrSwwatApb9E7IKwAVmMHvmGU8xFRFTzA2pEfMO+YRUJBZWH0Km5/grqzhgC7SySxz/AatDzqebd8vR5Cf4GE7F/M+8 -fsU9cY7qM1/mE1PnxqqstgAhIALjFt3yZ6b+46Lgth4WRTbsC80LS3c/5bXy1jgFHP8uR+Ct554fhpemXzxRuR/4mKxCTTJMmiQuPkBHMrcyVEYVr4kmHvhisGR34ogL5XnVLju2ZZ/RF5Vwzhs4ovMbuSNkoc+7WSPUmQzMjGZRs3iO/kzxDkb+M9uTgC0KZEOogIDJEEc6cTud76nazuXiPAD/LvCAI4ACFtzTl3+K79LC4IsM7SMr1CyTFv6d +Ra04+JOAtEAXvGxjMcl/PkFlriMckIIIE+R1ozmRLeVhZZcuwjkTovW3AE2MBESQuJwLhkcwC8C1zm2JLXNnBRRCxz8VEKROGyV1z3g282s5P7zUnl/vPSedD8wD5tILj5D+LNtBcr7ZmQbqJD8qPUF4XMV8ty57oKhIWmuMesXVVYY5kaMCr5kMOQ8Au9TsFUsDvzBVkOIKTOANGQYXw7t74Qg4MMMgAi59TgpwWkQtnBVnwSiFoJBqIV7rUP6Y -MMkQZBjZLRmct0pBV38icFgTyMgWycKyBQwc9BZfoKYoZP0mrqnN7KXU6hhFmEbgv/efBCgpUISCkIWjLJQhS/EqwpcXR8vnUbI4aYL84L5MZigvkdAuaNkE41dBJHyRejVByxXmq80W+v394SEA7PgQb/cp2xswiroUiF0kcV30hhpfUyAqn8XxdYApnY6FDPyndKs/M+2ZWkzlOeCSaTrRrW5+eyFNj597ZDqm/Qs7Fnw9H+JHxT5M7MTKdiKg +apZ4F1vz+AWDtMEBcO0rL5HSzbQWBZQ/HG6iXY+PBwnQygAvpKl1Za8FyUL1OmUlPxTpAfXNahqym7GUnJweVKCykUdQBMAA7JmkoPlQZG6TmhMAksoXTiOygZzBGRzGhAcbBIhVqCsiFRGg/di4TLUmXutbuJ2zjVAahAo92b344RZtjjKfG1HIvgcXUoawpu8ithyU0Vwn7Sc8FgyyxoWCQs8ueHfJN5YOSY4n+gsFZhvcovpwTjerl0o0IBZY -C3OKikNIno4nJIheDs/9IvsxN/kQ6gmABG7SBIDQAWWh/skdMEdQKpoXLsKgBtGO4ecaVZAoGRCq4jjdV6FLdgACZqqUgJmyJxfOZ+c+radn1PnmVHP/BU5s63Z6NyGdmQZIEeIiZTwsN8CONa3YyG0IvFM65NGwtHmzQpw2cIovDZYIKbP5oPwQZrA86AFqFDSD61Z2Kvs/dF1x+WyOTGlrKuSPv0Voe+7Su6kRbNZMQlC+xZrsiOvEmwuWrh/f +ONlWa2TN6aheGv/Kt0HqcuQsaaLqXPCyXm5FyFWlA3IWlcF+CJXcQOoXkKudnavOV6hD8kf5llydwU9AoK8TvknXu/1BMmaoMmpPrXgFMgREVXQUD7KShexM025AMyKyIrVOHppEMk9JG/z45lItNwOcxaeLgc2AtwBqn3DAMFKPwAHAA47DiC0PIeFk3WZU+8bZ6EJDoeelbUoZqkyDQXCpJaBRwgVqFzbyP/nBQq/+VaCwQ5oaz3qHz4Q4FIb6 -HShTwSZaFEPJCqS28oBGeEMDxE7NJa6U98y/+kStM/SxHNQYFSUF4Y8htumTHAAZFOoAbLaBKAZfqeXPJhYa4PGRMdzqwB6wSb2a7OTKU9OcQrnyu06hS/8tqOm7jvQWAvNaWb6E0fAB5BgbZrSwwatApb9EYULPPkSwt3BVms+QB2JiWpGIWRlBXgpbWFJPTl6mnnThhUYw01pVQzcknHxJwFqKConuJQcvXnxQvgGfpE+oZkyzivmfeNKbpidO +bcJdsg7nwJQss+ezCvb5VlF2BYbvO4+WMA6tZxYLnwX3/xpCYsCp3GkZjMIbVB2qeJa0lB6d4yRC5MhNr6cPM/U5KgKNbY02MjhTGCnR5S1N+L5ocxmWbdopdqxSjFz6iEOISYVYt6I7ry/nms/QQCWX89WxqH8WbGxwq88Vx8uUIRcL1xj9P06IWUosuF+3MzPyuy2xOdXCiGZxHM2oFOwv9Vur0CsFgpNXZYsmNcSW1A/2xccyPglxANzaKJQX -fZLeVhZZcuwjkTovW3AE2MBESQuJwLuacwC849zJbkPPOphVHCxz8McKROGyV1z3oN8tyF7MKdtnObK9OXUc0E5TyyhoXK+2ZkG6iQ/Kj1BeFyT/JPuUXCiAFdwJMG4fmKUDj23UxZGULXhke3IJedWfMYYJ4KMrxPAPyyO8AYgpM4A0ZBhfDu3vhCDgwwyAwbn1OApheHC6mFWfBo4WgkFjhXutJ/phql+IWSPJpBTm8wuR9IKP+azP3WQoFlD8 +IENApNnB2r0IDv+ABJ+CVZ90Z633HBbCE+nYrkLb7mqwp+wIJ0EdSVYwGoUicOZQZW4JL5PALTQWf3LnGW8C1qpRsK/7kXrI10bL2VyibnMXdoI4LnBDe/EEFVU9/oXSiPthfUxS2mMf0WXYfgsAQbpC92WdDSxzm1cJfhT/Cik5fcL+JmltKT0CRQ+gUnvQihBVfhgAJAkCxiZMMtNgRPMIAYiQG0yStwZ6xQuAJhWvC3lpCXyDYHg/J3hQxC1c -cbqJdj48HCdDJyCvIZN8L5oWdTPFaZMcuxZ+KdID4Z/LLGRWCyfZIey4rArvNzaHUATAAOyZpKD5UGRuk5oTAJLKF04jsoGcweacxoQHGww4X1QojhURoP3Yekycpl7rSTuSB01a5bALngWZ3KAhbZ8grxgwAL4HF1KGsKbvIrYclNFcJ+0lFhZyszcF/yzP9n3zElhYio6WF4rSbbm5fLMsTFQj6FddzVUGavPr6cE4xRp3T8DwWWXKPBZmUvr6 +ul/TD9GaCliwh7cI+4cPQ3UTZ6NsOB76GyZdsLPQVaZKhBSL4veuHLzw4mkbhbhfLQ6BBqwLvyYfwpaDvUo4/6LrzoBl/OPISXMMsK5S0K8fQ9AAthP3gVBg7YQ5n4PdlLwN32H+CyY532njgo6FPAiuOh8exehQpnFQRYcIdBFJ/cZwnfKOqGXKNCkFZ/TR/l2zPbeX/ctLZ1TjmLYU9UnubCnIewv28UgWY/O92vfCm8FXzz35lQgvONi5Eyfm -TCLKRSWDjZVmtkzemoXhr/yrdB6nLkLGmidxzqcl5uQXhVpQKW51MKyLAjqSrGHAikTh/kc1d4yjQEid+oHeFVuy99Fcwtt2TzCtdZYsyujj/UEyZqgyak+teAUyBERSmhVP8maF/EBlRFz/J/2ZTog9JtQzcH4XpMcRSekvF5WUL34Uo5JsuVqcw45zFp4uBzYC3AGqfcMAwUo/AAcADjsOILQ8h4WTe5lT7xtnoQkFl56VsphnZTNahcKk78FH +iCzDIXtZIFBe7Cgn5UZjxQmAIJTrrI43hF+At0IIIq2YRaJrZ8JHYKtFkDwspFJF4WoohoBhQBYIBCIIlJYQYPQAI+EO4HsYhFXKqFx0KZwWlcDURavCjRF82gEvluLNouZuCo9Zc2zGLnJbMgySTRD24ZN0L6Fs8Q1ooVSH/E3HZfoXSHIEhQ/C6hFWNTxWmfzJ8uXeXC25dWyhKkWdM/ePnpOa6THCHGK0iOdwO4kVxuYSo8hnUHLfWEoi5WFP -CBkEVpAsnBYO06cFw7SGQXwbPeofPhDgUhvptwl2yDufFfChJ5JCLD5k5XOPmcsgmfZ7dDJNmq/PsgVinelGBNM73ZO40jMZhDaoO1TxLWkoPV2+Y3cjNBD0LXn7WIubhohg+2xu38IQXahzC+RjtOwF65zqIGO6PPSa1wrzuGttNJ6WFLeiKGpW6FRNiOzpXfOUhuwLFmxIqT9SEDAvWkFii9WZxHNUP5lKLxRVQIfp+nRC7znEorKUqSix2WMt +JydQVTTwKRUTC46Z2iKODl+QvJBWUisTZ4QLKkULbOqRdDs0QFCkAhAz9f3ZrO5zUfsW5xUbIjQq7Gg4iiaFOqzUoUmXRKMdy86OF/8LrAWUbMNYdtQ9ZmbQQm6DEYwQAEqAcsRMuQkdT4ACHsd5Yx3idzd2mF+81VedWAJpgPCzIxl8LONqEXC2oGdGk7oWOHPaheJ0p6FPuzBDmypOIMSNNJ+GHZibXli5nRsrIC0EFV4KAYWPwumetkCo0hxu -8h9mYJN+foDC0gy7AsWTGuJLagf7Ywr5gUzWDLTLP4jsaVDpFubRRKC5AhoFJs4O1ehAd/wAJPwSrPujPW+pMLYQkS3IiRUvCmesULhK7iB1DXhTRpZlBlbgO/mugq6hT886CZaCLWqn9QtBOR5sjXRsvZXKJucxd2gjgucEN79FIVnoHFhRUi4xFprjHrGbfM2eVKg5ZBK39jo5twsNeQrQmP6xO9PUW1cPISa/C/F5Oxzkf7k71D2a0MiHUJg5 +S4P4sx1axg3C1rGdKKtknqOxyhdEig1BrG9m8IfoDZuEk9FlEnwwEGD5HWR1D1swW59spagUqvMsdBXpOFFi4Kxvm5e3GFGSCxQR+iKLLmlXJChbdM2H5Udzs0mvzmHzB0mI8F1VA1tmkkhBuMLCQ8pdiKDblkoo6RYmsvH58Dy9NGyDNV8VQIpbpcZQJTbIt0m6X5M0yFPBj10b0ChCppw4KxY5xjyKIth3AMUlwbUmwbd30m/fP6+f987v5DlB -xfroaQujN6gKr8MABIEgWMTJhlpsWN5hADESA2mSVuPKiwToMSLDhC8tLb+QbA1gFGqKk4Wrly/6YfozQUsWEPbhH3Dh6G6ibPRthwPfRwQojOWYwIxFmyjYvklgqQFjB8tyCVQzlcYvbO/Jm6itsWUiiCTGARLPlhrbf5x2vzGVHiQFhVl/C3NoPQALYT94FQYO2EOZ+D3ZS8Dd9h/gsmOd9ppMKOhRJorjofHsXoUKZxFUWxIqzRSf3GcJ3yiF +syr1Qs0RRXTKghusL3/k2/IEBTdM56FvuyF0n9ApVrKsVJRut6yekiP+iEGUEc9pFjiLMan+OPnEeJckQB8v8ldn0fxOougjYuh7qsv2gjVwtSajXaj57NkwNJyQth6QF/UlWzxcU/nyQpHNk2ih+ylqsR8lfm0JSUjYVsF1jyoFlICGtRQL8tIJdejkdazNLgUeH8vX+VxtpfEzos1wV2ip0h1Os+hyRRzeCRKCwWFszzKRSKwU3jJkAYBKXRQO -hlyjXche/0l4Fc8z+/mAvOZ2dU45i2FPVxnmwpyHsL9vdcFgWzrUX1otvhUERc42LkTJ+beLNm4VQI0mJBPTLr5DvKDgQeMruFfPyICGQILqUfhgtFF3aLAEFXfLX+bCrGlFWghCTnM3BP/MKALBAIRBEpLCDB6ABHwh3A9jEIq4QIuERVTC0rgW6KM0XKooscZ4SbmZf4KkflZvM4KbSC9BF56KGQX27JP0UiWW3EZdjD8o/4m47Loi+E500La0 +wgNNHFtCuRK3iTSTOr41AuDRXUCvGFsikI0VFIogvqEHdcF5RydkWzbL30fsimo5vuzoMmLpPQKALmP4FVz91uK4V2EDnxC0aFJqK80WR7OcReK0+amXQjqXmZe3gucm8lG56/y9IUrYNxeUhiil5eMS9pDA+MBxryFV15G6kPxnR0DMeZdIb0pSCT8AUiXOzhZgCwne7aLZgUbxLu+W542r5WghKdHykP2hkC8tzuSY8I2ndwNgxX+IUIyZHzHG -UnIracZrU0xFZNcNdRhOOH2RboNf5SLAPEV4+k/ePnpOa6THCHGK0iOdwO4kVxuYSphhn3HLfWGuiyZFqFzGoVTT2IxXEizl5iyLRwVDfNSBdSCj0FqPyvQV6osBeTXsv0FCkAhAz9f3ZrO5zUfsW5xUbJEIpamTxi0RBorStanHzLdVkCioT5A6LfUXPXJaRQGiyHZeNsx0WgGhQXoe9Pekow0A+BKgHLETLkJHU+AAh7HeWMd4nc3dphfvN9Pn +aTSAbjivZCGFLccKsam8wOwcek7pxImLxfHN9Jbfu3Cu56MxyBLmAh03iXBtan5wYKTqb56xFJpl7SuOPMLP37hwokegfZVRmf39AwV5dNHGF/o1S+lwiNIX5ws3xlEi51FpST10asvFM1O6MEVQCMQrNBjqhGAKlMDsurfywUWUWW8BQN80NFK+w9QUawrSmfwsr+kt3T/IVW/L1hXGijqFCaKsUV/3Jkyf0Cho4f3Zt7q+kwyHIOPIDFtyKQMX -VgCaYJUswcZ1SzjajEotqBnRpJ4FF+y94UZIu9OQwc2VJxBiRppPww7Ma58sXM6NkwwVKQv0RdyslzFSzy1AlwHzecfuCuCMtaT0voUooZGYrCuymP0L0vosx0HRRJ8+tZyMLNbYG3QgebyisKizeEP0Bs3CSeiyiT4YCDB8jrI6k12dw8+2UL4K9PmWOgr0hli+mF9/zcvbjClchYoI49FGdyhIWcAqFmR/8nW52aTX5zD5g6TALC6qgzuzSSQg +3ItkeY8i/b5v/SfEXU/L6Oav4mEZqfiEMXwAuI4UH7W82KpsidZjTPJsRS8wCQROtBX6AIKtjq+EzYFHrikzkWdNwCKIMcmGat8REC+gXi+NZg6po/SDWalt/LSjGqpNdAOrwWAi3cF8xalM9KBT/ib6ZfvKY0s+iu/ZVIKH9k0gpuebNnDSEH5V5OmoMk3GVKJfpZARzBWk5oqoRWaiyEF4rTYFlplEQ+as7Ec27GLmIJefxu0TOdbEILqtC6Gb -3GFhIeUp9F9WLoByNYqqRXGC3dBRTDTBmq+KoEUt0uMoEptkW6TdI62UNiuTZ2fyPhmPG3sGUEDVVZ9AoQqacOCsWOcY8iiLYdwDFJcG1JsG3d9J1AKL/m0AquBQ5QbMqsCLd0UV0yoIcsiozF6QKpwWCzMp8T6chdJYEKVayrFSUbr5snpIj/pNBkvYq6sjai/CRqKKkxH9TLSijIC91FuKd7E6xqz5ji7jC1JqNcwDns2TA0pXCp6ofZt4Whms +4x29p4zVZZuUKed5byCEAKqATYA1uA6gC4QH1ZqwdFhuIjYFlox5zsoa1YIbFaJZ/wr8dB22POC0PppcyqgbgCO+wPlI7BFkPyDYUZfOMRVl827JbEK/1q/kCUbg5bVb4OpUMfm3wvv2nci5+Bo74ZgXOIwmeXeYy8OLiSoRk+VJhIaoCsn55wioPYZ/OCRadffy5l2jqUVAjOI+apna6ObD1u4HQEN9MZzi4yFJCS4P7P32EdkGYxNh3NNgWmMG -C7RVXC2gGYuLo4lMRxHyV+bQlJSNh64UW1P4NjUbH7F38DirlOwpv8FpcvwRd5zkKFXG2l8c0CvX+cuLczl6/z6HJFHN4JmULH5nWqOmWY8bRXSFELikDbCFoxFIRTsARzh61w7JjTEktQJpJnV9nwWY4tfBaVwSkw26LM0XzaBYniOnZIFY4LNUX8vO1Rd780zFIkLJvkdxhb7imGaSFVz91uK4V2EDgXCmF5daLpRGvovfDPNTLoRzHzMvbAov +IkxX1cjCJXTcfEUqQtQSfEk0nFpBktaHKWJO/qyiyzFV6T10Z1mVVALVg4OqcsD6aIoIGOoGFUP8uXljb3leAtFRb4CrgUrJAocW8LJERiTC/dZ37yQsWxovRRV7siLFc3zajnC7JTRdgWeVh4OJcyKsFzwkfa84DFuaK0sVvzJEhQE49x5icxbIkefMGRQys1jptwMnNBVACWoLH7egA33MOwnaVikjsjEZORIOLJzjDYrZzBDi77qpwyJsXS3I -HdievZFFhPtMvZkfJWwatC7HC/xs5b4/2w2hQ3CzeJjeLueF/7O9KUgk5UF6zTSVA7tOu0fMC77JKpClgXOCOsMbSi0km4DjCOkf7yehfiiiNp3cCS8UYLUVDi3iu56xHyrGYr2W2hQnHGLapvMDsHHpO6cVvi8XxA/SW34Mov1bDoCoUKioc4NpqApo+VjDXPWvnp0f6VxxWqf2/axFn2ouf55dIS5uXimnSZ6TKOb/2OUsZcIvvFLeQgHlL/LX +rmfQM1FFxVyf6n5TKMRcxCr1mbG9Z2IwuG2Nn7ipK+q7Yv1jZosCGali4nFJ4zSVB1PPYxWssnEo9oDMgC1WFkufaYUKmdzCHbqwW32hVUE35AeIKfAUA/PYQIDscbFR0yEebUXO2eTGis0FQUKLQX9+NChTc8u4kZIxGzi8IHb6rCnd1+puRWkXtHJDxf1bH0Fa9l+hGpgrv8IrjL9Z6LMg/bqEJtSbT8lcxJGSc8HNZxXQTDYut4F2LZ4QvSPw -+ePfdS+3GzVVmsvFM1O6MEVQCMQrNBjqhGAKlMDsuJwKEsWUWR7BZf87HFK+xmoVzIpOmTUsr+kt3SDMXjgq1Rdm8uPFdIK6MWYIpkyWBCho4f3Zt7q+kwyHIOPLPFXIKc8WVIpGWWQi2t53WKWonc+N6ceNi/7FsFCcwWp+PWeZvUzFJQftbzYqmyJ1mjM8mx1Pz1CH6wrgZoAgq2Or4TCIUeuJcRbicwCQ4hMKEV0/VVWbgEUQY5MM1b4iIF9A +4Ur42ChcvisHm8Tn1NiHMwJ+gYLkKE6BNHOsGc9TQJk88MXdNMSSZVsijsayzQxY+oCwkBG4RoArDhCUB3fRL1vaIKkZF/z6pqNCFSgJeigkFeMLZDDFzPhRUvWFh5pFhMXGNvN3hZw8/eFOnzDYXb4tVRWmkZ/Z9cDRMRTpWP3kfigRM39hKEXjQqpCflisVmsZT9mldTMFsTt/SohnNifEXQgt2/oh3V6BI5tV3lYULgZgEi7NZybD+EULQslB -vF8azB1TR+kGs1NOBWlGNVSa6AdXgsBFu4KgS46Z6UCn/E301/BRUZSjFVnzL9mKIoxuTzCogxvAKPyrydNQZGhMqUS7KzpTnda2fRbni0hF0UKTLpK2JOhU23NV5GiibtEznQa2WLrYB5lb0dvaeM3lWUjC+hFxpt/GZZUyhxQWaduoqoBNgDW4DqALhAfVmrB0WG4iNgWWjHnOyhrVhDCVoln/Cvx0HbYtMLE+lQLKqBuAI77A+Ui80XsApMxQ +bkCjK8eiy15H9Y0g8p0ULm4ZIAhKCm+EpKLNcqoJyYht3h37EugdF8nUFGqBJUX1IARRdtaD+pa+K94WGvKYJSjimvFH/N7FHrIR4dNjcUMknZizQRHcP4JeSizpFBaK7gTj0zqNm00s+WGttFCV96PpvrBQuCF42TEgmE2wGeYAgzF5BALuEXtB0YZtXCtXBpWy1u4TnVQeXr/Hb2j0MN2G/lNMpmUS+r5ETjGvnTqBtoQkIubAyMRhAAWaWbwi -QS1OFDILbskZwr/Wr+QJRuDltVvg6lVSvs9irjFl1zaCW2ovU6ZSUkFZovF3753mOXUVMSiGJSfy7N5+7OesTCQhMFOd9BhG2pNu8Qa3Cfu4scFqa5gMoaV03EDFOKjIx7TAu93NAQ30xPWLv0WOovfib28/YlbiK2p7J6wZkdXUGOJQSSzAWiQ3rucmC3AFqCT4knPEv0KFrQ5SxJ38F3oJEpMeXOc8aIwWK8fR1mVVALVg4OqcsD6aIoIGOoGF +reXBAqoAagDrqClBt20XPFYOKJULz4saEIdMvCZm0CHQlnLXLxS8C/WFm+L65liRNoQuFwWI+dBVFYmoMmx+uj8c+4wRLTUVtOPSxRp0+dm1+LSMUTfxKDjsE+UyqDScRYtSMsIVVimh+V/DAIVfEOR1j/ikom4czZPovYuEjvaAuuM3vBroIB5Kq/FUAYVAh70GgBgWAC2TNY4SaoOKMoTg4utxf0Si6FmsKAZZ+YPSJDNiioyAUKDXmcFPS+e8 -UcqFhBDAbJrYr7BVwKVkgVRKqlkiI2C6ZVQlW5thKAIX2Eo3ucBCre5t+yqcXYFnlYeDiXMirBc8JEefOzxW9i+glARKPiaRR3FNqrgl2FDQ9XFY+3N3/Kx024GTmgqgBLUFj9vQAb7mHYTtKxSR2RiMnIkolk5wjCVs5gqJd91REZ5hLRHmwLLEGfli6g5vfiGlm2OPJxTLUtjes7EYXDbGzJJUlfVdsX6xGcWDErmecMS5+B9tzu8VNvPkKRYi +C1HFXhLPyEcEoKmANsbe6XBDbX4ERzbxbVM/bFaxKw8UZYsh8occ/15vkCCsU34uGEdXHJqJ2YKRfm3FMuNlVi8+SVWLlcYt4KSqejrVDRWmKMoUwFOd9n77HMFneTUBkDIuaxQysyA0930UL6bJhGADhJWbyWMhG7pbqHvCi8nL6gEKKZKylkFGxeswAYll0LQSX3jzGaKMStqF5oL40VXPJYJcGsnZmHtxaMxnIn8JeV4qOCFwcg8UpYvPxRSi -9q57hTPbkzLOvEKqsnEo9oDMgC1WB4ABRdTnqOMKlPosRh6CBvHWyFvYK6AXsIEB2GYS9mZCPNEbnHvKJxe6CknFayKycX0HOD1ncSMkYjZxeEDt9VhTu6/U3IHGKwzkGksjBUaSvPFF5lx6Y1m36ES/ikpgsULIZm7I1xqCLfUQlF3NrUk54OaziugmGxdbxZ8XQNF4mY143pxC3Syg7C33MGbi83ic+ptGgVSe1rJS3w6nWWZygfE64vuhmq8g +sM+P+i0Pnix3miXIE20lE7yffbbeyTES7I4UFWLCXUZwgrdeRidEklXeK+q4UvNcKfxitqunVMifncwHpuR14vVeYZLDtmdSJO2Rui/uF7KLFgJcGRGDjMRCboj4D3AW2MWi4PYsdT6pYU9iKWEoauF1ZMgl4Wzd+mDEp+TvkI/X+ZeKyYVhAoqRd0Cpi5kGS2GiImTFBANYN9a1VBVtK4AXiAv+DZLF+00icUWkvBibLfU7FpvTP7I++wp6EVoz -lJ2ii2UXlgsk+YkSgMpgzpVVmhix9QFhICNwjQBWHCEoDu+iXre0QOoycQX1TUaEKlAAPF9kKg8WyGAgWZlipesXLzSLCYuKjxfmi81+SiLs8n1S1LkYWVQ9xMkLEyUCJm/sDWioYlNJL7tlSApihcwY+wFqZIcVb7NO3XhzY0v4lqs5cEc2PEwkXHbjxMCieCXJsPI2RBS7857KKWbmw7M/bgoS5AyFEKouCJuS/Xt6AQIFZIAhKCm+EpKCPcqo +Wx3pK2skTnQHyRjYgD+HkzIyVzOxefvHfcsZBDSRyXv4JIyZES2EWMYKloYBkst0gK/DMFTJlZM4P4vY2tXChtF2xLtQ7E2zLDvgLWTOB5LeyUTfSJWfxfVCJXGKm2qlYsDBca5SE5DjSCwWUqOlsQw00jmH5KiDLNG0O+sLYmMF6zd/QUAUohhWss0IA3uBRKBc9ypZEIACeGq70Wgh+ATCycKihjIOZLIUV+AjxhYXiwslSpKd1nawoKucFi3g -JyYht3h37EugY38xqFGqAtsX1ICyxdtaD+poZLuoUo/N6hf34hPFZ2K00j8FKSDrSFQrccKDOzFmgiO4U+Sw0lL5KooXuYplhdmSyRp5+QhDksuyzWfbUuAFNsLxsmJBMJtiO8yQhRHzh8jgYsqIcs7NYlpEL2g7K/MtSQnXPX+O3tHoYbsN/KaZTXSllpKnGkyjJ2+azvCPZlIobaEJCLmwMjEYQAFmlm8Iq3lwQKqAGoA66gpQbdtDFJWUSiVC +FrhKYSUHwpTGUfC2vFlFT64G6sj5GhfCifxWhBCUymko7JR3irslTuiq0WFKUQwfrjatJioS3YV5EsbWaxS9L6DKL1CUAIrO2S5s8oANTRuGHCoBGJokqGCwt8AIwCSAB7JtaYeWFwqLa4hIUtlJX+qPolKnyRxkOEqXrPV/CElkNkkcUTEs6hQ3M/2CiaQrI6YQDFCgNCiwGSIDViU1RI4AU+suiloRK14lOTOAfgm8+ylRdy2UXIEMWAtMHZNy -fpLGhBszP0mZtAh0JZy0FSU8nNWReJ0lUlUZKhMbhcFiPnQVRWJqDJsfro/HPuFxS9MlPFK4TF8Usvub6tOL5RPSSg47BPlMqg0nEWLUjLCHU/JoflfwsQlJRNL5nWIv2qdlLW86ukLS6iCrM+uRDqHig38sTcBjAGuggHkqr8VQBhUCHvQaAGBYXHZM1jhJqlEoyhOUSlElnlKJEXzIoBln5g9Ik1hLIbJNEtopSgssSJtCFEYiV7wNWANsbe6X +vxVKWiH/irKPsYKSOuPIFiK2BMFuUKNBSl1hLtVhfIHURWsixKeSaTdEU5gQVRSVcqvFTZz4SVvqnyyNUzcY45U8YoUbpwNqojgklFd8LrKUHYq9Bfj89Qh8Sy4D7aWP5xS/bNZZF5ydZTgJAkIrqZSKovZSMsjvAHwAEDi4exY+ADlL6hgyhMVMMKlqyL14Uz/zTzjtHIf55ZL7oW1zMYhbOkq/pTUp00gJ/BBzI0ixJhZJcuuL6LhopZeC80lN -BDbX4ER31JWUi7jFLOLMyVkpOReZDM0+Wq+LnEYnqRKuf+Yt6xgUjqfnnyWp+crjFvBSVT0daoaPWOcxBYHZzvs/fYuAqLWWLsox5dCLASX8jyl+bWM3f8kBp7vooX02TCMAHCSs3ksZCN3S3UPeFF5OX1AksUyVlLICYS9ZgXlLJEXDUvvHmM0fylAkKf6m3TLPRa0Sj/mOzMPbi0ZjORKGSNa+qRQRxFxUq3BRmS/wlSVKn6F/4JKpVsSkrZr1 +lLsOkfEw7WhS8l9OVxKoybHYsdxmRIkla04N0GlBEUgxTu0i9OuhCCiYbkrJxT9cgOY1QcHBAQEq/iSySiAuK9z0YmVcKlQUmfbslKSCvTkwKMuSPok12F0cCNV4EuxzASC0uP56mh10UCIsWhVoS/MBrKFxsC4BDbGXqZRLgXvQQaz68Q98TZjFqlfxKQNh5ItJxoqSkElYAj7x6aUruUvQS395jBLP/keEqIpV4SuWpeMc/55ATyK2OloxF4UP -jqaUSmx99tt7dnFz0KUoVYsJdRlpCiiAOG0LSXk/IZCdYi1wpe1KSD72yNo2cidEUZZktQlki0qDWqbCp7ma/ybYbkQqKee70E4A43QCrCRi1JKLYxaLg9ix1PqlhT2IvhShq4XVldyUk7Lv6d5Sn5O+Qj9f7ykrkRQVizmFNnzHCW8FLYaHzCuFcb61qqCraVwAvEBf8G1BLiEUbUtJpfxi6Mp4HsSqUU9B99hT0IrRmti8yVrdwnOgPkjGxAH9 +R5qVQXMWpXlSmhFFqL+Y6Lkp1qfD/EEh66inUWCvPpWYaw2sA1gAWgDDMmEbM8MEgUSXxCCmzeSFRdrM/iQRclWqXaxlRpTqC3SKFBKpUUCbPLmb8Y+iF2lLNSWYoo9xTLUhlElpSf2kdDOqoFy1UfsnxZutCYkrjWdiS1+ZDkzwMVPymVDkCQh8F2KjND7IKSpRfHEy4WNozNimmnKepc6cpWhX6yRPZHEpqJnsStMomayc1nfws/0qrHPHp0hK -Bpk7Urmdi8/eO+QGKQwR80r4+YISwSlothz8Uxp1jpbdSzs5JGSNohCfVkzuizMsOONsToVdYvl5vxfAulsmcC6U14om+s9Sv3ZqESF8WcW34JQF841yO5yHGn34spUdLYx6F7a17oVEGV2hSx6YWxJ0L1m5/It7pVs8gElYOKoEkh7LK+V6NQQAIlAD1i2aCpZEIACeGq70Wgh+ATCyStihjIWtLksV+AiDxVKS/Wl8NKbNl6YtZhW6c1JF1RzP +h5HgvNhoaC87/OBvSwNJorLjCSYk7NR8ALJ0XEYv4NveCjFWhRLRSbPYucpcYo3NoYcNE3CDSIGADwAMehjnSkJhQO2N1sjqGYmgNlLcU2knnxSpuW9FjULmA73j2wpdsiqElnQL+dmUwurJbwU0xZ7ATQCjAPMnuTjikZAtwheF6swsShQIS+ilUeKefHezFL6RW48d20hDCsV45GLfv9SzDFDJKYtqyZwF8N2dDOlrz8zxkPUr/6aiQ1z5SIzS -IW1HO8hZN8xVSD9YCpiBGBNRRP4rQghKYqSU0EoSpTaYhgltlE+cVtByBRfrjatJioTzCmseP+Reko1rGXWK2CXOIuIhROSwKO5O9/6X5/Lx9DU0bhhwqARiaJKhgsLfACMAkgAeybWmFGRSti2uIK9KoaV/qg8pc78wCZZFLeIViqOypsjSlBFxmLJqXrItQWf7BRNIVkdMIBihTwRRYDJEBfhLvCWaPKZxYYiuhlvGK3MUe0rlbmucjQF3+DSR +SWqQpprprgiUe4Pg84UxGyWqUZYv/BbyLnRkfIr2Xt0ydOwTxJT/l0tFNLuAaBni9SIsi4mDw9MCjS+oC8+L5aWqUrD6YlvVgOQWKW6XO4vXxQTS5HFcJLPCVJUsmYedA0EMeVtUGT3w3EOFrGaupBOKEsadkqWpWoswt0aLDSiVI1yV2ej0uj5o2S4Q4/Xz9pVLY9qZILTf4WYTw1xVzSodZ4c8sAnMq0DcJB5SqwiuBlbw1tDqQs2EEwe0pL3m -EvUvCOYeC3E5ryBaBmBRLSyERJEpoyMgB7E4ZxfADHYDmaFEgupY+5khpYRS7VYXyAQ8UkYsSnkmkw9FOYFDsWCQrRpTFcwglb6p8sjVM3GOOVPM+FG6cDaqI4NqxVaixhlJNLTkWggvIRX842hYBUs2sUGUrw0Z1c/vFvPyDfnskucAGwAHWU4CQJCK6mUiqL2UjLI7wB8ABFEuHsWPgA5S+oYMoTFTCUZdpi/HFBkzyQX4MB5eaeSialpOKn3n +SKUtCpQJIDGl/mLKF7P/K2fj3cxHF5MKlUXMEpVRTqS9lpj0zsTjkGCteUGzEnmnNA9xI3ItopfTSnElFtLw8U/PMTed3ilXBE7y7yUy5Pw4U/gmbpaHyTvn0IsuJVVi892SFzs6XaxOeKsRIU62YjgTBbNzHd6AAhXPAQrsdsAweQshug4Ygl+IKZaQQ4rrpZ5C7qlndyQambIoj6WqS0LFruLHoVpuOJpUlS05xpFKGFAifgCbBci0Qpb8csQA -0Utg2emkBP4IOY//mJMLJLl1xfRct9LXaUvovdpfai54cG5gy6Vq/LGAd2S4EowFy46U46zIkSStacG6DS30UzvKg+TzivapydLrfYVY2ndkPHAu+5Tc06X88Mw/udStZ56MTKuFOorJUuDEz/+ilywKV2wpxSexs26+Gq8CXY5gJBaV0C9TQ1uK/UX+Yv7hQPiyJWEAhVVnO9AAQvDEDlQ14BhHBpTGjHNFUXdgymLQmUemB6pSBsQjFpOM4aVD +qMoWpWbS7kFLis/9GBmO8trxS95FQry9l40LjQfIr8QDyAy5oT7sRhrxFwnYRwjiiCCWRwzA+MFS/SivDKr5D10u8hSTC5aeA1K0UUakvCxVqSyRlWtK4OmkUqvaLNCUMkh+VcdiYDRToezMi8FdNKMmW3gsjCcsCn360QzUIl1KNkJbps8jF+9KRjloqMRedO88d5KMTohmqrxLhfTI9MFDFL8MHmtLcfoM0phpKzLoIU30q2BTYCnnehy9mABv -UrAEfePMaldylo8UjfNjxZ6ClolZmKvWZ3GXwwn/PICeRWx0tGIvCh6AUy5zFbtLrGW9HJlhe842plNDNAeEgkPXUcDi16l45L3qX3U18OiSpVVZtYBrAAtAGGZMI2Z4YJAokviEFNm8sti7uZ/Egi5LhMu1jDcyxqFukV9yXbYrW2TAs34xicLkmURktSZadi9Jl8jyxZnjxWKBu31MQOnxZutCrUuvhWCylhlCLyyaUOotYkRpS+D5tEymNlLJ +Eu/eD9WWOwG1BlSazfh6AEvRQt5J49HFreMtnxaFS/xlhMLAmXGXLGUaRYR9FerzW6VbgvbpYdc3cF8Vj2MFe3zGRHZiEylBo1WW5POBNpW6CselmDK4HnjPJmsvKE4N+JkKaGWCfPDnneg7LaQ2AKyhLqFs1NClZsyUVEJpFjgolpeOTQbF3RL2qWoUvDGQuCtSlG+dXzml4v8vmEyl3FXTKMUVRMu1JVrSgB5j0zeECABISvpk0t1SLA0rzSos -xaxQZEwRm+YzNimfVHbRRitJWhMWyRPY5UpqJhlStMopGyKNlFXLmiKrHfHp1xLIE4C0ufuQC0ijJu7T7emcXJEAT4nUSlN9z3rGd4qvcTGTJRpYrKMVbxEr7haszVfpl4hFCUtrNl2TlUq72wtR+gA8ADHoY50pCYUDtjdbI6hmJoiS7clMtIKiUqbjxxWHi4cZYyj5hlbwoOxfvSj05h9L94XH0oYpRss9gJoBQwXnjPJ6JSMgW4QvC9SkX8sq +rZheiyhmlXSKnrHk4vO+TDC7s6WQLQDknOzuJdyDQgAxScSApZgH4IhnA8fBWR1EBKCAG1+bSyzR4CSgf6UdUo1QF1SyNFKu9fVmq0rEZfFSoe5/LLg9b1xk5ofGZZRApCKv5zYOAVwKgyiZlf0LcqXqMqUBXeCz6oiYjTMWCxzGiTEEWklCdKwqlp0rA0jU8tc5obLPSWeIpKpUmy8CZ1jKBJkWaGryjAgP9y+AAfqyoxDt8CAkBmGCwAKfShfL -KZeCyvkFMsKn8XezCb6RW40vFfVk1Xm7ZRWZVJ4S6lMW1ZM5P3Ju9Bi83ueivzhmVf0tRISn8hux6TyMAU3/A7oSQwqb6g+KQf7eWzefhOy6ClY5LhsVAMs9+tuAkElOL0DKzlIN5uTeFOloppdwDQM8XqRFkXEweVzLXKWRMqDxVSy7BlSfTEt6sBywJdvCnElHML0kUW0u5hVbSyZh50DQQx5W1QZPfDcQ4WsZq6mWopl3IUy5hlrmKhWVsMsL +0cSbaBpleZKdQU5ogVpayyp/5wLKt4U40oNsmAyvClYOydKXu4qEBUJjEL4jhFybq3w1QZPCgmkiJAkViWgYrhMZbSpg+kmKSsXQ0NgUbLfMwFwQj8j6N805pZbcu+lET8WfZibQ3HitC7sQEjYUECEd3OwQyyMdx9AKrCWNMrxhXc4fhlk2KqWkuEoYJW4SwmlUDLomWx/GbjGftaVwsRQ4UFoSJE/G2KG2FHILpmVOIs0ZZlinHZ1GK5SHO6Ph -dGiwnSlqXzlKW+eI9kZL80bJcIcfr4asqlsWDMkFp3qLMJ7/EtdZfynKnp5ERh7KEnJSksyrQNwkHlKrCK4GVvDW0OpCzYQTB4Q0veZOgyxRlAkh7mXoEsoXvEy4xoiTLsCWvMuR+e8y5oltGKMaV6MvZaeyypFOY4Y3UQk805oHuJJzFRCz76WhrJKZXjvTFOdiLEAWNkurpWJ7fDhT+CZuklUrgBXvXbVl/TKovnI6yhBYPS+yguMyX5kEnMNQ +uRsC2DZgp0WaVpYGUIfvrLnSjTArzbzvTupS5kB7MjscHszwtHg5RYyo/Wjsc6eAbUqQaKhyqxlmuKE5kv/X8rlUAd0QMvpIPK+AE7lofVLcGOARNpm1MsTIA/+R9saDYng5kEsOeQAymHFAMtF+F7LjlRdNsubFlRyFsURAqWxawS4WWtSK8s6n4P+BaDbQNMcOzB2Wh4o0ZXiS+piqocBb7c4phWrbSiEQZH8+Y4M4ulvm+S6bpMVSI5rLnQ5v -cRIU62YjgTBbNzHd6AAhXPAQrsdsAweQshug4LcldkKo2UokpjZavCnTFlgCGqlSMN3pRZ8y9lu8LzaUOEtvZT5C8fBD9YGFAifgCbHZi0Qpb8csQC8crb2fxy3DZgnKb/4U0sDMVOyhDlQ6LAXHiQABsYuy1TYNC40HyK/EA8gMuaE+7EYa8RcJ2EcI4o9clkcMwPhoMoUZYey2W5NnLYmUyV0xJRzWBll8iLjsXx4pZZWqSsJ5qRjL9jVSNS0T +pcLC7mSzs5cGNfRQBYE/Ns4a9Lkek63QR6RxSkBRibCfvEwQpDOUZy5vBjWKzOk3Mu6xvFwa6CUedzcByrAZAAK6b5ACRA6aLi0oo5eOEFUk1HKu2xqEGvRaWc/UFAjKoqCD/ONutOM9jl9FzOOVvosiBR2yjwZl6zd+CRpkRZWP9L1AsPwWYVGopAhhgy2VlYRKDBJZwuBhTkfTDl+LKzIVmExNwA0w/QA3qAEECJ2RCpkIAGxiPYQKzR91je3i -aKQ/KuOxMBop0KTmWLCyxlIXKpYVhcs06Ss8vtlUGK3blsVM8gVQs6eeOKLUzloqL3XsugnF5jP9VcXs80gxQMysDSECDvImWtKgQUw0t7ZG3Lp2W0IqRZUPS8+J+X1g0Wz7Ih1IcvZgALVLv3g/VljsBtQZUms34egBL0Sa+SePRxa5nKfSWKMus5Uqi2zlR2SqOUugqSZVVy7RlAzy0mVqkqHYQd4iB4OlguPh+cr9eDcIHLkGm4QWV8coFZT+ ++wNUSs+sjmyoUoLJaFy2QR2sLcMVcWK5ZeAyi9lkDLD4VOso7ZUV4uHenQIh9hcfC+6Wk6IbYQ/Yd75oMstFjlygNlBfSg2UL0sIWUeSl7+pYyX8Wk21JUd545W2TFLvIkUvJIidAwwBBVgLb6UFMoifm+HHZwajohUahfASVunEGykBphOUSOQvP8ZaymUlIVLUKXYzICZdayoYlK+LefTRUpuGdFyykFOnjFsVZ5LgkQIYTqpWkAMzZuojEDp3 -ykD51SL7rkzWXquUjy7blREKs/mqcqXebKYa8Z6QtvClDYArKEuoWzU0KVmzJRUQmkSTC4ll45MDCX7sopZZKS/sZdMKcGUb52WuXKS/y+BDKVkU9QpSZcFS9/56TLgXlizN4QIAEhK+mTS3VIsDSvNHyy45FsPKmsVgH2mJa0yhxFCKk9wWvEu5sipyg8QjyBQGWqrMIAMUnEgKWYB+CIZwPHwVkdRASggAwgXk8s0eAkoa5l9QFMGXKMve5Srv +XY/htNK6exqMvNpYGy2Zl8KS1v5X8IJqbKgvRJnNtqGULsou5eHPciQeR1GgCzeV4MCxiQYIf7JrMEYPl4Yb5yiSu1DzqoVagsPZf4CrrlsF4/uUOUFBZU7i3Cl57L8KXuEqvZSNy2vF0QLbQU1gndZa/I3qpHyMGZBSssShT4CIpuCNzz75E/y9+kStf65SDypIV9gzn6ERkhm5YCyDkhvPxThYhiypROQKYkU0nNfQtAwXagcMQbtnxuDqACYL -cDZlXKzaXXsrc5Zkiq2lu7iNdEHeRsNL5ysaF2DgFcDvss65XoitMlxNKeuUmIr65ReZeAFr18zcV3+GciSf4M6lJiT2PFVktMnhP3J323+KNGk63WAxZVfRDl3Asc/lt3Nk+RDqavKMCA/3L4AB+rKjEO3wICQGYYLAAp9NX8vRxJtoCuX6UUUZTmiall9PKyQUJsrVRc8yg2yhmKwyWBUtoOZGSznlapKC3mpGJavB7SEfsAwt4UE0kRIEkTSg +CRstGCnVnZIpdOHjIw9luUki8VL4ptZYFis9l+NLBuWtsp6ZYmi51lfQK2IVVrF+3lW7F+w2P1pwyrxAl5bbCh4oq7FMmXRxN8jv+ym4lMC8hQWUkvZ4BUSz6oJKzUnYveGjaSpBBAphAL4qJ/uKdEByrduYGsEolQ5A0IpqXgSoJRyyWdzwtkYVNLseUllezLBkzRgF6a7rRKubDy6CU4IvNflTC7PJbtsrDZE5h/akwlPxBrMUV0ivsv4hVV5C -xFVjLBWXw8o+xRJykJWkhLoaGwKNlvkWC4IR+R9G+YIst4ZbISkbFlyL4DmFPIfPnjEXCy5jElsDk0XbmJRaUKUngcGWRjuItBQRSivlQeK7nDkcosJVS0qiluBLqMU6opnGV8yzGlb7zjrEd6liKHCgtCRIn42xRHIvleb7yu1FGnSWD6D7K0EKU0xwF8KsCIX5bMFOoHStLAyhD99Zc6UaYFebed6CnKkGgPZkdjg9meFoaAqRCVH60djnTwKp +1CkfLdMEoY0vLjeXL+ZlVdIFlv6XW5YVy0io2zT92n21PAWRYy4yoaHKXMjmhEvJcD8dke5vTt+Xs0qAWRu0iYZQa0wNkHCPL+fPS7HCx/Lz+VQbL15XGSjK8dIA2gBSUopDkKYsax6QBDQC9DRR1OuRPOZi1zb7mHss65X5ihT+8kD2eWzYvBZeUi19FVZKqkVd0vpBYwhIVirY0y7GzfCvHC1edsl6TKCfwQgvypd0i69eAuLrBEgjNTZVhyoW -l5HEto4D0uT5ZhZXGZexyNOV/F38rlUAd0QMvpIPK+AE7lofVLcGOAQ6Zm5csTIA/+R9saDYng67ksveceymolAMtF+F7Ln2xRbslNlqNy02VFYoPhaFSwf5XfKLZodAPGeaDbQNM9eyh+UNYrF5e9irshqodVnnoIzVZX2Q3LZ0vKVrarEs/JXRBCMx8VSlQWNMAp6GNbb6YF3MlnZy4Ma+lKCwJ+bZxW2Uo9IT5ZJSg1lICjE2E/eKthdpc2wV +FGV5h4aUgHvAV9HVIgaBdNkzI3VtMOjMSCwWY5iIW28oZ5bYS3/lxeLu1HsHOpxoAKyElTbKueUtsvVpXyy3plzrKfQmOqU28DlyfSBbVCJnaglj6sAPy4PFqdwVJYzMqVGez2PrJpIjXZEdRI4pSJ7L3hGKNV0X4oyIydl0HExP4zr+UuUoKQtAwaBIB0TDeIX1wYeJqyu0QS1Bkn4zwpNZTTAGkO2MKb7ko1IhxaCwY9lCTzWA60EpwpXjSwKF -zeDpCVmdPR5QeIZ6okOKZdm7/ni4NdBKPO5uA5VgMgAFdN8gBIgdNEiWVMCvHCCqSVgVXbY1CCHsv8uS1CijlUVAHgXG3QgmYIKjyFOnij6VZ5Lgkd7zH8eu/BI0zUMqSvjaGCQF9DLfrS+EroJa+S5CFBgkkUWc0pyPuVShXlo/RHkCkCsWAibgBph+gBvUAIIETsiFTIQANjEewgVmj7rG9vF9gaolZ9ZHNnXpXrSlIVsgjFkUsTJXyJkK5zla +EDKPeUa0vbZbXim0FbEKgKHI3zGOtdAy65ZWxzbSUIrL7igKxmlWLKYqGzPVBIYdsmG5h8TTOUYCvwiHAc/i+HVj2cWYrVY8QHIqD2WQqB1klcpdRaJbHYA6YlmbiAeU5QHogtLIpxhDgU0ICpZJ8ywLZNt53Ap5ENGxUCSx3lRZLjyLbP1Y5e0C4AVuyLKyUd0vAFWFChZM2riaYqy0rDvK1bCnOkdQwhWk+WioQh3bUZUCdtlHVNL4jmWjRB5L -SLcXEiCozZekyorxcO9OgRD7FB5STzR3aTzp5BWvYsUFbSS4Vl7DLolkNCv42WHLZ2uJESY/HK20KUp5E6xFJEToGGAILLBTty2dlyLKfPGvzN3/G+HHZwajohUahfASVunEGykBphOUSzwvP8RqgcvlOtLGoXWOljZfAinylwZLefTqMoxGVkKk9FCiL8SUXkvyFTwCsWZqNkP8y+crEDp3XY/h0PLguWHCpqFQtCoIiXWK6fnt6JQPrKgvRJnN +nywSHsczDKZEPVYVc0KMsZzQrWWWK8gHQe7B+yYMwxelpEIZJ+vZczcWWCpDwDbyzUFdaVk3ZGuEXxS0K5NKGkzf5DN0vlRUDygxFFMKoWVt8vB5axCqi8sqphGHHSOz5ix5e9liAqpmVlHAiFXKyv/ZeKyO8lkrLDmTBDSZpPOlGUUXmwx2teSnMFXqsFM6j5Hv5GiKwgFTCApiahUxZ9ocCzQuBEgpKUVAF8ArAwNCZdQr8twNCro5U4sneZ9f -touUg4q62XtyneU9qRDuUCwFVWeRIPI6jQBZvK8GBYxIMEP9k1mCMHy8MJiFRJXRl5kCL6oUX8uZOZvSh5lpRz1tmdsIRFTaMpEVR2LfuXCQtq5dGSucFQ0KawTKIFZBQsYy4qDMUReW/8p8BEU3MB5CHz69GzRPBoVKgvypWDyr0gfH3nZTRAyh5EKLk/lEDMnZQLiluFVEcxDnrMttxUZSoCmhXQZDk1UtfQtAwXagcMRY9nxuDqACYLCRstGC +KevZf0hYFVpS+1ltsyEqXQMpvZRFCtiFcx42BQ+DNwAg1kGxoRgiR6Vh8peMCEMqE5PazFuaEpx4Pn/08QuLyKilL8fLyFVZi0S2J1A61yICSziF/9a5BtlJhkCRVG/eORy3fZGVQ0yDHVnqFVXytGlKlKWWWAMuHurMPBGOoTKOmUV4se6Q6ygD53AqO2U9Qr8FfqsfAmgYj7fr9A3sdAjy6AchbhAOiTCrwThwi2QmX91wkXchNUgMjYtkIIYr -f1l4YpdOHjIi/luUlpSWBkot5ZgS2/lMeK8CUfMqY5U/yvRloEKM4VVrF+3lW7F+w2P1pwyrxF1FYXCh4oq7FxeWP3OWJSIAy92SrLkoXAcrSwE/Y2ngy5tpb4veGjaSpBBApzJLoBXSsG96WxA1hGpvgE3D1OWASuCS9X8AbgYeIv63XIhRWeFsjCppdgw0v0OaEMmaM4vTXdaJVxo5Reypvl1FKGOXEMrb5TOC0Kl4kKM4WVhQPcrPvBOhP1Dc +2lJ+ipGOZMzf0gr+lYbGJtNx5TyS7YFey88ZjB5xziA2ucr8raSwvD9LnGgeoM/Al2oq4Tg7TOvuTpc0Kl50LmhUYUtcrLUs61Y9IrcaUt8t/QS90grxtpAXHgWzR5oXOkJBl/KDTp7ZUsJxeqmTphuXLbKUINNHmQZEvTukPTvimwuigGVKg8emhGzwIW5Crx5dzS05RwjZQLBZAAT3j0gD6yTmlUtn0AB+KhYKmnl7Qo6eU5IvhjH0SgMM28yr -DhrB3MZZ+y5zF7HALUKliqUuY/C7HplCK7W6VV2cWW/pU4VInLSKjbNP3afbUxxZIhLjKi4CqSYOaEcplbN92R7msqvSO4KvhYxZz7hni0rzOXSYr8VDEzJea1XMeGW2K3lSJCxVVl0gDaAAgyikOQpixrHpAENAL0NFHU65FgFkT3KluRfyqYVaBKFP7yQMc5Yj85cVd/Ly9lriuZZaqS6MlfkLGEJCsVbGmXY2b4V45u+X7Cq6sgT+VSFZyKZY +BkuLIAybRCnxRWkzXBU1it8oWDymsliqzOllS7LkmCZ8q4QI/kjTyh8rfZdX4D0FPYrlqUNviZuYSSzDa630V6VVoyTrmAUwgF930keSIMB2ZkKjVLg4YAmVasOHqRAQgVeZR0KaBVXCuJ1Dbik2Zh4qaRV1cBHTmoLfrlzbLPdmRMqYhdeywzE8lztWTQuR8HD8sjguasA3LBhCqUIonrZYp59LKXkgL2wxUC0A/lkYKu9GSLzOpYSI0QmRKiyU -W7Uh6BUKM4SZhAqgpklfNlGeny3f8w8NKQD3gK+jqkQNAumyZkbq2mHRmJBYLMcocLIxWiiuIpYRKmUl3ajvjnU41IlRRi8iVSYr7+X4EtTFf9y6MlPoTHVKbeBy5PpAtqhEztQSx9WB/5UWKn9MxcK0oXcMpShR1EuB5NQdLbGQeEtxfijIjJ2XQcTEcTJ9eW6y8CAcVhiXmsTWgYNAkA6JhvEL64MPFV5XaIJagyT9JUUG8ppgDSHcJF9zyUak +mbuwVDqezEyxWKdUgmGHz1UcwY7bloEKEynsSqdsSccuflxiQ1KG/ktGRvoyx56SwLxfD1ZPF6KeYqtgRNNtBU50spFAeQ02EmVDcAB4BliVKQAZIgU3Q155tpJJhrFKDJMGoLpwX0hk+5bbiyglJeLJVl2sorJaAKnoVByKu6UnwpkZU2cBHYqWjcCCw8s0DO8mKiVdryMWXfPKukaO+fpFp2y6xngVPNEYPtGBA+1tIGAjDTGAJUKLNIP/0IZ7 -VEtBYFfy1N5rAcTyW0crPJb+gl7pBXjvQKV70J/KyUY6RhVJm3IzaRTJTM873lw/LbARU3wvFRb7S8OyPKeeHeeN7ZfxfET2ju85jltStTBfhESrRj+8A5FQe36lTwy5m554zzhh+vJD2RvyxYCOwB0xLM3EA8pygPRBaWRTjC0QpoQFSye7leOybbzuBTyISYSgalsYqDaXHkW2fvwKxYZ8oqtGWzzJ0Zcxy2P4CyZtXE0xWp5Tror+csGSjxUV +Gss3Fat8LS5C8KLUrXovo5caKxjlrizLHFOSsGpduC94VndK+hXSbOIMd+QEZyI/Y5/lihycCi+GMIVAcVO8WhSvPcGss4gI9a5YiAu9CW6M70fIu5uANCSJCAuBeFk/zhR0LSiANI0pzok4G9F5QM0JUh22Y5UBk13l7gr3eWcCvwlXzyrwlpiKT9Eqg0CMD5KiVUowT10DPyJsmb6cAEZ49Lwqkpx2g2XkbIP2CByg/bf+ANzD9SibpNDTMPnE -CvvaOLCpQ07eMlBW13LLKQM3cTmEFCDkhSgt2KZwS+0VkMzv1KZ+Jg7kDKvbm2AzqEVr/MYRRNi49BZbQAdB7sH7JgzDF6WkQhkn69ly8saTCkPAEYq6oV1pWTdka4AMlu0rk0p5TN/kPpipcVOBK9JWUSvZ5Wm4tMV50r04VUXllVMIw0qVfrwWPLSuAGqcWy45FZRxOJU2MsYJWrg1yVQBcVXkId0maTzpVrGfZshL4V0prFdik0yeCmdR8j38 +sxQ2UEi6DlONTJHG3jIx1tuvWaMsIKePFn8tfJguSjblk3dSwlvSvZBrLymEVVWLGNqIfLWWa8AGAACVQrFhp6FwAKUdepEwede6hcoizAClRT/lWUqj5zsIAwRFSK6aVLPKWB7Q6KKlZ0yjfFS0qRqX4IrGpUts0+FbUAWEyG+iqgV0cAUKYgqzSUHSoKaVIKrshSAzVxHQjLQ2VekUCWW3KfxX1SBTBf9Kj9ZMwyJJXwvIIaAnfEHwHUiL+V4K -kllW2KvwVzrT3YXkWk3RlEQUKmLPtaIWaFwIkAgyioAvgFYGDqTPWlfluTaVHArTlniLLnFT17L+k2kqbCW6SreZcmKxjluqKjJWhUqPhRnCuY8bAoMhm4AQayDY0IwRLMq9RUvGB1UShjCzJXB8Hj6GNzg/uIXbzFRSktfl0ip1+aCyT1ldcAFYUsiGhxaVeRzSoUoNHRKcyRAI74DRcCcj0viFLIXqIQAvWVk4rbmVYMrp5Sey4e6sw8EY4p9J +Rr5taSrRpgHKYPZK7N3inLKuc5/sjJqGUSI5JQny+hqycSGIEfSobPrtS/GJU7zhAHNTJSHvBPbEZm/LMFl/aRDeWAggzprrzMRmASux6ZB3GAFQYre4X5MpnFUuy1NI/QAlqCpEDZ6l/AGBAGyNlAANrDD4aMNFKiZIrK+UOYyvUFSkW4VZYrgYwGvzaBXoil4ViqKbRXKoq95R2yo5FbELosxBDHH7KGSOb2o5hfwqn4rnubQGQ6VwUqR2VaMs -Z5cTilvlypKKZW2yu+ZQysyzF+qx8CaBiPt+v0Dex0BIqAPmFuEA6Lo8vBO0uKXZZUbUW5bh8r6AyNi2QgDyvaUl3KpdhvSlxiURAxcScNbF+FfmL3RUuMvZpbKM7HlvuT54E5xAbXOV+VtJYXh+lzjQKiII8ANclWRyMqh0BWSlZPcxRl4iKdpVb0tcrKSs61YZsrxqU/cpOlX9y5UVoVLVEX85ItmjzQudIL7L+UGnT2PFU4QYhFANUv9k13Op +bsWoTcnRKbKfEVXSubWWBMnxFyA8FM6dyCgDsgPZc5kHh4XoL7K0hjwZWS5qoBrklbqBfeJLkKtoiT1DlnjgthuNki0aVXtxipivUDslYrSorWXEkUUWWirGJWFi3lly0q7RW14pxRX/85pw/jF4sW5kXP5IX6faV421+znmorspS48n9ls9LL/5nfLWWTLkPagCsDtIbvFUgRW0AbooXdsE2QYwvHBa3YTKVOMLv+XhyrkeKhKuvlNgzAdmvnOw -kYayqwF5EygWhQ9O+KbC6HAZZoqJaU1iuBznkbTwVV6y3qUMite8JeIGWlu/4/hlNAFAsFkABPePSAPrJOaSZ2fQAH4q8UrBRXtCmFFfhi+GMHlKAwxiLLCGecsgDJ8cKfFEFTJylYyyoKllcr75XfMuyRZZiq/0POMD+GwsK5oB6MtiVropTNzGkoJJmCQlml4dMz+iNN1Mzm2KuKw3oqTcE4IDqRDszIVGqXBwwBMq1YcPUiAhAAiyhEXKSqxl +lewK3CVlzyvBVdQq8JeqilGyqmVGzC/ornSLVhAXGCgI8TRAisR5UzK/eVh2LMTz9HLIYV1c/K+x2z9mWjUy/TnV8zq5uCq6MXzQr4pZFKympvf8eig0LLgAMmpYvU/M9B4anUAOZjK6GecS6z54VvyrsFVwKbCAk8qa2XljjsHmToJJ5QAq2BVu8u55Zey4bly8qvCXJorYhbMwKQsx+8xA4HYhDOC+K/iFSCr8JHAHO3pVekJdFR3z3twJso6y -cTqVElI8zKFXGyrq4COnNQWpcrm+Vs8qZZRzyjcV3zKtkXjxOhcj4Ob1ZHBc1YBuWF4Ve8YJQifBy6ykTcvBFleZaxFendsIWHQpF2WcdJAVIysB9FBHM4aSsc6xZ+4znRWPp1SCYYfPVRH5K7RUNaK6KSdC9DB/iqY2kD4z8ZqoHAL5SlC7qaSsoZ6BRIqtgRNN/JVIcrh2a8gG3GSByE7DBiuuJHgGWJUpABkiBTdDXnm2kkmGsUoMky1Qsphf +ZX89VlZhMD6Q440LNJYfYvUx4AKrDtAAaaIn7P2qafZHKA2CqLFXki9dZU0rv5V0DI/eVlZeaV0JKOBXdMuAVXpS6Yln6LRAV33hVOaGSZ4a82puPR5yrkBQXK5mVH7KJOX/pU6rsKCnDaAsqA3m0PVmFR6Uv8pdbcLgkqkJTETGUnMFKAyRs7aKt4MaBYSlkRScaBSJ93h5Hw4aGVMjZUUgWKuvOW0QHC+jxRx5X0QkcFSrPaI8O0cQgVzyvVJc -SGdelbLyuBXkUsBQWRixMVlsr9JUpiptlcwqzGlBqL2WVNnAR2M1ykEREztNAzvJkcVWhYdz5xTKABXjytsuoY85flgDLkWUzLKhlY1ObhwWfL9raQMBGGmMASoUWaQf/oQz315YQq1b4Gey8JVLwsPZZwK/OV3AqLlmWOKt5YqSpBZycLZ0nf9KalE8JEZ5Izle+VzpDEDuk5F8M0yrKT4xgr/lU3Iq+xKXyRMXNCtBZGsqt75ubRiAie4sIuNc +TKtxVXArk5W14uixRjigX0RU9dMgOW1iKIeXIJVpKKQlXIKtQFU8KHiZ7WTcWg2orKHs588sJJsqw9qGx09eZCMlmxu3cIRkMPVUFZQ9Wl5KSlVlXS6VjFRCK7LFO9Tx2W15MoZcPkuVpYjTybkId2T2SDSzQl+vKziT0LN/lmvzdMS060+UBzYFraPcAiaRNWA3oKEXP1FWHK/joQHQOFUmiuetg8Kp4VbHLOhUvotxcXFy7jlOpKiDEa6PzrHz -SAx+wY0mLQp3WQLltredUjSq2iA4X0eKMVMMY4hsrdFUh214FUBk7pV9HKrZVUSrMVRsizGll6KT9Eqgwvpd0S0YJ66Bn5GOKt9OKhYHEBTyKiVLCXJi2QscoP23/gDczRwLD5f+i7gl8TRiWZtbNkcdCy+n57dLkFJS30LJbNGTSFPHj+VWbL1TpbKq3Oh2VKmmWh6TlaWI038V1EyCj7YnIElZyiysZATRUkEUbVVWa8AGAACVQrFhp6FwAKUd +dXCKYk9S0jSjgQVdAOBRVR0qtil7cwKlv2KnxFAas8mXnctdleHPRzppFxLbqSAAoFJGLcpJ/ucqAWH3LlWG1+dGVLCrMZXbZB9zAeK+xVBjYKxWdsJEZc3ytWlrSql5XtKq8Jejiqi8j+EDzjV1TrnifuNacu8rUlAjKsiFaOyyh6VWKz+hvgoarm1I78Vkvy4vrgdAN6aiMvMuf2lRhHEo3ZxWbKnh6ZyRAwXkQ31VTps24labKgEVNBFoFOw0 -epEwede6hcoizAClRXCVi8LUpVcCgwRDiq2cVeKrZh4a8iMVSuK4lV5MqU4WUysMxMWIy7SbUAWEyG+iqgV0cAUKtkrs8WMqoKaa9K/+V6gKmjA7ezxrkKqvsGcrLGR7S3zYYiVS4tOkErM9YENATviD4DqRGWyYVpZD2p+aPkX2R1YrdBXUwF3ihAKx6lUCrYlIgKqf+FWq+SldaroE7b6wbPg0y/GJNIQJVVQKr5LibnOLZQ5K/JkKqp2haevP +TYAvWKbGJ4DP+Rarke3wUqAQwKM7IqVQg2EjObCq+GXAkrC5T68SbZZ4rQGWc8oEVa4qxeVpMqvQmaCj8UKy1cZB9whhmUlbHcOCEEsVVhcqPxVYMu5hdnUQq+1uNxgFaPMLDqAU5m5WSr10Yq5DrXC0AYVQc2BYGDR7z7AAAlT4lAeMRGxp9k54IQA8kVBorw5U1Ko9VWyMpaeLgrfVVuCpcVYAqmb5bbKQFVvqmh0KuM54ogHS2eL5pPetHeoC -tVSZSk67RhMg7gKC7YxoOT/8XEQC8BQ+fVNI/QAlqCpEDZ6l/AGBAGyNlAANrDD4aMNFKiusqJxUOYyvUFSkXGVZ8rgYwGv3N2YdKxYVB9KchXpsryFZBk1g6B+8ghjj9lDJHN7Ucwv4VKpXhguqldysqNVIIKIWXitJqBWoTcnR5xK+gXdSq6uVNMr7ZFjSAdkcnUhmcgPIjJUGrfMUwUpGlVQMzHlroQJJnuMtPBVpDHgyzpLVQDXJK3UC+8SX +1s/LT12KTMsQVXvK19ZjkTpCUDumvGTNUpn5C58renDZPx6ZVox/eVHMjc66JI8SanS/vRW5yiFUuytoZTzvOKizYRhQCCOGpAOGALSGFU0NkYuJAOZhWqvIshYqlrk2KvVhQwKq6Fsw9ciWkCCi5aCq+bFIPKuOVXit4KYOXS7SfeI54xuRnY9qA4bqpHorbiwTqrRVRWXFz+ssdJhnT1OUFQgnJDBPiNZBUaEKhDkiKhPlHrkr+FnnQT5bSEB1 -IVbREnoGrNJhbDcPDFpRAGkaU522yM3865VHSqxEBiqNbEZ6qiiVNByK5W+qqrlZjS0rFGuiIMT+MXIJbmRc/khfoGVXjbS/VeWysxFrrzB2W1stJEeJcqWlxEAgCXpC0+rEjqLcGQCUjVWh1IbWKqALu2CbIQkWGrKveofK/CV+6q5Hg6KtdVemLZK6T/zGiU3yrp2SsK69VVtKLsUo2VUyo2YVPFc6RasIC4wUBHiaF2lLUzP1VQBP3OSOyquZ +F0sreQk8yqVVW48uFpdrcLZWEAvzxHig9nq+YpHwFS7Qt2UyiMwVDQB5EWWCsWjHqK6tVPyq2FXhaFqVVQ+B4VGQqHon/yv9VW2q4alzLTRqX+wW+xQ9aC/k9MBt7o5EIOlaF+WNVoSr80W9ioSWRL8mel/98CNXKaownqMjCfuF0rJjmjIw7bqOKvFl04r91XdY2f6hkQSx2RFF3A5LUFN8AlJM2EkXgYEAC3KY1Q1JEaVlSrXVXJuytQP8q/KV -rkrmRVO6DHZW5MLzVwmrdca+ari2h4C5oZGwKIdS9/x6KOGAegAcABk1LF6n5noPDU6gBzMZXQzziM2TKilKVR852EDYQDRJQeSr2Z4EzAAKEqqoxWTK0xVTCqaJWhUspxRnC2ZgUhZj95iBwOxCGcQsVkaq+NX4SOGOR9K/8VNyKYAXvbm/xR1k1YFYKrbBm5/PRhYGLAq8LVLD/FLUGL1MeACqw7QAGmiJ+z9qmn2RygGmqHnmEYvM2eUDXFVo +YGE3WFVisbZX6qhaVgiqhuWEUpWlV2q/gpfojsPyYiN0yOtxDIhYVU5FXB4tRVUXKz9lCjsFWUn8vSRNGc1+JoacPSXjWy15WsvAyFO6qktUMQLolS3IIjJ+NS2EW2coTZSzkKn58dLVKGHMuUhYGK2jFKQSMMVA0vq1Tx4CfuCvKrmVNYsTFRE/ECwf2gJNyJ+2FuCFTXm4+gBMADwxG6nPPovMVcp5zkxVqtDlVz04nUlqw3NWOEsScA8K0sln -gy4flZWTy1XYSwrFN7K7eUecugyU9MrVQtFzQyTPDXm1Nx6V9VdWL31XQDmc1ZtStE5OPSVV4c0qfFf/Q2h62yjBIaEbJ8WTMXDNeF8zvzFvasmZi6ymLluQTn5muhEEZSgq0CwlLIik40CkT7vDyPhwxqqZGyopCm1ZNc9FVCDYSM5OqvohBlKlWe0R4do7gTLo1aTKhjVj7zSVWkMpmpcQSjolAvoip66ZActrEUQ8ux2qLGWnatuLPVqi7VHT +LKmlXhMp5ZW7iz3lkWKvWb7oz6VMwgZf8x+9UTIQBWCiNFqxmVEGq4tXhKqKpaU3YmxXyR4NUcNNUVWUHBQlLiTFtXq0IMIan8hDuLn8dOWJ7KaMIgSpclr2rCAVRUTYxBjuPtATt0bQ5+1SIkLEqF5BHgLxwV3YBY1ZNq3I522RH1VO8qxfiUigSJ36h45VxUqZFY6ykRVXarWzlypM0jB82RJl+5dhVwPrIW5VZS7ciDxRmpVfisSWbKKrXFol -TPzF3DJrPnTq/8pLiS+26bQrx0vsg1nVJuK8dKmAsj0j2qzuprHyUlJsjIYerDY9vJBrLjW4L8pghoBS3h6qqqcemIdwm1pLq/JVKfLdVW3iBxcqqsnJZv8s1+bpiWnWnygObAtbR7gETSJqwG9BcG5G0qc5X7qshzKRSguVz1sCZVEyuTZeeq1Nll6qTNX5SsvJc4S2vZ4mVHJC4RTEnqWkaUcjmqiFnnarmVWMSsRV6JyOdW/Irthp2yhBB32q +tznBQUr7BWOs0pCjwAoiBwJEFsm2Ed4YOwyzhXrqgr5fbsaXYsOr+OCrXKZVfz03lhUVLboXLau5ZS0qwNVQmqyZUiapIpV283aAsPkEgUkxzIUOvBQZVOVLtyJZHH7mWtSgrlOjLKiWXtKERbXGZ3omAAKMaYBGJwRcAXwCcABsnoN5UGJmqC2lVtgrdLnsav3FXYqoXVqCUX1UW/I5VYyKxLZEKqf1VhQvMWfcySREQUEnnkTOzpgC82ShFgPx -n5lw7MvEAlyn4ZJFwlqCW3UkABQKSMW5ST/c7GgpOeXKsNr89qrZUWOquTdu6bHTVYvS8mYXyplFaoDdHVPSqCtWMKqY1QMqvRl7RKqLyP4QPONXVOueJ+41py8atSUPxqrvZyVKY0YDqrlITjXJBpnXM2pG2is4ZYsLMtGo+Mazll6Oa1U6k4CVr8T1VVswBCaJPq8bu2xSAvnkQyaFdqq8w80yy4rCj0t3/LQKdhomwAdCU2MVYGQgAV0Y9ttF +QRV5cs06fEEoGFOurt1Wg5Ibsa7S2vabTdJ+XMmKdbtJC8ZZWLdWbYL8sI6XHq8vpv5jGtHZQuelYkK8EZD50/jk3iAnZcJc7vRZ0skJ4FguePoaqhF5P0qoXo8vPQ0VBPf1aYTi5ejeTIoxSbbe56yliItos2J9mBGKxvVF1KvogqYq2BiiHLWxnGK0kmKhxlFQZqgllPO9HkE1AGlUktQP2qFeIbNQlO2MrBjyM3WHJybdlf8uyleHKuqFTuqz -pnxYtJhVOgYjVGKr4dXZ6rI5YNS1IVPrwzdl0KuJlXRy/LVmOrX/nrirJVXoyokl24rIV416G3ulcTdw4IQSm9VMqup1Y4i+yurWNrcbjAI5xYWHUApVDyutVt3JhBWiyx9eG7By2HCqDmwLAwaPefYAAErtUoDxiI2NPsnPAs5W7qsF6cTqWhgh6rJRWX5LKOZzIbKV9+rcpW+UNM1T5C6HQSEzniiAdLZ4vmk960d6gLWz8tPXYl1yinV2m5m9 +ZmkFxIASMSsXVA3K/NWeCraVRtqj/memwXlpM+II3O/sjjykLhuv5garvdJDAGR5uJKNiWEYoroZ0U6MJOqrUKHp0pjpT79S2VSdKYO5f6p1No+4tflDjzziUHC0OpvXKqJBXMLtZU5guCjnZy41Zi7Lw54RECEcJhpNgAqD4RHBUgA9/qQEevEq0zc3LLWOYVXbq+gSWMqO2CcarN+aAbZxVbdK9kVgCrclT7qyq5qRirUB5XA/yWHeNa+c+UZt -WwpISCQay2M+zIrjqW4cOxiWXChrpZSjepVSUtB2Tx8xHprkr4elBKtHJS8K0HFGPKSRGN2lVWXFRZsIwoBBHDUgHDAFpDCqaGyMXEgHM2wNXkWO55R8q5tWzIvUlVIi91VX3L6FVGavXua8Cv1VmgpBy6XaT7xHPGNyM7HtQHDdVJblfBCn3VZbLW9WMEpc/rLHB4Z09SveEwdyQwT4jLD5XMqziXGUs+pZKquKpiqrLak1WM5yIEa+fpPpigOX +Kh6sHTIIShOu38NnSUBVNjKZx81qZhjTFhU06IpxdXHNauP3iPzFpDxc/l9fBamst9Spaa/39gSP0nXlrJTNJU2MtQkHjyKbou6wI+DAJS5dmaHAtmxR1Ms7EGoorNzqxoEb/S2FXWOkF1YfqtwJEXKw7Z8at81QGqtbV7iqpiV/ES1lNtqxrczlsxDlihwK4Cb6UPVM2iPI4NlN8uTHqroOXlzgYVrLLQYO52PNSidltSb1SzVHlN0YgA/0cYLD -lqpjCZc0tohGRqAGXeCtH6GJUKRViwF88R4oPZ6vmKR8BUu1sDlMolilQ0AZdFCUrFozHViN1Xuq/joB6qkdVUPgJlQgch6JxeqiVW9KutlY/y5jVb6psiUPWgv5PTAbe6ORDGVWhfn/1dGqo4Vf7KG3zgov71dyE3HpUHsfJUgyo4aX2S+8xSxqrtWDYsRZa8KhBVQUqo9X0PBGABkQSx2RFF3A5LUFN8AlJM2EkXgYEBcPJqNQ1JIRFJGqvbhY +5nPRmTvq+3VLmq+TkMcrm1T95YIFNQMnDWtqoehUAqy/VmtLg9b8PByYnXYZs8D4q1ArRPLz9MiqrqyShArDIj8on2d/MsIZquK/+liKOIWZTqmfVpXKJrp+ACp9BnJESZ7jCIDEWjG73h3GakoPnLRtXqUFJaVZKmqFNir6BUI6rAEUaCnZ+pSKP1Uccq/VV7qusV2eT0bpnE2iOBpw+nh+biAIzjoAaNXe6D/i8arMWVlGNVZWi8qCxibCj/on -qr0OGbqm5VYGE3WFXypeZZQa4qR1BrJvmaEheWth+TERumR1uIZELCqrVqmgl3hrR+WxgvKrn0/H5ppfEyVofIrw+fjUX9VBiQkNF6XLWXsl/Fq5Bwi2H5uKvAejKqxiZhadcIUV5GD5X5AtIeqgK4wlNarFVan8+NO3mrh8XaXP+8buwyxZZEzcBmJ/NpFZsaxQ1B4gHLK5QuRaQ+MrBx3vB/2QH/kuNS1fTAA8MRupzz6L3lTlMc5MuBr7djG6 +NMJ+Yw0tB+hALuwhfKUaSRUkvigSCAEADVQAKOq2M3+KKVzqBWXCpsleHK/W8thqjxUxjF/la2Iwo1dBruhWlSt6FTc81uY+GEzQS1sxqkRYrYiO9+dQ9VVcAGGSjy6QVlNt9D5SiuvTjVqvY5+Oyj6WOVCd0JrstZZZFiegDTrT4GLG4EG+YlASApWOyZuAGihWFivYLDV5EK+yuHKuulB+rwTVJiB7XmC4N3V54rOVWS6rwRcGqpqUGclPYmMl -saNV186vl5ur22EEyuNpczy02lDyrAIWoistpTQa6sh71DmEDL/mP3qiZCAKwUQQTV5DLBNXDyiE1tdz4+WFXy+SMEalMuhJrbEVyELENbr/Pdelv9p+nJ1025SWTYUJBukRDlNGAo7LBipXVs6rFgJRUTYxBjuPtATt0bQ5+1SIkLEqF5BnYK0ZXrqnHFZKakkehGL21zNGqxfpcs7ElFsrOjWl6tb5dRKkKlXrNqrCXaU0jB82Xzl+5dhVwBbI +AjLphfIVBT2xQPmUItoYKD3Fo1pVLsRlYmNOaX6SoWVherUXnkfVPOrBDUWVWIyw9rAGszPsZZJEh+JroiWjHK1NUsKropH2qAWBQB2/BeySoQ1SBrNTUN6rJNdoy+AlZeqElUn8iLRnJKkAOVwizTXpfV2eu+M91IMX9Wch3pykxRgtaMevEMvQh+M2BmVGatCGuKrrmVoGp53g4xCi6U5ETADWULNYYcAGr8OVTIxb54nzOdDqnnVJI9kEXkEp -/ZV/K5zFiOZKgVW3JlhcCqik1Zlhp1UfDPWVapsc5wM9KcYVlQtKQo8AKIgcCRBbJthHeGBCMhKVd2A6jXZyvjNfuqme5FCrdNXoGLUZUXq5U1AVKTFVl6ueVUWipqUCfVdzS7QFh8suC+PIsiR14Jk6pPFXxyzVw54qY1VNyLtFlAKw81nNK1/nWsDaFRleWjEKuQKMaYBGJwRcAXwCcABsnoN5UGJrm5IZEM2qLUpzavIVQtq8c1VQMN4Xy9ze +yNcOnRCuhMqrRWkTPR1baKnlVXarYmXD+LuRKb1W+Zhi5w8A+KUGqYlC6fev0yVuWo8pu+dR82kIdX1wWjhmqqYH//EGVIAdFv7kQwRWR6S3EGooLCD7amuwyY484+VFfNV/q7Mo5MdgqoMVct9aQhEmu+1bsU98Zyg9IzlsGLWWTMtSloTU4PeiMNwmWrWvKMcj+tSABwVOTstfmdk1vOqO2j31S/lc7qxQyaj8zpl8Kp81UUaoaluCKKJlGTN0 -NY3ykmVJeqn9VPKuZaS8q/2CWyz7mSSIiCgl+8iZ2dMAXmzTKsB+OzK79V8QSb/71Ctu1S+4CdVQjj5WW17TaboM06epD8LJRlNkomiZLzOSeaFj/ZX12Jb6b+YxrRz8KO9UYf0QsjNTedGLKdP0Ulv04aW0ahquVVKaP7FrygFcw/JoF9+K7XEdJValQDKoTFoRUxplYmqE8FT4EF6EW0WbE+zBHlUJ4DdS8LSMEknU1tgK1jfy2MX93iWA415C +CAQHXc0tQVMxo9VLW+bzFeo1CprARiTAslVSXK0clMSq01VsvJWOikKpXZtIRoCmD1MENcQdEzOYjTqXmG9IpeZepI01NGKtIXEPyxbqhiyZVlprtzUbHPnOaMjWrZEUqBrngVJOMMk4xeODKFxrRpgCs0AXgazBs4B3VGWCvCLBNqws1VhqXNUhrlLNS7spgV+ltV9rQmohZfQa1yV76LyjVDsIFwedgfdxsAqrg4GeXcji/qsOsQUqLjUhSrcM -qjymQlKyqEFXqWs+kJpat9wPVyGUQ1AGlUktQP2qFeIbNQlO2MrBjyM3WiFz8DnnKvfNfuqmBFX5q89Ww/L+TkO0Pyl05qUaWPdMVFSdi4rVOZrErFKcKZ8QRuFo5HHlIXDdf08NdxiifYR6y+MX+8vbxRXQzop0YSZ9V2yLqbhb0sDSqVKhfkId3itTqbR9xWarV2k06No+fAjBTOncgE2kwez92cFHWBV4+z4FVKGtJZiHs2h5XbjExKXhVq9q +k+zOiVo+QLMVU6uw5aEjMg5d7DZsABjQSqCDWZIQGBqWG6yUq4tV8q1jVfFrptXZGrylbkauYeIuqLRWiMucleCqhg1UlqhMYbUDJGKQwbCgjlySNjkHCu9AqazVwigLuzW4mu/wTSiv/ppxc2KVO5M76Y7Svm2c5rCAUu2wlqM2EdPAhAAx8G4zAIki99bxAIgjnnYz4q8xa4JabVtira+Uvmqahe5Q2g14lrYTVj/IIlZoKNBg+GFArifUBqlb -g+ERwVIAPf6kBHrxFTM3Nyy1iUtVHys3RR2wJM1t0TQDaratxJetq23lxWLg9Zj0IfrA+lEkpv0TVYZz5Rm0ghawdMVISYxnnQtiQS7IwsliNM0xmGNIr0Y2quvRyOs1q4/eIItTcbJqVyOtsV7I61Klpr/f2Bi/T3jY3WpoRWjy6q1B4h4JVsksWAnjyKbou6wI+DAJS5dmaHAtmxR1Ms7dWrHFaxWOM1bStGjVQipctWPM3tp6Qqw7YdGsf1Uq +sPL/JZjAeEZHatUZXdwPf0kGq1uV9Ipecit2TmF+CqnkWDWrbBQM/AWFsZKdBX40QZ9ovMtHUFARWUBqAGBrDQuOdQjDQ3bneWMAwqRgSYkgrZ1H5Yys/lWCa9CVbjtsqYcSyb5UKaj3VB1yarWBatj+AgXe5kaUpEdiHuMnEs3imjs5ssLKUmGOy5e3meogUFqwRUwWvPidJKiWZ6CdJzWC4rgtcAvFMub1yMUZKYuUJSAHYMF58qUsis3BkbLw -SrHVRWrszUf8y1lEyCxrczlsoTlihwK4Cb6BC1M2iPI4NlJNJR4so0hxuT/FlrApk+feIVVZaDB3Ox5qUTstqTeqWao8pujEAH+jjBYTy5TsyHLVlLOlNbTy6olVGqYs6TmpLlV5awhl4ZK5zWgWoXNeBatllbCq0djhDI3DrmRBN5efovdXBcqUICxc/c11n9MG5azM7dtrzGQuSyrhpULvNGlSHss81jZrp1B+ACp9BnJKKZ7jCIDEWjG73h3G +YIGOVfiUzmoMFeDKggyoFjSFwtA/MsKtZY6FeIkcrMaXdJI53JVakAVHlrJLXxcs21Xc8yDh2t4eSj5MTQkZecOI4qurOxX9Phz7D1a9rK0GqZ+5GAo3MNAowe8vdTowmNwtPaYSah7RuEMrUlLLPJWQla005wP8D4kIdy1la2/XOhRYd8GV1FJssr2s3QpTGLNWHiiukJZKK5+6oXRjlUS2vLoauwpeyVHMDiWW1I+larK64lMENiiXM2K5tdj0 -ako0QrRTVivFJaU0qqBFc2q1JVxitN2XCKnZ+qZrALXpmuAtQWiyyZFUzdAjo3TOJtEcdb5a8yuF4ARnHQLLa1uVe8JuAG8UqmNZp0moZwmKI/GiyqP+ic0w4ljDS5YXy6qIFSHsksyDAg59ldCtQYI0kipJfFAkECWzMdPpZSf8AyDKEpVBDAxlc0qhqFjRr9bxjmtctYmkjMWq+0YbVratc5Wqa9zl3xr72XhPLNBLWzGqRFitiI735wQtVVwX +r7VpZkIqmgDLCFAXfU/lT2qJonYCr0tbgK3No6Wsu5ZlNE0JONAxFUVMMgaxE0MoXG9veT5G1r346KqG2tQyqnGVzKq91rcapFORuC9Y1MXLNjWeWpJtdfqs15tsDxXwAjAmwQsYtlwljYIlm+sraRVsWLIcypqIDm8goUCYbk+SV/1qg2nAvIhtWXaziVUYTsemAthApWtk9MczihvK41AHRAE1sy5wBmNZsSudMFuX2UDG1IaLoUX8cHMcM+au -+VVQL/5VwHLl5VywclG3+LSlq9yscqAFq2lFHgLrWCXIr1tS+In9k060+BixuBBvmJQEgKVjsmbho4rGRZHcoG1jQJGkDyopjZeDaqhV+MqaFVWUH/NSkim3VQgq7dUbaomtUJjDOSnsTGSgRl0wvkKgp7Y2PzplW0MFB7vVK6VldbcLgmeirOFdq06CVarzQyi6EMCVRmcjhpzHy4Wn1spgMEiQpM5/aK0zlJKu5GU0Yd01LTS8saawsPiRta0W +w1t0SX1Un6rctcVKyFl51rMdWXWs7eUqsuMgNQIFMmcuDEnq3VY800eDidVY/NYrB+iJm1akLo+Uad1U1e5MgrFIacKXkEMtX+UhahPl2XQa8muzy+lYXg4WVANyEO6QGrvtaAa4rlvRr8hXmXyjABYo2oxhAA7vZREGQLtnsyihz68C5IeMp/1uhQTzFfdqsbVZVHsJQCqvVSPkK3REVmvnlREyko13Kqr9VdquA+RwSwEYxY5BUG4wXQKPvfSh -VybQToVmRL+Rd0jac+Fw9UlUplyuEYg69L6uz1mJnupDUte6kA/FEalox68Qy9CKQ66MJPstvnH4Qy0tV4Kx61o/RZZUSLzYdUPCiHUDjEKLpTkRMANZQs1hhwAavw5VMjFvniTy5g5q8DVJPMaNXuS9pVw6dEK73KpnNTRSn1V85qvQkOGtOcaCojIktwcjZatWy23oj1Lc1ZZq+OXT7z5WSPapuRpJjBuUKEKyHlLquxZgfKR8Wza3tZUXbaAe +FndMJVWfWpalSRin61TpCHckLotPXrQsMpRVXzFzUjKyStUvSiOJMxTETkUvIi2s6rDvV2QrWHVTioTFQ5y7kGteIKgAbDIgSJDoDcAGcQCAhyR2pcCJSyfF3lj5KUtjC13A6aKREWMrzHCQOvc1UToXdZzAqAeVcjNR1ZXi6s1ScrkHWXWoM+cdY7hAAYTFemEj0WLOoyQPxetyF4m2wsQcOSUsJVn+rU1mwvOodRJCxOlQELdFRRsskGQx4ojJ -cHLx9WJWpx6QDM2XlkALTiXMEvR0m2ivQFnop5uUkH0QsjPa/FhohNsIXhOqqGSCkG01PUqvoX0y0Z5iTauHZy9qLNAzLUpaE1OD3ojDcJlq1ryjHI/rUgAcFTk7LX5ljNUfam05iThZOi56ohteBIpT+oPdm7WjWtbtXYa3o1sfwCA67mlqCpmNHqp+2ibJV12HE0Ro8yoV3XKWZCwNOJFY/Svx1mG1gHWKcqwGYdSi7mtIRoCmD1MZpcQdEzOY +xlQWiEQ2sz8aoHbx1KZdp9WcOqTNd1jbCEo+kqdncb1gYP+5RKV7wB0tbJECp2TUKiR1gdq35DB2oMvGwqvsoVBrljW/yuypmJawm1DFyE7WQqplqSRZATSCfp/lmSYwNGudgEtIkyCzHVztKmZYcaMTlOJryq4A/3VzvNg8syJqqqOmG4EKsIr8NGYg+18AA4ABIFNHZfl0qT0KKKv9Wmqok6nTcyTqXNUDECHtbya7QYRfUCbVdCpclXCaxg1C -jSYHWIWWStbwa9i1GVqMTWvD2Ifli3UIluLQRVX/So4aYwzPAZlVqOrme3J2SEdSyFVlIoTjDJOMXjgyhca0aYArNAF4GswbOAd1RCUrwiwSmrKdR20e+qTxqubU9ryiGctc+p1V7LlhUP2tEFTmawHlM3zF4IcEN+BX3agzy7kdIrXPkr7mCHfRW1LUDR8ixOqfZmJq6A1Bzq5ZW9asWAmK6LSGYjZt6SBjXLYQ0UeQ2jVr/RrJ2UN1UOakG1Tq +JrEuWnwu6aMHmTB1Y/1CTA++ElDipavhA21xydUewsBtcBUBPV/orJmYKZ2nMZha7Hp6yryHWcGJMYahi7XV7prcbE+krgWezi3vFWarRLZREGuMSewBsI+ARhUA5f3s0o1+X51Ta4n5UmspU3FI6za1IdqsbV2EurZVA63risw9gVUdCv4Vc4agTVP5rDJkbaOHcCxGB+sTuZQxgbh0P4ZoQFWqOzrK/S1OvCtV2QhdmiSq4lnIapVZbQ6mPFvJ -r0LnKOpEyQNNK3VAgrb7XZCty8Veqh3VcEiNqBkjFIYNhQQ25JGxyDhXem/tZq4AFVVjqlbWOMvyvlmUuD+L3hRPliuvKvv/apPlYeq7cXSfPBxSBciHULtsJajNhHTwIQAMfBuMwCJIvfW8QCII5523pKkCWuCQINfNqmcV9dqEEXuUJGtUC6tG5ILrVhUy1LQYPhhQK4n1BPlW5isdfsbsD5k0yrxqjCuqrNYJqwTFeNqTLqKaO/GCZdAvFh6S +LDWFRYX6tDw8JKYFIB2gCEADIII6MBIgyXBG2nTGsbsgVakNFLAR5BizauZ3FNimiYvCrWBWfmphNfM6qe1tZrLrXw/ObmfgDDXVvgxpFV8livmJQijU8XZqM7n+/Idqeko+DZyuLZopU23rRSHA+tFqETuY4EpM97iXHBr6ShKfoHU6wsefAjdx1ZKlQ/l3SWAlR7KpHUfNw4/gCvHHbhlkD7Wusp6ACcWpp5VUg3u1V6KQTWMqp5NftaxEwjbM -90kyyvIiOJivhWDPseFlo6goCKygNQAwNYaFxzqEYaE487yxgGFSMCTEkFbOo/dLV2mq67XVOseZZfakXFGQrAXUucpt5W3azbV3xrO+XrrLSlIjsW8lQULh0E0dnNljVEjgBQWznMU7bHlBn/a4JEGzrZQWnNITWaHXKAVO6921V3apTLh0ykd1HDTz8W6QtiCMW6tB5wBKUsis3BkbLwYIGOVfj2gDhSleDKggh8FjSFwtBPcuNdZY6FeIRBrr +G2Uo6tjtcDy3Lx36rtjVwSJimfcyF4xozpNbkC4yCGDDCCba7ZqLHWZHHXruoq8Q1O4COHU0Ws8+Qyst4lO7B2bgYSEQSN/FPFI7wwoiDEQmjHGII4Z1uZK5SU2KpC5X/yhmIAgQvNURusRdV+akqVkrrtHWGYnGccBjbpKut4QHlXB0POLt8jsV6DKURRvDjSUaaQxhmuH8BxZFovjhU06s8wKkrsUnHUulxbinfx1BbrY8WGsIopu5odtAFAAS -9U/eQ53Na6st1wLrxrWguqRtS/y+uB1iCeSj5MTQkZecOI4pjqgKDEIoLIBjUqO1cVqjxj+Gpn7nmCspl8sLOGlxqoAkP+6uzOD2jcIZWpJlWeWsmV1a9lgf4HxIQ7snE5sp4qqYlWzGuxRVeXcuhoqyvY71ZJ1YcRs1yVAHqosAeOtDKTqy09mGzzfSFL2So5llS+I1MRre8my6rd7uEStGxH6Kg+52stOCazSmd2aXy0Yl9vNY9b3ChV1Hoqpd +XqEXBNMJ4kJqcp1s+HDJyIvRT4yufFE0rHdWlWuHtSSlcs1axrO3XiuqJtQs6ry1m2rf/mPTOxaoVuDeWFgMKNBT/gJda9QeyZdTr/fn+krItVJ8etu8Cjk2Ep0vWAUDkUdFLprufF6MuftQE6/HlPO9GQA/vAvAN/FEIAlIA11gjAC0hgesLlA1PKuXW+3CrpSQSq3FLmqy2V7WpmlbWkQO57ur3LU5OuJtXk68o1IgK2IUT8gvWLUI3wBz/JgQ -kCGsudXj6dLWXcsymiaEnGgYiqKmGQNYiaGULje3nb8zN178dFVA5uu2yD7mfN159re65FutwuWzC5l1yIrquWfMuadYZiOoA9nzbYHivgBGBNghYxbLhLGzfLM95Zxitalz5L27BZDi7dXRXP6V1kTxCUgBxTWRw0uTlIAcb7mYDyjCVdq54VD1rduU1Wq3XhyZD4ViwEy2hcGUJQPF8ZBA6IB5dmXOAMxrNiVzp3Dy+yg7uqxxali/jg5jgqnV +U52rPxbVyQTyLMr/fkaYrvtXRKvLpvsxvqWY3K3NQ0PaPxHHyv7b6jIvstR80021Hy+oFrmpq+d+y0k1w5qMFVkYrQflZyiOJyyq37a7IJWwWUo9ap0QysQj9ot3Xgh6qIWmRsFcabN2A5dVi9oOCvjVcEKSs9eYhQqlJB6DCXl4MspJTu89c5KxynKU4Cq3RXj6OhGWkMWLRxpHrKL7KznqbABOUAPkHaJTUy4j1eBB6WUNEDzxQCSlzVFhKqPU -KeszdqQaiYIXTzDNXW8rPdRW6x+1OZrpvnrrLjIDUCBTJnLgxJ6t1WPNNHg0s1z7r23WlVBcVTljV5FBZKaxWXqTytRj0sB1nUrCyXZdBrya7PaVVheD9nVeeJqudT8h3uWqrOPVzyv2qaUpVmxs7qCzRRgAsUbUYwgAd3soiDIF0UOZRQ59eBckTOU/63QoIgSxL1e7qsqg/OsrEhl6gMAJ7qlhW2uvPdfa6ya1mPz64Ht4i+grzjWdwrXL0Cj7 +OKr+Tp349x2WTq5nWvup7dWUa7y1AvLfeXU7AU6Irq+PIeSodyx8iqy5cIMn4I4vV1LXFytF4kvc+nFXrzuSVbuppdXsvE0gFQpEACebkolnmFGAAXDwoqI8CJpZTTyjKV5bLG3Ugmpr5c4skN1Gy5WeWdTMrMVl6sFVDHq33WJ2q7VT7yxSSC2ZYXCL2tXxaGg1c4rsydsX63NetW8YAC+sHyW3HwfJ04hoq1m15uTNqnP3QcEH7PbFBQ4r7PmH -3y9dXxRARVGoL0LVOkIdyYHqkh1+Zz7TXUmvEEEEcjtF7wdMjWf+3E5WWcmLazqsRpnv2NEtSNnTF1UEr8uY4epZFcdyy4AIIyIEiQ6A3ABnEAgIckdqXBQMv4RWk/VBlLYwtdwOmikROlq8xwe3rZXaaSuzdkmypl1aZrYbWPKq9teVMjbRw7hRbkwN0DuFnqoLcvpNFizqMkD8X06x6V3XLEHDklMmNR+69puwozv8XN1OZRSL6875USCGPFEZ +Ou69DLy6+x0eKkAWU9xO9RRI7wRICSZzXEZLWZUWoqrZokqfvW/2PA9T00vZR19qMLV/gup1m1I5Chf+qtuYMP0ltbAwpXZot9/zEu0pTeQ96spSPBNU3lvOp7hv7DOP2NFMegh5wh1HlY7K6CFFNM6YH5P9daQSkE1zTLg3WHxzaZfC6uOVkbrXhXiMqJpRdavt1D0zRAWxZldTC4Rd9Wreh++U2TMtlPciAu1mkLHDroKth9Sp6oX11MBpQkah -OMqC0Qtz1axrHHU+RPcdZw6uBVvnqDxBBSsXlYsBbCEo+kV9ncb1gYP+5PZV7wB0tbJEBX2atK7yxHjy8fVZurf7gmax21eMrbB5F7PcdqW6471wgq7XVfGoYpSRZATSCfo/VmSYwNGudgEtIkyCufVXbJ59WYwEYlx6yBfWE2olaV1K8A1MsqleVwGt3/IVYRX4aMxB9r4ABwACQKaOy/LpUnoUUVf6tNVN+QMnqDLxOqoGIKl6vRVIQdadTkYv +1tdUog0YZgl8VzWnhxcSbpoyKOyZSKfqiYooevzC3XVY/T9dWqbD4RIvHd4YFARObgNMKgdmgwbektiwwQnCor0ONLSxL1vRLEnB6HAUdU5aoV1ey46fUxUvUddaKzR1EjKpXV9usgFTU1LUKtgt07anfm4WJn2Pn1mZUwrXquupkSD66BBN3rn/5KeuzYUSAh+xwctGSl0SsRUjOysX1vXTHbXSEqMJuKCq5Vm6LqiWoSCnbl/agl6jSJ2HhROs -Nle7a6n1qpqmnUV6padV/8w1F3TRg8yCoNxggNYVj2T7q23V8co+sG+6xKl0dqDHmG+3Gdf/fT5FRYc2im8ysmdYs6nHpnkrN2lBHKrZfjamRQ0Jq8rWi31n9biDEb1Ycrh0UZ2tJtWYspHZ1xiT2ANhHwCMKgHL+9mlGvw7+qbXKpqrT5Unrs/U6bjyuHu6kilsprnjVE6DsHj8cin1Z6qqfUt2vLdZX6/y1SNr1hXXuqdzKGMSW19F4FODUqum +KQt6NFjE+f1UbUQIX+GHuyht1NhLflXyOuhdYo6yghIWoQGXPCoZ9QnK931zPrp7V9ut4FeHrB5u+sj60rpaMnOFX4Om1E7q3jDjBO3tYsqnOJ/4yg4F4YMqIfdEjiljVihzUBvKbJuMM+2Rc/rMvp2q3gidEM2/hqfrcIksSoTZaI43S1L9q5RVL03gAORTTooe6x65gvKqV4RQC4V0RIqXk4JOtr9aGio5M4dqyrVMoJ65TWc5tVF4ripHe6oR -VZX6YP1sVr5lVPavnETRao2Fvjq5XX+QOh9WqcXY1FmgosL9Wh4eElMCkA7QBCABkEEdGAkQZLgjbTrbXeMPWYAl6wPFWmqrlWc2uZ3JYSmiY6bydJVl+qf9bl6l/1iNq+jUYipIJZmQOHYHp4qtV8livmP/6+bQljrfXVPyj/pYVsr4lSDRUUnC+rFlUyZWS1d/hUIncx2HJdFUkuO2gL9KWIHVVwVa8+BGUvrxmUWvPJATLKl+ZOzKIdRJa1R1 +Nb4KxSSWyAyFbNisKySTzCmA7wUGZWqMu9MEpNSf19kD5mXrAqkUfW9TyBt9rfxWYQyHJVaahPl71RIkHkk1s9Sd8jhmYSLWJWgLJjeSrQxiVf8KUA1DcNMnohPWBBBYLEwXZwrWWQdQVaFjawOAAsZPMWcnPS0iOsJ0NKzi3wzqR6q91L/rIcz2+tuWWKoqE1p+qcJXFGvbVetqvL1m2r9wVmIu8vvf0hpFe5TU/JP8mD9VVFYI1h9K8FXhGtPl -HzcOP4Arxx24ZZA+1rrKegArzrBRVVILwDTuSk3VCnqz7WF+sRMI2zBvlN9rH/UNOuf9ejS+w1i5qcgXrrJeMaM6ZR5AuMghgwwgm2kt7cWF9sht0nIuvkocE6jrVu1qsXV/PWhBVIcmAQqqyWqU7sHZuBhIRBI38U8UjvDCiIMRCaMcYgis/Xa0uhpXNq5IVREqGYgCBGvtYCYI6VqNLb5VKitf9X0aj4Fw/jUvCoWA3lqd+Q844ALP5U1erb9W +XFtNZZ6DBffLLODgAKKoYlAIwBehoxOuyWYgaOMW8Xq2qVDCrdVQw8wS1VFyGqkqo0m+ePaomVHgqSZVS6rFNSJqr4VYIFv+6p3i59Rs6i+YpNxIA0LUpc2Jl007VNjrHwXlooVtXaMj0lWGLqA18RwOUa2itxmneqLTkZxN+9UirajJa/qgDVNPMDTjAS0jcPkT53atavs5YE67kGvyBOVbO4H6tOyiAJQOwB7bpOkRwQVEQSv1OsEWxg1+uQpU -8ONJRppCjnVMoruJdJsv3Z8ZMreYYesEDWOQtS14qzYNUzstZNTw69m56vqEcah8ASqERIEl6hFwTTCeJCanKdbPhwycj/cUWct9JYk4PN1lga8maqOrdtQ/qygNJ3q8vUXur6NUP4xjFNb5sbjUv3zcdPce9g//rXqDtTLH5VnMzY5r3rYdZz9HgUcmwhj16wCgcia4totZ9isTli+rRvXZQohxXs8iHUjIAf3gXgG/iiEASkAa6wRgBaQwPWFy +pS231RorocVOWruiY7ij81LaqX3ULety9d4K6/VbIqqLyy7PVUKia0JZYf8jpEqWu6OPSqQX1wSIZb7qBtnhFGUpJe40Tlg1rLKcAN9i5i0JbQhKCxu36AFPDblRjvRviXPyvL5axWXi1fLqHLXtBqXrFrgh6Jk99uAV0eontRJaxb1THrvLWvQoR+a/IRfkUCrCsm7HxsBKE2QINdNK74Jqur9+eH6p8FDVcB9XKqqZrkSAolZSfrv1kNV0V/up -gAUV2AbK/ARsrWDdjijLVBfq8VW1pF8ed9ynL1BwbqA3t8smtb6CjOFE/IL1i1CN8Ac/yBSF5nrUyWWeu4pbEoYe1nAbR3zrVLmZW/bUJ1umCv7YROrM0dH4tSl6P99fmRGv0Kd+KsA5ppswDl9QJa1V1EkfZfGzXybj2veDZAnOD+85D5AXo/12QStgspRDIa4+UYeoSSUMy6CJ61q/WnfBtYjuTY5XFf1F78WG4qpSQegqj5qRrYlXPC1QdQNM +6u/wGHKOI7OeWo+VcGkENvmR70gux38BuiGyT1Fsc2QgBnLWWS6IezRg0jAgCBNTEBu8ACqwB1dR86ltHXIiHK04NNiqbA2OWqoJdxqs55IgaAFViBsE1aKa96J/5qPJXHIpPaAbVI3eFk0a6xEmFH9Yty1G4Fsl8HUR6pYPluwsI1Z5iE2VI3PcBnv6yBOiFlsQ00/JAWad8uENr79gbXm2tVDeOavTVk0TdQ1O2pP9dTqnuGFzs1YLoICRtZ6B -tMF4QatO6iYp61XIIXZlIgjEADRkIFAJz1ItBtHROUAPkEcpTlyhENvtxKeUNEHFJX1S7PVeFLFPVWBt4AAbA2wNRQb1PUKitKDX5amgNLTrVRWZiup2Ap0Nc1HHkT9xEyP/9U3EDgNakLpAUhfJWJR30oaVNuKivkBSrayYV0GP1iwETSAVCkQAJ5uSiWeYUYABcPCiojwIsnlgorTlXgiuyDSbq6cVZyyQw0cWp6wRDMh4eCwr7A02uqd9ad6l +E4wsExvGlvEq94NSGi4V1krHzW9/IZDXjK5WlMnRt4V3BucDYtKrlVQarOQ1UuBwhA1alykMvZ97HjsPwmPp2faVGWZffk6nPx+Y3HXc1YtrZhGmWIQNTiM78Yd68/+nmhEHRccIjHWdEqkfVQRJ8/gKzexmcH9lm7vjPnyQmyspkwCS/hZlhpwFrdqmd2KZdS0Y2bMxFQEoeL4bljWUDH2GLxDOAPfm35h6wBpSti9aPhbcViErdxW2+ubdU+q3 -31sGzbGJ63MmJKV6kMloaDVzirzIelQH6zg1bxgAL4onIvTm+3VlYQTqp+5SoLIMit/BwQfs9sUFNqrytYipMfFN6kODEz8tQSQd/TD+PEidtpYfKzwc46nn5vtKmTUoOoKJjjE3r1CzqLRWa4LakchQ1Z1gByGH5werjPhBQ1VeKrKeCaDutFvvl8qd1jyA19V22wdMPEAGimPQQ84Q6jysdldBCimmdMD8mmBuRJdnq/P1wYbD47lcs81Wo67y +7lXdz7KAiuoZFfR62LluTq//WsErqAGtKr91s7Vk4zx3NVUe4cUqYHVqFqUHKR5NgJ68P1Oxz/EU41wuZQZwsMFB4bqXXtavDnsMEcX6WkNnAD14h6AHhCEwWmAT9AB7o1pZNgJV+VZBqbFVU+rvdVM6toErPL/zGzOvm9ZOGxj104bg1nIFxMtBmmSSwQwKbRRuqXSMNOkNcNfwbfJ7AeuJdRq6zP1Fnqp+6uJ2kAdVY3z1ztr/PWNThh1KW0FM -1Zkzow01cvKDS06rcVNMqo6IuGt8GNyy1vQK6QI1U0EstlPciWz1jgjRVUD7J6ZcKGx2ul+LxFGk9wUDUogm4Zgl820W6qPsFRyzNI1eXTzWkOeoYFm/igxpDSLmkWzys9uWV0/JhUbrVNh8IkXju8MCgInNwGmFQOzQYNvSWxYYISVsV6HDJZf6G9yliThHjVX+q5tSQGvZcjLqH/UUBocDVQGpwN2nqHDV0SpqalqFWwW6dtTvzcLEz7I4q70w +hE7Rk4jDk3tINtQjWCjGr0pUFnPvNWxqij1t7qJvUh2xKOSEypbVTgbKzVkzM91VOG2N1kGSS9ImWlJ8qEKw41GjC4sxT4GHpZV6nNFnjpqKWhBqmhRgPDFVmeq/tIbRBK2UkKohli3N4RVoKoFeYaG/S1lIpLq4x8FeDD3hHCSkbIugjqk0iEJF60FFkOqVBg8WssNXy6p0NFwboxl1svHlu26wEwrvqqzXMRv/DaxG39Vq8rHpmRjDZwulwi/R -VOZADXX2OgQTuG5/+gobs2FEgIfscHLRkpVJqkiWBCOF9UYTKVBEUbQ9VL+ti5ZWM15APHrTKV4+inbvN6gl6jSJ2HgG+sKQt6NFjE+f1N3UQIX+GKfyrINRFLGjXE+qMjd7xPiJSprsvUqmrxJbiG8xVSNqTJXh6webvrI+tK6WjJzhV+Bb9Vo85+RFu8gg39UMRpvQ6kh5+GCQv5QUowwfgLPqNoobYOU3DLZtnhgyohdqt4IlVDNv4SxGrglP +T4t1VifTgzdRyCrns+l1YA3Fm0gXp7vK/la9yphk+mOWDYnqtCxXErJ5GEAuJwcwAUVABEAzYRcJ3AsMeimii3vM3MUGRvKVTuKx81oJrqfVCWosjTzsuB1zSqXA3ehrcDb6G9F1YCqpvYQBSCHlCBBy2P6h0jADVP5FT5G5Vc4oaFNWEOpz1ZRi+p5HqMB9Fm3MbWXJfeA12hCVBWAiiqxcTE8gN7pSLz4NWPHOXBo1UZWxLiHU0OrjhYds4iB+ -irv8WiOMRhUvq1m5DCzLxB5/NZFfAAcimnRQ91j1zG11Urww0FwrpNZUvJxP9YVGlENkXYMI3kHOoCR2A8MN22l+w2nupxDdZGqv1OnrBoUZwvcDIpYUjqnQD31YUwHeCtRGvIZ3pglJqeRueRaZPK8RJGTmKijcofDcWG+P5XIzBFWFkveqJEg8kmg7q4AUcMwRVpVcys5NYq3aaMfK9RdYivrhj8SVoUBfMuhSea6ANb8TCujgRsCgYcAVhFja +bqYyWAItadeUABKs931DQC1tEDqaNgakUNbRkAzu+RG1VUConkd5qTg3GRpsVcyysyNdSrWA63BpOtROG+O19kamhk7GrEVYpJInMrxhGZm4EHtBqbIfuC4Ya+oyKKsUHgqG5upy/qbZFGdxQPlefMcV+kSEhktOvO2ahkUa0U61YLDEXHmUtJ4/3gQgxnMVT4Ot2c+G6xVXJqqI3UisXJmCSw9ac3rP1XRuq2NY9GuN1Xiq2IWuRvq7Mm60baI/ -wOAAsZK2WcnPS0iOsJ0NKzi3wzkiGn0lKIbTdWlRsylWD3Ju1fNrWeUaOsK1eXqwiNOnqzoFH4IEQBpJZMN5+JU/JP8jcjZptH11WYaXnJCarFDYKPYYRq/zSY1HF0k1bgUtQB9ddKsGiqGJQCMAXoaRvrkVmIGjjFr6GiJl10qL9VtKso1cOncrlKCT6eh9hosjQOG++1Q4b2XWQZIYuhXVFWgqd4XCK4wQvmKTcAGNLUyXNiZdN91eD0iVlJ1E +xAjBezJ49fnKldwl95/I3+mMQslPsp6OpAbsWXGqr89bn6izQyTimOiwTAucP0gxw8nKF2gBdBCG0t1o9GNVir71VYxrf9fe6tg5J0z7KDtCvp9c+6qq1Errq8W1WvFNZ0q1b1eGwc/75fI0YVPsC1ApjrR1V+stuqvyQC7RO5rZ2V8LHI2UpGl21lIoC2jtX0eAEtQPekjp9f2RBdluMj1OWV+G4ruw1LYyMjRSKmWNAgaXQ0EzLn/j+GwmNi4S -ug1dqsRNfjwIeRGK0DlGkq0Qfn5qh8yGcTbHXLPNzYb9irw6bbzA0564tI3Ar6maJSvqqrUq+tH6OREbkNMcqIdS/IE5Vs7gfq07KIAlA7AHtuk6RHBBURBco06wRbGAVG1elGDKDI15yqIDbKS5/pOEb+bXlyvhtULG2MNOnr7ZVUXnqIFlIgkJOCyPllh/yOkfC6w0l3Rx6VT0Rv/DWJa3v0UZSkl4SXOh6U4yiJxY3r4dlyRunUE4AbIlzFoS +WI0kxrYjdCqx6ZPO5L1huRpQgZWLQawDUaBI3t4rlBrOIrcNTci5Q1yhO+9Qt07YxpwSFQ0Yaq5KZLzKsNRzsg4U47XtOfY6suNtWqmIhY+oh1P3gKsoqDA7SA5sri+GmkTNW+rNgdXsdKY1QjWUg1mMb+Oj1IFljR+GlJI9X9VSUshv41WyGlF1f5z4rH4WQuxjSkAqowglSp7VLQEwDZMgY4Vs1Zg05dLkFchazA5s0a7/Bw9L/WVdqzD5n0rB -2hCUFjdv0AKeG3KjHeidUuP1SzuUp1+sqtNUc2vRJdhcg71g01Cg0PRsdjU9GwcNhwazvVP2sflU9M1+Qi/JrNWFZN2PjYCUJs/sbvdX5bkzDVxKy+5wnMwDmketfuVVchaNq0hVQhshqkgvgKjcNznkwDla4M65lHHXCo96QXY7+AxwTUgmwrA+CbVo3/BtaRfLHfjwqEsFHqsiuiIBTRGTa3iAfeAXgAqsAdXUfOpbR1yI7quBtSwEAFwmWqaW +bXgtAu5lRzMG1mjzHHUGytePrZ6uDclKz3Z4WMstpp7U3MNo0bqYD4Nx29oxtYoly5tt17FhpVlU/dJ+N8t8/QhOeqQaDyZHb2jucdvYzdzg0fIQrSYcBLnnX7f0htTXG3f8UhE6MTKgHtAWaYdlEDVLfOzdiAOoFTko5ZXca71Xvyt7ja0wNJ15YreqXhuusje36tHVdkbHg0ARvydV7itOVyn5VLrcRrn0pXsFvQFXr17X2Itr8HWGAENUYbxW -UtGqLdXe8vmNZcrZzWZmux1dNSv4ikQgK6oF7BaSPTKhNYdYo8lTuyoGJVSG9MlR3BfEzVZJ5peD4EKN7mrrynoJqwdcnG+XFoyNRo2Borc9b3U9aFeHqsBkmJpTLhsa5ZVORrQWRw+vgObAG7Eo1yTd2AFsQfCnBU0vA+MwlqCkTy4cBfGmo1cQE7bUqSuKjXfGrLVCNzpRUwYQM1ViGqqNY1qP43DhoddYds1IxbYYRYX72PHYfhMfTsDKqMsy +k4Yu89emsjilZNMEGE/G2yFdPSu8Yawb3FAKwI1gjXqPHkQy5wwCXGSS4IcAXGQjXFt9UYyu1WAgYHG1nqqAwBiqMydSPGpF1Y8bW+VlSpueaKgZA2FMAN8BjBoWMR/eN+US8auNxEurD9U3I2PxrM8QjVwpKcKR/vY8NXDqzCYWaSf1sMuAbVfRskJmxcG2AKqAFFKXDhGuI0hrOjVeoFVShCaRpaX7Mw+LR626N9wbqrXqxpZ9ZoKBZWD9YZHy -VmoVjXeXAbl6iaPqUKBOWBQii2oZZskoAUBOpwdTj05kN739hAFZJsn7pHypO16sdI05E2MDlWqXZiZ8+Sp7V1irOljFU46WgF1Gk2ApDmARijV0VM8rCw0FKrCFEhq/I1GV5jNjr8xvQqQAVlAx9hi8QzgD35t+YesAxyrvQ2dtB8TSKKzRVRPrcg3mGthFcEm6sAR3qL1Wsuvt1esM7PJdQAKVVizIUMBLYMY6Usy+7XuHFKmIaapzVbYYkLUC +QuBdFRM7Sn8E9orE3zvE4TaO8o68WxzGcW8NOxeQw9VrG9KlG+nFH2nPsSY/XmHj1g4FEbM0Nemyj6OFAL4Eh+pQkiCWAXvCCjZcIBhFB/eFmOGy1k2qWAgFCHUTelA2iNrGiSE3baRVjdk6v8NlCaHI1hQop9Ji62eos/yWxVhUKwnLtBXb15jqOQVAUhajZ+KyTl54zt16SVAxWnsy1J2oZ9a0VvqQPri94a2NKHr8VU87yIKSIZbSGvXrpU5i -ao1VKG0W1x30rn4mTRr2hQZwtO1gkqIx7FfTUDbv+YYI4v0tIbOAHrxD0APCEJgtMAn6AD3RrSybASZyqHVVpavbjS6qi11mya6WWYIXujYXZR6NjvrnY2RJtdjbwU5AuedzNCA6PE8DdMk9Iw06Qbk3e6t8nncG001saqoo2Duq9VrmM6qxktLSY38OpLDaWGwKBMOpS2gpkInaMnEYcm9pBtqEawWqNScqry518apTVOqqujVsG2H5OWrN4W82 +C26CEQAWuuXmh6g1pYUOhXMa2gVvcayLABxrLmY4qonhT7qxXWqxpy9Qkm7v1SSbgtUpcOaSMz4/HVY4iT9jFOtWTVU6xHl7skI+Xpxus/ks7eclcyc1lmCEV9WKQAWXaLMThbiD1DRAEIAbWUAp5F1nmGtOjX7Gr5N9IbLo29tJfVSHGjY1RMbw42Q7MgyVFhXc0vpw1TluzKnUf9uBQgVs1vI38QvRMnnbax1okaD+WgjObWY7I7VhDTrOJmii -sqjeo61cVmjqhbXaOsXNRZij6NKyh28wvyr2GVOo3IK3coUk32zRuuXUUrNGu5zx8Vz9INZbT0z5QoDLHmn97OijSya+kVfnrRsWAPWV5WxAny6zTkWgA94RwkpGyLoI6pNIhDuhqP1f2alQYHzqb43+Jq4TTXyl5e948zI1HouKDT5a/CNWnrXo0OGtY1WLMyMYbOF0uEX6KfFuqsT6cfgbLGVc9n0uiDG92WpzThDWwSpVhaA6jxJ3eip6nQSs +uLBpGUwgFbDRk+yHyEHsT7/B6yFxiNwDioh6AL6sUlNBZrQk1fJti+c6G6w5USb5tWiWp0TV26ye1IKbPfVJJsRJdU4tfAqMIajWbTQVEjjZKxNLwFYlmfmPGGWqqhUNIwyplVcTPjFS16k8NPO9HgB9gGWoEgwXWE19VdNjDExmzsAlfQNkeSDI1kpu+VVNq9hAdRwBXVuYzr2bD2RwNHobGI3fnNbeV3681NTUo6aL3MkiUMeuNjy/g9v8rChk -nkaWmz5NOqrlDU7xpH9iejUVABEAzYRcJ3AsOLaMSgRFMovCGbJh1SQqr51tdqxU3FsnvHmQG0v1ewbLI3PRtOlc4G8C15mqpvYQBSCHlCBBy2P6h0jDMyvkTSfc+xqExrhnV0kumNZhahOW/frTHmI5LQhTYUwwZt8SQA5Wiv6DdqwkX1Y7qH7K4mJQZtri7FRb1z93YYsOhjQGU+DuOTzCdL5hrdFf0mhXVJIj/tV22xW6G/LWtogdTRsDUihr +dTZugJvOMBhohkJ6WTKcVqjFeMyrcInJspc+SJ6gpNdEqRlipEpxrjaa6pR5prxJVZ+o0JTn6rf5TQQ9F6OaJCIJ9HOzQnvQwii2MTeqbZqrBNBka+VkZGtUTSl63KNStKg40GukrpgTG+lNYcaHo1Mpt4KeUvTtWNQgNYbPMlatmQoLSAZyLeU3B4t/TJN8Z1NSgdT40uy0rTjGCj329LyIE0kOuJMVOijqZ/4rGdYw+uAfrQzfC1/PDIRlc/LC -aMgGd3yIprHwVE8hKdYfa/1NIqaAk3cJpkrguK2UVFKz0U27JsXCc767FNNBrStWKSSJzK8YGOZuBB7QamyH7gikmvqMDWrFB7wJt5Da7C5WNb9kjO4oHyvPmaKnuF8rqYo0/ap62fAciYNubQ4yHGsLFdDkshjpfYBpPH+8CEGNASqfBeByYU2Z6rhTcl6z815rqC3X/ILUfouK63V8GbbdV7JqQzQcmjl122qJIUJzPq7ISmsqVI/xAjBbzIpD +COyXNtFfUak+UzM0uFo1M5/FvMq+rImEKvjYnfVop0YS+27cDgFGHLHJRYqNCoY0CUokAPQAG7BX8BE7BP6wqAJHwSMWH7wxZbRCEXWSEmilNXAp/tz9xsm9fyazbGscqXfVkJo0dRQm/oNnarY/ikSReWn+QLpwccbEmE3QNrFBahU9NZpLKczyg1XjU1MlMu2Cy6s6TkpltZSSyt+zXrlo38UsGuRAAAgUrNwsUh9gFNhHHPNGYxGR7Dxx73ru -VVKhRNxNKV3CX3izTThal3J+EKUeX9eo3iQ9HRf1Vqbw5W3rKx5baSw1BygAmOiwTAucP0gxw8nKF2gBdBCG0t1ovjNb5rBM1kkmEzR2GkO2BMqDpVhpsjDcdK4zVsmaq9luxrx1YpJMIEc1VCzWlCvVbMZQPDN/JALtG/SrF1ZMzWtZtGbw9WQGokXvVa3f8BbR2r6PAHcTb7MYyGhZp3A75ZDpaKQPLfZcjr2E0fmsDTXKaqUVJhzWjo9xv5jb +UYcsiN5Kaa1W9xtMjXbiyp6URCgdkMRvgdatqvCVPobsSm6BEsHISXFfYReYQLUaMOqkZlcU41s+Z0G7MxuuNZd/WUNODLUg3fXKtjX2ajopo5rtilyqs+UMXGjNVICyQs3dV1LjYfayXmUkaIY0cUqw1bXaoGNvLAMGZ0Sse1cg0kz1l6lWnlrLN+dV/9C0Yg+06Wg4ep7Jlgg3QkQlAtRVHRvaFMomulV86bsY24yt+TVOMkFl7KrYk2ehvP1a -KmwWNWjr3om+2qd1ZZinncl6xE00oQMrFoNYOdN1XrW/Vt7POeM26+iNEDz2PXcyqA1a4yjAWy0bYjXUNOIWPE6/HwG6bls0/epMySb7DF1a0a4KWrZq2ZXgCiHU/eAqyi52qFqIaC6fB9cZN6RIMBgQOdjGecCNZerWaav46PUgBFNomb14Zs8lPVUFmqTNd9qZM0uxrkzW7GqvVYIELayiAWEEqVPapaAmBHFUDHCtmuNm+2mgHKhuGmkuB2MO +4GjkNlmaqXB/sgatVGoA5yVMbs+atdT91PNy+mNwSrfty5Jts+d0i8suxpq9cmuvKDRlzGjCNPMamgjkLmwNR4obAA8KUNADNyyFMa4kHZMlkcjDlvrAQlUCajtoCaafk0q7zj/sda7/1wprXDWlGoGDW+qZLuP48qZi/ungbgaNN6wPZyVLX9thpSoJm2amHaaALG/xpeaglzYDlxjd/yU1gq+zfomf8l9z1MfWoZtkzcmOTQubAAhbJhWTVHrw -6p6oVHMT01INClVWB68FoF3MEc2nUrhzWRm14+NKay1WmhtbRn73EQlltNPak+fxKpfg3BNVRQQtKUNisLJU0m/2RJhCgI08mWB9d/cr9IO3tHc47exm7nBo+QhWkwTJ4E2v2/pO60mNjyBuc3T+sSjWcSKQidGJlQD2gLNMOyiIJlvnZuxAHUCpyYasm7Nxhq7s1cCgQMAe6mYVi9zUU1qGWCzSUG0LNX2bws04pvf1Y6pZT8ql16eH7aIx2C3o +6+GIfCJuE5EGqMOdhU7uN0savk2DhqWNSSlOP+N0bTs2nWsVuWam3t1SSbSaUcIKreE04QtNzRyLa43wsGzUMq/lor2aUU1ECOiDUpQhBm8vNhDU5vSjpSmg3FZTNhphWXjEW/sW9YfpXb02flxfxtpbtHLOl3Mb+03A8QdukhMa4k+AAv/qLx23euRcM/q6i8L7lsbNDAh8mpCV8aa5HiHZrN+Q6E0ZNhdlxk3Zer6DQTmyQNH/Mgk3KIxLsPdY -ORNQ2atHkhhlB6fz64ANSzKNLVbxJ4Pqx4smmCDCfjYDSurZXeMG0NlYz300ZXllJNhpF7s0btvcA+9Dt8JcZJLghwBcZCNcXstbCm7VYqubBrVgYTwZZWYh31CGaSKlYpu+zbwU0VAyBsKYAb4F7tThvD+8b8pQc1cbkADawy0P1liLrXnYOsCJX0GxO1kkaX03p2oSdTsYxCVIjgKJamhwcWOU0D+ACJBVQAopS4cI1xNhNR9qWAgqqXjzSNLR +Htl/arkunD5m7Ff902qJG9rWSjdOTczZ4ijs6cYKlCkJgtELigaonZRQazCY6fV5FgMEcqwJ1A7NA8fzzUp/jHVAlDzqDk3nAxjWjmsjNDElG/VOWpWNQfMkzNRUavQ0imt/NWi614IeckNITBRH4uL+6+i8akRjZDChpJ1QMAsr5gqawekTYVBDUd87nNdTdcAUmnK09TgLRLNQzN7MlncsTNah67rGXdsiO5OjFvCiF8HgySuRLABmCrP6ubEu -+NPYayAHJ5ukzYhmvXNebyvWYLK2mtSOIyCFnLggxGU/gntIXm+d44CaOZX0htH1VB7HJemDqyh4CsxZUn304o+xDrqQb68w8esHA5rZ5abl9W7HOlYGD+cr5J2b3RBigyPHuf+KAACjZcIBhFB/eFmOSl1eBr+83haEHzU8zJaeYVyKDUMKqETQjavENQmMKfRectnqD8C1+VYVCsJy7QVnDedc+cNQFIW9UX3PJpeZnEQBklQqxXFJrxzeTTHN +SZRckpY2LwtK4LIQCjNi5NE81dBtFdT0GoFNhubmRUaxv9ggzEi7G0g1LnGFPNLOMoYKxNFIxs3WXcVPtS6ShPlHazP8WZgsIBeqm7LImAA4QD3gOgsGMASlo6RBTQ4trgjzWxsrKoo+bWFXJu3IzZM6yb1cvdqM2zyuTzStqiXV52akHXG5quzdIy0QFbhwmqwKWsx0QF09TZz2aKzofWolDaYwoZpO/q4TnMfLWWcfcn3oeAdf3JrUGZ1ZcAb0 -VguK31IH1xe8OlmizNy/qkmA42ByzYsBIgpIhltIa1hulTmILboIRABa65eaEbjWlhQRFvibVk3xhw7jffG6BZy2rlbnJIojDe9mll1E+a08365p8hXHYG1+on5jhCSxshxMA0MY0Ydr4IXuyRLFd1GuQpSzsY6X0cylpZeIF61sD49F6SAFIALLtFmJwtxB6hogCEANrKAU8hmzAbX1GvwNewgAfAtWbr/XkOMfjfZssiVr8aMU2fZuELVPmj/m +AYM8xQarWsh1YrCnTNFEbidTcjS1zT8nO6JWCK002mZv/zeZm0qNbWbh3BZqQatWveKwN3UpYeVtANcjDAWkDYmyaE1WadPShSVlMfl/bcVTU3Gt3Uvlqqp59abg5lY9NVDVQG2cxZ3r2z4VxqETRAMjHlktqVv7CQwnOfW3ad2UWba5ULCqSDd8LFVVJYaJzW4LN/1drzYbOWYa1kFaKrBzeBU6QA0XAqBQvQR63kIrEvEOAAOABpEH5dBtk9I1 -UWFdzS+nHouUHap/Z/24FCBWzTTTYgWnH6aSaIE2Ynh9la1crvFPOa3AVZZqQ9dw0xbmbDMTzk15o5RZfmuItdqbNC14U32oLQub3mJxhzSD5xDFBuKiHoAvqwzC1VZr7zaVwOo4NhaubW3+th7KEm6w12Ib3401Rtf1bH8ZAMxdiudlRPK6dTx+IIMpKa29nekSBWvpm58Vf2kY+XD6oqTdcMtONPkzmTWWJu4daCyEKZIkrPCl9gGWoEgwXWE1 +KibehRbIEGTQ4qurNjkqAU1z5omTfdGqZNEcbt039MuIMWEuPH4qqy0TXp2ID1VwWk64iljBC1OJMELWss+OeUOgZYjvADNDtU5fpc8IBDQC+osgmENOTKNfYaO2gZEkTTcWyB4Vev1jU29BsmTYxmjxVfxE/15CqnIMAdkJCVN2NYzLcllQoM9m/B07+rxOVhBuUOZc667V2PT0w0nyqoxeqG4klJ0qHWliNLbTUevD7NCIK4E3C/VxKMTRIiQm -9VdNjDExmzsAlOAA+GRii1+puFTcm7cotJPq0oksD2qLbzG6VNuEbA5m65tcLRgit9UdNF7mSRKGPXGx5fwe3+VhQyF5uFkk3neB13+KE9LJlOeTU8muYluETtLEM6wqTYQWuaN/arcTUelNCVd46mSlGK8842nOtaRTskRClEOo9F6OaJCIJ9HOzQnvQwii2MTeqZca+XNaMrktVK5tm1VeoH4oj2a0vUtBNX3pXTMfNH2ahC0NFpx1X8Rcpena +hJc0GjTyaRFPQ9xQTsahpy9JtpDX3dVG4pRbeREGpryNYVGv/NxUa082ouqBMSpkUvErBDKNQhkhEech0vxsA2bKnUqbMRTTJmLotIHrw/WWVH6LWFmxz5d5kFDm12pDNXcPel5XcLtA4gOU4vtH82PZWCyE2UgpBc/p+s3Qt73iQY2sePWriRqjNZSJaGq5qhoWDUNnYQB+WrUekJsrg2cf6i5NhmruQZJSUrxKPUQ96EEx0wDZ4GSNaRPGKohw -sahAaw2eZEY6n4oySgszYeys8+b+mSb4QKzPlCI5otzpcbE6FHvt8zmc5re9cSY2Zpopt8ZkK/0rep+G0TVIpae3UDMuJMVzqjOY7Jdni6ZxOkDTMzS4WAMybUlpGtjPvqq3v1VTB8qWtFOjCczq50SAow5Y5KLFRoVtmxd5SRKJvXIKsWApFq9fmX8BE7BP6wqAJHwSMWH7wxZbRCEM2b3m8DNOxbT7UiZsJLSPgP51m2NXs0aMvDTXhGs4tFJa +amNXZjhfzfSqgMA5wbeFknyNmHhUW3/N4uqTi0AFoszZRM9rNs9ro41QAjImAFa960y+4a55LxtcNH5GkSN5eao3nfapSzVmvfDVFvsm02BRr3XoWUgoNqBq283cgw5eBC1L3gGi4TLXyRCGXHcMUfSTa4hpyAmodDSqoFykFGbos7KOtzIHSmuO1DKbN00mvK9ZsKgVB1e7jX0zoFBxdRZNBo4TSAR1WH3TV1eDuJ5x9Oa78GscyDKdaa4MtExa -RE1xVlIki8tP8gXThes2JMJugbWKC1CgRbtM3D8spzJ26pQtK7TUXVgSsMzddSyLZO1L+jn3Wu0tVYmy8Z8Bzog0Q6gIFKzcLFIfYBTYRxzzRmMRkew8ce9anm0nMFTWBm7YtxOoagQVFsPJXdEoLSpJbBC2p5rDLf8k/2Clg5CS4r7CLzJ06jRh1UjMrhyFtrRb+mdBufRbmDZUbyXjQ9zFf5pGaYxHzDDAOX6jQ9pNiz80096uFxYPqxct66b+ +OY01oxmzTbGzCNqmwOgg47lwCHgQ7OmbwwTBadFB3pKyiM9FbGyH/y7ZtNLTsWuPNORq5JpWlsw+KmmxrN6aaFbmZpt55aCmnNNujrSKUZdn6hQwm0r1iOwC2y/BueLWnKfZ1b8SQJkZKpE9aIWhQtwhK9uaN5pSVb2WvEtPqa3E0TXX7KXqZEpCezgaKLT4OGXM1QJlCpR1xHWQ6p2zWrm/sNAYBq2Af5vLMRk62b1lRb583VFqNzZdm5jNXAyO -RlDsrItftDRPlPIa3fbSLyqGSsqJx1wAriRpo9Lj5ZepQS5/+KxKjXlt+9aqsnf1X/0LRiD7TpaJCGnsmWCDdCRCUEYFYsm9oU0eaBM2x5qDDd2m9fRBxbyNZZerCTTKm71VrWb5U3tZqpcH+yJ11UagDnIqZr9eK11P3UO98rc2WMt+3Gvm5C1dVVyy6Zn0oenA67NG6xz1C38eCBDbv+chcbAA2MoAJXhShoAZuWQpjXEg7JksjrSct9Y6irMZ +CXIMrVSJkYybBg/oIkRilt46D6KjFVgYL/9ldRrfWX89aS5l4UJZ7nGNPUe3WGUAf5c9ZSbJnhPs+FGmAwjRfY0PmrNLWRYNct+MzfC0tQqOLRyW1PNXJb6C08lsYLcs65yNWFBg0ElOsx0cd8TRwYpa58BwRtsTSeExIt8/LJI2EAoc0J8Mek47DRquUJ71NQHClFpNfBg21wVZrINb0KCMis2q5Jp8xNsOWEc5HVpCb9c2/hqCLTUW9w1cVY5a -WkKvjDhRqzuNQSbkU0nqxgrbUW8JNjTqXo3Cxs0FMl3QoVpUxf3TwNwNGm9YNK5M8b0yX9thpSvRG2amnpqAJCz+rUKbem2BJM3MoBWHpsvDX3S+56+lb9Ex/BoyzYq64el0hDuCWqrOTHJoXNgAQtkwrJqjwqAE3LLZM3CcurW0nOwqbdm3Et92bYaVX6qCYS7aqeVFUbYK0nFs2ub38qNNElampRbyJ3ucOCJpwdxagzkW1wtRZpmt9VyZbuVn +jVIwmULI+Hw59F41GoXzBv2tTm30tJjYRs0HyuGGTYcjkkItBCAXOjxCstZg0RsdRRXpaElF8AuM/UT56UbLBX0BC1TRya4ottfhvC1LptAreqtKDAZgobS1Ruo3TcEWrdNMyaZXXHIvS5ZMcXwNDPDNzjGyPHdSKGiFw7O5nc2Bnz8QtCKvcNdaaG27evOHqSzwamqUfy2H6bJHIIK2fHVw7FiIq3P8Xc9QkE7QtqZSeR5OJrOxSoUyVN9ldRc2 -8tFUremW/kFjdjGS5vJsvTW9fEGZOb1TWUV31zWUzYIiZl4xFv7FvQX6V29FkJCX8nWXNvS+1eZWrj1ssL8vopEv8FYsBdLu8EwjY34AC/+ovHbd65Fwz+rqL2ueTNs0MCbBaeK1bxD4rVwWiw1LtqkaX8JuMVQLGwW1haKFU2DltFtduKkuw91hb4bjPOS6cPmTph8BaODUpVpNnF08AxZdua/dUirIvTmdCpQpF0KFAVM3ILDckW9aNqRbCuhw +zZvFzeaMQPg7iRrKES1AEcPwpcaBSn1boI7GDVBSaW+Y1YSat5mLpqP1V+GrOps+af/WCWKoTcHrIesZIwA/wklIVde5GNyOd75nK3F5rLbK8W+CN4fq9zU6Kg+PkQG10l9Vj3SUbnPEUZXap41PHz4BkplwftT7QeN5OYKa1lGFux6XqVA5IyVrakTYACEAGMQz0QxlYgTgvKtt6CcvdzQaoLew17ZtOhXUgK965BawMKQmqBlmum20t5laOK3/ -+rSdU0EHT6vIsBgjlWBOoHZoHj+ealP8Y6oHpefccm84/GbUtWx5oYklzGtk5LtrpFnHFt7jYImxjVbWbsSm6BDzkhpCYKI/Fxag30XjUiMbIdqNeFaJZIEVoeTe+StbNUJ4kwWnjDUsfuWl71pk88OHOsrXDZA6tAF3nrCy2TFu61W3cx6tbdQwLC2LVDZLcSTdQzmi/FCaszP6ubElKZRckvM3S3KCiCz0NENXsz3LW7wJ2TePmvst4lbB42SV +JOXzZ+645FZ6ZvWVwoP8GDfSdvE0Ebni3GhVguVpa7stBxSFHn/Vv5Hro8vBVayyhKATgAQALyjVG6ACU7ABgzzEqWoAUVOR1btK0AVrKrUzylt1CIThLWFlpozYDyujNbvqGM27lqYzYZiM3AFdVP+qRcltTewhGRZQZgvq0mzh1vDYmwENTcjSsZXHKkzgGaoW1N5s6lKpVqjLXNm6NINvRwS5CoGYwZYOE4Ay2aa2nI+ORkBDqzStBPB6S3kG -s7tbkC966HTrTc3jsJZGFViKctQxKwZyBugXjSEGwCN2pbe/RRrLUoVHylpubYrYQUwwEC9RleQot2WRMABwgHvAdBYMYAlLR0iCmhxbXL9WmbZWVRea1lFu9LX5moTpEqb/nW0apmrV6qro1JKqQC21RsuLaxyv0FbhwmqxMStd2YRlN+1jQbhs0AfKV2E/Unw1KBaiK2HnITjQl7IZpxCaGq1zyrEqEva3j1ZxIznk+9DwDr+5NagnZrLgDegD +qSQPSkePNlYkDi2rGuYrWMmwFNgRa7S0WVodLSbmgr1wwbSrj/IyQ6Vwoo0KjfsX9VLqmr8K2W+lGL3hR9kQ0yxLb+Yy2tKYMfSFFg3qTaaq6NIBEKj/EjExcUJTDNjeCSonCaWkSU+ilcwotJ1aaK1TEn0rfsWkcNIHT6I3UFpTzc1mkqNrWaYK2Z5pW9a/OHappsYes0LTDQbFAFU41S6ozy7uVu+tX3HTLVYcKsoX8x0UjfiW2fV3WNIDTGsO -BnmKDNN1aMrxkUtloaNSrmpMgexau4nh+FzRcFWyGtc1bgC0DxtALdPm3R1sSaDagHsvE7hM7NoBrkYlK3E0p+5K0IjKtFbKUzk012J7jP6zuFwD8Kk1C2xa4X26oMp5iaedXQWQITUMzVet7pTRkbLCxWzRWqlyVZ5asIYHJBKufW3bplazq963spyWzfUQvhY59aG24rL0IGVKEtW1lksKk1/pSwBerG61g4mz4QU3/nSICEQF6CPW8hFYl4hw +CrjEZQPR9ij6fY+djIkoJXBf2JtpJa2eFoOmfWq8yNiI8W9JFltxzXdG1Wt91aWWm0IQN8BxG/6M7KajZa7Hy3TEGQcZljxbILl09i7uNVCUP19NaSuGaepJdWLio2V+pqf9UJZuFzWBpIwplrciVFLV0ijacnCfu3zTTk4nMp1qcoEpl5jtdHKWeevELY4Ijz1APrOdqWtN3rSuqg0NBda+jWZfzCptsmSx2cD5ku6rsFi4MSyezRHcbNxXtriz -ABwANIg/LoNsks2pjzb0KLZAaualtUe1qkYaLWskt4tbh002RsirfVy//xCcZ80xSFvetE9Qbg4ud1B60plp58jFakvN9ua92HMjPgnpKM8y51NaC43gqulYFWmizQ8c8odAyxHeAGaHapy/S54QCGgGRxZBMIac7aaNFWjVunIJBmoNNTKCCZV6/W9rfRquG1z+qszXt1vcLVe64gxVbz39BdLN2HgBo7ksqFBsG2pVvwdHg239lpea901z6rMS +LTVCmesv5A2g0GZuGvvjKxnO2Na1HW41tsjWdagmttRauK29+pRsiXYOkKHwbfYnQ9BMigbXTqtWPyPZmfPD+jZGUukl3pqdFSDFpIPqGC5SFmmrtdnPxJ8EUjrBAZnazZcb4dPmer9m8IZRLNyUbRkuz9RNarSVePobGI6whL1BOteVSTowaYDK/CnbmKDIfNz8qSM0PmpnrG6cSfNSabl02nTNMrYz6xOVHvrCc05poADWCBeRSyjh7K0FfIbi -We0ubNy5abw0T1tfbhpWomoSDrN2YGNpGGBfm26t7+CgZh+mpGTbiUYmiREhNCS5oNGnk0iKeh7ih3E1DTk/zdVmvu6qNwOy0mfO9mV+gprNAiaW63Q1sQrbDW5Ctenqu+VV+C6SoLnZDpfjYcK1JVpO1XtWpQ4MmYVG33BrelSTYK010YSr62fisu1fL69JtV2rx1XomqxRqyUroRRGSQlUCHIarsIG80N1Si3NWmZpXLe948jNrHj1q63ipI2U +Ct8w2tXSYI9nDsvi1bOaigNDzq7y08Svj1SY2o6+1zq6TG8JpHOSMWjAN4My+y0ojM/9m+3ZE53mbhzG15uwrcwbYUVmvqojlg0tiRUtQAPgTeA7vZQTPqSaKtCUGaWQe6i5irKzdxa8iNdlr403nVtlrXb46Rt7FCrI1K1oCLQbmncti+bEk05pukDRy0we0ONxpdk2VNm+Hx8L9c1NanpkVqTgLa1G/LlStrXG2WxqjFfWinQtLjaHuYCwLDpQ -029i1+ibgNWBYqJrTD61ptTcK7y1JfVExdKwF8t7chYjn+dlHqIe9CCY6YBs8AM2tInjFULxNhCreSAA1pMNZ422l1lGqT5GzDwEbRDW5rN8Fb5q3e2vp9a8EazSLjwoARkTF5de9aZfcNc9Qc2uGkzTcHGoxZIKqLG06JvNxbcMwtNV6a7m3+mPQThUo15tkJarSWtIpxsKhymqlwJwqYZUzOTsIGNeSIQy47hij6SbXENOJSV3FaO2gcbFoQMG +ha6vaBUs0YldPMllcfS9U12OyZS1A1s9+icmytN4yrH95nqXGaZuzFEtoKhMdnS6QTNW1q4ct66MN578z2eQaPpMTa1NFCfRVNC2RhwAekAt5rka0kj3HzXE22wNBTjMa0Agwaze3WuJNasaMm0VluXzZ4G7lKJZA4djzErZ4vfDJnYeQZSOraNpbqtPWrhNokLPE6r/Ju5uMc6yuucTFC2HbPdSKVLQFtXuadznpVsNwOQuZFIo4A11imBNXUCI -G6LOtmzEZG7Bo+NYJYqJNwethUAXer3ca+mdAo3/rEfYNHCaQGwaw+65OqEm1+PAMEfSMtG2gRzLy7Ays8VQ0UiitpMa9VU2ZoCFeuqmTcW4Met7HgE4gPClWjEvf8VbzulsrtVGKzxtwNb2lVyTQRbT0CGotgBabDXSPIlrWI2y4tO/DBkEZdlwRfLWufSiOwC2wgJu6LbVeeWNoRbR3xH4v91Tj0tptWTzdW3ZPMzOcMCsgZKfy1/kBNE1jcVx +ASL1jphnuzyvK4tTGm2y1fOqzq2LGruFXlc+Wtzvqca2sVtDjSRUtWtHwKrs1DBrBAtGQfR12qLwI2hoN0Smpau3NllKsG33dXD1RU2qgac9aR6ZyRuBOkmq/TVD9bX7UQ6mKdr3UI2JZKDolSCvBoFHnJHDOG1BhG2aVtt1UWKpeFT0y9i3KkqU/jPm8cNpzbgU3nNuzTcvmh0VL0aHjz2VN1rce42eSt6BehniUg03BnWhxtCZc2iEippOaTCc -NFIcPANZQozCnwRV7egAzVAmUKlHWx9SlMzitI1boW3SMgJLXwuWxB+mrAy2Iiu1zRGm0MtkraA61NFvEFSfou7g71g3lno2smwYP6CJE5zbeOgdytBlQF8/MtdxsTnWfNoCxa4yllNkezLwoSz3OMaeo9usMoA/y56yk2TPCfZ8KNMBhGhbFuHNfIDd64nrbWKGzDxL9dfKuotmKb+y0stNoQgU7BgBRZBg0Fe+sx0cd8XQZijaTZzSJgpTYCqk +4H1pS1EMoPNJFEAfpQgFTRRbozNjKFtI9La8AbxK+HBIpFxSPOqaPNi8LAG1RkEDrYjq0IOsjaO/X41pVbYo25fNLwbHplTpFnynwMnDea+B2oyi51YTcai8Sk3Wh8JEOfJqbUoWhrpYhDXHUrBuCrcWi+PlmarLC2U1JoRl0USSIndZ+XSHAGLKKlslsOIu9aJZdEoS9T0S/u105BaECpesNBcfqoNt5CaYG2htqALcxmm8VxyL/A0vUDbmdW7G -8J4RaX3FENuyNTTW5V19EQqG1NBAc0J8Mek47DQehUJ71NQHClP1K6aQ+zUnKp5rV5Wxy1Vba5rmCtoL9oLEyEkipy+C0vxoHTU7GlwtzbawLWttvf9bkC27ggdRAoXVuxD/NvsG/acTaiW0n3IJePDGBeN7JyOSQi0DbFXzEmT5ypzVVnOjxCstZg0RsdRRXpaElF8AuM/E35cBKpUWV1osLeU6htA4orphV2+N8beqtKDAZgoYG29lqg2UG2xo +9uurgzYL6tqQ5OJWlBV4IqssWKCvuddAmnNRL+D4w1o+vkKakbV15WmqmSWnMt6Re3o4Dl7Kd94mlyuoaVC8u41ScLnE2UV1+zQcmxNhAYL/QW1WMtbZrjc9Jv0CvinbtNillES3+NrNjrbEKYsg/sByzOOZazpqGdi3sbdAnIpSltjdsrbkrHIT4klmOeuzZi2GLVwspDWv0CVgAkeRxkMQSLUAH/6YgtyjqXutnxaGijWI/rawBEjp2HjeyWs/ -thmJHehcGgfsDJo0K1BSxNzjGyKjrdbmhtMg7aRXVECJVDfNgh3U1TT+I0dNoWNYCke2g1NVYBmYmrAqOQQVs+Orh2LG8duf4saGk+tRSaTQ2y41DTlXm8H1ibDKD5XVufTTdW7bNki96IgPVuzrapseW8gShFiIS1AEcPwpcaBSn1boI7GBfNZC2qu1oiK6kCiLIgrQDLDp5N3TMO0aet8tQRGyWtkVbKg1SxID/LNag2R7kY3I53vnI7XhWsts +VLhq6C1R1r/Ne1mk2Fy2y2XDTuF4zrCwr60TFbaW0vWuEGWrUKmYi9zqxmmEMIYRzfDFGP4KlxHb61DpRxSn7N6316sX0bU1Ge/fGNlJZNq8062o4jvqG6QlF7b5hWDmtg1UP0ipRSiqgHEekvHMUfylBY87KuW2n+oh1Ae6zlE+pl7mFpZBEcAl8XYAVut6ADyGxeBnuy6R1W1rLHTBRFlbdA6paeCrbqxVnZvw7enm84tXBQhbSzsS5oe6KsO8 -yTbKU3WOug9X3I/cB8NdCa1yX0xzeEvUd1AnzoOUlrVMTX8itZBD50sVG06K71d2cnHpvSa4NVa2oQ1VIEox6wybc2ikAFqRNgAIQAYxDPRDGViBONrq23oJy93NAvmuIVZw26u1Kuar3p11rcCXb6r2tGzaAm0tZu2bXT6oExKmRiCkHNvIwiUc9beFisa7gWFEmhfOmhJ5T1BeSC6pvo2lPamx1j9bRu1qxrNLdra+vN4tCO3rwgssHCK6XlGq +GDVhArXtE2+cnGliZOP4pglGto5xVemhBm4Wb4MVZ6sJ6TBsgGNfJdGm4UWoVDf+s0EtUPS4MU49IabUpqoHamfyjVXepukzSQq4Spf7xmXgl4CSwu2Zb0AkhF3hhwv2qcodGxpCsnRLCWmdohdePmxutpYrcbU7txctaHW4stNBbOS32drOLVIkvdoDvhrLYGMlS6W5zTVIL1BM+yp1rEHNia3qtDNaWW2bcunbf5A8DtczzZE05VPh5AnvUAxx -N0AEp2ADBnmJUtQAoqcSu0lFryIQh2wztSHa8g0IhLJ9Zh8TXNXQhgy2nFtsNTh2yktEZaCQ05pM/6pFyEP5u2ROllBmC6LTHWnW8xebVG0ENuMuanWqLtUmdKHXgepvNnUpeqtxBbYo0cdtKUgp24XNqmwbejglyFQMxgywcJwBsAD9ABracj45GQUZry7UE8F5rb0KcWZ3jb9i0NZpomOZ2qMNgbb4G3RpsirfGGkeNpVx/kZIdK4UUaFRv2fb +EJB8FBNQIoki2ob1PuYwXVJOtuELs2+HVmLaGhD+LDojY0qnDtogbvzX6JvhNawS4VAc4bjkV2gXLZvDsj+e8VVtxmYNrYTTj+SkYAXaza3Z1odyTQ2powu5ithXTduuDLYtB+AuFlNOYGP2P8Z4ob3gLKzxkCv9RAddXS0NFIpxLO2ka1l0Vsitv1eLb100Etq7rcJqnutFMqv3Xk8lEKEKW0z5m6ou9ljttsLBO20ZVVxq9203/AensziqWhza -bxZkKcA87UO2lqBgXzHTVgBoabRDTWetrxaiM0fwqRMcdatTwcEqOxX01v6wEHCo/xIxMXFCUwzY3gkqJwmlpElPpi3I4bVC2gztLeAYxUSisPdQ5QbZ+oaagy3+tpDLed2wntEVbBy0Ziur1WSGzt0G1akr53gCgCsrWuZ5S6ozy5zlr0bVX/Iyx1Cz4Bl29o49enWz25odM7E0UtDvQU+hJpyrSJ0nr2KPp9j52MiSglcF/Ym2nR7WUW1mZflb +yiMmG0x7TcQq2i1lNSaWhozFHqGmkK3WYLjfgAsNzVlAK8VjZ3lir3qVdvBdWM64nUfvNJG3st0ObZom8CtuHbkXVndsWdRd21OVikk11pwYG4QQJW+V0ofQmy3yRXmjLA0+TVWybbDql6oaaT56zAN7xSjUk/FoYVib21xNPuaJrqmUKh0AB9bhhtFEkcaaAF9lfUAeuYUaaTWVcuCaDYpStDtNIcP80h2x4jgwM/wttVaTSlPBsdLU5G45F9dp -42WIjxb0qK2yTNThaU83Ydu17dZ2wctdkbUtJ7rkwbeHgoZOeVQgyAdcv99QgW4ltXdw4XkqJp/RSKy24lqWbh/WeescdR2yvi5H2qOz79cKWrseW9XS9TaDWXfNNOTsJG0XZkMz0Ilx2qclTWKuetERaLhVt9sC7XU26iBfUrxDWO9qB7XRmgeFhsLEDkQ6lhkOJbD6yMc9MMjJd1XYLFwYlk9mj2OkJSvbXFxW/Tt0yLpyCcFsCTZNWqCtMxtj +77z2ZtwAm/0D5cReb6W2Y/BJ7dBatqN+RKl22P/zVXndK59tNnql21P4qCfgxHKapG/qxPoGrOW/kw6laOR3KFgWHtunnryXFaOJpDKiHOyrxVQSWswmT/UYkaAcjwADy6IvAmABvjWfc28rvOWk1lgnQrfU9Ev6TYBeC6t89irq1at3fVSj226taPbYG2cVqHEkaYAy4ahZmXKJ1sCtcvUcylvGbaKW7hjEtAF2hXFUuLif5n0r6bWcFPENf3aw -u1SSCALUE2hatSFbh3AEvTzya21dsxjnbwnYmRQNrq52zg1G8zPngEZsjKWqGi7e4YzeI19ZzQhRP3RY1rybluUYD3EVbI00GVGGNGc1M0tYdRwzMoZS/LNbVqgtxOWPamItXrLd/w2MR1hCXqCda8qknRg0wGV+FO3MUGXNbj9Uelul2Ao6irt7YajZUe4KWnvW2941x/b+40w1qsmchW96Nikl5FLKOG9jVOohuIHvheFWtkmsbFb2ssmSbbnt +sLYyE80O2ZShVS8c79awg28ULK/LuWcny622WBvzxWRmxyg3vaLHG06mqrYq2prNeHbEHXclsI7YwW56N5s0hrDemBADZD0Em+mGY+CXaNoaDOU2nXtCuS9jH0E1rSahqx2VQsCleVv2QPzQD69JBOpr8MVZxt/jSGyoX5p9aAfWClLMSbzi2UN1tLPM2ztu1YYDG9C10Bz59kH9rOJMk/Boo3vMTXo1AHwFAILGmZqMxLRjRyLrYdD2sj117rsq -WEiPaBUeW8f1Hfa8Tl45qgsc82yptegJv8UeVEAdedUkQdCdx161GpuBWSAG0FVk3bku0aJuaiNO2vHJS1AA+BN4Du9u0AXBR9ZkZ37TB2rNLvK4DNTdBQM3wdo7aDfILHtvbSlp5WGrFbY2289tF3bwy1DiULNCSVFtir+ybKmzfD4+F+uZ7tiJz+MTroEeIQsUpGZlTSBA17lukHeX/AWBfBrYk4NOhcSQlG3opL4qym1eLOnrcn89ntm+bkh1 +S6pupTTJXIzNf8qty0q1rurZP2h6tPdayY2KSWvwgasaF2xgpmShwtkauSJWzsVBjg8rgYVpnrS1AsVNJ/QYPUo5ImVfqbX9t5haFQ15dJnqRLQtLty7DLy4wT3E9Rn49Pxgb8a00eyMFCRkEhZlLUzku2NpurjplmqgddKsHGLW8SR5Jc4OAAyRAZ1ksPE2AMxabZmBSyjlmcnMn8U5q8aVAYASxU1whHzN3yyqtYDaZja/sGnpIrWvXNyta0m3 -jFtt7c63ek1xjbAfUzBNeTQw9YYNChrrU0HiDEqIxm33GHEBFvXZq3NERRIcW0BTtcZCRCHpAMU6rbt+A7zB2VdpBrQU4w7tAINhK22DtErY4G+PtUrami3UyvNmiWQOHYkVK2eL3wyZ2HkGb6ND/bc+329XVbevm0Z1VlaoBWxNC0CXenXOJ7ubna50OoQdWBY1NthlK55U7JDB7WAy2uMVWCiO7U0XgNFq6iUGNRR4pl92y3BsnZcwtVLqdu0M +sVpEHd3WuotWsbX5yDmgkxkbLMZBXAR824x9ue7ed+LXtYGL9G1UlOZrcD6yg+XlawzVKPMJNXUOqYtHTToLIaiECrQNGvx19tBWh1JFpzPs9IMwUrZ9EbC9DqobTNWjodbWVWW0zCraYAMOi45ZYyHj4mXQher9mqTlibDn6Hwi1+WMMOrB6QGzxh1dwsgObXasUwEw64IzYmK2qZFWqKtTJjUS3hVoOHeCSblcayy+8Kx2FBfpJuHsmGC9cSiP -IAgbcNffftMiK0dWCNox1cI2kC1p/aQm3n9uHjWCBaMg3CALg5RtoWMc9samQsyqdq1e8umHetae5NvhqOYzU/0uJQmcwq+Xhz8h0+eq2NTam4uNYezXe39YGKdr3UI2JZKDolSCvBoFHnJHDOG1AcB3l2oz1YDWrftmPaqu3b0tqdXj2kLNWva75U69tbbTXKj6NAoCHn6P7IPsbPJW9ArA7x9ixNjUrePWvw5BqbxI2Lc1n9dZ3D4pu4amLUSj +DG4gbhkJqlRyyGpJpXNC2fIDGvwdFb33mGVt+MCdm5HtKQ62K2d1vSHRj2uotfKqwQIwtyHEAsmzoZmOigDjbOqe7Um2jjYXxIiL6duxjBTFar7NDWkYwVm1qOHZ8oBM5MzaLe3a4vJKDVYCkAWMBcgTFigZiY5g9X8nhD9uke3JFuR69CmgDeh+XJl2GiHRKhWxBKHigtI3VrMrRP2rtte5aia00Jr4FVHRXxl9zaStj92GgYqnWo6Fsmiy81jL -qSLbBS80tmD9/GZZ2oh1E0UW6MD4yhbSPS2vAC1SvhwSKRcUjzqgWbZEimes3BzHh1u/NBAXSOnXNDI6yg0J9tbbd/G2uVVblaiCqDJw3mvgdqMoudcK2P9pVBhGIo6tIcaHWU6cL4JXeZBBmovqRum5Vt4dbEW4jNDECn019Jpk7bKOnLpzaqCZnpC17Jl0USSIndZ+XSHAGLKEzslsOIu9aJYuUr9DW5SpL105BYW3Gdp+Tu1C4WgJo6A21mjp +ME7UeG171PjqXHXAQoMieuSqVBzOFiB3jdwpNa4Omol43R3sWf/V1hOuDVvKUbgik6LJkoxu8JJ1Vy+wxpXFTFzgYyO+DA2BYpwmKzXfNTVWuztn/boK3f9teCCnYTtW3CB0j57aN8GRZ8QIYRQ6ER069jebXkmtKF7japfl8s34LbqqjYV4CSOYw9Iq8bYIinxtNJzVQCmoGLFBxwniMWYoKyhpTDUAGzcOJ1z8rMWCS1rNLQ/+K0dMmjzni4VP -jDX0OvDtrCqPo2+xpeoNgs6t2N7ddXBmwR5HfXgTK+o9af1Wx2orLnla0INE6suLVa1qn9ZqytV5HKqMvkU1s2dZRXKAV7Kd94lZVoWzch81met2joi1AOqeDWUmsAdaRq4B3TcJMzRI7ADVJlbYekKeAIGV8U5t5QtgdUH34tK4ZOcyD+3Frq81LtUurZz2qMdd6dLbENsvb6eDCrZJXKdkR1kNtRHT4KkC6/DqM9qqrJ3WN2gTwOvoATwBGqsP +ZZRsTP4dIKqx+2cjoDWcCO6XVtCE/4oJ/BwnNJEmU1Y7kUkwC0MNrV/UFRZ2vbeC2Shqpda9652l5DLbOFR+p7JRHSmWhGpDK06v3FGGRirb4tQkqvs1y2qHRQ7KgkmKWb9mlLjrGrV0OjdVGGCICm7hu2KfuG6wp9g6x55iFuPrVJK5FJV9LTGbhnPwYXRK5AeMX9kB7GbPghce2yc5u6ra+2F1u5BuPw1ho/BF+XRkh2TiLbgPiM7Dx/c45zOf -8Z2EG4YPQAxBblHVWDezG/vNKgxf80NCBHTtNWurts1aGu2t1qoHT7a5CtliqT9FFpDRtDdOWFOqXT9KJm9sjBWrUKmYzKqTxmmEMIYRzfDFGdWyLWXbr0IYTXCqcdcazhu21VpY2XrW7UhZJrqWY/SvMTSxO4xNEoLwWgZ3z2dcz2h6eQDi2aXjmKzLXjpbYdzjLPbliVF9zYnTbiBOMKI+EcvFnjk4oZbWeYUUUryGxeBqfy/H12brLHTBREsH +lUXYN4dbqyPh0FjueMtaOh0ULYivlECmvbbfRmzttGOrVW11jvYJSwa1qgaOwOCGvrU3vgjsTCMaTKoLkKnkJMA1M1XlyGqgS2/gobWYBM9vRGerC42dcyIbXoWlnFlG0GMU0TsMyYVfRTRTAsRnkKhvmDYDjX9trE7VNH5/NyDSDM+6+PE6EFH/NOHHfbW1aNEgBfGpQUuZGt+va0iBR1FfiuJAtEdUhAgtZwqeamhDpdVeEO+4gQyJ7fX5loeF -WVyx+Ny083h1AWo+HbT6na58VihbSzsS5oc3KsO8GDVhArXtGABX12tw5OP4pgkcDok5aevBBmV9bo5WEWsdya6Y3ctKQ9R1VXatkHQa26B1nF9V40uvIfrcnW5wFSVrPi0rL0fHVw68htVmbXQg/Nt3/H+8Zl4JeAksLtmW9AJIRd4YcL9qnJAZsaQpU6831OfrbhAh9sV7ch25HVDLrn41oppj7WLWuPtjI6LR1UlpiTYMEgxkqXS3OaapBeoJ +aumwQdqQ6gR3cjsJrZoKWhc+GFa7CgOASPiMCzSpWl1Go1gAr/Qu2UVl+++bEB1V5oLBYqqtTVDjzr038hO/MQgGiMtv8bbZVT1IvXoQC0WouMwWHg2DnkNnjMfh4I+DvK5EQkljajmvBNXAo1ai5SvaDfIY8PwX/r/h2pNsBHcIOvSdcDahxLnGJ8JaVMaAtOA1NUimtDI7e2O4C43ACyh1narrobm63xFW8bgShy+JZeVYUpkyFjzAs30vPp/h -n2HCdW4KcfwFECbzm2O4cdTBKTnakxun2ZiOw3AiqBwwA20LZ6hQubwABFivM4+pU3pN6ASMaKk6LfXn+rKLUMUSCdxtR/Fh3+qlTU3WzZtvta5U1fDuoHef245NYtrQcSPPwstJzWeKqGEyph087Jx/JSMBydLza/tJPwpHbWwLahFo+KL1kFlqinc+Onh1sQQ1B39YCOAPYAIQAuFlNOYGP2P8Z4ob3gnazxkCv9U29UiS9YNDaBCA0TVugzef +kq52ujG10U3F2vZeVMK115e9bZyV/irRGfuwm2V81bKSVxdvDLT8cjydY06VO1DlvxHe86yL40vC8XqIFzGAELaM9VCfdoyHqsw0relKyxVUU7X83C9ohcOAtJkdNo68o0t1vr2ZL2k7t3bqax3uBrrHZamk/RjCBaaQzHR8ASr22LBi4b4R2vWtI2BmQQGFwxb0S1dNsd0Ta00zO0xbbv5RGr7JtGOI2J1xjuZrYxHziERjSCwcbtts1smqIuaU -PWDNXzyBC0WdsjTYZKontg5aGMUnJvJ5KIUY5tofzN1QOHMbHePYsltLTbadVGNqbJjcUojJhtNp5WJdpgHSNipFgcU7FgI0tDRmKPUNNIVuswXG/ABYbmrKAV402zvLFXvXwpapOy31njatMXXRvZbu0Ow71/ja4J1bNoQncE23adezalU2KSTXWnBgbhBP/r5XSh9BVbZhsyC0BUZrp3rhrhaT+Gg+u7xSjUk+joYVgbO8dt0U7YDnTus+nYbg +slVQv5Avh3oGJi2f72x0d4ga3DWiDr+Iu8VHulJXRQUkmlDQbRsNMWg+rau7h/dOR5aN26z+NlQcg1qeC4MQgSwgFBAAzUEAJRDyWLvKDyAY1hH694VujDSW9KVCJStp0MlvuIF72lplaoMN4bJNuSHSlO/Ft1Y70p1T9t40nRiPpUUagaA4cXM+GbPEp61K/bLwWkbCq3pKWqUdG68LbVhRrayauqhopvsC4w0FxPo5ufKlPuWi87gGmbGW7fv+ -UyhUOgAPrcMNookjjTQAq6r6gD1zEjycD8vWC8jL9KLY4qeoJ62kO2PEdxBlItooHSI24RNA5bW22xpssxfXae+8Y5bcAJv9A+XOjWl0dmPwsa0wjtBWWM6+cdGJ0YFVqrxoaffizZu+lbBbEOy2Y8XyM1x1GWNJCHnrOW/mq8q82XJaphHGpOnHeNyxNhKKiTSGVEPkNSiO0YNEcr+I5WNtzaE/1GJGgHI8AA8uiLwJgAIu1zDzeUBcjRwElTyi +JK2I1iZfpWWvSlSPm7mdUtaAwB8zu+5fNoNUGoiMhZ1qGSgbUxG2CdNZqw211jtl1Sfo3Lw81xoU0MTLYLvCQImdX4ZIw1Bjpw6SQIjiljPzOW1TTvVLWYTduoIkyy9Tgn0GAPyAUzU9QoA/KU+nvacpuYiFo8q/Qy6VqGKIWO5kdrFCpK2eEgYrSdO1kNp3baxUhFrChdf2oVUt3BhZLlTNHZMKO7Q412Iip3+MVCOaHddWJMlahJ3QxtAYDvkl -UlFXboZ279qxfndEqPtlPryp2wNsqneaOssdklax02paU0IF0CV111VB3T7L1G/ZUmWi6dk+AxLSazqSSbMS02xMLLam1bn1HZRN2khN6bavdIh7JxdRleNdYv1ZmbgyNmsWrdGLoo2Fw2MTSeOYLTNaaQgGY7zY3Dzp2LY5QQWtxU7xlFizp9rRmak/tOzbmu1cFDFqAn8Iaw3pg1U2Q9BJvphmR8lNPbgGivGF5BQnO/9lGHrn8V3IqkDROO3x +UAF/UFfgXA19mFmayjGg9QtCQbZLJTZ7cki5ybsDHD7iudnf52rhVcLroJ141u9nVo67tthmJbowuPGwnNXmEr1dFTLIoWZXhTU8W+SK/GIYMFdjsuNZ0zEMdJB8zW3jWpWjQPOtlA/ZSqsC8vGYtEXqPmRidk1ZmFCuFqLm5OpwjmrlJ32LKSQCBO9H5RY6WR1PMxfVUlOisdAI7RZ2GIvFnRjOuKsC+q6yXGOAHrVCBJ2yEth91x+jpenXPcTs -Z29bMPVxKq7VRemjS51cc8rWJiN6ZfMSmsVgpTNG1/7MVBQgEipNzdT9w2Q5stZRwyzgWjKbA6DiTspFMk/Boo3vMTXo1AHwFAILcOZqMxLRjRyLrYeDOyNlkM66kC1xGpHaRrKIhxezYJ3ALs9teeS9U1k3yt5B3izymB121a+2d1zIDQsPOne/sgxwC06953E1qZMtla0yeitCsgnsbOGzv8Wks2jbLKRDhTvr0TYuwtq4g6D3bAMMDfnYu0Dl +dpU6ei0IqRVXgXqy7VCezAS28fPNbvF2iQ1Qhakkl9NqAQXIagk1cSr3xmLDsLRnFa4mxtIRGF0VposLWLm7X1cPJ0ZjbAGfaWrkXbWY2Ao7JA6AA+khMrfV3rbd9UfDq5ZFayl2dQnT0vWHdoKNdpO1KdXI64J2+zsxncTmocRmkY+1VpLSRZV1mcq4RM7CGCtCIDLcUYucdcaC5W4zVyxVRxS1Wm/ziuF3xjrlmdngI4ARgThIjIBmQLjTAW3i -z8SMglourPTZ02ncB8CNHy2kxocsoM2o7liA6HGLW8SR5Jc4OAAyRAdNksPE2AMxabZmGKzDVlIXMn8WfqsjVAYAT5U1whHzD+1fcWS09zdLT0mPbWVO09tb8am20ODqDnVSWyLNr85BzQSYyNlmMgrgI+bcY53TDoJrKguhOtnTMfu06VrcZaamjkZAPah/XWVzRjfwc9slqJqxNBsdu0IWkqlngQy6WdV1Z0RsGYKVs+ky7mUVZbNY7W1lEemo +uSDSs2NIWqYO4WyrN/tauWTqTrZZRl4wmZxzbkp0B9upBfVWoTGTTQ9P7KJS2ldYwflKU4DHn7PTto7dZOkbtmFaGc2hGqMbVfdX15eayDGXdNt/jZnG0QliPr8g35Lt1psh6hOdlybusZwIHRkJZfF4SRkZUu6UKvqaLzcP3ZC/sr7lzpv9rfUy/mdz/bg7rrzugbfjm+BdGQ7EF1ANMg4ZugFismejOM14KyM8lMdAxdOIV3p3TPR1dXCWvq1r -oy2mBTLri7XYswlO9aT4mA9jp9oHR26QuiTqUu0OitGXQsuizu85yatIrLrC7SmXMUwZy72sV1Zx47Xx272pzKKTU1pD1uXXcu/jtMsqcbDguBeXeCSFQ1EOo+8Kx2FBfpJuHsmGC9cSiPDG4gbhkEJlhqyGpLeXNxWSqoGvwFRb3XrOnLWnbIi+RdQjaafVKLvbtQxSxxQsR8sxVnWKWUV/koA4kockF008i+JERfVW1fyLTi5/Ioa0vg6gUd0j +UqNR2oSDobpmkNOwtHRhZbD1nxSFcJdiMyoBRtEaXNzHfbOvxdzTLl516v0soMMm4yI2Haw63HFsgrW12ieNBXj6gCGoz9BCY/Vb5GjCWSD2Xn4jYm27BdWu5Ul2qDu1SeNmx05v8C7TmzCJQPrSEU21eGqmfmFLuw1VCugttti6blWqbEg8uGAOZavhCEqgwADxiJygTeMesp4qyghNzcj+wQCdxZydi3KTNAnWAu9ctGjw2S3XLogrRHW04t9y -tJ63GzrenRHKnGw5s67rLklBqsBSALGAuQJixQMxMcwer+Twh+3SXHl8PI9ehTQBvQ/Lky7CZLolQt62gaaPFqgZY9lqRnQT2qqd887Iq2G5sGHVHRSzl7HITRb92GgYq1OgxFNPJz3lXNrJ+dlWo1lZfbZcbojuTBWL6rNZERqhO1hDqJqfQu5nCnWqlB1WXODHVKuvbNu/5eVrmDgtMAKcdYCtVhi9ZMMMtug4sddtQFaUKCn6rh1aku69QvyB +7s8nlWG1cfRUmydw7quFFa3HAeQYuz68u+aBq3IasonXO7OnFjg7Aa2g0Nf0i4k8HaayyKWRW6ys0P48kQidRRorb2MQIhL+yWZFBy6YZ1zztOrVy4B3lUQ6Dp0XDMSbayvI1Nx3bq51nTv6XSCOxBd9ZrT4WeOiVPOkmj+eI7Vhspsrp60EuoiGJm6rmylBVog1l086d5M6qcmWumPMHaFG9PxHq6Mu2sNsfnWhmo5Ji07oDS7yBGAM4AMxYDGJ -wFqiruwLFOExWaZA6ALWFLucLeSWkpdLba/iIp2E7VtwgdI+e2jMhkWfECGPUui6dhDAbhDeyqFHU4UisifmQabHPTtldRWRV9sdK7G51s3P9eQL27igqoBTUDFig44TxGLMUFZQ0phqADZuCb64/VmLBna2eNof/CKu+DAka7cKmM8o2JhJmqedca7Y+2not6HcG2wzEf8UE/g4Tmkie/asdyKSYBaGErq/qMMs5dNxwqhOXwmtStIeG7up0XzU +zIDw8kyzpN4zGFTTB661mluSmcSu0udjwL/V7uzq6EDZGr2dfS7VF3bzoMnWEWjlpp0bA9m7OXyncMnIis7Y7Iro9VrSXfJQ5cdfTaF/zy+qUafoO9ptPiKx5EJsrxrjv6kW1vVqiHXShqBFluvSMlvzyqp0pdqToOn8+ptdEqRp1bjpTLr+2tM++cbks1nyuWXRZoDlQ15qkZDOFvV/CFTZhoMoAQeLQMFkmbPCheo+K75507Tv8XfHm+QxS08E -ybfu0ENTLQjUhladX7gTRppCT4uwQdWB9Z/V6ptteVKM/R5V9aMYmXlv77SnOqMxw0ama74moinX/22GNF46+IZNwu87e2cksmjoqhQkgbtb0d/i5AeMX9kB4/bNthUWurrJG8bL2mtIqOLsFKk3Ba5Dpbyj5xB5oPvRi0BgA1YIuWJASlmOUDNrjyMe1rbHDXYOuh0ULYivlFguD7TQ227odVkbp124ds0FMuLQQO1vpvyLZDk3vgjsTCMQXK1Z +cUUrql7Xom2udllabnmXNyW+asVeLBQW4Bi7GXkl1AYu+nYEA7ux1gGqojhNMhyeO/La11EMwvtezm9Do+DaxDWZxPllZSS2kIrk7JEHODrZjZcbA01SNhZq1YCq9KWUuzLtjPbhKmZzJqAEaIwMalFpkdTMWkSouPw1BgauRc3LxTKOXXGupedALLeWkCzvyuSmuqSQqM72Q0Odo67V1wdolmx9ILiZOkPnefiLztfqkS12DBiFFbAO32B7FKpu -15AMubfHW3z5dQq102pkiIyaqy4htyB1jNHDnW2dSRa4sGnXNSk3tnza0UwLYX5lG0rEXpfSDdUpu8vNoQ6E2FQTyntZBQ/5ps/KVbWHUx8SVnMRYRR66zG2ydvsWaiy35NiwFfGoz0uZGt+va0iBR1FfiuJAtEdUhcut/ZqeanJLuDXcVMLu4o86gJlCtoJlSSW3SdHtr9J1orsrdQxS2hc+GFa7CgOASPtBCzSpWl0WS0wvL/Qu2UVl+qia8F3 +2FtuEqaAkIiSn3MyLHbJkd6MWI/igbQBCDkRNq8XcbICRdmRqdp3GzM6XXUXZGdSQ6PZ2VjrkbZ368st8E7MZ27uJP0dIQTUBAnL25n6uIYuClyktd/rMK0kCSo+7R2dVNVCVavJb20ofHa3mipd3INUNJZsqOAISgbahk0jJuhVWC2ZgrAzxdchF/TBbruVXZPgPadYE7ix0KbsGMUpu1Ndns6M02wkuEVRpuxBdOTzUjE7fIY1IEK+mBuMEiVR -HgO4tX3qmtlPA7uzbJzoi+fGq8GNCHdh1Xv9uLTYIctsVcoy613lAFFqLjMFh4Ng55DZ4zH4eCPg7yuREJPM1btu8zWrUHzdZFL5DEN1sP7Zoy00dErb6N2XdqHEucY9ZCxkCo2K8Z32GRMoadwrA6kbyR2s79Wo2tAF9nqg6VbLq/JQ8Mw1dFsLNvbZNv8TrQsen+xrbna6MbVULSJGuwRkQ9rEVN9qjpet9aoOwGchyVNerSNYlsnGN4LRGGYp +SDoMXSroQMdo2bUFVa826nUu66VNDVcv22ksyqbW5MbV6KBK15DPyzPCtTE6KUOsIUqg3/hjITF6srNvm6XVnEXP83Xs2xy17r04cWTpKrnaPGmudl4rpk3nrrJtXEypNevCj1t4WKwNWLnbEptscBboHx9oIdRWRI7FjE66J1TPNs3XiOxOdE11gdD6O3hauzc8sow6p7TAVTV2oCeAYx0iq7aR3RPLNLbXEAJdYvb8o16VJCXdAukWdqPaxZ2Z -bOEnZvGz25ATQLnXg9o3pJF8aXheL1EC5jACFtNoahPu0ZD1WYwdp9TeSOxZtVba7mXPGTI3ec8G6NnMz7KCqer3pRr2s7tfW75V0zrsY3Z+Qof5iuYVI73dqFoHLWe/yz7bs+27VtzXamLEItcw674UbZpCnYtGhK1oJa7FnjNNi7VWuwodo/RpDnlbokAAxddEALQAjYnXGO5mtjEfOIRGNILBxuw4rQfaojdKqhfyBwru8eYMY/JdWubEZ349 +rp5HQZO5O1cXSjsCQFmFXl/OUQCeraS12QqUrycyEv0lMPSb02DdOB9TZUUoxN9rgfVAUuB9cWnQOF5aze1322v+jRX2jmlCO7N1FSZp9XTJm8CpPNxDgDnAuPRkJQarlSK61xWWmBDdltQdciI8qwh33CkJXScMtVd4E6l03yLoi4WRu2KlME6M10+zqzXU1KOUkJlpuOyobl/IbG27d4a/AsF3JLskZCoO95tklak9U9RuhDTJGzJe7Q6YhX6F -pLHVZ2hVd/sF3irZspK6KCkk0o0PRiQ1i0Cm3T0OaEdzS6JiUpgwHJYBuu9NGMJ2ymkxutYOkWykUBAAzUEAJRDyWLvKDyAY1hH694VujLM2oCt3NBdR3eVq4FAY4chVJXL5tBqgw3hqVOiXd086sO1TruR3QxupqUdGI+lRRqBoDnjc0kZs8Tm3Vbzr0XcEmTLs9EajdIpGrayY/velOvErW35BTrmTuJq1J1inbp1AToriIPKTOBAmW0pp3xYR +oVDVivWQ12IzePk79psbXMChBOKALGh012pAWTX2uzddfaJrpjwwC8KkIAJ2tIikeRJ2FzUuUE351Ytbf62YeWdVWNKsndUi6qU3MlqcFdbeXXNym6YF13brgXQ9u/SdLO7nS1//IUeEKibACm4dCTDalUm3R90xVhAXaCl0ZLrnbTm2igdKA7+Oa43LiJX2S+8pwubELLU4vj3Xe7YXd4/Khh1TZv5lbDuoB+CXa4HBDToB9Wcm/qdbqaUd29pr -k2maXIBKba4QK0UjphXTSHGJlnu7Rd0oeJ93Sd2hHdoVaaMX9KqZHcmuyipl8CihDzXFizY5Mtgu8JB1d2DOvpGRr8rVtpm6Ix35Wrfie+O47lpAQkNJwVKphvyAUzU9QoA/KU+nvacpuUOFdxq/QzutqWnRDumTRUO62TkHtrZSJycwLd5frqo2Jrsvbcmut6hxBjbuDCyVemaOyErY2gIhClarrp7KRsZvACpzQ7rqxJ/bWPuqbtZd0j20f7t5 +YbVoaizQtwZUEBJGWWcCAkYKZO+TeBgzqk4cMtk5Oy+c7Sd10SVIwnFOu3dtWaagYcsqO7Ueu06dpqb9V21jsxnVWWy9ZzbRqCwQFtVUQJ2cXCBi7j9jsbvsrms3Dlt+dbyl1a7vXRnusRxQzpBmXWQ1tQ1jaIKKiiftMMiDeu7Darmy3dXtxrd0xTrGoOFS9eFfMM+2k4tsgbSpu4Ntm86FG3M7v9gsAlQkuXIUoR1NkojwdY4TV4Ja6hMKkzvL -qvgCnfJKoAL+oK/AuBr7MCR1lGNB6haEg2yYDaojd8vaGiBm8t5aWqDKot/Ii/Z3itrCrSjO9vdcVZbowuPGwnNXmNBtaTpn5GcEBzXbHu8m4TS7+N3QH0LXaO226dv7bKG1M7rZQP2UqrAvLxmLRF6j5kYnZNuZU0rhai5uTqcLcalJdRyykkD9rp33WKu5gp7qqAC3R9onXRVOgPdc86Ud3B7qOsQd4n4s1RYSRkiaPh2K+JYg9tk657gbrvfd +Xf1Q6SN4kLYRlNGEzjWJG7m1aWr3M1A/0gPYQCmHUsMgQLDLZuPYK8JLBBN+aN2CaVimNWVm29VbS7fW0sBRkXSvOpjlbbrVHUNLLv3R22xndW87Ht0s7rgrez6zuwE/JXl21u1DtJRK9sdx5ochyCZpjHXeOgF5jbiwXkfFM02agcwrdsCSVbVxZtM+KqW73Nq2710ayAHoAKLPAcmA08TZqy2kXmVrKQcutlySaE8urLeUVaimgHS7Tl1qg24V -R92nNRHHz+i0mB1ybdTu086GvzzW4BTpfDfX2/edx87ZhE7OrQeomECpt2y69l3gcoldV/S2kIzEznD12rvPnZsyxKFa4wQtW7/mYuuygT10m48YEC7azGwFHZIHQAH1lJl2Wud3du213dw2gED117u4LcLWhzl8M61PWS7vpHUjuqQ9Qe65d1y1OYpZpGBg1aS0DRrx4VbGN4OiM53gbXeKGLooXTj00oxJwq5W4O9tclarTCxN0A6+GUjYsYWT +RuEGJNJzb3+3S9tPXerWt9U03QZjEQkQTWexye+GVPxT3pEzoPBIy2yAdtjqQV0GRNDKPzmurOm9LELJGMpJ6ZVqiep3q6S92+rtkzaejMvARgAqJZjEK8UK1ix3wmzMySAoVK4Zbs8tV4jbbYp2Izp1KacrOndaa7It0EUrt+Zk25/d1lbxFViJ0tOLYbepG2tw7s1WHpFCq2W3g9ibKIjUdruNAeT28o9EY8l2151FDJcFGozpXpTX4n68yL+R -MWjK8s79OthGBOEiMgGZAuNMBbeK5IMArcYO+SMkR62bXRHq5ZD86916949D1oyrql3Wke0sd0h65d3LVur1au3ZWI4LzjBT5QVtkBSMl9t25rA1neBuz2A5K1cdMHNLfbcDscne821cdE2asC1BjtcOjyWkqlutMzK2j9syzQVc9S+cwqhc0HDt0dhLPc2ESKUcrznOEWWVFq+povNxGDkL+1ueazavmtAYB8uXQir1fgq4rpVQC6UV0V+rP3cL +DDFNVzYKbW2jWs4kQSa/sdh6SbXGXtrxuWUe5jF9k67GaRZuZJXC0uvV5liwSF2iw/bXVjJtGxl8+V0dQwqxuDMbpY+tjzvX49PIvtM2woNIh78O4jqgqRNIbe6yasy11Chu2HhhHwa7NXIp2fSgOoDdVIujvd8KKF+FLTygXQi653d4/b7t1M7vIPc/ux35UsTnKx9WyZXb1U4+CrhdGD21BUnVUn2rPd51SjB35Lqa0cD6n2Wshavg4wrogzb5 -a2hCNQAgGmQcM3QCxWTPRcZa8FZGeSmOlNuvCdb3aUm3/ysrXadu1E5M/qbimkNtendWu8CAYmK6D2ZXleErRC9dWbABhZbD1nxSFcJdiMyoBRtGhIp7XS1u4E99xAuWS17vsnYXK7SdME6Np31dolnaAuprtUiS92j1AENRn6CEx+FwaNGEskHsvEWymydZtzkza93T1XbH8+ctlD0EGYVktSLSgfWkIWlLuJ2mELS2boU849rC77V2uIvwXcbC +4y4lI46Qzm4js2PfZuswmL3Z//obM1BfoeARL4W9MnNDdhCnWnXrOttRGxJarAXKkXScuojdsi60olxDqSQOWOh49t26nj2u7pePe7u5/dk/y4umozRlVH8KoYWzMh8nlWHoT1gF20l1o9TOubQaqGbZCK3fljXqoE6aqpAGZ7pagQsu6/ZYsOucbUtG1HdWXaLOloe0u7Q6YPDlueglqCYgBXkFdGLhwuMQsyX0AqiPerMGI92gJAt0krqkbT8O -1Ilu/5IPLhgDmWr4QhKoMAA8YicoE3jHrKeKsoITc3I/sChXXPBOA9mUzBD1DrtUZZ4SdZtgp7xZ1bToQrTtOpCdw7hyrDauPoqUlulY9XCitbhQvKxPZ9edeuLwasPmybuf0UHyhP5wnz9Hks2MKTb1O009uJzA6Cwlt3/BSyK3WVmgQ3kiETqKNFbexiBEJf2QXMvCyYVwON50dziN0+nuw2bvu8VdZKptJ2N1pErXBWkM9jXbDJ0FeKXji33Y +oWiPS7011llui3WouxBdT1bWPUbJtQneIUEVeP0kMoxWHsENICepMNl4zvK1B0r4WDRksyWNa7jLIyFqmGZBu7mARGSs/mmDvcEQOupvVvRSIS36DvPGeqOnjdFnSOAAa5A9EI8GBCYPLogmqmBKYWSRIEtlM1idnk3/OiPbX9E09Jc71V2+YLUflae5I9PPLbT1P7rrHSx6qi8eVRXLAGUSQrZNg0K1L8gsJ0T1qOEI7ONWdHVyXtW3et3Sagkl -+CeJlLJUfzxHasNlRM9PWgl1EHzsdNXrurJ5rdC8F0DunT8Xlsi8dntdlz0hp0incr6+ldcXKBm0DTtmUj9u6A0u8gRgDOADMWAxicyA8PJMs6TePrPU0wYPtnjbDpm+nvI3aey9QWje6j+1oHtb3T0a1Gd8J6kG0YLMPtSwc3ZymqRH9j1SLXXZFdent1Hbgg1ybosPUMzfVtyrKr11Lnsi5Wyqq9diartG07rqF5obW1C905tNl05brFZlZnb/ +vNK26UT1co3CqGOs176VpttCTlL0vALM/ZgAcOoOdVDeozsjD24096Dgyz1U7t7aQ4amqYHI7VN0htrd3RlOyWdmtbX5zV+FMoO9Gq0eEy66RJh2kYPd/I2Zd6g7yKyjmNPbT2ugY9Mvz1mkx6u0DXaMFZM6n1AvmIEAJoveksKoV9dMqiv9R4Dah2lgI18ZTT2Jrou3aWOyyNhB737nEHoZ3TaegLVFza6x2x1pRslpQDjYqHChR3GCi1qAuBWd -FpKwjW2bVy/XXomuaNGDMKk1pnz6baTG+KN5raMrwcqEKdUjIABt6v4QqbMNBlACDxaBgyUypUWZyqjubis709O/bfN0+NqgbYznX1tcorm91SPPQPW3u6qdWB7wXUn6M71DdsU/Bklj9hmtJDTXsBe+nYZB63yWgBp0FdgW80IerL6rHnpqHximM9Dob/bRSYKlrcZmizNupq470ab5bs0udE6gtNq461z0ECvcPUWGiDWYwwuw2Unr/mTUAI0R +RPnbdxky6HkOAF2xvRJrSgfXE2OPAW8492lcH9LGVoPWovV4ehnthbrPkXpiQIgBI/MKysr8CEAoPnSeh4BL2NR0aW8BKHop9R8OtSde67m61BLr1KT6q0JdFG7x41HXIeXWz6vwV78iohoH8JV7VVmKz61HbuHFBHJl0LMUEPdm1kJxWvStJUriY6lZDg6FT3eHrR3ZTUnsIUVE2wht2p4AK9Q3d6+GNUZiFtHFbb66umQvfb/iU2+oDAEcBIS9 -gY1KLTI6mYtIlRcfhqDA1ci5uV2mRye5s97u63uWIHqE6Qke34wL56et3FjpmPTLuuY98J7ueV+gsH9ABRUHle5SrJ1+qSUvbRBE01DPa78Gxjz72eo7cYtDR6V+VzsvZuXueiQAoCQiJKfczIsdsmR3oxYj+KBtAFOOUYOxpCYjwQG2gVuI3cPMsE9gvsMDGoHrsHQmu/rdjg7eNI3GRMtGI+C/arBzHJnqzBFwDAxeLdXIKghj+swrSVgu661v +F26NkUbhCVjbRmuC9G87SD2P7tePXWO731qWlAAkUQWH7B8rbjkV+JGD3LKBm3fAWvPtq31Dzr/wJoDSNWsU9sbLgyWVaI/bbdfT6lCtCbqVWeuwHfXYoxhTkCUSGxq0kaWOQ0NOXG6gD0pLy4pQxO8D+Gx61S2jnvXRindOP2q0ysHFh8Oi+Gl3QUGu1BSrxRrtveZCwcn15Hqd1227puPYHGmndIlqf8197t1XQPu/c9Es7y/IBEKFVET0PEyS -z8TiVwpNptNq9ILVMIKTd14+lQ0lnyo4AhKBtqGTSMm6FVYLZmCsD+j3NXv9MJ6e545MK7Q+2tnqEPXpqyVdRY7Ne2xXvCreJewbd1bqTk2GHIM/tjOq4Qc3hNKKJlumvZX02a9UC0yj18SuUPnla4QdbUrEi1qzInxbUMm/o617KxmbXrOJNJ4vAMWEgzwrUxOilDrCFKoN/4YyFehuMHedezi9Xp7iN0tDr3bcLOuvlSCKoT3vDtRXXlK9PNPk +4bPhmjAxNkGKOnE4smljF1yFILfnA/bEN0D93xmxjz5eRVetVlyZ6GVnjvzGACT2fpcaHtpDaQIqsdt8Eng6vPbb3mLaQuPfxes/dAxBzt1B1tdDRuEdkdSi7YF1vCvR7UPuxBdyjbGEIa5TS8L7ukrYUGZwsxEzsE0pHOrLdxgVnrFwrPL1dKOygN9rqWm06ZP6bUhGquNiMNG7a4WvG7XAGhD+7E7o34Axtkvkn6nFVaHyiEmGjPlMoQCwaRif -KAxpecqTXrwozrt9o6p0rxYJbdYQDCu5QQx7+18btUveZdchFqm6akV6POlHfBqh1dF9b/GZMrokAMDofR28LVGHnllGHVPaYCqau1ATwDGOgF3QKuhN5MK6pF1GRvdenUS0yNY67zI3iHpnnZIe2Y9GR74T1hNsd5UdgSAswq8v5wA5t1vMBeyFSleTmQnter70SqWuBRRMauVLEpPrZZnOpbdXTboLJwmuhzVEW8V1dWc+xagkL92VnMR7diG6 +YHIxGoN9Ot+YGAALiRh5wJpAokiTQ3X5P9KkvU7TvyOfJuzc9LfqaT3KxsePVWOhk9ZB6mT11juybTDs4qitTNDHULGOnELyNbgueF7AVniRltTr2e5QFyDyCJ32ZIWrv0I4ZtwJzYT3o3s9hXca3G9L57Qs2Eave/mmqmA9H2tUz0TZySmJxAV88BvEuDIeGI5eFmOTKNBc7nNXC9pO2Bfu4jdsrtxe28ACbVeJevHNCF7Uj1IXsxnVc2mpq6BB -L53wYs+kJm27j+1tpmIXHoyEoD0Km09eCrLTAhuy2oOuRINdpGr7hR3noRGRkuv09Vg6wa02DrEPci2k0pn8avWZykhMtNx2VDcmoqFa3bvDX4KoepU952A3m7A3vaXWkPCB1K46AMUQFK8SeB0KoZWK8ee27rxtFUfO3Rt18yCt0cTopbZlao9eBtbYggtzrMpenYLu25S8Oy4yKqTsLmpcoJO/qUe2EKuFaB5ujO9dElSMJWxs5tX97WRd9vrj +YswL9uy2bHARIMVN8lZ3YTtKmE9mlW9q3L2srS42nyacqi21lyqjL1KnoZWQDHIi4KXAPDFqOhaKO8ADZt46w1hl2as3Fd+QEndyk6LR1C4A9vRSe3m9EVjEj0RbtLLVFuxC9MW7Mp0ktpTtgG2OalwwqrnFv9l1ucbG6Q51o6BXwBdrULeMW7HpfsL611mctItc6cwFIzObxMJBZCxWTxqrjtFKs6r3CHoavaJbfAArigRgBj8N4dRpWIKyCLVN -937BvqLbCexat8J6MW1saoUeEKibACm4dCTDalSKPZdcj7pirCm71nHttNX7eg2F96bOvUhDpQeY7e23pnE6CHkTLu6Xcsa4WlRTbnTX+TusRdSmz29OV8xokZ7t77VjG4fVDXDN82hjqpnY0eudlZBbSy0m4OS7kkZZZwICRFpk75N4GDOqThwy2Tk7Lr7t4PVvepTK7W64yzu1pqBkzy14dyK6Kb0wnv6vaUurA9MrbWgH3WGQcJagfA9u+oBO +CQfWQT3lLvOSZJjilJ3mjvhnf/S9rdUjbRr3DIUd3eFu3y9vS6A72WgrSPXWO9VtXgaLASaHF98drRRs1kZx9W097DpzZKOvs9Q6LmXEWxoqnVtS1K0Unb1VXMmMSJdNw3+Nl6l/vEtNN/weLKm21leqRd1InvqvSvu0S2cz8q/EoIF/LeCfQL5xYoFiJ9w0aKIus2dNKib4Z0caoTXeWe4cNyaabulVnubvSkel+9Qd7EF0Rtu8VTb9JWI//MwS -zi4SxPcfsAtdIo63tmuasKvddWmUd3+6fi1jDHtTbv+PdYjihnSAoBoQAFuPeqW6i80PYFZBGAI2GoCtw1bYdWb3v1HWNQWI9vJ7qu082qCrd2ekKtIl73z2ZAoQbXLu0NtsmTTkpQFvVTXnmqcImrxgL1CYWyvWBe/qhWjMDWUZmVmeqOY1rFEobdiUqDrzPfZegZNBxS5B1Od1VWTDqWGQIFh4e3HsFeElgg62tG7BNKxW2uMHUYaoE9lI6M3C +JS7Lxdf/e010mW6JK03zsY7XB/XWdxC6D17g9PPyCF26vR0wqwu3GNurPh0288dfTbd/WwluF+QMWmf1aw7StWTrsV3d9krdVa47diV2ytVDVoE0G1hALKQBxkJYQBc7VLZW49NfgEZCQmWg+MSOQ05aDnHbvhnR6s9y908rIN733vI3f7elu9gd6272Szt7bax66l88jL9N0H2KMyBwow2tBfZSCZvZp2TYdsoAhcbzDfZLtt2pJGW1TtRoaCzR -6PvBPQyQgoNSR74d0pHt63aJej89mB7Bt01+tr2Z3YCfkMp7a3ah2gcVWuu480OQ56I34ntnHf563B1XOKaSZPbOpudDevm2Acqv6WmfA+bTsO6SNRSqSh14+lkAPQAUWeA5MBp4mzVltDwsrWUg5ddbkk0KNdYl650O4lI0n1IHqWnpiGox9zdb4J0inv7Pdnk6boMxiISI9tNGHRC80xovg8Y91qHoPBJru8g987NnhmGArutdlWxCyFfa6s5S +VrhuJMAkdQAuaCleEwAFqwcMEBpoxGbK70X3r7upEocC9ND7oHVs5JRnV4+ph9W+KWH2ZTuI7SfooEA60IBRov1jMfh440Q5SS61L08AkHtBpsgctTa6mJXJ6phDZWm1tdBFqxIXHXrhXTfy3NoZKCJXQs+wmJuGAQVAPKBmwgigyYianzaGdhT6x5XOPuuPaOMk+RGBjKn0d1rSndNehBdmU7uQ2yXpO2ICSd0tKIMrTg/Qr4ffC8VstepqYIbU -ctJ6Vc+4np3T6RJ2kJrX6UWezI6GHsdYRUSzGIV4oFQljvhNmZkkBQqURy095arxsx1tbpF3Te8iKxUV7Tu0t7of5WY+z89ya66A1larETpacWw29SNtbiyVqm3VY4aP57o7rm21ms0Pjc2om1kD755U4Lr7lftymHNjMj7P7APpLTdkO9i1Pt7tqW4OuTbTcfCHGU9rDVGetI1Dq1jaGmHL6X9ERdtQeZS+8tdu47nzp4LowTY63efVglqaxUaM +zq7wa2/TFN6MwPUrwGl3YGspW3AKF8D3XpmIWWswuSVtMeaF51OSDiPdnvNoVHj76d1+XufvTU+3x9s16KpXabtPON6TCO9UqoyvLa3k7PfJFHgEMHC3u0zRufPdnEvqdKe6lOXoRs5rWC240gE0ipNwY7lK4gQ80i4zhabaEHvXwhBtkk6NSq6aK15+lrvXgegqVFc6GH2vAprPa3eu09mU6ru1+Cs3zPVcCfdnwzq9CxTsD3TdlATNm16V2lX2 -wC+XVjJtGxl8NN0dQy6ZZ2jPeJ2l9v3XKWPIvpue/ON2564dnNDI5NYsBAiSnigagDSG3usm3MtdQobth4YR8CkrVyKdn0W3r8A1VtqA2Rreqh9D0TWCld+LofXpOym9VBrkM2TfNNeja/JQgfVtYz29VOPgq4XKp9tQUeDW9AsHdblLU49TWi2l1vjrens+GghdGpbL3bHrppNQbWyqlYt6PW4EY27ELN+ei0VixIokhuCc0N2EKdadesMx1EbE +OlLVEraddTQQ0EArihR5NGQkQWYzIwGD/mE2TFtQP8dZwqQh3H7sLnfDOt9Y657gt2R2pPFaTCnVdPW69V0HPoGXZlOrHtfba8dGQkVbPQsY68FPw1ed2dPoRzHTWwXdJtyZoX5rMUOTAe7wCwFh4ZXl4le+kmJCoAZXEzBy2kTK7XIRVAo0m6HZ3XqG5veoe995t97XCbsvvGJS1mqjdkdCO5gmWktfJEUJ7J76s81DXv1TrafJUFGEr7A5nftB -lqodcu19xXLQr1xHt5EdpOzy1rr6gt3uvs+NZ6+sLdtnba9mozRlVFIm960kWgpez33vN7QnVGp9LY6nhTUrrKDkOqiaNjWrRi34FoF1X9pUYRMZS++01lMjRsP3Rq54nakH0jBvp3aCyXlS+w7VVloe2FQAK6bdgjgdeZaYgBXkFdGLhwuMQNaUWgtBferMcF92gJSN1tnsf8aQOh69iO68n0IvoKfYNek4NO2qYMRFYXIjad+H6SGUZsX2CGlD +8redq9eNlJLeSYZBu6zlW+uQhdz6EO6CJoNtUga2LNYu6JHZ9rpm+r3Pevp8y67KZQwofncZe4Spu8hLCb1CicPKZsNjE83Q+kCsAHRiMrmzGFlkqdX3uyUvvYRutBFdd6sX4vqu0PX7evZ9Ki7GT0HntmvSH21j1B2RhQxseTRJUzIe0U6vaW8B/pmgioJm/qtso6/HXM5o+uUpC88p0uk9gmD5PIHTg0qVBHjqq7UNaKKXRo+yad8G6GL17L1c -fXp0sq5By6CPWeOoHqanOi8des7CznGWWWdafMtxdpM6Hc2qjHwvdkw4rd5TbGQ233XIvfmekbFONgSJmqrI4ABrkD0QjwYEJg8uiCaqYE/JZJEgS+UzWJPeQSCsF9tf0r30DrpvfaT60m9orJ731wvoMlWJe2Xd8J7ru2vzjyqK5YAyiXbbJsFCupfkFxunwdRwhHZyqnvn+U3i5i+tZ9Ke5titLqAqO3f8yXcuq21MNvQtuQioA5S9LwCzP2YA +bgOTW4kf5cxsDrkIHsak9GoA4YASITcXsk3ZCwABdVu7ii0ZkGBfXqpVlVC2jrt20nrCXaDy/rdrBLkN03ZobAl98Dk9CawuHSI1lRfae+4mSZa6/l39UKo5qaayU9xV6ll6uvNHvd00kOZR7TDlU6auGjZnu7F9jTbF22RGtlfdzW7ZmEs8v7XegW9EL1OWPexvEyACXhT/nRbus0dJ+74P03orjfZSeuh9GUTG72P3utPd4+5h90L6Kmp0I02P -HDqf1dwGaO2AoRsLcDR+9BwdH7br0JVwMfY8Cw+9g6bj72MPqTXVgekntXH7b21wJWOneieukSYdoqn3fyLJuUYu549ND1rK7z+swvQK+nMGW7DKX0pOo8/dVS3ApdowVkzqfXL+YgQAmi96SwqhX10yqK/1NmNSBKWAjXxmvfcZ+uJljH6uZkwvuEvagi1j9+T6Xr2DXr17WCBLSgMLaCgXbJuMFFrUBcCs6jFT0JbsncIs8gd9T9LTr4mtN/sY +kZvUrJaC7oeixRC07Pm+hGiPBbr51fsqV3ZgGkmw5rrjIWgrv1lWdzInpk46yJ17sJrPrJ2ofpYZ6YT0m3oO+diM2hdsmKUw0NHqijb5+83tWx6e4YQGJ5AKgNWoAoXASMiM3tqwQ9BK4G5/zuw06kijfYy+iMguB6zl0d6A3LQ8PUftgt7dz0P7qzTdy+yWd4g6wQIyUitQLLEyltDEyt1nWlPCfUp0gXdUc6VqUdvso/pJmnQFt5a1llRUXkiI -gM/GtyxoVKGFX3PdvpupTlGr6oS3h3t8FWVe9AA2T0+wAEQAkfmFZWV+BCAUHzpPQ8AgQqxZNLeBZn22vuiPUMiMY94faMvEnZMEvXBmv3dsq7pd3PXvY/cmu4iNYIF35FRDU4VSuMsz0oqo6701fuYhPHOrXdQRFNrJNbJSVQN0i61lazvF1Q+ow/XOytGF40RI5VwgrLLfDICvUkXr6xl7IEd8BVNC5wQf8SaF0yF0jW5S5L9Oj7lv0k3v3RWC +gJdqcI6p4qI2aHLEQ2sdolQQ6N13/PrHzcU+6ngBr7wF3MzHyNbxqn69Lu6/r3nTrKja6OrIdKNlAhi+EjerUMnUmqMy7yv12Jg5hXFW5NVwz7BobCFu5stx+/rAGeBhBjAWBXYMZDD3+oJdHFBcixwzgfuxrdPi7qK3wztSddQ+jc9E2zWeU37qIPRl++/d/l7sv11nsxnVHG56tnJFAhSLfsLbhq+cIe5X7IAkBdrI/gn4vOt0VrLF3cbvGfZN -4QLN6vacn0xXsffX1C8x98J6k+2iORQaoo3cqJx7juORxPN0XSc+5ZQV37zn1gyrhRVNGzL6EpayY2pWrTnZiYwWl1UZ9Q08qpmZaYul29CF6Qjls0oLpZsOiRRidK2MC+TIKvR1+8D++m736XCPuk7aI+5QdF9bxCaSPsmlScYM1BTVAdR6SAGi+Gl3QUGu1BSrxXnuB+ZCwPT92OKuXA73qqWe69fFVHoBJ5263qLvV5C1FtQmMAiFCqiJ6COe +atVmAeSSdwAIU96MnYXkGY1jmOmcHVlgtpzSJ5LW7GX2IUp5veBIwpxin63v0kHshfZMSw59ks6wR2INvZ3WdYq3NuMEXMQI7Gdfe3i1y+jLpE709mqzRp422aF0QqTVEdGshjbD+9htZxJHFDFJ0L0j1vB72YzIp1qOaIkIml3Nr8az7C52ANpY0KU+x79YAjmoUrTn5vT5e4n98F6VP1Qvpy/bNevkdW5k7Dirhoj7afvLlwxaREOEK3pR2XkG -xz9YodRgYmyCf3fJFBuBsml6v0mXQ3Ur5O6B+zEy8r174o6xZTOld9lmar832pAl/SbW77dJPZ+lxoe2kNjGiqx23wSeDpczuB+YtpG19Zgaq20DEGh/dW+rZNmsx9f1vZs2/dMe5H9dFLEX1YHtoHf7+XHYaXhr70lbCgzOFmKbdgmlid2EVsCUosSr6V0/LlmlOyKLCUjYSo9QG6sL27Zo2JY3bd29Pj7XN5Yp31bWQZfVtzdSs62gfsAVaceo +PV8l6bsRm/tt/KMkqtiVmzLEH5VroOOnRK6lSIZ7ELLGaMs/VD+5TtKj6K5UFbug3Q5smGo01bubUAJqakBra/0FYf7gKV7fsNwNhpbxQi8cyQ7jgB+rNZoVUmnl1e/7Tps0rfS+47doxBL71knsXfSy+vpCYWik30LyqgrQR2jPNL4QRQb3MhRBAEcbAC6ZsOnBTLvCfUScX5d7r7REJdvtfPQm/DG5N9j+zoKCpbfbGfThpPf6M75t1Ltht0Oq -hJel7RbAG1riOgje1TYg0jE+wORiNQb6db8wMAAXEjDzgTSBRJEmhEQLjeUBhuJ1NRJRZ93MaOJY63rT/Xre/3dKIqL21wnuTXaLGuLpxVFamYa9I+WaHgIE1pf6uXAqXtqFYQfSw9HeTNx3fzE+/RQs4j11TaP71d9oG5RH6uAZxqagHaszx2XVH62A16D7cXUfa1w/RNnJKYnEBXzwG8S4Mh4Yjl4BG70733GqF3a9yndFVb6Jt4KmvINYXe/2 +GhVDLON0fG2FCaDCqntpPdsiWK7MpJXgOz1NlD1vfRCEsj3Q+WqP9a0aI+CYaTVyJgQ60YRjsMZgESRxxnSuwuSR26onlZ/oG/V9y8k9ef6XzmHWpVpbs+pVtC+aLX0GrqHEpLCvlBfGIOyEcGqkcmNQFb9HT6mf2UHDZcIi7eEt06qtmWNruXufijC7m2DMJzk5xo4/YRa5ZpCZRbNma2zHRfXHQgNG5rVzVewq5lU5+n9Zq97QW3cLtQkGwAdL -dnw6wF1inq64G+eI+hwqiHJk0v1jgIkGKm+xz6lT2lTEUrWJ+hHlEHzpcbT5IcdbLjRDuFVKldVpduyQTAAKJUDcbCaJcGWsAFRLDgAznShNo6ViQAzwezzdQu683Ue7r0fWAI0CZ2AHx12G/tyFU2+2DZ0dgnrorHnm+eIUXV2cV0n1i2/pbwDJWnIOjv67gTCHIdaRk2sOlz/7HBX6nvNyV0m0Q1V5Snl2iUvF9fNQy1NExaTZ1WrvShQI63f8 +IbEYuHDnAHC8NGQkSIW4MWgAMXR9dd2G/9Y9da5f1X3vinUmugaaY9qJr1mvqmvZu+ma9FTUWerILtDtBt6jsA6PcoDhFby//b52r/0hBsr50aWvfDPqsnG9Ye7tWHcVNBzXz+svdRxkSBQOADJfYTuK4GWYAfCHabFE3MY6DP9x/7pW3wYEQ/R5q7FtRP66T1C3sm/YPui6dfxFbTCc0Jy+EpgvWNHnNVlxaq3r/ZLlVn9EVqucUKRq9/Tluui9 -+ABXFAjADH4c5WjSsQVkEWqaEg+sgnvKXeKUyTHEb3pQA33dT+dif6tJ3J/to0i6+oM9Ci7gt1U3pELV6+lkdOaSLASaHF98drRO5EieRKAP/XpOGWRgcxxTd6Fqlr1JMA3DGu6tJL6h3XCALNhTmfCHZNxKSX0tepMbVduvHNXkwjL3rxoJfQe0undPv7N00ISoh1HM/KvxKCAy23gn3L+cWKBYifcNGiiGbOHWUCe1ADJOyc72PnsgrTj2jKJz +e6qnx1mEwEyLcJQYIEtlbjKTtCnzoyADD2GEh1p2xeqDRbwGmI9nZQFf2GvrlbUIyk19jAHdE29bt/9Zh+4NZt4UXO0mOTqcYsm4QVM/Zptj8AfwvYoQAI4yI6D0kiiqVZaHC0oDHprigOPNJkLuFKn9927q9l6/HGEcCMAW/WPnYzBzPCXiAAb4X06+9tS+W3vPCA6h2yID/6x3r3Lvq/DWOG2ztVT7OX0+Pu1/WwBjRdqRjvNiuWCK/UFEZLpU -H6TH3wvpR/dn+wbdVo7CQ02/SViP/zMEiL+zNCBCfuKPb6gK1AS4a+q76HpYA2cBtB1F4bFRjtata/QoOotNZpKiMmOXSvrfNGxC9oCxuJknLvlfaS+lLtFSalY45KPVZd5Oxx1yw7gu1f7tF/d/+uWVU96ko1xkJYQBc7JnZW49NfgEZGUmWg+MSOQ05Hjkq3qF3fa+4m9RWsfHndbthfcsB3L9T778v3l+VZaOFjd4wznyLk3HuKMyBwowldBf +EY4R2nzvHrWi+7Y4+dqi334/IhWZOymWh/v6141aDts9YjTE2O/Uaij5tdIsBQ66/udfq7qJCUwwIQOPgu6MoXjorIOLCNiYJ/LPNtfizWUMsp1eP0BjYq+07Ff0kpWoJUO0F79sF71f0Qvs1/WT+y19vGkTqBkjCzuIhWo2W9oN5O4KWPr/XTMSr9sN7FNWJ9vupiuO7z9ZnLp3lsMR8rXLfXyJNabT3apEqZdqoajv90u7yw4JssIidivYkDXi -ZSCb8jrQLbtuqv9E3Ce/XN/qgfcxsuxFWe7fb3PHrfLVWuG4kwCR1AC5oKV4VwBo1VwxMZv3GDvSKMgBzFV6IHs70RrrmA7DOgshSwGcv19Kry/bt+rA9KE6eeVuXmEDl9e7Hdi8I6mqqzp8HTwCQe0gNCcL0Xjq8VXha6kGAG7/HUN3MtDdR4qANr37kWViYpaPbm0MlBEroWfYTE3DAIKgHlAzYQRQZMRNT5vzuiUD5+rN/1OSEhfRTssXdN+T +TiGG5p3T9XFmt2mrfS1gUKhszjlI+s4Ks8UZOWfnVdlunrZZByfqXUb0fygrBgk5TFuetYx2g0vhXdOofRZBApolTvDFRSGwALRe6KBoiCY7iu/Y0hang/V7C3C1/UHtNEB4b9s5dA23dbsSA+a+lgD5P7y/L2+GstmlKQwsnZyxxFfPCNjT6WxQdL1A/Bh8noV3Z9OpAdCpa+m0FWOG4bOquaJ2trTJ5SPu47d1nZeEKN7hzqkNrIdWvWkz1dea -yA0H/q2/U9ejA9hIGKmpFO2stidsQEkOLbCR4OGVO5Od+ma9E2Zei10AfH5ZOq+D1G69pdVcGO6aVTW0k9q764uXEQAn/dOoUDye1BkFFbOASVPMtbK8dg47hI1tNRlf2ahEpHJ70QMUPoKGdnvfaVOIHsv1EMu2nfgByOhYXwTLSnnG9JhhWhNYZXltbwHAYfvTwCGDhTd77Ck2XuEVSEcxcDy76Ch1dAey3WOrcgt1F6JpFSbgx3KVxMl5pFwA +efk8fODAyu29wDj47H62iW1fQi0iDm5IJ81slLUD28ZJuX9k4QA+7YjDz4vbkFDUDNAHO93r6ODrZVQm/9uh6T119brrnTc8qCVnVT0/g/kN8NThvFWstDAqXGWTuAxeOgUtIT67jP34kokA7+kNFNh4a5CGyprQEnUhPPSU8NN4z8iyAQs1QakAW6g9C4GnqLPUae3MDPA78wMAy063dVoHc9737Sf26UtYA7etcMAOa6hWVJSnBzIxuw1kAIYH -G020IPevhCDbJhG6Vb3y9rz9Nv+/09wd0FQN9gdDPQOBgdhfAxS0WVCGg5Jw+hZQ9bk2t09vtwnTdlNMteL79V33roWVU5dUmNEKq3t2oSDQQCuKFHk0ZCRBZjMjAYP+YTZMW1BAFloyqSXZo+r24fB7RwEzAZlA3vuvdalurbwMC2slnWGe3ZtL4R3FCnIgnOGdIo65Wor75g/DTTAwDe3TmtIGDAPS3UenbITKauKgbXQhpvogAHYOeV+WRdJA +n4wMSbAylilsDH+wN+0LbvoxQ/E/z9696e4ZJgG2MGuoC4A1mD0dSr3SRXd/ADlZ5vrXe0tco5vS5e69QkXZ8f3bwPVMYX+hB1aM6Ls2i3rMAzJa1IxDeLrxKlXU1SKFICSE+b7ZIwCPsnbaiBsxtZi7o3nTkrUaUn8sMDFPbP106ArUscXu+i9dQGIn6rsAi9YJ/RwmHvjKnKRW1f1kqTGWFwLrfXULSDVA7D28dAugHL8lfhtXfTdu9D9Mbryw -Dl4le+kmJCoAZXEzBy2kSynXIRVAoQx7OT1FcDdmVIB9J9KSRTO17Lizqf2mhQDbLrqb1evtlnWCBQhgsURUzaADO1mHmoa9+OgGZ+zsQHL/djWky6Xj6CenjLOAftUBj1FF66ffrCboC/tq2tZdbubyPVMvtPLZaumDOuW6LQ0zAKD1T303gNNK6m7kggeFvbamwrobEHd5CWE3qFE4eUzYbGJ5uh9IFYAOjEQat9Z60VXL7E3vRIBkK96AHpAM +OsEpwDLOxaA43fUdF1jboo/BZOs39Gpzx0CyySakfRIzDVsEsgOVLtrxTvGyr2lCkGCIMeAdjAz3DFdQ7DLWUCJ2BEVhEQKoANgTGpYtpI7Lq7Qws9inymAXFPv+Zbn+5L96HIKgEjAe81YYBzL9H371N2TAY3A3FujXRw7JqxbYAXMMq7laI4+ra9QSCBM2A+K0mM4PlawCXDUOfffeOpx1LObS0WufucnQHEYkmRdr2o2A7sseeHTfkp67abN2 -kpXdVSs+rodPZ6QF2UDqlneGe14I0ZCRO7b+gEBWHeJalTMh7RR6gcOA1y4aCK6tb7D0NPq89b6Ou+5usLzynS6T2CYPk+Z1jxc+I4eSv7dcae9yD8dqfJ2h3uX6aQm6d1Ud68fSuNwHJrcSP8uY2B1yED2NSejUAcMAJEJRQPNXpB+WIBxKDEQGZTWYgeYDq0a2t98QHoT2n7qs/efurA9i86r4zTBEKVNFuqdRFwJEaxTgfN7bTw/+uXN7H/3r +5as+Nur6nnxHDM0nbsbWyg9++xU9CG6LOngnzNQTiULsuFIBqoCJ2WiqNxvf9kQANCqGRHunAyO+eQG8kYWIPMWWxpdquhIDJqaHg3/XtMA3FWGSInyyTJJ+zPY5C7tBYkisYfIPH4LdfVV+hLVY1rEHoah3WEYqHd8ZuUHoXlrLNGniU7aYO/NyqgDdTlFtJeFJBIXYRlQMQISBfU5ekbF8M65EBDfuizrNK/7lourTX36geYAyLerd9bAHnt0I -iU6rpDM/9d1VyIS2rjqMA900s+ZR7TvR05qup+emqof93Y72QNsLtsTQy2xYCgkR6vnzeu9At6IXqcse9jeJkAEvClwezDyKEHN90SAYrfSlB6SD85Tnh0/eSy/Yj+x69mf6pqVMPsG3ahmipdCeVSslQgS0RbFELTsekHkZKxmBqgwP6whdXxaoQ7UZr3rfwa1qDVh7x311ZzZ1R03N5t8/SJRnIHV00UhPdc9tL7ummcNND5QhuwaDF87rWA9A +/KhcPdQZq1hWTdXbjKHC3FmbY8Dq/ayth4foC7bEnZiVuL6Ez0Cdtj1ebcqUNmS6DGWX0pnvbiy/FZagbCFVOOpcHSdew1hlPpXpbd70EdbgAAmiYsLHACGgF7wgRCXaDOsEOCBTgZMgz6cI6DFO6fgMxAb1Uisal62ve7mu3h1o/7SBBwAtgV6zAN8ltEBVYUfxsnO6FjHytU3CSsBsdV8kVaOzOC38gx82mMJIELKwZHUr6rsqGvWxwna5CHcr -akfQp8t4Yxzg+BggWGPsM99V4AD0ErgbYgqArTqSMSDGPaMyBXgaxA43au/VOAG3z0rAaz/c++okDCmbWR2JhxsNkCOxJNVmzrSnUgaU6VR2ukNpTL+Y6P70rfrb7fMtHIHcy2tVoyvFFReSIiAl2pwjqniojZocsRDaxHKUJLvYvSDuyJFEgHmTmzAawg4kCvy+tD6doP0Pr2g4Hugbdg17yl0o2UCGL4SOFBEcFSao4hVYHc4mUFG9EGDuwJNF +tBg+fkSmDDh6TbFsfPj9coql8lHh7lYP09pUg9y23f8pTYjACOjCKBDggtuM6o95lY8AEBnqEBni9bAQDoP39sBfVWyvMt5kbPL2nTNV/bi24EDT97QQNrgaNA2wBz3dsmSN0D2Ei5FfHka1NiEDiP3v1wP3L9W1G2Jfb2EVT7PR5XVOp2RGpqVKHoHLWWWyAWU+U78GOnMAC1lCZDf2VQgBDma3JK5FA3oRiDoF7TgBaganCUii0a+qH6Bb12QZ -qTShetYBzd7/H1O9qQ3TaSlV17gGA3BAWH5RiCMoCdxmNOHCLYB8IYkIZVSrV6q90RAb7KEZ+3O9ztqYgNq9r9bTjBh99pj7VgMmwdjA51m1kdnJFAhTZwYmdhq+cIedsHIAlN3rI/gn452DX9KoWVe/tXAyQWg4lxX0Bv0QAGTnsww0q8pbR5ahryCJIBmkGADssFtOaNnq4vVrB5elnV6OZkjrsRXQnB1Z9m07soMBzv9rUbe5Ndv2aUbJMxm2 +XA87BjtVt0GNwMHltSMfXgI+iAfLqqCZN0uRSeUhXA/sH800vYUcA3zMlv9pR62/3fet/bagOwtqsobim6ddKlg6dSu9t+7Th4Mnr0aefKO7095HzmJ0+/t6OVHByINFnK5oP2bK7XZSSqV9cj6pbXzjpcSWyBpSVIYKZS5tpu6PWRw9QJBjSsEmojp5Tg8arFOGd7CIOteoifnuilZaJpk0/1I0CwALDoNVAw+YGwx87G0BFUIYotvF0B+TLpgb -yTY+tedXGqdpSSFqXg4y6LMDAqyS11w/xnPcTYyldLz6nt1IbsjdY6BzxF/ZSyyi3cp63g97MZkU61HNESETS7m1+f0DDZh9R0saFS/f3BsARiCKVpx7/oR/en+1I9eMGSGUDXqJA0qulGyOJw0wEThoGQCH+IZ4iHDqv3pge/sMgW4n9kg7sPnk7sgDUoHLExjwysPmwP0HvXWStM9giHJRmFUr1aSbzVs+alrBm6zAotTfpW8Qut9bWHWgDv2X +sE7BaTKoPdJ772jrf7SWWjl9QiquX1ffp6g5QevwVz9RZb3QFXZrImBDzmqTLOmpcwe3SMVQUiKnzwCJrqPw7xvOAIwJ5QAVbyAACx/1AA//0KACoAEAANxygAAKpUAANlKgAAuOUAAKrygAAgzUAACbWgABC6MAAOnegAB8f4AADocAEAAIyugABy40AAGxKHCHAAAw/4AAHXlaEOAAAA5QAAVHKAADRNahDgAAXt0AAKXGgABe00AAAVKpSBKA -d5+k6FoXRbj1OAa1fZohzdeaF6c92oSGw0t4oReOZIdxwA/Vms0KqTTy6vf9MS3l2rPA/G80YgKMGdYMAyy1vVxkcm9br6GH0pwboQxU1EUG9zIUQQBHGwAumbDpwmJ7qQNEnFpDekm0RC3kGohYh6pGZVXO7+9XBKdT28fJWOp2qtI1ixcPvXINIsvQC0wUJZBtgfGMGPBLTQuozN3cCHYVuVNHfXeKgRKC26wQMRBv5zRJqsADGV54xzRyIuAD +A/VnwQz48zYAxCHSEMUIZoQwwhlhDHCGeEP8IeEQ2IhyRDsiGFEMqIY0QyjgTgAjSIWOjSFATAI4hxbo38BimgyICyIM/BnsmcIBcCBPgH+RbDoFsA2CD3AC+IdOMImgb0AuoA9ABZAGyLq6AZsyg7hGQBwgCzAAQAHRD9lAxLb6IZIQ5QAIxDdCGmENsIa4Q7whwRDIiH2EMSIekQ/IhpRDaiHNEOA4G5RDuPcIAziG73gnrHkiGDZDDAfuA8sD -AgTAh1owjHYYzAIkjjjSM9hcllb1OIcpHdrBnk96MGfwUqetwg33Gj+Dbdb4r1/EX6RXygvjEHZCw7wxYL07HnB8JDiLxIkMato/YlG+g09qLyNXnf5xo9ZX25cRDP75k6wbvfvURayItCZQwdm2poEmcDM1n9P97ijYrnpMvZAveC9Dzahf1hjpF/f5B75tSCG8fRsAHSyGxGLhw5wBwvDRkJEiFuDFoADF0jA1AVv/WOj2whDR7KVm0x6LIxRQ +b4DvYeqAG+ALhRxVAwgAyADkQADgqwAGACVWDQQDsTZkAB70xkNnTlLWCIAVNAEH70gDqgDBZSDsyZDxKB7EAzIf0AK8MY4tiyHpkPzgAiEJA1DZDyyGtkNzIZuXLshrIAKyGDkNc4KOQ+DoLZDHNydRTnIZWQ+3WLS4NyGtkM4QiyAO4h5UASikBkMbVqWQ8chx5DjiHC8TIyDohSUAD5DmyH0gCpIbCQ/4h4IADGquQAPIdmQ4KfJTY8mwl+BQ -h4eDVCHcn1jweNgzGB29aLPUbaWh2hYQ4E2dHuUBwit74/uoA1PgSKFs26tD3sRqxOauO8xFLIGuGnh30Bg3aBhBVryBzzW5tFHACYAEgAu4HCdxXAyzAD4Q7TYom5jHSOIabPYQhm4F0KHaWWodsivVk+pzlI8GWP1KgYJAyqBocStphOaE5fCUweRBjRhrYwpMyBxM4QzRBo5Mh1bN11d+okcQI+nn9WvM4ENh3o8PX4qu1N+8GBMi3CUGCBLZ +odQ1rM4IU+nuAACgAoamQ3sh9IAXhB4tbw6FPRrKAaeGeoBZ1j0gAzwIk4Ljpi4YgSCBDH/IAShikAySoNgBK7ET2OcHEfyqKCCgADYBKLm1oNAASeB6AAEABfgIiAA0gCKGrkOmij1APike4MkKGBQAkAF+Qy4h5lDoqGzoLzgHnWNxAEJwJAAsrzdoF5mtmFYIArCh5UP0JCTwOggbOmilBlAA8gAAABTQfHSJFOAI1D1ABnagAAEpdQAY8iC7 -W4yk7Qp86MgAw9hhIIHdgoqMcXIhvBfZ2UYhDsoGaR1UcpjXXYGhFDSP6kUP4wes/dKh2Q9ZWKxE6RBKOnlZKmfs02w8UMJbsUIAEcEldtSLfZVOIuuXVoKkUQUJqTy0mXQbSS/W2tdxiHQ5EYyHLYrfrHzsZg5nhLxAAN8L6dfe2lQSEsWOofZjc6h/9YUQGfk5usNGQ1DWnKDBEHwF17tBLNMx5YxcSDd417R6xfkFXmaiD+QGk/Q2eqLg4AK/ - -xWPBLuv0lUvNNVqGpWFouL2oNYFJPDdpc1rp8gaJ72qBspPe1SldQwTLbozYBAT7PMtWtouMxyrDgrri9UbyoedPeYhd2JmofPbHBn5OR5KPLXYwe9Q7jB31DtCGCYO8aROoGSMLO4nbajZb2g3k7gpY8JDdMwHYNRIdXTYnO0+dkF7uq6XiqtA5umuiZRL6jUO/FqHHZ0yu4V4oTRuHglqZdotegauEG7yw5IYdRtrcK/6BTUr/4ECs0mzXvWmd - -1pk9fnHgCovHZnHJ9d9Kw26XisorkBci9PWFyKuf70fygrIpazmwGCT/8XNDMs3RleJZZBApolTvDFRSGwALRe6KBoiCY7jUfcBm6ng6v7nUMLMlPQ+2eiE9yV1qN3kDsNg/iB8eDKKHdAj2+GstmlKQwsyVyxxFfPE59ewaiEdF06XqB+DCbveN2gDDGuSw5b0LuxjUAquaJqHrTJ4uTsRpgemzslst8852uAftecWSy8t+grxl3LcsD1S5h/VD - -4sHDUNxHRNXcEuxYCr6EWkRMPJBPmtkpage3jJNy/snCAH3bEYe8371sUSAY7A6uxQfEJAD60OBNsbQw+BynhiirOqnp/B/IVbB7lq0/p7sb5wbVbA/+kkV74ZyUN+fr4HaBE95NchC2xVXjMpPXYefqcd/UWVFhCFlzUAhZqg1IAt1B6FzPfVR+i99tf0hcDBgbcQ1a6zxD9b7vEPpHtTg+X5cMA357LMVqEG7eHuKrzWNFs0GyUaF7QwrM8dAl - -EHPJktMqenXGhl6dW56yT2UmsiVmxBpMA2xg11AXAGswejqVe6Np7v4C9rK0jQbyrlwX87yWU/zsDA1dGqSDXu71TGJYfWfclh0U9kdCjnARbrUqjVUPcuFk1QpASQipg0lGedy4CGzTXBOsi7RmC4VVvsCnMNHXzJrYJO6HDUA6RH1C3rNPTbDd/9lJ7V2BeMsE/o4TD3xlTlIrav6yVJkMio/1F2GFpDq/uS/eOgHrDMgGDYEZQYNg71euBtPi - -H70MjYcSvZmKxIMVWFFZ1ddoo/HFu1VDfaG6xRnPu5vbl06LtCHrAp1Qet6xRUBrsNHXqI42VdAGg6qci+dNTKDbqF0stPfQdVdQTYRWUCJ2BEVhEQKoANgTGpYtpI7Lq7Qyj9DvzrQURAbQA6Hi1KDj/Te01PYeFPS9hzZ9cEi2zLrIUm+NWLbAC5hlXcrRHFYHXqCQQJg6HAIPfeuwtUxBjDR06HSrlrxrlHbGUn8lCMa8IVhBtByU7eyEh+4i - -mY45lsJfT32tp94rro/GB3pPxextNJ2UnaXkMI4dgHc9UDm5NlaCArF4mZaAsANgA1UBE7LRVG43v+yIAGhVCQX0dYZHfPIDQY9NaG+kJPMqOLYnBrxDycGhsO+IdRQxI21CdO9ixopY7u9PM/URWMjuHj8E4ns87dZ/FNDZebOX1dfs3icxMxPD6H6An2vps03ZErfv9Lx7niojABKdtMHTh5VQBupyi2kvCkgkLsI/GHGkJBgfB/b1S/SNAbo5 - -EB9wbdQ65WXX9Gy5Oh2U4do3UOmmnD/qGH0Mm3qemVC4e6gq87OXC6u3GUOFuZkt7OGFsNlbC++M96+4DoMa4uhX1vUrYXivap+4aRfFJrIjThHygdl+mG2PGQEfntUDBwKV187c2iU+lelt3vVH1uAACaI9IscAIaAXvCBEIt8MQIQ4IO1hnXDPpwhd2+VpuvSQh3rivlKr0MRgYz/behl/Vw2G/EOFevnBXGBJmBxHjRglafk3CeCOiz1F07aO - -zOCxdwwcsURDlVaRza+TsNrQdDFA+d7jaF3GJKefSObWAFgUamJ2RwNKrT79aA5jKa7Bm6vuovd3gIwAjowigQ4ILbjOqPeZWPABAZ72odm/WwEXfDxhLiCNa/syxXJNTzxO0C4UNCXrFQ3iBiVDsmGpUMPofPvbJkjdA9hJnZXx5DXwKMgBoNHBHKQ1cEfeYUN2uFFarzCIl+0zJFVcBgGDJWH305bcrsvVXBi+ddgz6UOUijZALKfKd+DHTmAB - -ayhMhuuqoQAhzNbklcigb0ETh4gj0cHMINiYeyxbMKwxV5n6z219XuvwwdB6VDlj7Q517pWA6MIUp9VJ5SFcBXQdwnbc0F7CQOH/5WW2zCI5aB5MFBx76F1eTOF9cU3TrpkiG62VaUPl+YyPG1d/Qj81mCboePTLQ8mtwX7f0jKh15laPh2oD4fqAZVmQZyTZE6xy9jgqwF4/Ad5w33kz/9jJq911dB21eZ29XFO0pbVW5cpxC7a7ABLt3v6d4Ny - -drGxRwBvH0GegiJAa/DIAKfIdIA4q1WG7ZhWM5dkc74QykYl0zhtlu4IRi96CYqZE3qFV0h0aq4R5wZNx28S3gGM3G84S1Y/aY4MkuVimPd5Qn1YfqxOuCn1DqEPcs0NY6woqhFAuEc6O7qqu5Q5xAkBA9OsVMVcJ7AkW5EAjpagDHscoCAAuQBcgCAAFMIwAAf9EKAEAAFiagABleUAABVKgABspUAAGbaCgBAABiFoAANvNdADWAHoAKEAWMAs - -YBdQDdNUPqgQAXtYIez4DlaiCy7WSAAwACDAogAuFD4KClUO+AqU7NSN8FDCKA5o+wAJAAnACzgCXAOmAM9ANJhSpTfvHSegZWcUjoQBhXBWkZPAL6sSbQ4UwNDLMgAPegjxUqU7dZiXCHiyPQIZsJgA1pHnSNy0FdIxrof0ja6tBJIHvWCKKGR7tA8KpizASEEKSJkANtACbrWAB7rBIQPHgKCAfuBpgDxOF0CGJEFHAmpRFR3F6yjIVeAc1Vgw - -BjjmMw16nNHIqPOegDzTljEEsrCTVFWg3WhNX5DaC32FpARhQ0FIPcGZPvv9fv+xSD+ybkgMMUumXIoGR5wj6Jv44U9oZ4YqeRBdPqJEAj9OtO1ejCTtqrvDeCO67udzQay3ZhJM7JP2JDtCcRra+HDSXb/IMUnqzQ00EGC2p9J7NEmzX9ZZZfCPg1vFAQDbOCB+Q4h2ToJGlpMziJAUftYwGkOGaZn9maRg/fcPdX81G4R4f3woaoI9Qhmgjojb - -JkNxVhFtPcyW91oBQ5K1ddq9QMvyAmCU5HufUzkZypBJBArDIzr8yROVCzBWpnQT69NMltoRtiFphuYrCjRoQiC16Ic2w1jNaVg52U7Q1T9vqSeyifIurB1q2g9FC+UlFwBBAN4VqyOhIqSjBn2OdyBZAB914lsAvM+RuI+uGgJVZx/3+YGPcE3DvZ78IMpYfiseGAZF9iklx4LS7DuxRCQWSFxwYcFY4Mmgo3OGvats5H4KM/4coBk7krXFqZTH - -kMB3seRVoUnt59IHIZmhnzsg8au/71IH6zD3YXqepY+mlwF7HNShmvbOsPVYBpi1QjTyHVcPSsZqA9NVIblH3KO+nAOpp9q4tg4xxf4miloDgGPcNRDOray3C+UeMA8FR+2goVHn9Kdc0QFaAMSKjXkbiTHm6UCo5uW/UtiVHfMq4LoxeCzwOKjOaihm7JwCSo6A+6XVqpcCL37OzZpYGOpowI+QGNnT4qrKTLKvYd5YH6HjsoBsPG2sK3i9nT+Z - -7EXAzEpm5U7lubkahB1kc4+A2RogwZRbciPv6C46Ll8AO6JsrPCRm00JqPyyVEjiKGjYN+oaqIw+h1wNPPL9FSRknyrtrMSaOqmE79AKUZz7S6DZSjWhF+dmRKpKQ1ParEIrNsFD5HErk8Lhew0Vo9ToqPfQdeg9G+mkeZQHN3YHEaF9RHhwGZT0GdlHWIppFhoh25t6d8Of2M63QdfXozIIeVGzKNgwABo2lRwTZqMNf2CA0dneaDQurak7UBB3 - -BiHcowjR9V4RM6hEN9RHULHS+z8xqNGX4IUXulYAxkSLAaNHQIMWaHTALb4EtovdQ91irqDeqVmzYlkh70cKX1npyVm8YFijjoMyi0L1GDioJ1FdwRy1kD17LmeXd+QFAEMbAHY0/kemozJh5FDjhGRsMtvr9BS8s1uqJIa8FbDDv0ShtRyOI05GlKNwUd2o03ex5dkoyuiGWmmWKXI7H2YFNjAJWoWLfUisAtN4sRRuaMsyEy3VEs14+4HdYE5m - -qP76RxUoT07FijaM2DUI2hnMGAexh7baPMOXto606fmBUCwXaMZ80CCrUMSAelujy2BzFJEQ17RnmjvUGQb30vpDKWkq4OjxtHQ6OT7pItV+UyXmT98xz4AKKuSHPU3hpeWC06PpVIbnSWB8CAL2605jQ4r28SaYT1KTQAKAiHACm6Ca9YQA5EgSWSdUZx4VpOKhg95GmyMRAuanW2R7ijd16DTyUEZ7I2Fmtwtb6ptDUJ/HUUnrMHqi+5dazjza - -E9UptRgndIEMdqOIQrug4VhxQq7erCWG/4uuQ8I4uwp8D7IZnmXuKQ2102D9UnsxRn2ENkBeyMsxd8OkzE36ltzVZIG6buzNiev1ptsNQ0ymzUFHz6Mrw9WhMANPgX+WCQheUYF4AoAG5Y3GIxrDOqNjSAr/OmqZIm/VGtsyqYVh+GHGPi91D6VtX9YZP3REm4/9p96pkOcfpTtlM2OFmu5TwnarxCcgBVsUejmmHx6OK0cno+CanK9rj6YkOiDr - -6IQGpfips56iTXAYapQ1RHEk1GQ71G2ADs7/eBEoxtxoGr10WuLIYaPuzoD9xGGI29Aqn3TKfVfu/Ck16bWkRASCEAUWWuCBFuiESA/o9PQL+j3ewf6N4lpUGMHFIajcRwRqN1cBPVfrB+QDuAGDJ2b3IK8YrsztWktcy33NRvDJAemAYGk5G5aMwUYVozW+DBjzj7HYN+fMYg63i0lDbS73pX7Hshw94I0Rm3RHuX4piPBaK0B33D6xGvkUkvvH - -Q8Ta4CDDGaQYMZXkIyEy0cQwalYsJCcoEi8AlJTAA271qYnOtqlRUJwOgEJb7RGMF8SsLUH0SRjgEduswIj2ypm1kdujijGQt35eo/5p4oYbdiiBEOkQqK41ay4KAoUFG9GOKUe2o+gx+cjf4G1T3uKpDlVz+3/eE/SsxHE2KAsUAOjhpD1K3IO/pCy2Za0lOu+KMxRnzMrAw8yi34Dgt7tyNmnvh2RCBs4kyStQ3DdThegrytRXAxmpZsBRUxvC - -p1R1wcLnwsDj90cWnRUIQajyTGADVSIrXwqn+yhD/NGfUMzUbvQzfhkbD+37GEJOUmXcKVdRI+Nalf8m6MdsSPLRipjhjGqmOaobm3f2yjetnwHMHSibKwPqVawB5F46XmrvfonwzERw1DbDVAWOOvPJtYfVEdUdIiuURWkWLYv7DOIgl4UqBQf0eagCIxyVEzMYEmN0BH/ow0gOlxAlahUN7Lm7LWURopd9g79oMn/sAo+j+zZyBgJfEyxlpfsH - -bStJ0HFYO+iy0YeY/oxp5jc5GEKMrpqf/TARm8tNz7AlmdQazPaRM8+ZF47rw00mqsFcNQ+YjOKiIMNtAecwzpQ+xjW2GoCMsXzZgxAq7WFcca+vUbhop6AWCr6ovf7BGa8wLIehtur01vk6zGkXAeAqeEaiAN+ijHANFXp0tTamgXN+8Hx26dTgY6Jeg6oABphe8JiGF7Jt+YYIDUTGNUC3kbro42RmFdL7Be8CXbFcsMt49POglb3dYCUffg3g - -B17DA7CmijTWsX5K+JDNd5T6J0C9EsZY2zel7FE9GXmOaHuOrQ3NNrVgrGMlUMTrZsK14mcd62HNX0EUdLMl6Kyk9uMhcABh3P4IoRkAZcEpHBbQMwwesra9PlWZMKUWOxMbRY9o+0YVTdHRSxvkd6wxUA+SDNG6soOKLqSA13R2P44CRhr043D+of6+/bRNrEcUoj0bKY1tRtBjzzG2WNbroE3XevAyJv5RDqVH0fsdYbOwpJlzUd2NiwYlwxfR - -iO9e2hvl27/hEMp52BlC5vgodDn4CQ0pFbPiIzVBOqP/rE9Y71Rh8j9xBu8RYsYDY37QtRWCK7WNHsBERo2qkX04obHB2MevuUg/2Rs/9qE7CUrlXDKfaP2ZoCq3wnR3t+BQY5wRhdjrLGzjZkGVRLH+xp6gGb4RSKs0who6DRqugP9s+KO4cYaMEFtCiE6HGMOO6jCcqGbnSGjB7wKOMEcduI9vB4HtYMAcbDgHNyo8ehVQ11taQTh3MKj4G2HP - -l0YR7G+rTYGWYy2x00kbbGYV12Ek7Y6+RiheI+AjaUZMekw/YRoWjAFHpUMDDpRsnlnPfhx36aX5VyRWGkmxsL612zU2NLsa1Q9eK84DX/6e25iuu9zVIhkNFu/5V56YSGV+JaYEiWBgBOIy8zUyAJFE1zdhCrFwjMUb2GozR/ltHpgxOPtkZhQw3uzKjt2xQGNH3uKXSSxyBjgFHfh30SuFkkNoJMD+2iaITKXtKY0yx8pjSHGVKNzgfb1TXQM2 - -Rbf6/OP3TWMWcVINLjfkHEcNlgYioyrmPcjSDlYqhSujsHNjEMgIjohqnl4BmTnnaQRC5jL1VmNm5TYo/dm/0wSTHdfw7MblAyh41FYr/lxd1N7tsI4qB7o1kqH5OMPodSA6/OTNwSh4O30zyRCiCz5ZBjc7Gx6MwYx046pRh9dl1GGq5IxqqTctx0FQXXHMONq4riCFBgfGjsQ7pdKrDsGTc9RmXDeTyKL3r8vqQ+l27Nytdc0ZivAGDcL+vUYA - -rQBvAAFsUPeUtBna6DXHWKMCjSsLXsRP1joAZAGM+LQJlVZlKajRzHBaOzUdJY9KhjYDjqlnixSCsKYwmvAMYv+7OrYIcd8I4lxpWjHRGm5HN52Oo9Qe1Y5iRs8f7/Me77Q8Sz9dPI9NQ32YeuCdgulWAi39KtkkTszOb3+1nNada7j0WVsbWbeIT5Rzq6F55dy2+rBMAGQAa/MTLXUiIGnEiAOs9UqLhIAxMaE43tVGesFMAWyMvke8425sYVts - -O6AaN9sakw1Th2edht66COooYrHZHMuMKyhhAzkH3P+3ACC+Sjs3HUGPzccqY7pxt5jSJqy10svsoWapfGx1YJDTMnfwIOPWCQnu9X0Qjj2U3OnMWFR+X1MrGtnVrbvMw/lu6xpy16Qe0AyopVi3SyOBSr6vePL4so9ZOOkc2E/dcHrTm1YZnm0nKjAMqS77T4wSqeiIKjm9P9PxUHnO76cTYxCJjzSSqPkQyWAdHyqNpJdKSbBFeCyoxDtDngaH - -H0OOeUdWXaIczu6pHHy+PnLrAKTLxoKjdizcE1iaCL4/DC3pS2XHTOIeArisE3x2KjrHHQEDgAAMgNvgO9h6oAb4B6kegADCADIAORAAOCrAAYAJVYNBAOxN3SMekcjI9PxrLtxKB7EDzQfSAOqAUVD9ylS1giAFTQOvx/QArwx6u078dX41kAffjzyDThrH8b34/OAKSgTjZL+Nr8ev45vxvsBd/HT+PX8aYeTqKZ/j4Ohr+PekczhB/xs/jnAA - -90ZJgGVAEopZfju/H7+PpABwhFkAQvEyMgE4UlABX41fx9IAP1YjAk9kzhALgQJ8Ae+rUaC/8Yf44KfJTY8mwl+CYCfSALzNHUgxRRPXBiqHwE/y8DUg8Wt4dCno1lANPDPUAs6x6QAZ4B0MYBhesj0jUuCx0CYpAMkqRR+Hexkrgc3syEQNgEoubWg0ABJ4AlI74AS/QBpAyBNv8dNFHqAfFI9wYuQAhOBIAFAJ6Qo0/GBQAKCfnAPOsbiA8gnU - -ZjTYBYOgNpVMjrChNBOzECTwOggbOmilAZYMAAApoPjpEinAFYJ6gAztQAACUuoAMeRBdhqwODgMkoPIALBMuIj3FCSALwTtgmAkAOCfEE3AJ+xAj/HqQDt1mwQZwAPYUGWoMeTZgBegsM4JPAiZG9BPvHC6AEA26h4A2kJ+PUPGEAN3vE9YRohxBN2AEkqZtgSQiA2k6YbaCd5mj8Rofw23BsEGMAHxmPUOoQTJnKVSNKfVgmA1YUNZZrhUZAVC - -aFRiUXQhAk6hwACu8ATI9GAYAAfuAQEBAAA= +DVgcHAZJR9UMjEFNQw6hvcUJIBzUMQAF5Q4Ch+xApyGHNFwAGwQZwAPYUGWoMeTZgBegsM4JPAmQAVUM/gEQCF0AVwt1DwBtK9IeoeMIAbveJ6wjRC8obsAJJUzbAkhEBtJ0w2mwCwdAbSe6wh/DbcGwQYwAfGYmzb2UMYTDCAMEATbAc6AZ1hhFCU+rBMBqwoKyzXCoyELQ0KjEouhCBJ1DgAFd4IUke8wwAA/cAgICAAA= ``` %% \ No newline at end of file diff --git a/工作OKRs/25.2-5 OKR.canvas b/工作OKRs/25.2-5 OKR.canvas index 2bca5d5..a510f69 100644 --- a/工作OKRs/25.2-5 OKR.canvas +++ b/工作OKRs/25.2-5 OKR.canvas @@ -1,10 +1,10 @@ { "nodes":[ {"id":"b698e88ca5fb9c51","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情,它们是完成OKR的保障。\n\n\n效率状态 green","x":-96,"y":80,"width":456,"height":347}, - {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\nP1 多体原理学习 YouTube课程 018\nP1 气动模块联合调试,跑通 no\nP1 稳态工况多体动力学求解方法\nP1 使用python搭建风电机组多体模型\nP1 叶片模态叠加法算法\n\n","x":-620,"y":-307,"width":450,"height":347}, + {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\nP1 多体原理学习 YouTube课程 018\nP1 气动模块联合调试,跑通 no\nP1 稳态工况多体动力学求解方法\nP1 使用python搭建风电机组多体模型 刚性部件主动力、惯性力计算\nP1 柔性部件 叶片、塔架主动力惯性力算法\n\n","x":-620,"y":-307,"width":450,"height":347}, {"id":"2b068bfe5df15a72","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (6.8/10)\n\n关键结果:对标Bladed模块完成 (7.2/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5/10)","x":-96,"y":-307,"width":456,"height":347}, {"id":"01ee5c157d0deeae","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-620,"y":80,"width":456,"height":347}, - {"id":"1ebeabaf5c73ddbb","x":-440,"y":520,"width":440,"height":340,"type":"text","text":"# 本月已完成\n\n多体原理学习 YouTube课程 018"} + {"id":"1ebeabaf5c73ddbb","type":"text","text":"# 本月已完成\n\n多体原理学习 YouTube课程 018","x":-440,"y":520,"width":440,"height":340} ], "edges":[] } \ No newline at end of file diff --git a/工作总结/周报/~$71-郭翼泽.docx b/工作总结/周报/~$71-郭翼泽.docx new file mode 100644 index 0000000000000000000000000000000000000000..53c1f3478a8c2cd6637a0f7398bead0a34231bd7 GIT binary patch literal 162 zcmZQ}RnTJ~889=rGAJ;BH2OL_P2ylYA3Wp8@+Ipy8duA$3y5iczS4w0E;E#KKC@6z z!IQVE%EY4T{SCRUS=zfRO)&G96TSS*GFN7bxxR~M!0WvxHjcb%E)V0nl~Yo>-!Pp0 S`h@vE5c~*v!@%6p&kO)tqbpwk literal 0 HcmV?d00001 diff --git a/工作总结/周报/周报71-郭翼泽.docx b/工作总结/周报/周报71-郭翼泽.docx index b6c4fc914f9c5baf35ad701e948aea897f362061..6c2bef3b3461a0d3f2eafaa226db227b231b9cdd 100644 GIT binary patch delta 14582 zcmZX*1yEkivM!7TcXxMpcbDKU!GpW|!rk57o#5^e9D=(;aDr?2`Ody)?|b(@Rr6G@ z?wRVY_4YfxX1XUX4|Fycw0;*75M>9!O@jmh>1P1}K>+~)akqCeWiqulakc$!=fdb= zYjduv>pU-s?sxU|BS`8>+7%Wtqg7 z`ov^Bh~dSklHhXQu<6%5_n2HXv2-KRO!(wOsXZH-%w2l~j?Z)LHAf!~0lHf+0S+h| zDYh7V5k+NjSnNverD&_zrz5iyl~8FOC6;m7O?Kf}Ef7S#FpKit%AsQ?=l*~dUP zQE&_gQOF@esIj4wFOCM~0aR*eI3aF*;k|5-bJ52piILerk#FJ)pbAzR3LsE*IY5Tw zA%d%Mh4-k$c!zk5Sjo+hX#{Xk`NESk;4KY#PJ-Yzn*0NJ=}K$pkU1`BE9f3-LS11% zbzv9GnmZt|kSQsGnIp|MGW$r27sX~*Z&si!Rk$Ydr&Gny*`(NQ05ZJa2B#+`^Nl@z z4kwoWFBXG^yW*&mgB{>v-@KDoo==^G>Gc<+@fMWvi%+n72G5@k}@!t1~%xOo&gcL*pC)L`dfZ0e- zrn*YFq?EfmBo?LLL-LP6+ZO>;vMR4G@iwb0gsQkw0;CI_Jk+cw2UbXpc%?aV_gM4E zm`r1m(uKwI=1QZraT@~d;9q1R8Xn_Wpl=bFust5FhFeMd?SO(&EJ^8Hh1C*0(@s^$ zOIvlx$~Z?8^>b5tshnr(b+LtFpw{?LeyZ;`6y#HdXnN0HvH8>r#o7Uv5oR{@2NL>w z4J}N`A`+GhB$s36S}Zdm0&EFk0(53JK92Mf5{!jmr?`mhbV^#_T(w;Fd9vV{5D`T0 z8WIG~uxr$(`2d)2#zoNz#k@b_sRq8fm@1$;ACUBd%dWaC|BZ#2R0*G&Co_>ur_=j# z1f0G~Ce-<9zLJgl0W$ku2rkyW`-=@3d*ls~Ll4}SuawE?^_D0&IM@mg13N%=A)A&6 z+bn;G64j1A8(f*LZd4nBZ^f~`i_DxvXu&V2RJD#iC*a3XPWp;nyz(-jclMB?AZGOpjZd#-v`ZEfEV7<-*sQ#V?p zE>e0orRa#ZgHW!H=3>aIlYTcIiUJrNa$6*t{Vy*gQOVG&BUq`EjHd9 zOYFaS^%ss!v71>DFDE8xZN^~b#2Bmt=Pqg6Zor4O`(x^CM&s+1LC!}%(X(_GnBqBbI3{wB6a16&y_Ppan@8w;81aXu3&j|`!NI$0 zJP@t-de>>Zr{~uCsI&g4tJ`@w-qCr(N2#m$OW$i=Ur#L286(C}>h*i)`{nUmcp4M4 zTF;QIAanWK(fd9>or~fvlq$rOwgd7f=<838q?(6Da)(eS`7?9KF3AUK&&cpBn%^4ToPd77%x-6?1T@UsyTa$1K>j` zP%g;u6K4-rwi$>!8SqSUrqN-Q! z``Zoo-qyl2;OusxkA5baEb`%5f`vbK%$h;F&5&Uht4(@?vX8L0u+rr3D`NoY^bk1A z)4md56c2WD(n3i>vXLEaXbdUH{p^D~{`}+7_(dp57$2h%6u|%tW>+i_yZ{UYL?p=) z2@hCzT4P2Iz2cj9zy3{l0B*PkV~Pu%v*DWg0E(_{C|^A&4K}#0$tpOTZWhgUD7r#- zRc27N*?dJ5OaF){Zb|zD24O-*1jRg9d^}NT zHc1CLWb4X@c%iMqaqL4IE4JPTDd4^1&4LAzlgZv0fx6@vGL40kOtMMdL6*2KE|0en z@oh-@Qcx3mJ7r}eRZ>XG+fLVbw@1OwQ2mRm_Q8v@u|6xgZJ8;z=ayr^tTkYVv3hfD z6Y6~k(>6yL`AWw$*3i`1_@EaDIuSKPTPHm!qZ3StN@E%fwse5%f}V^dd&V!bvC+sO zSyg6nF&dZOw3e3YxYYK-qxl+>_E!&NJMPjL=&<~1{X^n)!^PZ>d;WBtJX2BsFcZf--ur zh-X<7`2x1q6=;+Ir(XzJm|v6HK3FyZvn2W8+ApyQ=(^CavtU!5`4%A1ZrCB;7M`pY z(0SAel=z_`DtU{?n16*#efn%6qa|lF`(@(MpmdJQ-X=s^By9SI^i)GguU8cJ(iI;E zSp7h1cSAO?O2!;y8Por@3rPt=A0Z%az6yqI=)3H#qmJsquWic&wZBCp+cJs@e-}&s z$E0}}>shee2<*|-xbkfn$a z&g)N8AYg#WVWQ81Y+1GLs5SGWlBZ175q}Ai^L!OtD3S*}eW7$!J-IxV&Z%c*4?c@> zjvzsw%Ieon>>ItL)oZipQ^BD^Gy4O_n)5m;+@qt@mnz!wTT(6qwA)0ZFFA=x2cC4r zBlbMhK;X?a@nH82#0GT49^)Z{K(d?rQtlbc-^%yOo5&$T3}kq9EfczCB+9hBqIw^N z0Q>B=c5`NhWykv1J*wWO0lo>|v+7T0eHxGh7~YAonaui4H`57EAg`R(bDmGWB0V~? zd(vVp*jX&(FEY^DGFLiP2OF$`Ck(JQ(5*k=PK>@oV70JiZI3EOIo$NNIxDYG=~`b+ zog)3?tVvPw$c@Sv5Kyq(+!z6!$RHr^vPlN`cmN(xs-J=3huF@sYu01b+?fBe3{ql- z2%o^MUg~%QXQC{1N>Urt>-J+Zqaz~`RL%%H@(^k-si%j>W%22#kncuyUia1LyVZ(d z?~YJ?l=-_G3%%xg>kN~hrz+FtaO3-eZQ7>S%EJs3;p_Wwp8ne-@cy*xwXKLI&;m$` z0XC1zS;Mzcua;}y48C1pJ-(N&e=wiFFa)>{ww+ME@b+}Cx$Jj_Z5|r0oOf8dcIwoX zj?(p~w{s(~@%MUQw=S2FFmhE5bDxKGT3$K{Y;4wGzMssrk3Q)h3Al|7?itP7mkma1 zn)FiQhF<*jYhKTjT7TP`gYFVSy7{}!0PMY+`TAXgoA(;E6NNfHSB%<|*k9J;g-P^o z&qLZSnS*Jrmqjdcf%|5@LS?=-4Gk(Sqh5x%i@R;(`;++=1`|c9}y9^d4r>W_X~WF28ZE( zp!6aR9<7F*eG_7oR{q(??B>V;-YQP1ox}g;nr=rp;^?u$Xz)PL%(2T0KM$k-;J!KN zr|o(qnrLHH90Y2fq`E9C!iB?^JpEmLJ^M@cr_rF6l6AIo(P=(`6@V#4a?vj! z5!Bm8fodHZ>W#|-$gIr1bR3Mf_gV?YJ$~Qz>wG(!(A@V~^&&iqij`tw2G-Dk7vAXJ zE?zsJ^|B@EZ>Uzw<^H~S>BH{B(@9>{p$o7Psm-l_zxgWY7UllRVX2UwvjFO&)r-@) zXtW-O5LPxZO3?lz>veGxxN{at*cA}oya9+F=BpN4fYrLKEkz;Q?a4wveDm$)n@Vqd z!qWX%Lg^l!4ndvumi4>Qn74yzeI&UX`2|kpduyVWiQZXS4fZ|dct4>pAF=*^d^2xcKM3s!-F+|k_DDkj2w>7QOrYv)@$x?M zYv0qnn~dZEQkIRY`*Iw6e`VIoaxrU_3babt#ucp|>tt`~P2g&4!Go*ek0Kis97e>i)F7@=*OiJj@qjvr3zOh zhMq+}n+2;YDVEHAh61wsnM8CRi*lh~xLBVvN5}3AgKxg@XSRMd@q|m2nVgfZwj&M} zv8E|fN9dtQY2Zp4OODi(-D)@VoEYJBA<+faSH48r;i;&{#Crgh5ui81Q)YxW!j1(5 z*;0-Yi1`8RH>eV^G@?CIYl8*&)Hj(ciF7JPF!#yGu|*=H)B~a6#-O9AvdX`~cq)?} zSIlX?s|P&z^PAi|w5Aw=uG30*t*!8|lE98<{Yb=^1Rn*To=Y*0Ial%=7rM6d&LRLL z3yG(~q>blHD$!)Xnv7{J?U|7hr@22!iVby3P`^BBZ6&HBt`UgRKbS@S_!i@tQzGY4 zk^#m&ne+8@{R%Tr=^=!%sO z3p4UsW@U#nN59H16K$kLGBRMfQpiZawO4Q|u2Yz(ZVijA%E8+2qGEqm*~WUX?`m>r za0{w6!6O;DOY|H^b9zqvaZ8Bn@i-A4go8o-MLc#Km;1#75AxmwF5oPLx-10W!?m^w zV_~l>n@nkm6Scn2c3A9D#frJ8z$_=YP$H|wYY#aVG6r&x_h_xDhpQFgy{gs#gKHMp ztt+AF?TKGJ<-?Vg8sYN>oua7$!In2%mY92`15~hNT2a&%d&%Ga%|p;d1o{=s7*g@* zA>q-lN<03K3rae(J6Q{0a-@eUu$sN_A&PAZcF{H5E$q$*2+dpENA>QUu|puYYmFQE zYjP21jKShQ4@O;1ZI{MiQCdNOd{Yc;k__cOY|_{ydbtp#b3}LJSm=OpIC=tZr&7CN zx_ycYS(nhFB!65w* zL>_`%gy(BBfReU2AY&m$&$AF*u~fNNS+LmAP?l_pgCC`>qLzK4T?7xrN-@}irGm@B zSvf4gh0HWox1x@Y2S1HWf6<{!_E=NC*}z7LNs`Vg9%yeYu^?Cn&vNN|$c!&^$fL(i z;Sr^6No}c*WC&r%-iM#W#BpS|pnH~F8FeINXkv_IHRZ?sBC0Od!&87>o6a*v@$frX zT(7|Oz|Vnkzj%q;*)|`c-IS=+n$v=4o;2|>3sBlJq2sf+4E7uPvi4VhE+DEgzVq0h0&kv1GW<&^K!gh%^#w%Of(T1bVfCOsI0gaI-rWMR!NU6=(vI%N#9Z(CJ!7{ z#o^$h(hXAwP-KB!;t`S}jptM(#F$T-pu~stV3&YIQ%$;{#0I?1b4sLp0;GLnce`P@ z_aC=3f@q*ky;-D!?1q*FvBT^spMJ8YS`+DVZb_Xu>KzuT6a--Z=s_kC80J#*LH%6f z$H?(ry?z<43kMHjE+tJH31OulJ@M1Un;EquW;=KN>IvXomq0SKlTKQkx{WyI;bYCDd- zJ38{Hl6&5Y!CF2{nVg-<`?9~3k|9urc^)WaV8W~sWmHiiZH<3z7z)VikmIjX2y9bY z5TlIx$YlB33sKq9J^UW~8F=MNSp;9ZsiK1FNT~osIdbbz6+6!J^X$@=uAPL+XQSwC zQVs3!`H!*1Dqcb-JZWHu#DOmVN-P_Ko(SLqdksPV*jpGzag1pVS9xG@bQ}NdV=*y($frM|F_OXVQaL!MNhO~kEs>5m}eT!Xc z@-_8h| ztUkPw(qxrm3etKp#6vrso~sE0eQJCR4w#uh(9#p78Dfn^JmkpLq3b>I=; zjoKv~EgB9FpP8cOZ{WURL=Q8Rp>JB{mZVMPurVgV3$^ALUftNi`##;~_pQrqB{Z41 zs!vS{&yk~$oYLW3QF?@{OEwWVZy=@E#6$ock<&woS|rpjAbun#QIs_9szVi*@sI7U zip_qjL&{h<9jj|k7_@7r)AaTG(|8Cl!edKuwj>VQ)2-dE&W&502&cE64*UwC%QW3m zvAR=6)V!@^M>Q`%zb=VvFB0F^mse*;x$8GI#AC7HnB1+D;;1qBHi-o^5Y$M@`Md~` zwIS-(u(!!7$9kr&K}knwLqh=+OjB@(5m# ziSJRz#D^dF^~=s%{6uRC@h)SFV=h`rjg@*c5&?KCs?p3-w)@tZmoG<{>2e?xDMTzXAd`Km(!u(RSx!UFYWIQzP)a-um`D?B%Bn zp4TaVXS*76g=k>69f?MXn9gk+#eL+1C?{?Wt96r~V8j6vPQynOH3h#l?-+k+5P zbk*5m{ZmA8lpw(x0@h-ws_@AD?jg$#a9{^RiKyT~m@CP^u$j2ur$$>+lCw;|-flazT44L}Od1fdi zxicsOX4uibZv?Nm$3eC?e@D%?&upc$+l;Pfp&qSzrNF4NJNs`6K90*)`5L$7RQS@@ z^|9l_{=&(;2>Ctz?R;Dpsej0m{>t`1Eg28rl5jg~P-4lhlsu%3vaN9GyBsk{u2=l1 z@SASec$ZgvHS~{O0Ikw9pp4H;E<-)Ng2?Fx{Mzp4nVFhBYUnNr!O1V>rsGo>y9EV@ z4*DHglCDln4JwW!suUtRprmD_q3+L4Lu{q~MJ7$Gk|gXf-VkFfUQAS-TotimPr+}o ze=r>4ZkIILm#?JtkIJ8mr(0exsQ@xQ*F3!$c?0UwNN4PI1VK41ak&c=A9gHBW^|!! z01au%Ir+MvH#Vrh_N~*`)9i(quDA1C4!KUdxrtYfWTqmm*mJc_X8rpxRYBu}O#F?8 zs`1{O8+?%Iq2%lDor%J^uqu30=UPzCp0wk2$^2aKmp*ZLT z$nG)X2a3#e2R(DU2t|P>r3STmbX+WU0A7#>q#DF9j6Iv)3EnxZfIDn%%3&jPkal#; zD`dAVEc6S4iQ#HGm@up2F&znddTZ6d_*zBxkEHG*HgQt337PNX_&h76FfCK@-!U7b@R)Pyp9|ucxxRmglB+dX6_~0zXB+LDpojkzeCQIC ztldyg^XHpJuGH>gYD6Hovbrimih>h=hytTa=o)fr5so9%M&c8hjAiR0kQ62qp2*c~ za)ZlHYA^$>fgQtWbm#qhT||IHZ8@uWrKSPP_EP>Fxw+1@J3}psb962?T%ea>*ouc((T2^x-#aq_Y}gS z%?d<#P$A$Ct91--Q`&TxfssnyjKWDR?dJS5N_>Tp>|sYK^o0Qr_L9aWXil4_-t(V` z(xM}~ywaE@3iM<3%MVyll$Tuk^%JfU0#3;Mf;$>92Eycd{= z_4N3eN>;57eTNw>FeOW{P{rfHA#QMCkxka36`KS7R+zXDA>dJ$z`y_~$>(v2XN80C zEc>oYhkc~46ngOBkf;M^HYWyRUDu=`$mP-Y5i2;z63c6yVGd{-@11QOn=ppVtYxd- ztP70nMJik=iAY7a6X-uWCPJLDf!8y5T#HW?hhT6adrtje$i}C=8(P}!`K0-=l!LcU zM*KlXL*lD{WdSOz11M!GEZ+9nv44Iar-CH78>fI_M5Ffn7+? zWO0*pA&X#;9u^j=3~Vj>4A%>)yu0N-4RAj?dImUxVQV%U;@Fxt4)%ZXiCiN_+E*n9 zE?MWTCiCju2;rYm^kbDo)QYJ}(kE}Q!MgV<&@*ipz5N$%H+DFyRKd4c`5&iY^02gZ@O#5$9X}Bum{QL=xQWTKDFG zj!Y~@iSU$-gNkdy_IW*8?tMA>>#8g`(gY1b%%D%T`^Qi_b@gnw9y*PkWEd`YPR*x% z$5T}H4@)lrC3&yzcW)9!R+S$-QQFVk8$>as;4x#JN>9f9qA#goRl%htKZuUlF~xH+ zkl!w-nq9&5E-^SnAW8!R*;qcxJ;*t83@X${f`k>li5}qG zL!b|!hPc0=@b^p1;6qBrj8J0PzBy}|I&9#YfJBx@r&5pm3Dk;N%E|s9AO1zIqF02t z+%_s6tBl&y( z@k`O);=kUb^FN?34U$Mr&n4NF@F|S;{IRGk`yu!6WFv2i4Ts)t^z4(inGR!PQjL^x zvlO+5AjLdq`7+D)&X~vr3C}gNBJ0i&_Pr)DY&4tYuP~DCTDBzTyA|0QeMf`pCb}B| zB&T^j{8JC%o9@*JcKp*zjSsw__!=Q~Zvh;Z0{wzR?G%-vR+m4yVeagiDSJ`-{nCW8 zHg7JTIc&L6O^*B?_p`F1EW>e=XyQ_Q(!zClyuP z80(22Bauv*lA>&viX;ApvP7Qf*0ga39KQb@#Vs9enDdi~m@Msoq7mgF3Ry|R44GRu zJ35uwUeqrKm(M*DhMIBBA3Wxry=zBwxzmI4de(zdN&h$u(87%vs(Ayq)jm7wEWTWR5l%M3GVOGIA+mDe~_i469H zJ`E1$x!Pt|=sFC0to|*efr^@4yO-`|?0b!79J$!bsg(Y=Bw*mK4j#P}Ffx3aTt>Fc zEKB&st_WUgnLAPwsc5kO4RTb;_=nS}B)n9Og*Rl>I{%a?*-}{wn$3%-Nn%b{}_Xd+s*C2!+A%4(vPFm&+S31^IK7>1GYlrN2|yg zd>*v^@VjaK@p)V}`AMA{rs@>=*qJS{m0e)i!~fYg@(p`@@(uL~W2SU7iKvNblF)p6YpG1?jGHGn zne1M=v*Pg*CtB=}jUIQ~v{@0_qz61yo!BGGu}tO5WAz=g`SY0qsdjBwrZR!iC{5NIxZT%-Ko5`H6rH;ulssd41o$~*~(h;!w&8TJ( zheq4v{yC)$8bjq@29SXLN9+I35J*vVEI4oIB#BQ`NWdu63@^#mq(%N^VtC8bLK?Mg z>uTH|bAcN7bN61C61@BFXX@67Oc$xenjeiFLQxLm&);UBc6P-V@ivKV2-#{Clyw=a zvh-Z#AWjF4M;jlge7<_kq%oeDlPqwkf(ZS#f|;(sZwl$Mgo*45YLVt*=&!uZXL!v_ z1q^ZdE#x|6)9&SIjCsLEY%NEa33Vsee>58*hP5$B;e|Q`ud_B9K|{4M5aES}1$>=W ztU=<7op}XN@53ya>6@~tunimr@~v0 zT8$BNYsk%NHqSUNCZ4eK6;wT*2iMv)p(*`sGQN&&E}A9$OaSV|RHbI>T`;QgeX7uF zHg)Bw)v@|F{OH8hWZ-E3A6OIMS%*=m9Z{F7`8T*}?pKyj{x1NZ-HJ2`&b#_nU9r>EX2>aCTfruKV7SyV8qpLb>g4$6t%CZtuS++`L~xjB*dB@dG8` z?;_*-pn7G^i)_scACovw%_B}sslC*^Gr_L*z1a6h`n|`S{>$vqGlD7sKjK&4?)~Q z6=JTBP~Fy=dGn0AS1VZPdQ6323zXPBA>g|mU|ar(7pk)fGVh*zaj}-TQc8g~i~8P4 zuy~CU@J>Bk*HZ}vd3S>eCPzFVDDM*3%;bPu7*lcLN@9@3 zpka0QwGFd8o(WDvb;qkQyxo_h$00)XL%r*n>3>SlX7pK3i9SovK$7Z32m$MLX5`Ur zs8^!sExZY#y_EtP5;}q)7Rlvz(8%f`wcl@M7Px}m_@xE#dZhj+z( z$Azud$o`?5k2jWVyDv5sOcuzBQ8$&a)D^nq&uER1jI)25u-BIqT!ls{J0qN^iU6tM zb`W{OYNgD`KTtz4jAqCWkDLd}I_@@z?Kukl%`|Ut!YKQEX!m>EEnq%&2U6Pfog*BT z$Q8ktzM+`3^b~EizIcRcL*FZgJjYLmZq}3rf6P_DAqGyT9_V;^|CMR8{Nf8^aS2&? zpgUh9!gh};l|@)2nqAg9)I~)*g~j%kT(gHrTgcYmyf`@s8#^&y*X^EOZm(52&H|YAK${2D9kTjpOSkJoBdgYnM1@9Tsnp zq_w8s;t{$AVrg>pG~qN45!JfNg9LVT*;0WD`iCl(Kd1vB3?0`((i%wXJ)~#9^p{T#_0%3zrid; znv4)Np!Rg8!*>o_)SHiALLzl_nqDF;E-UNO;Af1CEHSx7+_Cqc>;$EnQ7J4S$Dchs z=BXRJ(}WmtOL|r7Rm+c`M$3$y$_y*S^z@>5peLY@oe#a1(bVJqDJf)7k5o~if z?--~+Fd8{fS9ok;+x^X1H9ugxf!SJ&iNJyzd+@z zokTQNOR|Cj&GUJc)bbR<)xx5M&_mNJV%E|&6K*ntU%0{H$QAlv+7z%hz^E)$1GVb2 zW^U&_&P`jU8+Tx$F=Q2#7s#kV#?Y~xSR^!W=N$sU&dLwiRZ&aJA)?Gqc0~qUCX)l; zirBHK`XIN+Z71*08FJ=XMp79_%36+LPO=`y4;G$*1^W8Z^8`kaM;M%aeEh=&Wjz?N zP24$+G3}}ax}-(0X=c;-AQw!jZs;p*D9ToVu$)imr(T=NVBYWA)nC?hI`!0%`Yh$j zLO`(n^bF%!Rj8;&r?LO9;Kmi0G?C05-``}N9o`^EnNC?x={Wfc87{ZaJE2XMv0 z7u1t_$~E@Y%hn7ykDW(UF5L~+TBuQ~Th-(T82~-eNE*_aHTJbAJ$~J)Y5KXFc^mN> z$pn3BjGS_?){)AhW&Sn`FVjU_Itw1m`q9!jJR%<9x&lV{TNml;%R1ZwZh^}fDR39 z?^r@@RUqVTieQK|9=-+y3e?NZ{Lm+%h9_F@43rN|ub2cir4+sJY0tY*V4lTnSBLrS^rwa@IhLQmzp*rO_Fp!7p#&F-R0{ z-gq+vMb#>-?w9RW=Rt9HgP|LT-5|U0-hi#359G82B@_^wh_C}9PY)BD;f7Qp{RqRy z&CH*l7|8XGIasL&D_RL#)*G+mwy*L&F>jPqBnB>4?)pEsCRU%>FN?wXjFl5U<_4tu z7zAXPy9KA#AQvBVdSmi%;g2a(lC+~F|d+)|Gf=?QAc!b>bE! z(EMwEe<8hOKW^5OHjG7}4vAKx&k-`&D4<}jn|M)VZVCWbHxVJBf!T>O1`0H(s{JaE zrmfi2q0}8R_o}y;nR+?WJ<3W)JwB;)GsLra<5f#ja|Jm5s||n??^K?RqBSt*A3jS zTnQ2Gpl>&m1}jBXt&ANjRUWRzU+0hQk_)5lsbdl28p|$M1{s1HGK4g8M&)xOpD39_ zl-;;Pihc@HT|}+;lB{7QwV=YK*+YsLLLYDrn}*|y ztcvc8CGXf0d$1OMyWf>^a={o0LF!Q50q1X)O}`QGEW*br?jRv~Y(DBXh%W{Bo;i*&MM{G5i|?~6euhw?V}ew9<2K?5Afy_*>sFP>cL)%aGJQPpIpS# zwCX!fLh@%dl6Mo5WNmlQkZ%G-3vi2*78`681CZ9C`TXQRl`yYugXT2hSr@b_Jgg60 zq_0mNt6q@V;c;$R;VlA{CI>_25;l>f$2F_hN@`D&j#C^cODv`-(YH~y4$#v;XlxYxMRFE;>+_ia7me?*vq0j?$TI6JCr0 z`0)>ONrG!7?2#Ra-wN2jc@=9lh%0>%X8;WXQf2ktFZARbWKvYu>&k~6RhsHuG6*ez z^sU+1oJ=#IX_ThW`Y8ykPygz#Wrx9a&QQR`OoN!pZ=Aa@(+DqgzsG|=!Txj|t7E1; zDeQ|VxXyMg+cbd;(2>~3JqhA)qO6l=0#TN7O2**Q(o=`)#ojp!y7M8-2hzQ z(}q)>Z~`awF-M>k-Pkjo9PE_4oLQE;D)3 zS<@YVpJX}vy+}z$&xWNby$>uY2dIYTuLV9W&o2e391Nm*wDK6i zgQ%x4k8vG^9EW;Se^)PcMPIt~Up=Nr!p}C?A*2x1OIq?0K>CK*-;8JKusH3K4WLs4S z3i%H^T!h=Y9*T#`rQHFu-r`2Nq_v29ydR(Ob^xs@Z4u~&hc6zZI2NuALw)&N166U0 z)D#kDQe6N0-`ar6FOZ}JbhO4&cmojV%P#!peh?s_nk@Y#pyjlmk%Fd~@m(LbJsJ&AWg{WXqglCM0#DqI9srVbw;_>|XnVWo zk$QSri4;$NI01o0K4&qqrHQ8W6a%y>W-?B};2}yL{6a}Cmr%x7 zGGsMD2S~E$3quE5+!-u2-x#$4r2JLy=Q`&BjZTYar}n@C<+2qc8qpDYhdmZllxY<# z)Ip`Vsj++U?rNEw`LO*ZD;=~76e#8CjxZucgHPvR%vetm3 zyaYLqtqLFQTp~mjn77S$q_B5WaZtw z2&MmYNLMdfTwcJoOyM=u_KTmczSvW-;yfduQAsG+ZUCh`Cz-6Enx$K_Di|AXhVq#YDoKx`%xQs_19<2RhOK&2!DIm*}gRedzv z)*)|jQ0Ml7Y*7+>K|MEc zB&H7Q7o!S=e^>Jvs`I8lfa^oayda+hu)2VhU~*t(-7Z5%_EnPCdGTe`iO3GI<&MIO z+ir^7mObS*f2w=CKGhOdLr#a$!%o^E@n`5}j%dI~Y_5Lj#|J9eSCkQpyM!0+@JyTP z;IF9Sz?Hxs+~@-#&^a8XED)ys1Lx;slarsK2g??tca3+?5j~tcZ1e?>SR{bmYj#|6 zID5y|o1!^guw_C`UmT%1(BNPMUoEz1w`rlGN&Crhh!V9y?%c>jQ$53v0QQ^eG*}_s zXc4e`i7-FSXV}zOxvbbhc8lODMh>pw4!I0gW^7F;oV~q3&mO~eB0K&@Ssn(LO}7C94B`)F=2_}g#c}M2oF`qX_rxF)Ndrih zxpMiw7RQ9k!m|Yvv)1R*E3)>>p%4?9g3faRkZcwfN@yWDa`hFc!@%*9#i`mODMwu~ z_Y3IgtwD%Hi^mgnbIGsg)Imd*|&oN#^n~t{*s8qzI zzzL3OoTg6k6nJf|=H?q4AELm_Xv`&@xV08^TQ_SZX!$sgD)k54mR^6p_4fF6 zZ9OlF)m|DPM_hh-H+uRx3CeYzS5|)P^=!MoIfUxzi4EnQ zZ!5@QJgrJK_%Z5R)aY$a$Jq;TU}1!!BkYL`jz9LA`kLA_m|J5kJ^WZs;Juz-+Gx$} zc(eafB8fx0{$ub%sXNaTt?seT^DEK(%T0EX5L&=4=h^Y=u<55NVLoT&dOdC&$3EFY z=I|rpb<5z&W{njO*;=h6j{&|p=T|O=*XQxg%9pccu9uH@o6aoa(Cal|tmuOWE>k0J zxzk@aUO$Q7^kUB%!rtnSDcSwavQdW@*66NL=X=j}SvB;sQJOr{>7Jtps~hU{v3KwJ z@_CS#Ue#M{$(QGc{RM|9)+~LPz~pC*kEVj4TPx>cUEwbQ*CBFpc~tG#O;Y5S`!?;* zLc-Fe0-f!P4siBtgTpmImcHJl$NAOio00AZk8P=acJ3Pn%ZI`-fyKh;^Q@_kL)89y z)SLYUM$^LLO++YG*yBs}>Rg;@*ym@Ro-87yi_e8eFP_6yr(SN{`3B(m(y==iR~~k| z_tkOpOT=f6Q3LfQZ_~Q{bW9(r1o6I0gp8o}I{aM6_YmVzQ9%lmh<6H7< zwe8>ez85!p;=ATeaW6GmSeTjnG?d$eus`b%OR`wqd0Eg)oLc?%mo0(QtBqga!=*Xv zDo%$P_IGB_+uW%At$!~?2tp&Fz)!^U+!1@Xl_!(I-OIbl*sjOvk2Cw%`rNTrygd7t zUc|T4Y3p^scI_5mQ$f%ckkNc7X|cV0SK@<1P_iFOP~z+IaMjde*LoU<`!a9Ri=X;I z*M_)%)_VT6u}hXtIUfKDPi9JH^I;Uoxwx2-){KVMnwn-|@60)us&7OHT`*e~tGJn6n#9hG4AcW55<|8S59f`_As;W6V zLL8(3q1`GWJA>4U;Hg=|SE88vtpLIzn{5wZZ45P?xo0 zQWj>k;ErVl?^K}L1rYa^9e0EI}nF%qRQ{Gt2Dq`8Bxxv#u zc2N?IhPbjE4GBD}PC58E>dhxdo%$UfL9tG?A-Mb7)}akvx0q@`*>h^1F7evgpu z2n$Y3qi3-eS->+J?k;n)$ZHU{cC>v}Q`+zNtqFkgfVKhoulT|&V}mY&8C5w&6e;Jn zkn>&LRJi6~7kc<)P=+=YV3Gw>1h2jnW$;;T7eI7okC>~hr+q3lU4$L)M0H(z0M+&F zMwSusb)W^qeu}pp-ce@j!k&PzSC9uo86Ip?BpoUO<61YBzI|rRsmo>6JIF$DEX7bC(>XIu8#z!IRwlew6A+mk^Fd7m z*0oR|E?QGL=ZV*kz6dX70qKz$Kd=iITt{JSooEKlO;d!h(gQu5J@h*{8gC+CPS=D{ zRC1(&lul-)1B%u?0&g zpC}mOO_K-%q9P+T7;H&`F`E~@lgANBf*M;XHZQU3RFSX} zDoG(4x{)Bu3|X$UvYr-DREOHS=PrwAxw zXAr?oiA_4~hdP8!)2@>>?h!Y(1SN)B6T_~ycBCwi_Dhv5QSBnQ>j#%n<7gqiU0s8y zr4F?llV=y%(<`HZ7z1U;br}O44gt73;tivxzd$UE381y-LcMUDLxpu#k8v9NR7)z6 z|CSKpihY5~=fWY01jiGm5eJ4jC{rFWnk`CJ1GnaX={?)EryT@ok&JAruXiz}LQCc} zBd1M+jD^gKpq<6x&bv!C+u3~L;Efg&euYmMDj02)Cxf0-FE8ru=ab~wrvrq=2ht}> zqm7t&$*6N%>Os}7SWr(`u^+jmGVG?9!z?m+u#_tl#uX>ylBB5N>7Z0=-%3~7TKO%B z2=u z!x%P?xFnG*OAwNSCoAEEpaZB1wKFvHa;(YOW{#W8%b8=368D{&+*d-UB!~8~2;fSN z+Lqell3><3FWu(ghdgbEU6YB8y`p$%zA>Cw{!`L8MfkiRBA07zPKsQYej#0mFKCJ+ z7Qzj=iuiVTp+=+#XLBXj8vl>PVB0Xq(9|Q%n2ktuV20UWJYN&B7r_1Q!Ev}%RT#-H zq&!vR#5zA#5y&cX39QQ->5y`q=LB8TjW7_%uF}xJFNp0T3{4bj6XmuMGb-PKB}Wt6 z;rinAeVek!5$3S&Mkg|ewB?+`k*e*hZ8l=G7^5MMGf8#k5LOJCg{WB>DCUm&Q3^aKE&8lrj-fJVH-uXA>DUa%Vn(0W}D}Z((n-CNQUg;cM(gLR~ z%Oq7Uj~29Q6CcAQgcW^MWwfg#@xo6D$>Bc>80z)Kbs;WU0jngWu@H9T+fZ*@Gle04 zhLu92%aw>!*$*;NrFT2hl5~yZ$FOSrh+sNGAm-R>r=G-1787BK zg~(P%Id56~vkQn`z=nBa+K#5-l6DCN;VoN_?V^~m$}aW=)|RoL_UsQQ1s-8_oM3lf zr`2LY1R0i0gX~|4eiOTc^~5YNZnNhm<@!ZDL`lc19iOhPbSj0k4AB; zRYohaQxQgsw!Gs+6BDGNtu|2V7mSAI)mf1p@@HEmIuO=vW;OvTE0Z!V@;K>|0uLfB zgCr=zA_-|>W}`;%b31Dg5V9r zX^;U6aT0_}Z7-RD9Dij=#GTnZv#4x>9F%NywIoenaNd$+`%0mxRr&(nOsgH=Q;*(= zJ^zGo`{pvD_usA>RVeRd=v9=cuTUn@_55EQ%&vpYj$Ugg`vITL!4l0 zlH-3W)I*OG#F1+CTS#bCL>I=;jhpOXE2_t^bJ0q_+LQnZ(^h!V6ea zjB=;!12>g*~y}g9%dcm+k30yh7Gw7k;U1V%az`xKhj}`Sbq7Q zKNt_B%^{_IjrgeB2&9>e`~A3V-p$J#Q|h}Jlud1YqHNUyqfnq-ny9oKw=|Py{)YN1 zwd^cL7NC2%MW+Qj7-J0b$I?e3BLi{+l*){p(DbNE`VuuQ8=bmT=xkPoL^$A<^&%VF z`#C29o#;C}FYDl`h1CNr@a=|DLK4&ZocM^bxBt*cS^E~KC&tD+Dq1e@2$@rohIyOiQO$M4Iw`&D5{bfPe>$x$$4oi?}>Zmr$xmBx5roT(X; z`d8Io!qKlu+sg4tKN||#WmGEEEi?XS;~-Acut1vx#jOK@^>66hTMg^co+64#)RI*0 z(Nf1?NjxWHlv`-~X_kG>cJuF$kCqO7l@fnV2(ND}GbubY^}_C3U9)yXgXP57{>6I@r>$iTocC&x&0G!buG6zSy zPjLGB1OXozngjBj~U?kR~(?}2+`_cKlghB z<{?HnYVYx${`P`i6AQh3ujahVY+?`FGP>I(`KJ26UO2w-uF%IexEgCoQ9(jwHj}yCEIQ$obdbD zZ@Hi&OOMW)??Mye3SsVp;?1XMx=wz7UB_Mj5&>Vn#eL{qJbl~+XLp{NECWtO0@CHK zSVqnmQj!i?$j}+aVWH2_$T`Npwxt|q2}fS9zJULUQ^U9jZZX|L00BuVBvsQZ0Vu#s z2mzy??=ObDUSIo-*N+@z@*7N^CqX{V+oS=gGnXrz)5>tkLgwF_)GRMLA@;SQ9~J?BG4C=3feln*J6^^W)j zwu7EELg;1hI%r`CQYewEEkQBafCmr985hoFs4GEH%ogLp;s@nq48wj=|$8zvH9zcwh7 zZTVBXE>&ON&#u@lrJXVPP0D4LMa;w%Y9=Y#H z?Y?0h?U%hlPP)L@#5Kbk%8-pZef5m;n9CWtl|G04g1gqO)Jc^eN>SHRa++ro{veT7 z`@8_p-v-NvT^h*MESsM(*M~1H$d+8cr&OEbB&XR&O3p=oc`$bSt z;4P=??5Q9MsM0O5g^Ym11A-I~fM|hMh~X)t@CG-GsAi1*IcnUkn{aB-H{!a=HxeGi z(&Q)sVlsdg7D`_4XQ=W7rcE!sPr=gN`T;|0Q~ER^{}e=ok#$BK;G=(<>o9)ME zk|tI)|G>W!WpFZR>9s2KL5;9H4?NuscX^A{&??IhZFmXc%M3*h_=SBxIuUD0_MF|n z&jMxgHeQG^zq?*YS~u$R(@*(_Ip${y-@WURU?(GNoL_pa4;|T)pdz}ZAi0$-?`f?~ zuZQciWEhHC5}Gd(Dh;toY8v#&E(!T96~&W9YDhj9bftS;eYws&FtD1;pkE08?Xv!v zKN;?xpLc|0j>Y300Il=hV1+e~fAX%x|KO0D0=4XP@RrGE&u#_ump)4&gw?_PINnce zJS)p7yB&_BVPW-H>y7kYg)G$3$4fmkv~$$#-8&199sk_V#-vhj(**PJc?agsHsJm7 zM8a1n7Zr8)x&!CT&Bd+>0hg}MsR1H6O?ghqbadEElx?#^fESv+T{;yPk{bJx@@dwT z%89Ndj)@e>sZKdvc<8QN6~j=HZ|t&W zklcAJ$AiK50q*h^FueFQVJ{NNQ<>b^9fc}nH7#2m z%OpD~lGo_*s?76+6}jq880hejL{O_Te!)P3$)U=ZzLl(eJHRDN2WBy7rLuc7F$o8; zWB+N#zzSrD-}nXd2ivh+bo+@1R5bxC+kFyT?pNM#`*uSdl;ky9%)Eb0=u(ZowD!*A z1(*ZAO)%6cQZZoC0TGvcPR699z|w%6S+ejkVvev{%F8BS*19?i`y;tI=O@8t>z*8l zP-6156ER|HULd8yu8sB0sZyrbH#h?m+3*dVytf3K@7-#$_QdP{Z9!yq^+C>3ZpCyG zZJxUn|1SLE)@#M=r_!@v41{MhYR*$A0X%e@v(5bTZm|$cDaP1loqnLj@x_)Povu`I z@SzdlWNRalY~y>`c50u*^7Vi>&*6Jr#PaDMxL$JKjddw&(i{E^3*}g1F*#oXQQ$8| zjh(>kB&s~8)fFw9Tf=|j5}lM2VCY5#yUzRDB28`C{gf_OK1lvGSg()btCVp9;9)Zx z5_zGIqwJ#4C`a#>(7k@ZSXio+YSp*QvY66`io^P~g~VtcT|1>I5~G{j7U~^aFwci7B?QQ4cau&!EUanK>Gmh@d*f7a|k#da`U68jXB=ra>h{A)z@W)a!% zJN?xf_;n(>47>oZ`+^(!LtT)Qp_aC+|DYF}+5|*x5QpjE43LDz77fr1%X7Pc`#${i z0s=z(7d^(s)yvlGzvAjs*|X03ZOCEQ4WlUQs|qRKoUw#zEnYm^uY3guL6j9sop_AqgX z(Q0N0BJF&nx1tET8N8aOdBwHFL^`SZ4GIQhyxTq^bzqG9n;BDO-BSFT zfVc?2gAqzkPnVpR{82qoL>ZizAvg@(7tGff;EdEyanh{y1Tjj}AF2CELXvZDSEqxh zvW@Ow`JHFk;F0t38ed_Oqzxb!8DEb(uU|hO9C2xoRRoS3Za_snkrar0KkCvg``MFB z%b^`AZbc_xhKvh$C~<9>6PeqKH2?gzRImp)_wH}gccxfZqhGWcChM;LHSc=8IAyzi zyL0Y*eG#O~hMCDj5bx{YP68k1?NRw9L1}vKu%xZvElY-*;BBr3f!4b)?6YfwGcA2P zcxy<;Nsi&)(KUlTE1t?r(B)l>Ib%7%poupBTa#I@A>3bo;Xy^XaQg0gt6XRSR-^|Y zJ$yVquj<9jP;eg>Z_aWZVW2|7`w+wyez->4vf9S-WdgtWv0~XPvJ5hrpX z6E(21Zhmw&-c#AEh?~K;9Ey-*BN{f_oPX+KcXHCs@o?A9QN;8$3182K;-y=S$O&53 z$%VmQz>QI#&y7LVr%9zViS%HKToCkE(uq73`(HMr@$0i0PS29{H- zIPp{{d~tnQsg)ZGqzug2i{R5%ILf&Jmxwrx$q=VB=|17p(Hq_-^K5q;e(duy%9@aD zS}8KrC`ZI)s3=EWfJLs`RKl&s0)T;(q+>^<$yvl>zd|^*`q!F}(d#b=n8jWe#k9|m zfL&Gty&|g|Z|Oxox3m&3z*#GefZtyHFXT3sdzM|Va>(^@EAGL|cmxKVwk z7u3EGHVa-*mNSl}^lfq|1FF3~$lb|H#+?J*cT029tB=eIEz!%90G1YH`f8|apVp*i zUr_5%JNT2Z4lI@<-r+ll&OEf6r=<6G+N-@rxat5c{%L9b%+dq`ZE6M2SE)hFIP7V0 zE%)WjhuBf(-qHlYy{aiMbeocc=M)(psZYM~)FQ(Q^)(S!!n5;A!a&-@$F2PHw7TDM z+cVE71ABejaC>`4fHObGK~^pEiP&3EzC*KdR0mli2|}D}qaYI|08)MF};E0X&~&B^?uMgf(AmMzG6( z$hg??TS&4VfyohW?3@o0J*dt1MMe{syt=2g9WWA@) zbhFDf__jl>nJhKvY?y| zKJ2&}ln&-xuU`=herUp7_2KG8RB;@Y0wTlpPJC9R^ztk9I>!Z?(q$#>vZ zhHtS5tk`v>OWA4>xHko_XI-^yOeMC`#qnql*!5gkmb-SCt(JtflJ(la1sAsb)mrvU z1?=!zM-?qZmhWo z=Lqmq=w;$=Fi9*~+j>2Nj(=Vv>rgp*w;!(Df6}4M>e&A6Mol4aB^)F%Q}h;5Sxskh zJvwtb5_^*6aS=WPJr;YC98q;tmTX$;DlsGHE_O_2_9L$m9S_-Y6=rR}0lmp%Ts?j- zvD$kIscVE;5lp<(hsp()A>`B&9a zb?DXiBV73+KHrZ-Mkx}5|Ca;kB>%A*{{J}wuIkoM7na2N?Fl-Gq6qkr{I|*fb}`&C zO2IF3!9D#03-EiEwR;|Z;D~wu z45|6BsbgI2msp;>uRotn@8D?Bv+qe_52i>qEBH-NP3lhCgs{$7W@_FTuVs|$BFYpG z;#xzk6#zQ4Kd7as(pAeKnIx3da3j?mZohuGi(Uu!s4i;VxycC1r;VN!H?%Hj{jT1~ z6Km|?{r78~iJ;u_@-Gk(9WI<;Qr>)ey8PNRSGbV*B`bFkjq6oty-iEXymzbN9ekS~ z`TVv&+S_p^;Lfc*^4Fj>HADlGDuG8fmyixGtO4Q9F6^?=-<2SLmafKEpAMPYS|x5b0MI zyl9y9c%6GyDqNsRGnk*+8=eMzx_l#Qhxe@f$(aN%@Sy@N#I+_b%%u_UcmHkH<>O0N zBF(6EH6v;=>KgkM#p+340_e1xNsZY%2iCgHzt8?9Og-3Zw5^^0Biv?zS0kM~lKKSD z05}@-?Csw|OE0D}Rr}xK;-7Bi{$KImR{qP>KZ4e1fR7KvIyJrv?wz0UDiCcl@d3cK zTgp}n9@jfZb<nYqwe9_pVp^#I9Qi0SZ*d2GGIA-c^a!R2uS%;AgQ5g*s7s82 zdeG^7h^kc8c}&-SEiB^x6Yh=vgW}jBMdYbjEf>|$lsdhiX z`*(lR_VJR+Th&v$^tF1QV<+>{@{?g%&VFqzZ=KttzoBh4H9u>B+Dno3hhb~& zXwX?YE;e-e)s`Xxc!79j;&R6l7V<02Y4{hr3<5@qA*+5kv7>JpV+PY7rT%*T!$Z>| z2_I~*42>eP&fT+PM+iSl zzwY-10iWx+L4c2aM!_$@N2z((vS`Pt)25Pp-1_FZ+blh@AJmgduSkiF*g1FhcKD}Y zXx>ypZ!l1mzVHhf(AP(4Zvm*Hf%St7d>?6DuJuSqJ9#HL(yoA$o9TN!X>kAY}Q3faE{M z*5em?{oVcN6idp}o2n7Jb|#0Pci;K9iEA7Pz@MK~tstCFe?;}>=YZ|sL%%r?I*$%Q7S4~8DQjr zu{2@tmzmaqA^_wbuvfjXMhjOc(&{)JoFoAbe@Yn(v<+;4 zdUML9!N608PPg~2y%^iB~+Pdxj~Up}U0;qQH3c5nVAA*bED^KUVBlLl?q z`8*yq{a8qh?;Hv2N;538%nPyj+X5$)t+UwZ15J(0j&+M5mvBu`0%Nwi2S;RuPW9HF zcg*?yH*+-vgwiA9Q3X?bObUr!S?uCQ?PFgKhq=?GT5NF(4+WpwD!uG)&5VQB-IV-^ z#}OZX<0a!}j@{Y)=%r3s6ix!&O*4Ra!Po&u0&}|`x*~Be zs_f~+Gx?vdhbC`&LA_d)x&JUN0Tb!(g8JVmlY#;QLircU%pL4qRgH{o&Hmw~Z6wXx zFEXJCZ72Kz zVi{1p7ol!tU*o56vA=#F1<%+GS;3Y>aytlo$4?V3n?8p6bqUzqGu`u9Gfdc1hROJ= zQ}GeCI*ECFZbcC?Pw*R-|B&n!)}+D;$x>M{_EAV(wa<_OeH4N~jli+$N@EE+p=%(N zUTb`cBOEF61EMfTG(l?wsyo$mxSXj*K(Ps|0IkC?#op@tcLRc%$w65epoU7 zj8oJp(1IGH7@O^~kwZ(@;6k}nlz-b(G>A?VJVPCWKZUuO;9i+%6>e4XLC<8-M^TJN zAAPIE*!Y7QL(#w_isW1h0bA;E-xKD{=$5V|Cxb&Xn=n9q4XA2515neN12YBeI?A=Q zMX%@MKsGucS5_CF5z2H790Xw+GHe+>VhN@JHa~`VA*O6tTpqH7s+2v$WO3LsO*85S ziq2YOd5@^c+?nnz*@y?B?j3>h1wo9qNr&N|4UGywNM9WPTQM&7q<7`=$27DPt^s?G z>x#LGdkEmwmAB%kV}{irJJEM)=b+|LIN0d&s=Rp3nT|~A9(VaTOboK zg|3ahAU|EWBJDVn#F0OWT722N(~vTH$CM&%^Ok;nJ-l5nMeIGrINybTv*iYZ~mB>xk>OKL6n6gh*p6g8SYQ&iaQ0QxlZc>?YC%kQbW z5?f)5pC%#*j=-_bXH+#I`B%}F)dy87XT{^Vz!q4}R6;yakn=zeT974m00Mv|kKmX{ zoAhArNy+NGg1W1rR;m)Wt)k!;&~{d?9)|{eNR`JhkQuc_1S&%q-SGO{4|lI;psD6V zhFfMVwR29#_lN-JUUhp-ml2&c8wcX`D)(hS#QRl zgc@4pImBu7Y9_Bsl}?~>1)oAFt98U3Y)uUUFV%ILh&Oa}>1q_~W&<%(>wi)1V@Vk{2f*l}Mdh`yd;a0C|3N)riGx@CZ`7q~6R?ubue zv1F6hXP%kk{1Ua#YfI+ieqV{kPm&A89>{EjE-;P|$J)ys6RI%{BsruWeuE5L|X2iAqiYm^H~ljtcjG(~AGo z>PJ$A92wq!j@|yZ6$ARDdU~{^PdOyq{~ba7PbWWKP zM-MBOR4z}3`(I!9H|S2jXPW=_x1=YXeCz)W%5VKQNBVyxl_W|9Qizvt(lijz{{i1c B4F&)J diff --git a/工作总结/周报/周报72-郭翼泽.docx b/工作总结/周报/周报72-郭翼泽.docx new file mode 100644 index 0000000000000000000000000000000000000000..4a8a419476d4a4fcc774ac6ad49295b66efdfd23 GIT binary patch literal 20329 zcmeFZbC7P$k}ur0ZQHhO+qP}nwz=E3ZF_h3Zg=mtv72AN@0mH@nLFo3-2Z1*L}k<} zMAcKzuPQSuGnaxiFbE0&7ytwS001EXq!l@=7a#yY4Hy6bG5`dSwy?dOi>aN9zKW-V zsk1Jfhpi1k5eN`P0RYf<`~Q9Z2d_YL>Xh6N1A^$Y#Jlhzt<+Yd00ir0&=?YxB42+C zd5!3M0pcRp(q={zX_5af&m<`ZBJ;_BQmMlLM2WG61N~vS20$M! z%vHM!+JI41DmZq0UI9WCQt}CHPpu?SN+M~zt8r>7^PX=-sX*m@iz>g;A{im^Q7<`N zOFa8>|I0#1<(;=cv3KzTNDV<|R6yOJ0{TvSLA#TasYGUOE9c;8l#sN=V`?_MoKOsl zv$C1(2!t*Cd!N&KYNjy3(UG9mxm-j<7t;O_q}9%qhX9EnK0vH9`5@Twb&sMC^EC)% zj_`SXeBFYUyHJ2CFC$LQ7X!Ey%01F+hOqHAWMDH~pb@%m;?RLQKR1K*+->{t7f zp}*Q$3f%=^0Uz%vTVnNGFTP5ZW*}G6%rk%XE&4awzP^9~6#mPW#Y@C$yZ)|```(ez z-&41^_VJV1$0V^N#C6o(!G)jzP2Oxliw+j;h zVXNZHaN#et@{zJ%9GJk=5)>9l+~drrW3!A1%a&IzS}F~HPTJsVhAa|?s(DOi1HMP1 zLG^mH8T?8<=#VpvBP?5}uv(>|->nLLZLcm}pJZ*O_|u$GCheJaQ(_?>q%k?pLvDIU zN-|S~tnLek^CYkb?vO|d0LCLvdl|m8b1KBPt2U|;? zmkqLb&X;h}{7|E?m?uH0JTIc$>}Exw4gqu{4e6M+57NUOqG_%vF!;K2K!zMFv|z&f zMCQ%MPVaT^hOO<#AzhzSTiRAz^kr(_wm3EZ4!=tq`}PX{lRjPBb*-}c`aZ{3-6BrUPgdsUbM{5k_bpre{xh}Ha?(C}NuFi%{xh714k!5T@qD+r zrnOv|nwBXEuCE~FDM`iCE`2{Afv4_!w4I&N*xTAR<>+Fe(Zon3d_WZLqJdR|L< zI>JfLsIdm(Z>C)zS0@V*>GTXLy~9$D`=a!d)jESa@uEekluFe;^|J_ds(wXLn9DXi z)IlEkPZQTglNj0zHM!wKNQXs}881}E*5`q57PyGvUGFb4qWdP5F*ziWHeq9NVlN5> zlu^jTMltZwqGTN8d9Y_)9BgoOQH7<#baM(99hA6Yy+$%O)B}IK2yfK!LQlAn7F$*op zIp<5PRMi^6pH{$gMiW^``P%(pr{U4tT7VLm#V+jG&sd#NHX^%deAlc6u*VDma;4h1 zFF5BI;}?3m>|8zss9)@)b_N6f~Z&%3-a&;e6aiZ7e~Uy*R#AY%&nnKcUqIKJV_#{ZJKFz{oe=CjlVR6(8 zz=gbpt%rm?D-6EzJpuMcHL1Eo)2sesnE9t_P^RwD-MwRgbhoRnJ1Nh((+==rCWM?F zdQKq=Y=S}ft-6e{`RI#h*k%F@T7*v5Qv@R=Ur2ZYM2py@X(5{GbP~J~YBM+%DvdVB zbngp`3D4CVP)yZ_1cNkRgsTKZKNKsib_NRmpznHD!72O@%^!j*At4{Z+ox+ynqkP0 z{CBPm_AS_>@G`Tvcd@f~F?Ie+N@`BqbjoHx2)pK9ayMvq z2YHzuo-Juzn$Rt`#1}wpTmZopON#w?(lvy$b70Pp@g*FJ`gpKz>2mmTILve}_{l(t z=I4R_f`=+XCUb%Id95!WoOz8IEgHm3`FoIG@qnME&#z4#&BOJF*IMR z$|wXzl5*@gj=88bQQKRbMBJ&%G^9x93`A5A14Ug*S|~OUR9yq7{#F`?)2)~k>ty#L zfLKJSnwFO>=EiIsV`iZmHp(l&AY5@>4Ax#uHbHp>DAp@bKsB1>O1!hNLy})f&^?!(K4{^trF%Xupe4ZHY*1+y`={x+$b`Ev`2w_GS~ zQ5ee%L7Y-XN<}C4O)pD^4E6Y4F#wK-8gF`4y>Z1yRZGp>*gQbjIQ?9lx%m-3@=(E$ zC6~zMg6QCmwVD)%i9?e^-MkJ6`^CBsmB2EP48-M2;}49cq(BMf?YJSXG}RH#{HTL^ zvUwp3o#^ag z)BowX2{yoz4ZD}M)mozcW!}nrKa{B!Uu@A$iMDL_W2NATm&%5r(x^H`e;YJ$kg0*5 z>(A61E~q*iN=+Ufd-k7$uV3@3hWNHu`=c~p{}#`azQp;t-+1Q!#`8agep5S>e}%JM z@n3LO|LHEURSxDPCR^%Wo`1xYdMMsHKC!WZLJGHxIMj zpW|kFQ`t5H1)9Gb+9w{02$`%E`s;bqi{YNvxIw~!3{>|;-0D62=-K|+Q%01iq;wQG zgu$_Pd{Dkdl~E|HB*oZy40B;|Jhq28iMV5fK}eC#HK>RHCW^b1v~aZFOJ3um;V(41 z{1-H{{6C<%{{Mz%>~A#RsM{lsy&9K;0jRAvx~DOEgP1W?Fl0o=<3;sXk=+D`5Xttf=mR9p%dRIjSLT)*Hb6(44^-B4rn|DHKuF4}BU&DA`<#xQTjXm)l2i z|7gZ6KUs&~2v6l&SzK5*re_M zRTS}B`{`G&sG8gDH=H9mg zJ4*lnfcl?jvx|kPtttKAl<{vRR#V#=TO7rY{(+z7t@d|oRdggyNh%6^12Qr-r6*3E zSeNn4RYYbYE+P=2Csn8rA+4uH!9yv0Da*Wo@Z0>CQhEr>2V!n!YBTpDjhqp-P=jrC zhtJ70`$-O`bF=rK$sP#p@B}82{WRTPl}1{OHZ{T9WZR35X9yXpJ_IMDLBr28;65_XhfoU0D(idgH2mu^ zo*7!<0Btr6TM0O@yS#SV7z}h|T5ggb>mxH$Bc%w(oQ;?ry|0;5GoWDyQAx!EpGxzN zI_0Z+XX*gcYmPl$b*ojhkCXs6z70zu(X~x_w>g|_z*1RY+uL4kTB|phA1karo2h+R zdVxu0O<~v1JUP~)q=>2h5l;A+I5lljo3G-`UCArYHwyE?+-W^ z*p74mF^)#IyK)*R=0RVg90${XZdd~74l#f$6zkndw>GI|hy{K;a>^3j1=?R|X=^_+ z)pIHm!pl_gAoOElYh>_Su67?*Mute-3u!P=}FstiX&Y?NS7^N?+~F!JzM%xl&F zCVCzm0hyXT1Sa#uRtajv|g(Lw-X8 zgrdPEk{yZQ12WOuAUwgW>oYD0t9!mrt9>+!2^<0^b7>hdV5A?Oxd%vrq-VC6R+O!> zNle@<%e;^`wh&BQKZ4NtlQ|hrrUje4q&~E$+C~uBrVg-I^`svRX0wW|u>*~f*7(&x zz~RkCW(`RmW(2XoJZ7LBJd`;%CESlxp)Ji8d5N)+de&&Iz z80%Nh6ecngI6eXJjlNE_ z`j;%iVUib|Ja1K$Apr8?q6e)R=_*qcS56ug@SW=-rY3;yI@-@kVno^_6Y!+?N$;Sq^E%4!V=C;sjMnv( zop`b3tx1^n%96)J3@Pa1SN52nT$x=f#N@M#a>aTa@p{uFO-R{yHLf+q_or2L3rE3| z(|D0~GDMiOAbe%ar~-o9P2YU%e#1}DAWwRr*E0lGRG54r?k8wrh!U+f+4Vb4*637B z@%oh;6sFacDJH|j{!v=Y)xt~z z!8AoH%zPckalUE5YIOwK@Pk^_{<4K_gC8Mr2X*BP#kuT9lszqqM>KkpB$+~S^o3Kr zwsMr#(?`;#TX)nssuXOSx= zZ`R%?AbzcspXokGsF9Vy(NY>c{q*WG^f%y6zgiROr$4kxcdFUATZEc^UZLmMl`C3! zwa67}-=A&!tvO@Qd;)KBsTh>&KIUlEDgH?1t=nCeO7bh#{K1_nwOP@I&0GFqU}xQM zKXNkI9kq7s|8M0xOR8A?T?7CCY3YBF@0?9tTrBO(|DmqvXxrnkr}^m{d<7Sts1Co0 zMlkQX<^=LGMQ*^6TQ2+*_x=l{(3NM z^1JQDf37loy9@FkqtkoX9I4l_-RbRqIXdw=rPI48x9hrC9cuOWyj{Mg|9lwo|5|&F zUwiY*`rYsWjb+r;_lrhPZ%cmZ>h;X3ul<^R`?Je%%^tEFdsLQvA^%{rN|wFXdtH|< zY^F9_t*z?O%BvG8CNp}8VQ4Bk+|kAJ^Pq$ZD@PjY9arV^BKc`s(Xyi zQ-jCm_0lEd*6LzSWT<|7r_Sx|-XeR48!PbnMDW*FmuUA+_1qk<(-U^u8%NAkJg*}%A z!#y{99xwQPXqOyA^yqEJZF?+FB#+ymt?~D6!x_7GkvU1Y=*?gCaVW5VrnC%9@LR^fL!f_tO3R>U4#n)(^K;xovjN7kXo{ z+&TV!e(Yp!s5K95tQ`G$d!5#zwEPrVmJ#m!Ub*QAN3!ATvtCyQ9{kPq!o3g2{;Eqi zKmL5{>*m9uCm&l5dZ*9Bf7`!+_jh_#WX!8w%a%(?K+q|0uDV6U*g5z9YZ}Ja^X*b! zM3&|$-55Y`56b+B4SWLIcmDWKOXn-C{wsCAe#!IO`RA=1aLo4B9l1WU@W_ne@+SB=yQDX_ z+P0m>WB*wI?Zr&{plOFcIBTPR-`XR|Bwq+bh9xl}vHl3`&px%3mD!YIuhM_3*ZmAt zYbZjD4|;f`d~pYP*z`Q^OC0(0$8v40mzYio<91BOZM~^e@A6mmxJ?YdUAl?KXZ?hl zyZeU(a`iY$4`Hfi?9f5roVfOr_>45tle||3OfN~IZg=z$3v9N!e3$qBqrU-p9p4Ib z6l^-UGQ-zPq{?ftr}36k-Cg1$rmq-AQ)2G$9dt+)mR!{v(t=iw%>{ad0V#LPZzU8F z5_M8G1aGy>I)pl`V#!%(F_sfNBB|AgidCt~C`4Q!JX!2ZY+oDL469 zQOOtz+FP$`HMFH;4%rofBzX+ReH?P1Ko2ddvi|Jlbxt9sJaUQrTd82R$HVwOkr-zU zv0@}zktyek8`OQKv;~Wt5$YKt$nNqDh8_I(UP#IH8iBvkE%|PoRgUf z9=tgfSp_6XhYrwdLmf1jR*)xJSQOwo4&^{1B@;Mz0o0{XWm?YuG1O>staT&lzmy8pBKdSY5ipY1=WExeJ*5&9IqB)Fh7X2 zPraH?WNPdm1qE2wY_X7VPQ{WZ?l9s4ys$B_O;+L{5s0uV!jom9DHI1)0o-aYQRLR6$FnKvw{(xi4%(=G9+R&&&7Euz7#qTHo@~-WHJDq{^rFdxsdWD_0iI5y zvata+a&DE)LzdA-*sT%~=~{@DQ2_79MuspR1zmISJw@&KG<$;BQ{niB$atHkILDT) zkWIk3;vs7Tsd~vE(itToj(Bj0LI^D42v8htYSBFCQd!IppEP9^R5SP?W>vUT0SxrI z8s*~BXkHSeq5@KCYPA6#2cAP*EswQH_@we@;8FkP1p^YOC7%dVG@f#<1X2O2vZQyg zXM)S2n(0LFyTle#0vhrD`#J=?M-Isw$4N zk_M|0>Y7GV_)0V&Ek;#agajboHDZDtmZMrYr|^WRk9ae&eJEtmHoTK^t@;>hrmPf_ zT~Cl(fI4xD3PN{^<`t|ZGSS*tJ}D@QViss>1+f;E1_9m`DT|y_%NZqOycyE5dyC6@ z*v!O;6Gk2ko~#4413oz_o1Nx0L3V_L2Gk|Ru!tktvmZBkV$x+mM3JgsHPK{#`y3+V zsSdc3=0J>~nW8x4XG9vp`_ZMkp%Sc}4g4!y)v;lY(Y6tp)S3xvAsC>nQ#YJ6V-a^J z##8i&OB(PaEP&#GAtW|CG4p`dk%(g4-Aaa)qrN2Qn9qg%fY%j;%>@JO6`*M%lcgxN zewa|z4!K(x+K$VX$K%*mJ&x0c*ETqjfX6N79fB?CNNc(fkuMiR9!Cz_BOquEVA&Sf zsAS19qu(TxQo9|Gi_85VRJfs%;Tt8f?f|8I-iprRn$? zQn6aO?^U$Y*|3?Cfr(S9sbrXgt5pmWr$TEBpN1d}ZRM~G9V*{h-B!ccIkqNF~=0imoOlqY4&2MxSgEB1o*R7V*jWnU31Fh0JmjLC~Jm& zi2z1WxsFjgZ&K)E!GhnA_XHT(j`6m)wMN(E_Mm+nDYF%UvsQxawlqv>!2 z1R-5hc8<83UQ_G`wniaD%5!wH1Fivex2+gJ0d43_FBD)Ww!x3?aYOSp#vJ_|ON)J0 z^ukg9^FzggAgr2RL_+>{8#Q0VO2VEAa;!LyWt|Oyup#uZ#Cd%Vw2YJQ6skm1qZarC zr;f$Jkor&#VbM?nUOcHMb~X^5<<)v>%KrQ;+ho% zBS#rT#Zj9u6W-1VbV>)?@kFKK0hB0+PB4tBl+I41vm>CC56M@sb+E}6R4{eymKKg6 zl2W~Xfk@C^L`Fi$oDgIMM`h%omd>9@lxL$Uc5opMZ*pVHde_LGzXK4hi^sMcix6GK z$a!alij|@AWfhf*V74wXnn%nFLs+g>h7EY1Vi}zx=h}=@Sdhh|~_&HUk-(MmcS#iFWTpHB^UhDF|5&^we`na>!>^Tq(FC?}mWf31`f}<3~})%)>({ zy78Q5A*U>mOd1PU$q6~)>L3~0)sjOJU&K%d(RMP*X6#h@l2}kk1w|a=d?l3z_p*c+ zQ$hr@Gg#O)AxLDT3ZiY8*_`k2lFO z&IWOMaWkTJU%DApDIHkpRh6kPk|!p1DQKOK9LvNdrWO2|+VIvsPKpXcc*aRUUoMED z4^R#P2?6sXk&}4K1R8_n3mR20#VItC(g#o!$l_Y~sAoC!D$2eJhLM%(LlS;d_z06K z*9Y3FvTf};pV%}HwY^FrVDhmOmmsc~kdxGkAsF4%^jwVN8C2$?aX`-qTKkAIhpVwj zU|ZeFZs53%qV~%G0u3SYcQuLSt37g^H}#}D0NKjJ0j6hwT^MM$99TD2Jz@5(333D)0iC) zib*t|LB-}G2>@cUJ?#7uhxmg9Baz_~Gn70H98dHp;d&CZpEfwes8d*M4GFMAEm`|E zb~mw1<~n_JdfYa`QVFUCmBq2`Sc*u<98csV2VMH4lCko8Qi}}@cu?TjJQOJe!hHe~ z2d$EXiDPZMl(6Y9c#f2JyLD#NocBpY+ zRfj-pY{%(64x-7^+ETH6lY3Trsbc#yDL}m{jP5BGTkRE5WI=oxFgC36aDtLqvR(beg6)?rJwoe9F|JtyL}t{u ztPlx5Jx2XqL!S73`a1IZh?)J*c3-UhRKG@!*NI)THyu}cJed70kFEUn-F(p1H<|r5 zcVLabD4p&dyus+{pIiX`+n({_2K>L(}-uk&%XJ{wrk_= zRq%gH>+9B-%XipyZj1cXay#f6!f&%5fkXzE!D$%6-!{^t;q`sJ-6ET{&F3MXv%Tw( z&D~sf&gN@7Jz;aUV|L#BSgOTetGet;N5}V{y>uV);^ldoQlEQKmlY?&;e)#K?n83& z^74J@95J7pU4Os1x<@>Y|C!Tk>-4C361?m$IQ5>IHWEehaBS)P_CAw*9T!rk{&rfn z<7&(fdw}_t4?Mc^=%n#3F)7*ycNrFKwM0p9@Oq<}dV13U^7A?WwQK$I?Ff?FePyin zYcVv4GkeQ4W<{5Ze9BaUN+$^&X_ZncEa|H+`Bz?F(Bsgz`{%#$4oJQ^3Z3~j5oF5! zi}}{h)z-+=>H9+DZ~K7Gc3d$VMo-!dyFN^9lMOJIg!$=`S6 z1QXM`Z`HnuKgmcyB%*R9(>9LGFk*b)ao_Gwf^F|U$IN%mZ6$Kr4R7YbpRM}Dfyi^Z z2JQ;KPRcj9n|7p?xHC5OFcQK)p(S7W{a!x1o;L;SpYkPSn4c)b5@1>r@8|VPEm;&& zhBXm)F8Q`3onLlpm zDGkLeDC3~!mYcW-1cnIy9aWm4NuL5%K;74MA&pR{+0x7^X!0PP)D!98tCgV?y4aC@#US;*_>qiHaH^_{a*|kE@(~;3!YmrI z$V?z?IwhodBO`w^O$@1odM_~SY%rTMLxmQWE%kL||I5-V@kYX5<>?WJo@(^+4cuR$ zy!Y!(H1=oWdU?i7fmwVw@J-~u!gw7{Ntvw@#PD))0W$^?!$!Bj?2PqrOpbn7z_&n2?C%DC^?b_D?O7>~W|@Zbfz}j_&5%d)r!by@-P9CZx>kRKcc$us zd8})S24*qj$R#*Mv!R~yR#z=gd~YQ!G6+~vRhc$b&WR^fj?N|QCqh~=rX&4U(hISq zW!p+}IDbSEdyDZM77vmB9E2K1ES=$l_wP+XUP6_%?1nC#Tr&`Z3Vv)wAycU{nWRO{ z>*bIhWCP`(I5+P6rBGiuAl0BGKj!kGeK~Mf3PH%7(Nh@1^58TX4FQAJuZojE_vJgVE?aA@#WH(#SHW3(BrSkP~nZ|W_EfU1;y-DDaZWkWe@1@Tg{Mp^ELn0V^~tkWk?0tHD7) zLY9F_&k6^Dd6qqwPWvcdag>muVIc>$95z(Ay6$NMfUD!3VmdCNAPc^62j%QWaRLcxk2C&0gkmR4MDgKeSp%{8H95a(e;UFT>x1P z`qe~g$6D;*uZ0b`b+8JOxyNxAxg9^SfJ%&;u^JNID_p1mCA`~C9BZu#y&6BzR)GG_ ze`iGH*7Atsr>R3%fWSN~ER<=PTlHvfmX*2oe)u#%H+J?8vW7s_Y&XO+H*XytEOHCp zz(v_tr39^7=WnEN>D=+-oRbcqmqykKD~r*j?A&<_T05m`Em#jf%Gnd@eq_0vhmLxV zUWDF6IG)1Z8jZe8#*i+LKT2Y+k^7oQ-Lpw^Ws-N3U1zahQQy?Av9XuaQ3PjXp{5Cf zDKm~bv~3Y~SunM_xN@+#>1U&HSJzt@331?BhAn&4xaC-YyOJ|SU34L1Zb!yc)n&Pm zGyUuxTg)Bz0InjtBWD7lLk=1YFT5zH0J~@XDunu62(JY$!EV1}Mv1TXv(wR2R|uZy z!=y9@QXRr#csR4y#u4aH;sBhKPg4^N40Mfgc)HSpw#orKI+33&2!oO>A)4Weok-`9 zGq}^Oj4DJ^poREBzy&+W9w`@aH&V?+!A6T~MKykCPg~{(mP|dwRAwrWJ6mX0HfF`x z5uV>~B3u^6bLoYf@e@<{Pn0HHmM(MQ>)yY2joVk%OPGWC_FeJ>0Qk$h>2Kd9XBSVK ze>g5p=gv8Awxf<+=bnD`FI4byB++QgF`Zwm$0>Vbk^f3v${|E*tS5s^D>33e(R)RA zDO;M-ds@bOBX@26poa=50QrN6f*;Z8ElCq~Eevq&i+}SXz2oziFg$>sg&tEr7JM7M zKu};gPMr1&51wzkd()c}A}Xl_G15~i9z4Do!{_aIt?%{t(^Zjgv>5_~fL4!u@76#w zZR32e9wMEEa0EJULB*$I*HcL9maz|)jHFN7)SFPANvV-DTJsOb7Jh6QaO^~v!i&*> z&}&+FRY+NBBmOZ9nn)g+bQ&t_WiRw)-icz`eF9qOZx?vQ$ySWJ8Xg~7obbRWfD zgxm#MB??16yo$ag4`7aAz$ZWhtVM8~gHkh?(9#J*#5iVMXAKjFEi7Yzs2?$D6qA0u zwZfLtQjH`dizG@q#c*rwVEN7s2;B8-M6%$VU8#Lx2Pf39N!G#Gc9Abxb0oR$ZPWnb>} zC@-#I3-wBk>?9Xg+!^VJoWK*#m=GcEl!?Io2De0*>QT3Gb};=M!zvqVSn!jKoGu%9 zp%h}p4_!}33tiYWJ3f=#S<(9eESq;O06ynhFm%E-|Ih*F@}L9m^+yL>DdX!XPy;J+ zxaKK59B^3|CmL%3CwhGzCpzsrseC7-c^v72V$L)UF=raXsNEEvX3;{#3uNi$HfQ%a zM7ynRbHohgM^tSw5z;azE`rWkVaw(QZ^5H9rGlMO$9P7}#BIMcSYmnL^<^KD zP*wqD)sB>+LOdbPLP9vNcUa`QkHVj;fAgy$A?4KWXLuR;-XI%At@N=eWPFwe4nEYu zpp^L=8oW%eAy{UWCoZzc1D9Fmjn+iT>mU4;kzL}6%`SVyZ^Kp_r5eeuigSE+b~k5C zM+fz4Gaj{5CPD-FD984lWoakl?3j^kg*ntbGOOM&zi^cEe8AXx$yiz?(LeV>B{DBs zqtSiDpQp{DcdYTuJ8U`jL|V^U(>GE#%A`TJK=(V#+_2JPi&9JEigXj(S8XY{tYcGp zim#6a_|?#TLl$gS9S-qHklwVI%g3}+mimF+YWSGGvQ&N8;)!)yn92x${a&&cJr;9Z zMALOH>os;pP6Di;U*+ zpzXdVq@LrZEvUV{!wY}wMkX!O$>1G8-c$2#7+X0X@_ojf>#HUoEH8qH!}no%6Is4I z9OdHM8^(kRDV`^Bm?^n*dJ3n~qpv*PS?+Ee{*tSF1(%2PQ6wjkqzVleubK32zh|5u zPfa-L89a&EQ*S)|hh2An%u?8h)h96QTX`ou&yADW?}JK}6Z{n=b%v6nPY4nd8@8mIoaIJbw^_V6Vj<(%Re9{MKgYPQb${v zWZImYCkL_AeulIB$toLiT;o=+yKQ==7fi7`a;-7aB56EvmiDVj8|vd74RIl#EIi$_ zE7#?pyluKEgI1mVOLoSk1-YqCgB_+#-~KYj{8jlpmQ3A+h?=C%!W+Y=(~_=+sNb{) z!P}$Rsl#bUhT_s5)2DV*GgO{acRz|rd5)*z(xl3@(`>ywr0=>$1vspt^Ic=jA;0aL z6k6Eqc&)Svt7)=?9?NK=+Dedeg9>`I0l!YmFuQ!&Z`UswsT!3ToEnw6&L`t6kk_9d zpp%)o$t)`mYOeDDJoRadxJ_rT)w;Rt`&NlN=MLaT9v-@|Kb_i6Ze@yK^2KswG|9y(8=+NE}s6P)v zpe}VopeX5tLQ(!Xw|{i`>y=c+;ELp*vyW(fSx%?0ZQF>yHRr8y|F-qIlwv>j{Gn)z z%yJQ5scCHL(gU4Jer>IR=m966{4RSVkGS>7&?jz$hmri$T zPPojf48Z@}3Uamrr#ZCS5;CegxK)CkcA)aUfc7mb%>awXLb_8b{ZW?Ehzn@c)^d~q zPkVZ^vBeNByq#7YJIo7lAt-XSdgO;`R5?g zYo*+n0)}p`8M(`2Uhe!#tQ*i|z8cK01~-(SLvAVARfW^_wQlH@xdE=MBpe-B23xwY zinFz06zu9l!x7(Q2D+DdIhP>h>cBBwRfLlpD+ou&Rvf8@y0DNM>cT*)E4<_;)T7(q z#TQl)PR^`4TmOGm!tS9}fTKIB2xk{o(UuNurAc!YA>g@{M1Ln1QjQKR!`1gd=IX*K z*;Ol=DYWXvJT@5zXog{gc0z10juRUUEtjDY-2sqTF=ha*099NP~S-1*Hf!a4A?W%HIQA++VBxz-(-KyfBWa8?3)aAqf zLjI3QbRv;W4^bDGK~7Bd@4W5PNi@(%ex)P(NjYoXyg%!ouAZ^Xn(Zk zt@oiAlkEi9@zkQI+6Sx%v>cQYAU;B?H6jLnuF!o9saDp!O4Yn_(~EG{JY&X|*^4hZ z_6WPT;+_N<5uzdL7c-n>(RL$q;4p*fwuDLL>-5}x@xqp#tYoj+IOnX ztcy7Gv^`Cj^;dnghILuhl%|%d$Y?{4r2*D9n^~_>^EP*3k!3N)SM8zu>y#}DKfjuf zR)UGamk32(&spH;CtBI(ZMest7FGA+#xGaF<@xZ}{rYL%GN4(U*P>gz1Q$ZQr0C}Ht@n7$M?ET?BALIMp-=FidaP{O*%f=oB zHhAsa>(=tLiCz&Nl)pk`)*@D|x%v=4{9yz$iTxn~H9kO&k^#PZd`7_u_*N~@vjW5m z@UKL<-b=Vi6Abdnx&*b*J75*XR-C#L>SxocSv|fYKrLaW$kr{RQ^)! z{zLz7{h;Rb7|-zk`V<2!007E=>OStKM#}%<3U!gbW4+0MFt!8!h9C0_dy0R5y-<>n z8aJ3xZ0!Rus(RQcX;wli=b-5baV}a8{v3 zh+;oVXj0W9jIV!t*QBBWjUp*x!8*)krXc(M^L1^unn3~&R)G3pdA|20Q4e1E7 z0S^p9J|NSi+YpB57=*4#{?L?R&c*PaY5cwU!~;NCvngu?622>}FHJ)UQP~;tMt#XB z`IeqnEJ?1P7WKRdCC-E^uR|=fR=t1c>&If2&DyIkq{S6j(V_NIjUe+Ql6W%FK>K*p z58nC^C;v@5yGVyFiU&P*`23AYyq=fCo|E%4^egZmbGgvc) z==ZnzpqxjGGU{2_@*p0s;|`fNLVh=FW+tp_ltZMQXGS#S#n7{ zH&deDztlc&NoI>BQ%unxzw%ze@7wVx$^{%|xXMTN0lKuBM zvo=AR3W0AxWr6?8O|sedM?h2zjciQ+x=G$j-nLs}KpDGE^avk+w$6Dl)@^b5*{Lcd z)FmLizv`MZOw>xe`QZgJ+|&=;KcWZLytcb8DJ2R`gQ`yAwEylqOMmiyprdCif?1ux zrZWK|${PbjRw30fjr{Or=*K1&*dS6?qLM^vF$L3^)$8Nfk!K>Mg)Gp^f-H!vqM zJR?OwWeKI1nbztDXItZ*S^x+r0VU#wFfai_se(`DgQQkw|TQ;dE&l$_UD*$ZBoH zAzVA^9PuDIy(1;dMv6cXeck|gbdUNjp|7jsa+?F!HJ~iEKB4+N2_k~~Kxnfd?^d{9 z6oMu2KO$7ZL=l>ZOoQsr%|hNhBET7pGGG;c16c|-8^Wo9?`zFQ>>jnMww%0%Mrms` zzeZVHRo11$%o!S5qHzeiV;sEL@rkz}ky?OF{_*fwqG<3==cmIe?NhE-{&Dg$_TyM# zZeygMd+28*uy`JyugB}%?^uG;9`Kr)m$Zp@+#OcuT_q4YLkDuJxnjCl@i84D=_;;F zm&?}(`zM*Rc=P-FjrUjei> z7DF#PKM`^p)q~b}=r8c6U-a2UnHiVx|LpGlo4&Y!Tk^wIJgODP~CpXedHP5+QIK!&eYC&~Dm7 zpzp%aBya$d?{eunK>}|vz*q>*5i-u{jKU5?n3tlcg~U9#L@%QVbr(h$kW|9lktOOT%+)~Z?L=Vn zk6_y13f8B{+pz$@CS!oAYHVc>+T)w}i8sVjGx2gN)7I-o&9pHN4YLrp|A?Gt)$VDK7W<=l z4|;$6c{SP`!Xfku)yElYdtj+WuLxS(a6*~2e^*Zc_^)f2#Sp~G@7Xp$u zLzJ0uMWH8TA-n9A)?@adBdL;LF?oEH@w{N@Je?KQ1|G<++PArx2J&VRscEO zCKeQcO3Be=3rw>>FeeCnO3)tVkNkn}u4D>^wr+DqC&cGvrw#7ZW{pn-Y#B@W>)h&f$(|-yk z*B#f_PmrB+e1gfb9+jM!XTDzlrft-a&T*X+a64#u(L&MAgcUPaYw3PGc=EhhZqnvO zGmLFiws2jYD$nvc?qk{ff7+|&y!mr9w(`r8;|q^mlb$$Xf7#@;MKM{8ygF0#ID=n_ zRXToQNYKsdso`3q|KKjG=+8G&5%C9C2|Au|;eK-YwdDrEw(9r2)08e|{p_B0&^3JN zo3~HQUq5T?UC)quW5FLDD_LvlWRCNR}CJe>i*dZpMRdz%?^o=d}}+n0_lJ zJdM)VIk|D6(%$|ZUzb+D5G$1X>D%YD@AZ|OJrm|mpMBKg-3n&uq`-;)4<2$jAiUSZ zV6NTSTT)lQ&)wgf*SPy%_NSLMK^H7@-^^Zo=kWZ8@xbtgq*O*GU0`z%`=MUoXh9;d z9Pt(4jcNeu5kp9N88!o_qmd3ALf43X_6kDlWniuX57Z;?UPsrCy6GLE8931mZ0~}# z