diff --git a/书籍/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md b/书籍/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md index 1c21563..c96d6ea 100644 --- a/书籍/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md +++ b/书籍/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md @@ -1422,39 +1422,40 @@ $$ $$ The previous five equations can be combined to give the following form of the angular velocity of the hub in the inertial reference frame: - +前五个方程可以合并得到风轮在惯性参考系下的转速如下: $$ -^{E}\omega^{H}=\dot{\theta}_{s}{\pmb a}_{I}+\dot{\theta}_{7}{\pmb a}_{3}+\dot{q}_{6}{\pmb d}_{2}+\dot{q}_{5}{\pmb d}_{3}+\dot{q}_{4}{\pmb e}_{I}+\dot{q}_{3}{\pmb g}_{2} +^{E}\omega^{H}=\dot{\theta}_{8}{\pmb a}_{1}+\dot{\theta}_{7}{\pmb a}_{3}+\dot{q}_{6}{\pmb d}_{2}+\dot{q}_{5}{\pmb d}_{3}+\dot{q}_{4}{\pmb e}_{1}+\dot{q}_{3}{\pmb g}_{2} $$ -If the velocity of the axial deflection of the tower is assumed to be negligible, the velocity of the tower-top base plate (O) in the inertial reference frame, $\varepsilon_{\nu}o$ , is : - +If the velocity of the axial deflection of the tower is assumed to be negligible, the velocity of the tower-top base plate (O) in the inertial reference frame, $^E{\nu}^O$ , is : +如果假设塔的轴向挠度速度可以忽略不计,则惯性参考系中塔顶底板(O)的速度,$^E{\nu}^O$ ,为: $$ -{\varepsilon}_{\pmb{\nu}}{o}=\dot{u}_{\gamma}{\pmb{a}}_{I}+\dot{u}_{\delta}{\pmb{a}}_{3} +^E{\nu}^O=\dot{u}_{7}{\pmb{a}}_{1}+\dot{u}_{8}{\pmb{a}}_{3} $$ -The velocity of any other point $\mathrm{T}$ on the flexible tower in the inertial frame, $\varepsilon_{\nu}^{\phantom{\mu}T},$ , is: - +The velocity of any other point $\mathrm{T}$ on the flexible tower in the inertial frame, $^E{\nu}^T$ , is: +在惯性参考系中,柔塔上任意其他点 $\mathrm{T}$ 的速度,$^E{\nu}^T$ ,为: $$ -{{\bf\nabla}^{E}}{\bf\psi}^{T}=\bigl[\dot{q}_{7}\phi_{I T}\bigl(h\bigr)+\dot{q}_{9}\phi_{2T}\bigl(h\bigr)\bigr]{\bf\dot{q}}_{I}+\bigl[\dot{q}_{8}\phi_{I T}\bigl(h\bigr)+\dot{q}_{10}\phi_{2T}\bigl(h\bigr)\bigr]{\bf\dot{q}}_{3} +^E{\nu}^T=\bigl[\dot{q}_{7}\phi_{I T}\bigl(h\bigr)+\dot{q}_{9}\phi_{2T}\bigl(h\bigr)\bigr]{\bf{{a}}}_{1}+\bigl[\dot{q}_{8}\phi_{I T}\bigl(h\bigr)+\dot{q}_{10}\phi_{2T}\bigl(h\bigr)\bigr]{\bf{a}}_{3} $$ where $h$ is the elevation of point $\mathrm{T}$ along the flexible part of the tower and ranges from zero to $H.$ Again $h$ equals zero at an elevation of $H_{S}$ relative to the Earth’s surface. +其中,$h$ 为塔身柔性部分上的点 $\mathrm{T}$ 的高度,范围从零到 $H$。 同样,$h$ 在相对于地球表面的高度 $H_{S}$ 时也等于零。 -The velocity of the nacelle center of mass (D) in the inertial reference frame, $\varepsilon_{\nu}^{\phantom{\mu}D}$ , is: - +The velocity of the nacelle center of mass (D) in the inertial reference frame, $^E{\nu}^D$ , is: +风轮中心质量惯性参考系的速度,$^E{\nu}^D$ ,为: $$ -{}^{E}{\pmb{\nu}}^{D}{=}^{E}{\pmb{\nu}}^{o}{+}^{E}{\pmb{\omega}}^{N}\times{\pmb{r}}^{o D} +{}^{E}{\pmb{\nu}}^{D}{=}^{E}{\pmb{\nu}}^{O}{+}^{E}{\pmb{\omega}}^{N}\times{\pmb{r}}^{O D} $$ -where $\varepsilon_{\omega}^{\mathbf{\Gamma}}$ is the angular velocity of the nacelle in the inertial reference frame $\bigl(^{E}\omega^{N}={}^{E}\omega^{B}+$ $^B\omega^{N})$ . Similarly, the velocity of the teeter pin (P) in the inertial reference frame, $\varepsilon_{\nu}^{\phantom{\mu}P}$ , is: - +where $^{E}{\pmb{\omega}}^{N}$ is the angular velocity of the nacelle in the inertial reference frame $(^{E}{\pmb{\omega}}^{N}={}^{E}\omega^{B}+^B\omega^{N})$ . Similarly, the velocity of the teeter pin (P) in the inertial reference frame, $^{E}{\pmb{\nu}}^{P}$ , is: +其中 $^{E}{\pmb{\omega}}^{N}$ 是在惯性参考系 $(^{E}{\pmb{\omega}}^{N}={}^{E}\omega^{B}+^B\omega^{N})$ 中塔架的角速度。 类似地,在惯性参考系中,铰链点 (P) 的速度 $^{E}{\pmb{\nu}}^{P}$ 为: $$ -{}^{E}{\pmb{\nu}}^{P}{=}^{E}{\pmb{\nu}}^{o}{+}^{E}{\pmb{\omega}}^{N}\times{\pmb{r}}^{o P} +{}^{E}{\pmb{\nu}}^{P}{=}^{E}{\pmb{\nu}}^{O}{+}^{E}{\pmb{\omega}}^{N}\times{\pmb{r}}^{O P} $$ -The velocities of the blade axes intersection point (Q) and the hub center of mass (C) in the inertial reference frame, $\varepsilon_{\pmb{\nu}^{Q}}$ and $E_{\nu}c$ respectively, are: - +The velocities of the blade axes intersection point (Q) and the hub center of mass (C) in the inertial reference frame, $^{E}{\nu}^{Q}$ and $^{E}{\nu}^{C}$ respectively, are: +叶片轴线交点(Q)和风轮中心质量点(C)在惯性参考系中的速度,分别表示为 $^{E}{\nu}^{Q}$ 和 $^{E}{\nu}^{C}$,为: $$ {}^{E}{\nu}^{Q}\!=\!{}^{E}{\nu}^{P}\!+\!{}^{E}{\omega}^{H}\times r^{P Q} $$ @@ -1465,32 +1466,39 @@ $$ {}^{E}{\pmb{\nu}}^{C}\,{=}^{E}{\pmb{\nu}}^{P}\,{+}^{E}{\pmb{\omega}}^{H}\times{\pmb{r}}^{P C} $$ -Finally, the velocity of any point S on blade 1 in the inertial reference frame, $\varepsilon_{\nu}s$ , is: - +Finally, the velocity of any point S on blade 1 in the inertial reference frame, $^{E}{\nu}^{S}$ , is: +最终,在惯性参考系中,叶片1上任意点S的速度,表示为 $^{E}{\nu}^{S}$ ,为: $$ -\scriptstyle{^{E}\nu^{s}=^{E}\nu^{^{Q}}+^{^{H}}\nu^{s}+^{E}\omega^{^{H}}\times r^{^{Q S}}} +{^{E}\nu^{S}=^{E}\nu^{Q}+^H\nu^{S}+^{E}\omega^{H}\times r^{Q S}} $$ -where $u_{\nu}s$ is the velocity of the point S on blade 1 relative to the rotating reference frame fixed in the hub (rotor) which is simply the time derivative of equation (3.29) performed while holding the $\ddot{\iota}$ s constant: - +where $^H\nu^{S}$ is the velocity of the point S on blade 1 relative to the rotating reference frame fixed in the hub (rotor) which is simply the time derivative of equation (3.29) performed while holding the $i'$ s constant: +其中,$^H\nu^{S}$ 是风轮中心固定参考系中叶片 1 上点 S 的速度,它仅仅是方程 (3.29) 关于时间求导的结果,同时保持 $i'$ 不变: $$ -\mathbf{\Phi}^{H}\mathbf{\Phi}^{S}=\dot{u}(r,t)\mathbf{i}_{I}+\dot{\nu}(r,t)\mathbf{i}_{2}-\dot{w}(r,t)\mathbf{i}_{3} +^H\nu^{S}=\dot{u}(r,t){i}_{1}+\dot{\nu}(r,t){i}_{2}-\dot{w}(r,t){i}_{3} $$ Many of the previously developed equations can be combined to expand the velocity of any point S on blade 1 in the inertial reference frame : +许多先前开发的方程可以组合起来,以扩展风轮叶片1上任意点S在惯性参考系中的速度: $$ -\begin{array}{c}{{{^E}_{\nu}s=\big(\dot{q}_{7}+\dot{q}_{9}\big)a_{I}+\big(\dot{q}_{\delta}+\dot{q}_{l\theta}\big)a_{3}+\big(\dot{\theta}_{\delta}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}\big)\times r^{o p}+}}\\ {{{\big(\dot{\theta}_{\delta}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{I}+\dot{q}_{3}g_{2}\big)\times r^{p Q}+}}}\\ {{{\big(\dot{\theta}_{s}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{I}+\dot{q}_{3}g_{2}\big)\times r^{g s}+^{H}\!_{\nu}s}}}\end{array} +\begin{array}{c}{{^{E}\nu^{S}=\big(\dot{q}_{7}+\dot{q}_{9}\big)a_{1}+\big(\dot{q}_{8}+\dot{q}_{10}\big)a_{3}+\big(\dot{\theta}_{8}a_{1}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}\big)\times r^{OP}+}}\\ {{{\big(\dot{\theta}_{8}a_{1}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{1}+\dot{q}_{3}g_{2}\big)\times r^{p Q}+}}}\\ {{{\big(\dot{\theta}_{8}a_{1}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{1}+\dot{q}_{3}g_{2}\big)\times r^{QS}+^{H}{\nu}^S}}}\end{array} $$ When expanded as in Eq. (3.92), all the velocities of the various points on the wind turbine system in the inertial reference frame can be expressed as: $$ -\mathbf{\boldsymbol{\varepsilon}}_{\pmb{\nu}}^{E}\mathbf{\boldsymbol{\mathfrak{x}}}=\left(\sum_{r=l}^{l5}\mathbf{\boldsymbol{\varepsilon}}_{\mathbf{\boldsymbol{\nu}}_{r}^{X}}\boldsymbol{\dot{q}}_{r}\right)\!+\!\mathbf{\boldsymbol{\varepsilon}}_{\mathbf{\boldsymbol{\nu}}_{t}^{X}} +^{E}\nu^{X}=\left(\sum_{r=1}^{15}{}^{E}{\mathbf{{\nu}}_{r}^{X}}{\dot{q}}_{r}\right)+{}^{E}{\mathbf{{\nu}}_{t}^{X}} $$ $$ -\begin{array}{l}{{{^E}_{\nu}{^s}=\stackrel{!}{(}\dot{q}_{7}\dot{+}\dot{q}_{9}\big)a_{I}+\stackrel{\cdot}{(}\dot{q}_{\delta}\dot{+}\dot{q}_{I0}\stackrel{\cdot}{)}\dot{\pmb{a}_{3}}+\stackrel{\cdot}{(}\dot{\theta}_{s}a_{I}+\dot{\theta}_{7}a_{s}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}\biggr)\times r^{o p}+}}\\ {{\ }}\\ {{\stackrel{\mathrm{(}\dot{\theta}_{s}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{I}+\dot{q}_{3}g_{2}\biggr)\times r^{p Q}+}}\\ {{\ }}\\ {{\stackrel{\mathrm{(}\dot{\theta}_{s}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{I}+\dot{q}_{3}g_{2}\biggr)\times r^{Q S}+{^H}_{\nu}{^s}+}}\\ {{\ }}\\ {{\stackrel{\mathrm{(}\dot{\theta}_{s}a_{I}+\dot{\theta}_{7}a_{3}+\dot{q}_{6}d_{2}+\dot{q}_{5}d_{3}+\dot{q}_{4}d_{I}+\dot{q}_{3}g_{2}\biggr)\times(r i_{3})}}\end{array} +\begin{align*} +{{}^E_{\nu}{^s} = \left(\dot{q}_{7} + \dot{q}_{9}\right) a_{I} + \left(\dot{q}_{\delta} + \dot{q}_{I0}\right) \dot{\pmb{a}}_{3} + \left(\dot{\theta}_{s} a_{I} + \dot{\theta}_{7} a_{s} + \dot{q}_{6} d_{2} + \dot{q}_{5} d_{3}\right) \times r^{op} \\ ++ \left(\dot{\theta}_{s} a_{I} + \dot{\theta}_{7} a_{3} + \dot{q}_{6} d_{2} + \dot{q}_{5} d_{3} + \dot{q}_{4} d_{I} + \dot{q}_{3} g_{2}\right) \times r^{pQ} \\ ++ \left(\dot{\theta}_{s} a_{I} + \dot{\theta}_{7} a_{3} + \dot{q}_{6} d_{2} + \dot{q}_{5} d_{3} + \dot{q}_{4} d_{I} + \dot{q}_{3} g_{2}\right) \times r^{QS} \\ ++ {}^H_{\nu}{^s} \\ ++ \left(\dot{\theta}_{s} a_{I} + \dot{\theta}_{7} a_{3} + \dot{q}_{6} d_{2} + \dot{q}_{5} d_{3} + \dot{q}_{4} d_{I} + \dot{q}_{3} g_{2}\right) \times (r i_{3}) +\end{align*} $$ where $^E{\nu_{r}^{X}}$ is the $r^{\mathrm{th}}$ partial velocity associated with point X, which can be a function of time and the generalized coordinates but not of their time derivatives, and $^E{\nu_{t}^{X}}$ is the sum of all the terms not of this form. Similarly, the angular velocity of any reference frame $\mathrm{X}$ in the inertial reference frame, $^{E}\pmb{\omega}^{X},$ , can be expressed as: diff --git a/工作OKRs/25.2-5 OKR.canvas b/工作OKRs/25.2-5 OKR.canvas index 9ca9720..7729691 100644 --- a/工作OKRs/25.2-5 OKR.canvas +++ b/工作OKRs/25.2-5 OKR.canvas @@ -1,11 +1,11 @@ { "nodes":[ {"id":"b698e88ca5fb9c51","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情,它们是完成OKR的保障。\n\n\n效率状态 green","x":-96,"y":80,"width":456,"height":347}, - {"id":"2b068bfe5df15a72","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (8.5/10)\n\n关键结果:对标Bladed模块完成 (9/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)","x":-96,"y":-307,"width":456,"height":347}, + {"id":"2b068bfe5df15a72","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果:建模原理、建模方法掌握 (9/10)\n\n关键结果:对标Bladed模块完成 (9.5/10)\n\n关键结果:风机多体动力学文献调研情况完成 (5.5/10)","x":-96,"y":-307,"width":456,"height":347}, {"id":"01ee5c157d0deeae","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-620,"y":80,"width":456,"height":347}, - {"id":"cb9319d24c3e70e3","type":"text","text":"# 5月已完成\n\nP1 Steady Operational Loads求解器编写测试 \n- 变桨算法测试完成\n- 转速算法基本完成\n- 两个结合点测试 完成\n\nP1 Steady Parked Loads求解器编写及测试\n\nP1 simpack多体对CAE的需求梳理 分成塔架、叶片、传动链模型 完成\n\nP1 建立IEA 15yaml文件 完成\nP1 结果对比\n- 完成 bladed、fast模型建立,工况设置,对比","x":-240,"y":520,"width":440,"height":560}, + {"id":"cb9319d24c3e70e3","type":"text","text":"# 5月已完成\n\nP1 Steady Operational Loads求解器编写测试 \n- 变桨算法测试完成\n- 转速算法基本完成\n- 两个结合点测试 完成\n\nP1 Steady Parked Loads求解器编写及测试\n\nP1 simpack多体对CAE的需求梳理 分成塔架、叶片、传动链模型 完成\n\nP1 建立IEA 15yaml文件 完成\nP1 结果对比\n- 完成 bladed、fast模型建立,工况设置,对比\n\nP1 集成yaml解析代码,测试功能是否正确 done","x":-240,"y":520,"width":440,"height":560}, {"id":"1ebeabaf5c73ddbb","type":"text","text":"# 4月已完成\n\n多体原理学习 YouTube课程 018\n\n气动模块联合调试,跑通\n\n使用python搭建风电机组多体模型 刚性部件主动力、惯性力计算 \n\n编写Steady Operational Loads求解器\n- 稳态工况多体动力学求解方法 --龙格库塔+ed_caloutput 初步方案完成\n- 遍历风速框架 完成\n- 不同风速下转速、变桨角度算法 完成\n- 多体设置参数 完成\n- 每个风速直接是否需要重新初始化 需要 完成\n\n\n\ngenerator torque计算 简单了解,确定方案","x":-720,"y":520,"width":440,"height":560}, - {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\n\nP1 结合yaml解析代码,联合气动更新对yaml文件的支持 \nP1 结果对比\n- Herowind 不带气动与fast3.5对比\n- Herowind 不带气动与fast4.0对比\n- Herowind 带气动与fast对比\n\nP1 如何优雅的存储、输出结果。\nP1 国产化适配交给甲子营,对接\nP1 推进气动、控制、多体、水动 耦合计算\nP2 yaw 自由度再bug确认 已知原理了\n\n","x":-614,"y":-307,"width":450,"height":347} + {"id":"58be7961ae7275a7","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 浮动坐标系方法 如何用于梁模型 \n\t- Q 问孟航 不用浮动坐标系\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n- 如何静力学求解\n\t- 基于本构方程 读孟的论文\n\t\nP1 结果对比\n- Herowind 不带气动与fast3.5对比\n- Herowind 不带气动与fast4.0对比\n- Herowind 带气动与fast对比\n\nP1 如何优雅的存储、输出结果。\nP1 国产化适配交给甲子营,对接\nP1 推进气动、控制、多体、水动 耦合计算\nP2 yaw 自由度再bug确认 已知原理了\n\nP1 模型线性化调研\n\n","x":-614,"y":-307,"width":450,"height":347} ], "edges":[] } \ No newline at end of file diff --git a/工作总结/周报/周报79-郭翼泽.docx b/工作总结/周报/周报79-郭翼泽.docx new file mode 100644 index 0000000..8672381 Binary files /dev/null and b/工作总结/周报/周报79-郭翼泽.docx differ diff --git a/工作总结/月报/25年5月团队员工考核表-郭翼泽.docx b/工作总结/月报/25年5月团队员工考核表-郭翼泽.docx new file mode 100644 index 0000000..1c92756 Binary files /dev/null and b/工作总结/月报/25年5月团队员工考核表-郭翼泽.docx differ