vault backup: 2025-09-01 09:13:16

This commit is contained in:
yize 2025-09-01 09:13:17 +08:00
parent 09465e575b
commit 0d9231257d
8 changed files with 3961 additions and 86 deletions

View File

@ -8,7 +8,7 @@ casetoolbox
```
# casestab包分析
# 1. casestab包分析
```
casetoolbox/casestab/
@ -33,42 +33,42 @@ casetoolbox/casestab/
- __`casetoolbox/casestab/__init__.py`__: 这是一个空的 `__init__.py` 文件,表明 `casestab` 是一个 Python 包。
- __`casetoolbox/casestab/aerodynamics.py`__: 该文件定义了风力涡轮机叶片的空气动力学模型和状态,包括 `aero_blade``aero_calc_point` 类,以及用于读取和插值翼型极线数据的函数。
- __`casetoolbox/casestab/aerodynamics.py`__: 该文件定义了风电机组叶片的空气动力学模型和状态,包括 `aero_blade``aero_calc_point` 类,以及用于读取和插值翼型极线数据的函数。
- __`casetoolbox/casestab/casestab.py`__: 这是 `CASEStab` 项目的核心文件,负责风力涡轮机转子的稳态计算和变桨曲线调优。它通过 `rotor_models` 类组装整个模型,并执行稳态分析和优化。
- __`casetoolbox/casestab/casestab.py`__: 这是 `CASEStab` 项目的核心文件,负责风电机组风轮的稳态计算和变桨曲线调优。它通过 `rotor_models` 类组装整个模型,并执行稳态分析和优化。
- __`casetoolbox/casestab/corotbeam_precompiled_functions.py`__: 该文件包含使用 Numba 进行 JIT 编译的底层数学和力学函数,用于处理共旋转梁单元的复杂运动学和动力学计算,以提高性能。
- __`casetoolbox/casestab/corotbeam.py`__: 该文件实现了共旋转梁单元的有限元公式,定义了梁单元的运动学、静力学和动力学行为,并提供了从结构输入文件创建单元、更新单元状态、计算内部力和刚度、更新惯性以及处理气动弹性耦合的完整框架。
- __`casetoolbox/casestab/generic_model_components.py`__: 该文件定义了用于构建和管理复杂系统(如风力涡轮机模型)的通用模型组件,特别是与惯性、气动弹性耦合和轴承相关的组件。
- __`casetoolbox/casestab/generic_model_components.py`__: 该文件定义了用于构建和管理复杂系统(如风电机组模型)的通用模型组件,特别是与惯性、气动弹性耦合和轴承相关的组件。
- __`casetoolbox/casestab/HAWC2_blade_translator.py`__: 该文件负责读取 HAWC2 模型文件,并将其结构和气动数据转换为 `CASEStab` 所需的格式,实现了与 HAWC2 的互操作性。
- __`casetoolbox/casestab/math_functions.py`__: 该文件提供了一系列用于三维旋转、向量操作和数据插值的数学函数,其中一些使用 Numba 进行 JIT 编译以提高性能。
- __`casetoolbox/casestab/model_assembler.py`__: 该文件负责将风力涡轮机模型的各个部分(子结构、叶片、转子、尾流、风)组装成一个完整的系统模型,并提供进行稳态分析和结果可视化的功能。
- __`casetoolbox/casestab/model_assembler.py`__: 该文件负责将风电机组模型的各个部分(子结构、叶片、风轮、尾流、风)组装成一个完整的系统模型,并提供进行稳态分析和结果可视化的功能。
- __`casetoolbox/casestab/model_precompiled_functions.py`__: 该文件包含使用 Numba 进行 JIT 编译的函数,主要用于计算模型中的离心力、陀螺矩阵和离心刚度矩阵,以提高性能。
- __`casetoolbox/casestab/rigidbody.py`__: 该文件定义了一个简单的刚体子结构模型,主要用于表示模型中不发生变形的部分,例如风力涡轮机的轮毂或塔基。
- __`casetoolbox/casestab/rigidbody.py`__: 该文件定义了一个简单的刚体子结构模型,主要用于表示模型中不发生变形的部分,例如风电机组的轮毂或塔基。
- __`casetoolbox/casestab/timoshenko_beam_section.py`__: 该文件主要提供了用于处理 Timoshenko 梁截面属性的函数,特别是将截面属性转换为 6x6 柔度矩阵,以及在不同参考点之间转换矩阵。
- __`casetoolbox/casestab/wake_model.py`__: 该文件主要负责风力涡轮机转子上的尾流模型,用于计算诱导速度,包括无诱导模型和轴对称诱导模型。
- __`casetoolbox/casestab/wake_model.py`__: 该文件主要负责风电机组风轮上的尾流模型,用于计算诱导速度,包括无诱导模型和轴对称诱导模型。
- __`casetoolbox/casestab/wind_model.py`__: 该文件主要负责定义风力涡轮机仿真中使用的风场模型,目前支持均匀风场。
- __`casetoolbox/casestab/wind_model.py`__: 该文件主要负责定义风电机组仿真中使用的风场模型,目前支持均匀风场。
## casestab/aerodynamics.py
## 1.1. casestab/aerodynamics.py
主要负责风力涡轮机叶片的空气动力学建模。
主要负责风电机组叶片的空气动力学建模。
__主要组成部分__
1. __`aero_blade`__
- __目的__ 表示风力涡轮机叶片的空气动力学模型和状态。
- __目的__ 表示风电机组叶片的空气动力学模型和状态。
- __初始化 (`__init__`)__ 从指定的几何文件 (`geo_file`) 和翼型极线文件 (`pro_file`) 读取数据。它支持 HAWC2 和 Flex 两种极线文件格式。它对几何和极线数据进行插值,以创建空气动力学计算点 (`zaero`)。
@ -95,26 +95,26 @@ __主要组成部分__
- `read_and_interpolate_HAWC2_polars(...)`:从 HAWC2 格式文件读取和插值翼型极线。
- `read_and_interpolate_Flex_polars(...)`:从 Flex 格式文件读取和插值翼型极线。
该文件提供了定义、初始化和计算风力涡轮机叶片空气动力学特性和力的核心功能,包括处理叶片几何、翼型极线和动态失速建模(尽管 unsteady_airfoil_dynamics 类被注释掉,表明它是一个正在进行的工作或未来功能)。它对于在 CASEStab 框架内模拟风力涡轮机的空气动力学行为至关重要。
该文件提供了定义、初始化和计算风电机组叶片空气动力学特性和力的核心功能,包括处理叶片几何、翼型极线和动态失速建模(尽管 unsteady_airfoil_dynamics 类被注释掉,表明它是一个正在进行的工作或未来功能)。它对于在 CASEStab 框架内模拟风电机组的空气动力学行为至关重要。
## casestab/casestab.py
## 1.2. casestab/casestab.py
主要负责风力涡轮机转子的稳态计算和变桨曲线调优。
主要负责风电机组风轮的稳态计算和变桨曲线调优。
__主要组成部分__
1. __`rotor_models`__
- __目的__ 计算轴对称转子变形的稳态,并提供变桨曲线调优功能。
- __目的__ 计算轴对称风轮变形的稳态,并提供变桨曲线调优功能。
- __初始化 (`__init__`)__
- 读取一个 JSON 格式的输入文件 (`filename`),该文件定义了风力涡轮机模型的各种参数。
- 读取一个 JSON 格式的输入文件 (`filename`),该文件定义了风电机组模型的各种参数。
- 根据 JSON 输入文件中的数据,定义并初始化模型的各个子结构(如轮毂 `hub` 和叶片 `blade`)。
- 定义叶片的空气动力学参数(如几何文件、极线文件、插值方法等)。
- 定义尾流模型 (`wake`) 和风模型 (`wind`)。
- 定义轴对称转子模型 (`rotor`)。
- 定义轴对称风轮模型 (`rotor`)。
- 根据输入文件中的 `deflection` 标志设置是否包含变形计算。
- 使用 `model_assembler` 模块中的 `ma.model` 类组装整个模型。
- 如果提供了操作数据文件 (`operation` 字段),则读取该文件并为每个操作点创建模型的深拷贝。
@ -125,15 +125,15 @@ __主要组成部分__
- `save_steady_state_results(prefix='')`:将稳态计算结果(包括结构变形和气动 BEM 结果)保存到文件中。文件命名会包含风速、变桨角和转速信息。
- `tune_pitch_curve(...)`:这是一个核心功能,用于调优风力涡轮机的变桨曲线,以满足额定功率 (`Prated`)、推力限制 (`Tlimit`) 和失速裕度 (`StallMargin`) 等要求。
- `tune_pitch_curve(...)`:这是一个核心功能,用于调优风电机组的变桨曲线,以满足额定功率 (`Prated`)、推力限制 (`Tlimit`) 和失速裕度 (`StallMargin`) 等要求。
- 它通过迭代的方式调整变桨角,每次迭代都会进行扰动运行和验证运行,以计算变桨角对功率、推力和失速裕度的梯度,并据此更新变桨角。
- 支持绘制变桨、功率和推力曲线的迭代过程。
- 最终将调优后的操作数据保存到 `.opt` 文件中,并附带调优原因和详细信息。
casestab.py 是 CASEStab 应用程序的入口点和主要控制器。它负责从配置文件中读取模型定义,构建复杂的风力涡轮机模型,执行稳态分析,并提供高级功能,如自动调优变桨曲线以优化性能和满足运行限制。这使得用户能够对风力涡轮机在不同运行条件下的行为进行详细的模拟和优化。
casestab.py 是 CASEStab 应用程序的入口点和主要控制器。它负责从配置文件中读取模型定义,构建复杂的风电机组模型,执行稳态分析,并提供高级功能,如自动调优变桨曲线以优化性能和满足运行限制。这使得用户能够对风电机组在不同运行条件下的行为进行详细的模拟和优化。
## casestab/corotbeam_precompiled_functions.py
## 1.3. casestab/corotbeam_precompiled_functions.py
主要包含使用 Numba `njit` 装饰器进行即时 (JIT) 编译的函数以提高性能。这些函数是用于处理共旋转梁单元corotational beam elements的底层数学和力学操作这在结构动力学和有限元分析中非常常见。
@ -188,9 +188,9 @@ __主要组成部分和功能__
- `compute_element_generalized_force_matrix(...)`:计算单元广义力矩阵。
- `compute_element_stiffness_generalized_force_matrix(...)`:从稳态广义力计算单元刚度矩阵。
该文件是 CASEStab 结构分析模块的性能关键部分。它提供了高效、预编译的函数,用于处理共旋转梁单元的复杂运动学和动力学计算,包括大位移和小应变。这些函数是构建和求解风力涡轮机结构模型的基础,确保了计算的准确性和效率。
该文件是 CASEStab 结构分析模块的性能关键部分。它提供了高效、预编译的函数,用于处理共旋转梁单元的复杂运动学和动力学计算,包括大位移和小应变。这些函数是构建和求解风电机组结构模型的基础,确保了计算的准确性和效率。
## casestab/corotbeam.py
## 1.4. casestab/corotbeam.py
实现了共旋转梁单元 (co-rotational beam element) 的公式,这是一种用于结构分析的非线性有限元方法,能够处理大位移和小应变。
@ -203,7 +203,7 @@ __主要组成部分和功能__
2. __`corotbeam_substructure`__
- __目的__ 表示由共旋转平衡梁单元描述的结构体(例如风力涡轮机叶片)。
- __目的__ 表示由共旋转平衡梁单元描述的结构体(例如风电机组叶片)。
- __初始化 (`__init__`)__
@ -276,17 +276,17 @@ __主要组成部分和功能__
- `compute_element_stiffness_generalized_force_matrix(elem_model)`
- `update_forcing_point_position_and_moment_arm_vectors(elem_state, elem_model)`
-
corotbeam.py 文件是 CASEStab 中实现共旋转梁单元有限元分析的核心。它定义了梁单元的运动学、静力学和动力学行为,并提供了从结构输入文件创建单元、更新单元状态、计算内部力和刚度、更新惯性以及处理气动弹性耦合的完整框架。通过与预编译函数的结合,它旨在提供高效且准确的结构分析能力,特别适用于风力涡轮机叶片等柔性结构的建模。
corotbeam.py 文件是 CASEStab 中实现共旋转梁单元有限元分析的核心。它定义了梁单元的运动学、静力学和动力学行为,并提供了从结构输入文件创建单元、更新单元状态、计算内部力和刚度、更新惯性以及处理气动弹性耦合的完整框架。通过与预编译函数的结合,它旨在提供高效且准确的结构分析能力,特别适用于风电机组叶片等柔性结构的建模。
## casestab/generic_model_components.py
## 1.5. casestab/generic_model_components.py
定义了用于构建和管理复杂系统(如风力涡轮机模型)的通用模型组件,特别是与惯性、气动弹性耦合和轴承相关的组件。
定义了用于构建和管理复杂系统(如风电机组模型)的通用模型组件,特别是与惯性、气动弹性耦合和轴承相关的组件。
__主要组成部分和功能__
1. __`substructure_inertia`__
- __目的__ 封装子结构的惯性状态。在有限元分析中,子结构通常指模型中的一个独立部分(例如,风力涡轮机中的叶片、轮毂或塔架)。
- __目的__ 封装子结构的惯性状态。在有限元分析中,子结构通常指模型中的一个独立部分(例如,风电机组中的叶片、轮毂或塔架)。
- __初始化 (`__init__`)__
@ -348,11 +348,11 @@ __主要组成部分和功能__
- `constant_speed_bearing`:表示恒定速度轴承,以恒定角速度绕指定轴旋转。
- 这些内部类都包含 `B`(旋转矩阵)、`dB`(旋转矩阵的一阶导数)、`ddB`(旋转矩阵的二阶导数)以及 `BTdB``BTddB`(辅助矩阵)等属性,并提供 `update(t)` 方法来更新其状态。
generic_model_components.py 文件提供了构建复杂多体动力学模型所需的通用、可重用的组件。它抽象了惯性属性、气动弹性耦合点运动学和轴承行为的细节,使得在 CASEStab 中可以更模块化地组装和分析风力涡轮机等系统。通过将计算密集型操作委托给预编译函数,它也确保了性能。
generic_model_components.py 文件提供了构建复杂多体动力学模型所需的通用、可重用的组件。它抽象了惯性属性、气动弹性耦合点运动学和轴承行为的细节,使得在 CASEStab 中可以更模块化地组装和分析风电机组等系统。通过将计算密集型操作委托给预编译函数,它也确保了性能。
## casestab/HAWC2_blade_translator.py
## 1.6. casestab/HAWC2_blade_translator.py
主要负责读取 HAWC2一种风力涡轮机仿真软件)模型文件,并将其结构和气动数据转换为 `CASEStab` 所需的格式。这对于在 `CASEStab` 中使用 HAWC2 定义的风力涡轮机模型进行分析至关重要。
主要负责读取 HAWC2一种风电机组仿真软件)模型文件,并将其结构和气动数据转换为 `CASEStab` 所需的格式。这对于在 `CASEStab` 中使用 HAWC2 定义的风电机组模型进行分析至关重要。
__主要组成部分和功能__
@ -442,7 +442,7 @@ __主要组成部分和功能__
- 提取弦长和厚度信息 (`ct`)。
## casestab/math_functions.py
## 1.7. casestab/math_functions.py
提供了一系列用于三维旋转、向量操作和数据插值的数学函数,这些函数在结构动力学和气动弹性分析中是基础性的。其中一些函数使用 Numba `njit` 装饰器进行即时 (JIT) 编译,以提高性能。
@ -501,11 +501,11 @@ __主要组成部分和功能__
- `fcn(x)`:计算给定 `x` 值的插值结果。
- `der(x)`:计算给定 `x` 值的导数。
math_functions.py 文件是 CASEStab 项目的数学工具箱。它提供了处理三维几何、旋转和数据插值所需的基本和高级数学运算。通过使用 Numba 进行编译,这些函数旨在提供高性能的计算能力,这对于风力涡轮机结构和气动弹性分析中的复杂数值模拟至关重要。
math_functions.py 文件是 CASEStab 项目的数学工具箱。它提供了处理三维几何、旋转和数据插值所需的基本和高级数学运算。通过使用 Numba 进行编译,这些函数旨在提供高性能的计算能力,这对于风电机组结构和气动弹性分析中的复杂数值模拟至关重要。
## casestab/model_assembler.py
## 1.8. casestab/model_assembler.py
负责将风力涡轮机模型的各个部分(子结构、叶片、转子、尾流、风)组装成一个完整的系统模型,并提供进行稳态分析和结果可视化的功能。
负责将风电机组模型的各个部分(子结构、叶片、风轮、尾流、风)组装成一个完整的系统模型,并提供进行稳态分析和结果可视化的功能。
__主要组成部分和功能__
@ -524,33 +524,33 @@ __主要组成部分和功能__
- `compute_modes()`:计算子结构的结构模态(仅适用于柔性梁子结构)。它会设置质量和刚度矩阵,求解特征值问题,并对模态进行排序和命名。
- `plot_substructure_modes(...)`:绘制子结构的模态形状。
- `create_data_for_deflection_state()`:创建用于结构变形状态输出的数据,包括叶片坐标系和转子平面内的变形以及旋转。
- `create_data_for_deflection_state()`:创建用于结构变形状态输出的数据,包括叶片坐标系和风轮平面内的变形以及旋转。
2. __`rotor`__
- __目的__ 封装不同类型的转子模型(例如轴对称转子)。
- __目的__ 封装不同类型的风轮模型(例如轴对称风轮)。
- __初始化 (`__init__`)__
- 关联叶片 (`blades`) 和子结构 (`substructures`)。
- 检查叶片的气动计算点 (ACP) 数量是否一致。
- 关联风模型 (`wind`)。
- 保存转子中心的连接点信息。
- 计算转子平面在地面固定坐标系中的法向量 (`nvec`)。
- 初始化转子速度 (`omega`)、中心位置 (`rc0`) 和方向矩阵 (`Rc0`)。
- 保存风轮中心的连接点信息。
- 计算风轮平面在地面固定坐标系中的法向量 (`nvec`)。
- 初始化风轮速度 (`omega`)、中心位置 (`rc0`) 和方向矩阵 (`Rc0`)。
- 初始化功率 (`power`)、扭矩 (`torque`)、推力 (`thrust`) 和功率系数 (`CP`)。
- 计算 ACP 的径向位置 (`radii`) 和实度 (`sigma`)。
- 创建尾流模型 (`wake_model.wake`)。
- __方法__
- `update_rotor_kinematic_state()`:更新转子的运动学状态,包括中心位置、方向和转子速度。
- `update_rotor_kinematic_state()`:更新风轮的运动学状态,包括中心位置、方向和风轮速度。
- `update_steady_blade_forces()`:计算每个叶片上的稳态气动力,假设尾流处于平衡状态。这涉及到使用 `scipy.optimize.root` 求解 BEM叶素动量理论方程。
- `create_data_for_BEM_results(iblade=0)`:创建用于 BEM 结果输出的数据,包括气动计算点的各种气动参数和力。
3. __`model`__
- __目的__ 组装整个风力涡轮机模型。
- __目的__ 组装整个风电机组模型。
- __初始化 (`__init__`)__
@ -559,20 +559,20 @@ __主要组成部分和功能__
- 根据 `blade_para_set` 创建所有叶片实例,并将叶片与相应的子结构关联起来,初始化气动弹性耦合。
- 初始化子结构在地面固定坐标系中的初始位置和方向。
- 根据 `wind_para_set` 创建风场模型。
- 根据 `rotor_para_set` 创建转子模型,并将叶片、子结构、尾流和风模型传递给转子实例。
- 根据 `rotor_para_set` 创建风轮模型,并将叶片、子结构、尾流和风模型传递给风轮实例。
- __方法__
- `update_all_substructures(t)`:在给定时间 `t` 更新所有子结构的状态,包括轴承、弹性内力、刚度、惯性状态、离心力和气动弹性耦合。
- `update_steady_state_all_rotors()`:更新所有转子的稳态气动力。
- `compute_rotor_stationary_steady_state(irotor, Rnorm_limit=1.0, include_deform=True)`:计算指定转子的稳态(静态外部力和内力之间的平衡)。这是一个迭代过程,它会反复更新气动力和结构变形,直到收敛。
- `update_steady_state_all_rotors()`:更新所有风轮的稳态气动力。
- `compute_rotor_stationary_steady_state(irotor, Rnorm_limit=1.0, include_deform=True)`:计算指定风轮的稳态(静态外部力和内力之间的平衡)。这是一个迭代过程,它会反复更新气动力和结构变形,直到收敛。
- `compute_substructure_steady_state_deformation(isubs, Rnorm_limit=1.0)`:计算单个子结构的稳态变形。
- `plot_aerodynamic_points(isubs, ielem, iblade)`:绘制气动计算点和结构节点的位置,用于可视化。
- `plot_input_data_blade(iblade, fn='')`:绘制叶片的气动和结构输入数据,包括气动中心、质心、弹性轴、剪切中心等的位置。
model_assembler.py 文件是 CASEStab 仿真框架的集成器。它将所有独立的物理模型(结构、气动、风、尾流、轴承)组合成一个连贯的系统,并提供了执行稳态分析和可视化结果的接口。这使得 CASEStab 能够对风力涡轮机进行全面的多物理场仿真。
model_assembler.py 文件是 CASEStab 仿真框架的集成器。它将所有独立的物理模型(结构、气动、风、尾流、轴承)组合成一个连贯的系统,并提供了执行稳态分析和可视化结果的接口。这使得 CASEStab 能够对风电机组进行全面的多物理场仿真。
## casestab/model_precompiled_functions.py
## 1.9. casestab/model_precompiled_functions.py
包含使用 Numba `njit` 装饰器进行即时 (JIT) 编译的函数,以及使用 `numba.pycc.CC` 进行提前 (AOT) 编译的设置。这些函数主要用于计算模型中的离心力、陀螺矩阵和离心刚度矩阵,这些是多体动力学仿真中的关键组成部分。
@ -608,11 +608,11 @@ __主要组成部分和功能__
- __计算逻辑__ 该函数通过遍历自由度,利用输入的各种导数和辅助矩阵,计算 `Fc``Gc``Kc` 的各个分量。它考虑了对称性,以填充矩阵的上下三角形。
model_precompiled_functions.py 文件是 CASEStab 动力学分析模块的性能关键部分。它提供了高效、预编译的函数,用于计算旋转系统中由惯性引起的力和刚度效应。这些函数是构建和求解风力涡轮机动力学方程的基础,确保了计算的准确性和效率。通过提前编译,这些函数可以在 Python 环境之外运行,进一步优化了性能。
model_precompiled_functions.py 文件是 CASEStab 动力学分析模块的性能关键部分。它提供了高效、预编译的函数,用于计算旋转系统中由惯性引起的力和刚度效应。这些函数是构建和求解风电机组动力学方程的基础,确保了计算的准确性和效率。通过提前编译,这些函数可以在 Python 环境之外运行,进一步优化了性能。
## casestab/rigidbody.py
## 1.10. casestab/rigidbody.py
定义了一个简单的刚体子结构模型,主要用于表示模型中不发生变形的部分,例如风力涡轮机的轮毂或塔基。
定义了一个简单的刚体子结构模型,主要用于表示模型中不发生变形的部分,例如风电机组的轮毂或塔基。
__主要组成部分和功能__
@ -638,7 +638,7 @@ __主要组成部分和功能__
rigidbody.py 文件提供了一个轻量级的刚体模型,用于 CASEStab 中不需要详细结构变形分析的部分。它简化了模型,提高了计算效率,因为它避免了对这些部分进行复杂的有限元计算。
## casestab/timoshenko_beam_section.py
## 1.11. casestab/timoshenko_beam_section.py
主要提供了用于处理 Timoshenko 梁截面属性的函数,特别是将截面属性转换为 6x6 柔度矩阵,以及在不同参考点之间转换矩阵。
@ -687,9 +687,9 @@ __主要组成部分和功能__
timoshenko_beam_section.py 文件在 CASEStab 中扮演着关键角色,它使得程序能够处理和转换不同表示形式的梁截面属性。这对于构建准确的梁单元模型至关重要,因为它允许用户输入常见的工程参数(如杨氏模量、惯性矩等),并将其转换为有限元公式所需的柔度矩阵形式,同时还能处理不同参考点之间的转换。
## casestab/wake_model.py
## 1.12. casestab/wake_model.py
主要负责风力涡轮机转子上的尾流模型,用于计算诱导速度。
主要负责风电机组风轮上的尾流模型,用于计算诱导速度。
__主要组成部分和功能__
@ -709,7 +709,7 @@ __主要组成部分和功能__
- __初始化 (`__init__`)__
- 初始化轴向诱导因子 `a`、切向诱导因子 `ap`、诱导速度 `vi` 及其时间导数 `dvidt` 为零。
- 保存半径 `radii`、叶尖修正标志 `tip_correction`、叶片数量 `nblades`转子半径 `R`
- 保存半径 `radii`、叶尖修正标志 `tip_correction`、叶片数量 `nblades`风轮半径 `R`
- 初始化推力系数 `CT`、扭矩系数 `CQ`、入流角正弦 `sinphi`、局部叶尖速比 `local_TSR` 和叶尖损失因子 `ftip` 为零或一。
- __`momentum_balance_point` 内部类__
@ -728,12 +728,12 @@ __主要组成部分和功能__
3. __`axissym_induction`__
- __目的__ 表示轴对称诱导尾流模型,这是更实际的风力涡轮机气动模型。
- __目的__ 表示轴对称诱导尾流模型,这是更实际的风电机组气动模型。
- __初始化 (`__init__`)__
- 初始化轴向诱导因子 `a`、切向诱导因子 `ap`、诱导速度 `vi` 及其时间导数 `dvidt`
- 保存半径 `radii`、叶尖修正标志 `tip_correction`、叶片数量 `nblades`转子半径 `R`
- 保存半径 `radii`、叶尖修正标志 `tip_correction`、叶片数量 `nblades`风轮半径 `R`
- 根据 `para['a_of_CT_model']` 选择轴向诱导因子与推力系数的关系模型(例如 `HAWC2_a_of_CT`)。
- 初始化推力系数 `CT`、扭矩系数 `CQ`、入流角正弦 `sinphi`、局部叶尖速比 `local_TSR` 和叶尖损失因子 `ftip`
@ -777,11 +777,11 @@ __主要组成部分和功能__
- `fcn(CQ, a)`:根据 `CQ``a` 返回切向诱导因子 `ap`,考虑了 `a` 大于 0.9 的特殊情况。
- `der(CQ, a)`:计算 `ap``CQ``a` 的偏导数。
wake_model.py 文件是 CASEStab 中风力涡轮机气动弹性分析的关键组成部分。它提供了不同复杂程度的尾流模型,特别是轴对称诱导模型,该模型通过求解非线性方程组来计算叶片上的诱导速度和气动力。这些模型对于准确预测风力涡轮机的性能和载荷至关重要。
wake_model.py 文件是 CASEStab 中风电机组气动弹性分析的关键组成部分。它提供了不同复杂程度的尾流模型,特别是轴对称诱导模型,该模型通过求解非线性方程组来计算叶片上的诱导速度和气动力。这些模型对于准确预测风电机组的性能和载荷至关重要。
## casestab/wind_model.py
## 1.13. casestab/wind_model.py
主要负责定义风力涡轮机仿真中使用的风场模型。
主要负责定义风电机组仿真中使用的风场模型。
__主要组成部分和功能__
@ -807,10 +807,10 @@ __主要组成部分和功能__
- __目的__ 在给定位置 `pos` (x, y, z) 和时间 `t` 处返回风速向量 (u, v, w)。
- __功能__ 对于均匀风场,它返回一个固定方向(在此实现中是 y 方向)和大小为 `umean` 的风速向量。其他分量为零。
wind_model.py 文件为 CASEStab 仿真提供了风场输入。它允许用户定义不同类型的风场(目前仅支持均匀风),并提供一个接口来查询在模型中任意位置和时间点的风速。这对于计算风力涡轮机上的气动力和进行气动弹性分析至关重要。
wind_model.py 文件为 CASEStab 仿真提供了风场输入。它允许用户定义不同类型的风场(目前仅支持均匀风),并提供一个接口来查询在模型中任意位置和时间点的风速。这对于计算风电机组上的气动力和进行气动弹性分析至关重要。
# casedamp包分析
# 2. casedamp包分析
```
casetoolbox/casedamp/
@ -820,9 +820,9 @@ casetoolbox/casedamp/
└── test/
```
## casedamp/casedamp_precompiled_functions.py
## 2.1. casedamp/casedamp_precompiled_functions.py
主要包含使用 Numba `njit` 装饰器进行即时 (JIT) 编译的函数,以及使用 `numba.pycc.CC` 进行提前 (AOT) 编译的设置。这些函数专门用于计算风力涡轮机叶片的气动阻尼系数。
主要包含使用 Numba `njit` 装饰器进行即时 (JIT) 编译的函数,以及使用 `numba.pycc.CC` 进行提前 (AOT) 编译的设置。这些函数专门用于计算风电机组叶片的气动阻尼系数。
__主要组成部分和功能__
@ -860,9 +860,9 @@ __主要组成部分和功能__
- __计算逻辑__ 该函数将四个基本阻尼分量与无量纲速度、几何参数和入流角结合起来,计算出最终的综合气动阻尼系数 `eta`
casedamp_precompiled_functions.py 文件是 CASEDamp 模块的性能关键部分。它提供了高效、预编译的函数,用于执行气动阻尼计算中涉及的复杂数学运算。这些函数是评估风力涡轮机叶片气动阻尼特性的核心,对于理解和预测叶片的动态响应至关重要。通过提前编译,这些函数可以在 Python 环境之外运行,从而显著提高了计算效率。
casedamp_precompiled_functions.py 文件是 CASEDamp 模块的性能关键部分。它提供了高效、预编译的函数,用于执行气动阻尼计算中涉及的复杂数学运算。这些函数是评估风电机组叶片气动阻尼特性的核心,对于理解和预测叶片的动态响应至关重要。通过提前编译,这些函数可以在 Python 环境之外运行,从而显著提高了计算效率。
## casedamp/casedamp.py
## 2.2. casedamp/casedamp.py
提供了一个交互式工具,用于分析和编辑翼型极线(升力系数 CL 和阻力系数 CD 曲线),并计算其气动阻尼特性。
@ -932,7 +932,7 @@ __主要组成部分和功能__
- __功能__ 尝试读取 HAWC2 或 Flex 格式的极线文件,然后实例化 `aero_damp_analyzer` 类并显示交互式绘图界面。
# 计算稳态运行状态叶片模态、频率
# 3. 计算稳态运行状态叶片模态、频率
`structural_blade_modes_H2_elements.py`入口该程序计算了DTU 10MW风电机组在standstill、风速为0转速10rpm、风速11m/s转速9.6rpm三种工况下叶片的十阶模态频率和形状并于hawc2软件计算结果对比。
@ -942,7 +942,7 @@ __1. 初始化和设置__
- `os.getcwd()`: 获取当前工作目录,用于构建输入和输出文件的路径。
- `os.path.join(work_folder, 'DTU10MW_H2_elements_few_ops.json')`: 将工作目录路径与文件名连接起来,创建 JSON 配置文件的完整路径。
- `casestab.rotor_models(...)`: 通过从指定的 JSON 文件加载风力涡轮机模型配置来初始化 `rotor_models` 对象。此对象包含整个涡轮机的定义,包括其子结构(如叶片)。
- `casestab.rotor_models(...)`: 通过从指定的 JSON 文件加载风电机组模型配置来初始化 `rotor_models` 对象。此对象包含整个涡轮机的定义,包括其子结构(如叶片)。
__2. 静止叶片结构模态第一个运行工况__
@ -965,14 +965,14 @@ __3. 额定转速下的叶片结构模态第二个运行工况__
__4. 11 米/秒风速下偏转叶片的结构模态第三个运行工况__
- `rotor_models.models[2].substructures[1]`: 从第三个运行模型(索引 2中选择叶片子结构。
- `rotor_models.models[2].compute_rotor_stationary_steady_state(0)`: 计算整个转子模型在 11 米/秒风速下的静止稳态。这涉及计算转子在气动载荷和重力载荷共同作用下的平衡位置,这会影响叶片的结构行为。
- `rotor_models.models[2].compute_rotor_stationary_steady_state(0)`: 计算整个风轮模型在 11 米/秒风速下的静止稳态。这涉及计算风轮在气动载荷和重力载荷共同作用下的平衡位置,这会影响叶片的结构行为。
- `blade.compute_modes()`: 在 11 米/秒运行条件下计算叶片的结构模态。
- `np.loadtxt(...)`, `np.zeros(...)`, `np.radians(...)`: 这些函数再次用于加载、处理和准备 HAWCStab2 结果 (`blade_11ms.amp`) 以进行比较。
- `blade.plot_substructure_modes(...)`: 绘制 11 米/秒运行工况下的模态,比较 CASEStab 和 HAWCStab2 的结果。
### update_all_substructures函数
## 3.1. update_all_substructures函数
这个函数位于 `casetoolbox/casestab/model_assembler.py` 中的 `model` 类中。它的主要目的是在给定时间 `t` 的情况下更新模型中所有子结构substructures的当前位置、方向、内部力和惯性状态。这对于模拟风力涡轮机在不同运行条件下的动态行为至关重要。
这个函数位于 `casetoolbox/casestab/model_assembler.py` 中的 `model` 类中。它的主要目的是在给定时间 `t` 的情况下更新模型中所有子结构substructures的当前位置、方向、内部力和惯性状态。这对于模拟风电机组在不同运行条件下的动态行为至关重要。
__功能概述__
@ -1012,17 +1012,17 @@ __功能概述__
`update_all_substructures` 是一个核心函数,它在每个时间步或每次迭代中被调用,以确保模型中所有子结构的几何、力学和惯性状态都得到准确更新,为后续的动力学或模态分析提供正确的基础。
## compute_rotor_stationary_steady_state 函数
## 3.2. compute_rotor_stationary_steady_state 函数
这个函数位于 `casetoolbox/casestab/model_assembler.py` 中的 `model` 类中。它的主要目的是计算转子在静止稳态下的变形和力平衡。这通常涉及到迭代求解气动载荷和结构变形之间的耦合问题,直到达到收敛。
这个函数位于 `casetoolbox/casestab/model_assembler.py` 中的 `model` 类中。它的主要目的是计算风轮在静止稳态下的变形和力平衡。这通常涉及到迭代求解气动载荷和结构变形之间的耦合问题,直到达到收敛。
__功能概述__
该函数通过一个迭代过程来寻找转子的静止稳态,即在给定风速和操作条件下,气动力和结构内部力达到平衡时的变形状态。
该函数通过一个迭代过程来寻找风轮的静止稳态,即在给定风速和操作条件下,气动力和结构内部力达到平衡时的变形状态。
__参数__
- `irotor`: 要计算的转子的索引。
- `irotor`: 要计算的风轮的索引。
- `Rnorm_limit`: 残差的收敛容差。当力平衡残差的范数低于此值时,迭代停止。
- `include_deform`: 布尔值,指示是否在迭代中考虑结构变形。如果为 `False`,则只计算气动力,不更新结构变形。
@ -1032,20 +1032,20 @@ __工作流程和关键步骤__
- 在开始迭代之前,首先调用 `update_all_substructures(0.0)`。这会初始化所有子结构在时间 `t=0.0` 时的位置、方向、内部力和惯性状态。这是稳态计算的起点。
2. __指向目标转子和叶片__
2. __指向目标风轮和叶片__
- `r = self.rotors[irotor]`: 获取要分析的特定转子对象。
- `b = r.blades[0]`: 由于稳态计算假设转子是轴对称的(`axissym`),因此通常只使用第一个叶片的数据进行计算,然后将结果乘以叶片数量。
- `r = self.rotors[irotor]`: 获取要分析的特定风轮对象。
- `b = r.blades[0]`: 由于稳态计算假设风轮是轴对称的(`axissym`),因此通常只使用第一个叶片的数据进行计算,然后将结果乘以叶片数量。
3. __外层迭代气动力收敛循环__
- `while Anorm > Rnorm_limit:`: 这是一个外层循环,用于确保气动力的分布在迭代过程中收敛。`Anorm` 代表气动力变化的范数。
- __重置功率和推力__ 在每次外层迭代开始时,将转子的功率 (`r.power`) 和推力 (`r.thrust`) 重置为零。
- __重置功率和推力__ 在每次外层迭代开始时,将风轮的功率 (`r.power`) 和推力 (`r.thrust`) 重置为零。
- __更新稳态叶片力 (`self.update_steady_state_all_rotors()`)__
- 这个调用会更新所有转子上的气动力。对于每个叶片,它会调用 `rotor.update_steady_blade_forces()`
- 这个调用会更新所有风轮上的气动力。对于每个叶片,它会调用 `rotor.update_steady_blade_forces()`
- `rotor.update_steady_blade_forces()` 内部会使用 BEM叶素动量理论方法通过 `scipy.optimize.root` 求解每个气动计算点ACP处的轴向和切向诱导因子从而计算出气动力和力矩。这个过程本身可能包含一个内部的求解循环。
4. __内层迭代结构变形收敛循环__
@ -1076,19 +1076,19 @@ __工作流程和关键步骤__
5. __更新功率和推力__
- 在内层循环收敛后,根据当前的力分布计算转子的总功率 (`r.power`) 和推力 (`r.thrust`)。这涉及到将子结构坐标系中的力转换到地面固定坐标系,并与速度和角速度相乘。
- 在内层循环收敛后,根据当前的力分布计算风轮的总功率 (`r.power`) 和推力 (`r.thrust`)。这涉及到将子结构坐标系中的力转换到地面固定坐标系,并与速度和角速度相乘。
6. __检查外层收敛__
- `Anorm=np.linalg.norm(b.f-force0)`: 计算当前气动力分布与上一次外层迭代开始时的气动力分布之间的差异范数。如果 `include_deform``True`,则此值用于判断外层循环是否收敛。
- 如果 `include_deform``False`,则 `Anorm` 被设置为 0表示只进行一次气动力计算不考虑变形对气动力的影响。
7. __轴对称转子处理__
7. __轴对称风轮处理__
- 如果转子是轴对称的(`'axissym' in r.type`),则最终的功率和推力会乘以叶片数量 `r.Nb`,因为计算是基于单个叶片的。
- `r.CP = r.power/Pkin`: 计算功率系数 `CP`,这是风力涡轮机性能的关键指标。
- 如果风轮是轴对称的(`'axissym' in r.type`),则最终的功率和推力会乘以叶片数量 `r.Nb`,因为计算是基于单个叶片的。
- `r.CP = r.power/Pkin`: 计算功率系数 `CP`,这是风电机组性能的关键指标。
## `compute_modes` 函数
## 3.3. `compute_modes` 函数
这个函数位于 `casetoolbox/casestab/model_assembler.py` 中的 `substructure` 类中。它的主要目的是计算子结构的结构模态(固有频率和模态形状)。
@ -1132,3 +1132,4 @@ __功能概述__
`compute_modes` 函数是进行结构动力学分析的核心,它通过求解特征值问题来确定柔性子结构的固有振动特性,这些特性对于理解结构响应和避免共振至关重要。

View File

@ -0,0 +1,936 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBObR4aOiCEfQQOKGZuAG1wMFAwYogSbggAMWUAIUIAQTqAZQ4hAHFqzA5mAA4ADXp6ACtq6pTiyFhEcoAzQIRPKn4SzG5n
ABYAVg3tNYBGADZ97oB2AAZd3ePdk42lyBhV+N3tXYBmDbWeeNfunleeT58AqQCgkdTcXZrO5SBCEZTSbhxQ6HDb7NbxPZrU77Hi3YEQazKYLcU7Q5hQUhsADWCAAwmx8GxSOUAMS7BDs9ljEqaXDYKnKSlCDjEemM5kSCnWZhwXCBLLcyDTQj4fCNWDEiSCDyKiDkyk0gDqYMkJO0ePGeop1IQ6pgmvQ2rK0KF8I44RyaF20LYsuwageXtOpPxg
uEcAAksRPahcgBdaGzXAZKPcFqq6GEEVYcq4fa6oUi93MGPp/BkhDzCGnDb/I4bbrdaGMFjsLhoY7NpisTgAOU4YghfxrPF2pzWUPxhGYABE0lAq2hpgQwtDNMIRQBRYIZLKloQZ/FCODEXAL4gQ46o177U7xfbxHjdeLQogcKlpg/l/GM/mL1DLvgq74nAbBZtkeTAmA+TjMUIawWApxQQmUEwbBxzaK8WGvMcWJ/GsOEWrBzinNoyL7Ki6KYti
uLIXc0FQWAY5kciJznJc1xXvRYDODwdGoYxuxIqxZwXFcNzcbxLEomiGKQjRGz8bBaHjJCknCTJVHyTiimwShymCZOCFSeRlFyViOnIcC+klHAgQliI4R5DZAiEPoB5nggAAK9nMI53AUkICCvqEUD0vo+hqOeXlgQqaAqUxRnjCZyJmdRlnjHGBQAL5LEUJRlBIpwAPqnJIgzdAAKkYABKEYALKYMcmg1QAaswACKrxrAAmrqkziOgsyVgsuorG
g6ybDsBxHKJHESfigaoM4j47LNnw4diNZrJ2+KgsQ4JoN00mzex4lcfikiwvCUAQok2GvEJ8SNk+QlEZAhIOvBJT6jaYpMqynIckga58gKhaigyAOSuQXSyvKt2JiqaoaoNeoMs6+K/UaJpmu9VoGraqPlE6F4usIboehCPp+gG1bfZAYbHlGMbxom5ApheaBlpm2bjeguDHAWG7EMW+6HpaYT/jhY44d8QKWi2PbtqgFxdq2fYDoNxzxKc/z3t0
SWQNOc7BOe3CAcBlrrsKxDbukmQQdzX7Qsep7m16V77Ded4PreryvlmH7OxLJS/jSXMASuwUgbFTuxgJCEM3BSnjAlPHPA9T0vd0b3cRhWdfDnb2p8U6e8dxuzbIXz2/LntF6fR5cK7B1ylwxxkt6p93Ydndcl43iewcnTHHaZsnpQ3mVN4xGmnWJnHvcUkLt+n+zcfsq+MfsJ1sQvC0IWsW8ITv5F7/NF2H1Z08gb5jmsy5epuR5C4+R6/loIFM
eWvgoXhZFMh5gxXApBWCp8RJnUXvRI+mUcp5SnJHCA1RnpXQAPKkH2L2Gqxx2gbFOIKAAUmsXorx+rwDRsNeY5BFj4n5usHgcRTjdCwn3V6uJoRLWcGOOIax1p/DOLeD4u1LT7UOrwUiZ85rnXxldOECI0B7EwthAieCGwbG+JfEon1BoMwJn9KGEp0BsmBlyUG/ImYin+oY6AsMZRykdrqZUqo7QOnRjqMk1ocYHVNGgUi+NsZE3tGjUmws/CSD
FtTfEvo+R0yDLopmkZozOXZsmBAqYQ7fktFmYgOYJC4G6KEosVMMkVn/DwccVw5bBnVsrbgj0altn7BwQcHYbyoiYRsLupRZzzn/Jbb+PIRb213PHHmR4TyeUjpca8t54hnFzt6H8QdPyh0gOHPp0doSgXAqzIe4wR5IUHgZYyEiIH700clPiRy06MS4UorCuFTj4UIupXeUjF7H2Il3YozhXj3O6u8Gs3R1GEU+clI2Py/kPRUUCkFV4wU/PXrc
05hxz7SIRTxMeZyL5LzAJva5Zdbk9weXhAFFzijEsekXfuU9iguQ7sRSljznnkqYiiiiE9tK0rAPS8uBdsLMrJbiscGKK6MShb3albDdI32Oa3f5rD664pSqi95NwMUSpYVKpVkksWqsgeqglDLxjV0lbXaVklIRvINfCo1a8Tq4jmRy9htyGEYvAYcR1xxnXKp4B6+eOKMX8q1eanVrrKUwrURomVdKZ4IWDVS0NedbmvHZWij5drt4OvUd61EL
rO56oDeizNCFTUhuLvmr5ZaAWqOBdGjVCrtXJs7oc2VNyEKZzNRW5VQkMXsq9T6ySaa1W2rbYSpO2anV5txWsE6aUuUxp5XG2Cc8B3Tvzo2pN3LeWMVneRNdOluLdAxYWg9lbxiasTd2jFzF905sHYxVtsa9nL07eWmlvqb1vqvR+9S19n2Wjsu/eyySsbP1/q/O+gQAqkCCiFck/8opALjqA1S37FXNsudZOBBR8rG0QfgAAMr2DgABpQYVJMDx
AqLgKkABHIQ2AKiSG6PsIQXkyFTAkJQ0a0I6EWW0Ew99FrFqrDHBhboTyOknDRGiQ20JRE+NQAmjD56YRyNup7f5ka60vPxNokkHjCZWMBiYkG+JeTmIhiZmG0p4YOKRs44mWoMZkyxp4hAxpvF4yMzaFxwTXOhMpiWSJlpon+lgPTaECSWagctEmTmKzMkFT5rmeIhTRbFNQGMyWI1ETepRNiJs+IlZtm4C+Er3ZGla24KiMcBE9hdJNr0yO/S1
xDJ3I7cWyXIBu0mZeGZd5jg8GOMwwO74kuvjYH+VrmzY47NQ+O4e3En1LpfWACFYA57zostu5d4wkWlu04CqNoKS3oU3d2o9c7OW7cXTu+Nl3f2CW27dhSQansiY7fisdxrij+rPcKhNOm4X3f2/9ydubD2CWByd3To66XWS2VBpy8VH6sHchB7yKOYNwZ/H/AwADooofilBAH9711QUuMd2toPsPFFyrhhB5RlDEDgDAZwlVaT0AIcQVB2AZz4A
qJud4ux4iNE4xQuYvHaGrFeM9QTzCf1fZKJw2W2hJPlOBTJ3hax5N7Vxl6Oe6aD4lFkTdIc0IDO+N8zSGzRigamIs2DCxkNxTlClHDexCpHMoyCSTQLtvPOG9QH4oP/mA/uPxK6cJWXFlhdppFuJ0WhSJIfikxLJSpypbyXUDLESs+5f/BcKuNZda6NK5wbgxXFZVc1s0waeDsQ3gok1npZsNlAQGZAG2W5Ot7km+M92xevY+zmamv443g7ZZdj+
abEcLZzcA3HXZcr9krdFXu7F0juKXpB/W87yUE2CoIqyn7AH23ETHNd8eWk7uiqEta85wrv377O798uj/JE2uFVcj/tyv9t8oEXt/01tAMUd08wNMdPI34HJoNP5YNu8IBf4ENCckNiBgE4oE4r9jcR0l5e1YEGd4EslEEjAvJdg2AeAAAJKADYTQZwYqAALVpGYBwlQUaEwB4FaklxmGl2oTGjl2OAwj2H1Wfw4TE2pzeA+C+B+D+ABAYQUxD3J
ynWh0tHN3kV4C31EJxStw4CJB0SD3twgGMSBl1Es3BhFiMM9zsQRkcWRgjxcyj0lg8y8zETD3c0JgcMdED2jwpljxCy9BphiST1VmqVDFT1izRwzzSUjhyxSxyX5gJFGHJltgLxn1WT1Dy09iuHMlvAaSry9ADkqw1g4CaRaVViV0OD1nvEzHbwQA9iji73a1tmGS60H0tD6waOmW9lmVwjEin3aLDnn07ytlshX0Wz+0Qg30Pzgg3gf0+zDQ7Vw
J/1FVXQp1UNbkLRNwRzAMv0uUhwfQQgYSf0DRmJ4m+S2y0KLQzX/wnW/zENnj3zhzpzOOWIeKOOHRWLOM22p2hWeIP1uNgh+PP12KWwvX+RPz02+wbQekhNZQOFAMfiAzgNR1jHR3AxgJxwQLxx/gJwinQMwM02wPBNhNJVP3wPPyyiIKZxIPKEaF2FgwAFVbxjhDQQhexUFugjAoALhexGgHhoQBpeCRp+C+M5dWNtALkIA1cawXh3hPhvhfh/h
ARFDvMjdoR1CiT2UdsFJdD9DDMPD9F3cJATDgYzCXdrMDEPdbF7Mfd8QnE/dXEQkg9XClN3DnDPDnNvCnCSgY80j48ShwtYlQj4kIikkoj7SOYYjBjjYc8BZaR88ss4iBAsjVY6tgwTgAR8iVZDsShK9SiasvRGx1Fc55dczjY6iGi2sLMOsHYB9C8ShOiR9Bs5kCIawBiGy1lhjZsmj5t6ziSwTZjH0T0Tid9kUbs793sziLgFjMNkptS3sMpAT
VILiSIJzzIpzlzl5VyFzJylzEcx0IBkS/IQMIzJYMTINgNBov54Mwo0DAEMCScBymJvk1zb8Nz9yqSwBGdig8NShEEYBGCKBsAhAIxNBNB4gGDexcB4gqCOp9gOojBXgVhBTyFhSqFKABCJofhjohNldFjVcJDngpCFTZDlSFCDc1TUBT11i1NNTLwadYVo09SvpDCrSTTHdzNrYLTLD2L0BrDbTEZ7T7CvS3FMYPSbRXSfNDSaQvCxK3NLQ/S48
giIsloxxQzwxIi0Toj0l0ietSg4yCQZxEyAi9LSlI4jgGEMyhJszq9syyjBo3glS6xOlajTZ6iRikDe87Z+9RlZ8OiJkujR9ejeEvgOyzK58ZtF9ezl8FtSc18hyk55jSSnkhVd9GLTsdiHsvluII1/j38L9ByeJPj3jW4njacATCrJi1iVDz1l5/Vtiwd1tlCoc6qmJYcKqCrQTJiWrDjW4OqmKuqvzQSjyIC4sfoLzscrzcckCUC7z8SHzCSJj
erKd+qMr4cY0vyfzChmcJAappghBjhSNMBuhMAYAjAqD6p6p6BSNmBCNNxjhlweDuM+DMKxTsLvZpptCxzLQZTEhNdpNvVdd9cRElCNTroNDyl1zJ58ZrdQ82LjSHczNzSrNeLEabE7NvchL4sRL/dHDxKfoXCQ93TCbPS8bvSCbIAlLTKAzIAgyQj1KU9NLwztLIzUldLkyDKEjcxNwTLutzKhxawJxOJyyGA68VYa88zxaHK7oaxU14hOkjZul
3Kqyl9BkWjfL+ah9+tPYWzcJGwiif5llOzkDuzorRjIBtl+yEp04DkMULiYEtyttRzgCT5oaF0YSBUySoTYI8rOqsrwdnb7idDBJyrBqA71sVUdJarcUob3yYbViDjVqV1dyPzt0kdb4rzIDzzoDLyUSZrbzENFqnyEoo7Ad6I47UpFzaUtriCCpEEvJ4hCM6NiBew2NGCvIvINhehlAQh6Am7qgaFLQhSXqRS3rZcJoCId48LVN8ZOFgU5TpDFS
5CVTKKxFRsk6NjIB6K0B/UdSt6CQ9DWKZK6Q+LjDOKUaLDbYrCbSsa7CnNyb5LdQAkpLfFzRw9RLnTfCwl/SVLgzGbwjmbs6SgEtoyTbslckBYKg+aYzMji9zhTgrheFJbIB8zLdijlYZa0ANghCsRlSlbmsO8eyLaIBvLWj+zOamyplgqhtrxDaw5jaIqf4zalw1bLbxj4q9jErh4Ry70Y6h13b79pzNs7ka5r1XiVMm02reIMU8FJJq1Z73VVy
97q6mqEqwAzhN7pGVG9y9t1srxZzpGFGpG1GuGNGUGfkrj969H1GN6+HWrlUrHVGg0aL+HbknHdH7sM7wCs7xrXJc6pr87sTZq8SidkMQFOHig7HkRy6oJ1hBHNyeUcNfzdr0BMB9BNBjhUFphegvJXhSN9hnBnBJB6p9hGDBgIxKp6BnqhpXqh7lhVgsRcKldZ7xCJo0Q1oTgNoBFtphEShFNEQ3iQ61CIaiSfgXbTcPoj6DCT6jDTSnduLUbr6
z6BK77fc5Kv6JKvE3D36T6NmfDFK/Df6olE81KwjLQYsWa2Y2bM8mH4jIGCRWgYGTapYpkfgmEOImFbK0B6kMHqsG9ytKlIQq5RbCGPLiGvLayRktaArh9qG9adZfhwrOb1kIWtkOHnzbbpinao7Gq/0zjfkITvbWUZGCWri8XXVRUGq8DsWqrP8SrhmwEEn9zurP9v04SX9DHTGiquF2XiXhVL1FGCXb0gDJnl5Ha6XbktiaWXtmWbGzHCWUqWV
cVjGt1uXJi7bXj5H1qXinaRGRXvqbjJWjsxHntjJfjlF8qI71HyyfkxcdXKrWXt51JVtsqDsXWJnrWzHbWM4/bw71X04rjYnzWBrMqA3Z4tHlU/Ww2+1I3LUHWhrA63zRWz85Xw2TlPWBWuXY37G+rVIdG0702gTK5j0zjJG1XK4JWnWO0R5y3xGnaZzTWVdxg/9jXW50MTHuJW2knDzjz74/Gn4AnYCTzrzEDC77zicInnzG2u0zWW36dvy678N
yhTgepaRBg6hewKB6ovIeBSASJehpgoBWpeQqQONUKuNamx76nIA6EfhhCZoKXfrVhvVOncJ+EtohFVT16uXwaNNERC1rHYbpmDStnT70b5muKeQeLln0bVnbD1nP6DnSbJLibdmwP9mfSqajnlKTngizmNLmYrnH5QGOb/L7nEjcAqDnm7mUzi93gGFmFjh/hvnVYul8ysHxEMQjhJMQaCpKzPLmi+86y/KMiqGBseihtDY+O1lGGUWWHGiSGrb
44bbH1aXq3ltd1RV+1aLhVU6E7hXf3Z4O21XkrZ3m3ig/U+0u3APnGzjL0OWbO03ZGiXUrySu3VX62233XjPs2zifXrhnP/OS2gvCDCrRrfGzyJqh2sTUAbz8dUCFrJ2sCEpbXAv46Pawvtq/zCp0BnB6o+RNx6BdhGhUE6hiBecqQIxmBWhRsKhioamIAeNRSJ7lp5dZ0Z7O3RN2nZ1kH33NpBEdpv2lM1JLpRnEQWKZmwO5mL6zEr7LEVnb6EP
hKH6nTkOBAiaqKSaNuya1usOIBqaYxaaIB6aCOmaiPgGlQoyyOMiIHKOIwaPObXmIQdpcRvZfgK9xbuA+nUHpbCzlNvheEthUQ3KWtzbIWNaROYXGzArmzJO5lWMhDkXyOuyorWGYqxi4rMW1PhyzjPO535zM2MVKVWmACE2vWiqZ3hMCKsNhH8WG2RHu3hqkSxqov/GX5AmR2C6Ev5qwnHyp2EpRuvkF3svUmIAjA6givaQeBSMapGhSMKBSBBg
qDJBexdhnBWpNwuAL2pdr2sK2uvgvrrjJnpTVhGw33unP2hu16lNK7DWTed7UByWZXLQ4bdEAkZvka5vXcb7MblucbVuAt9uX60P/EPNMPKaDucOaa/6GbzmShLnLumvrvYiUeuaHncACFHu0/nvsGhDEHdZylWOKta8SjOPIQdYnwhC0RQeiHwehOfKofYHxPdb4edZZJkeMjUX6++yVP1tNWnaLGM5yei2VzM3Xlg7i0G3j9+XJIq23Xl4mVZ/
3H7aGWfriJ5/A67fjeSXnevinbt+n2N+ie9JvHbJWfWac6Ofh2P44ux2eei7kuiSEpD+XfwUT+DzF2aT67yhNxDRMBcA7IDYB1A6heRNAmAAhMcEGDHAqQrwRoFQQUolAR6V7DCjewgB3tH8UpGUs8ABra4gacmJWgMzQBdJHefqSbqBxQ524z6kHS+j70W5+8HMK3R0kH0j4h8tu6HSgYEj26R9DuoWQMqcyiyAMLuA7Ujqn1u6GVcApGbPhkVz
68BOkiDK8HrlY4oMxaZff7g+AL5SZa+4LHvtbChZtETaLfVWDQzmTxBvg+MN8NPnk5o9FOSBZTqvjMYD9vO3DE1CP207j9BI+nTLjiwuLb8gOqxLth40LYBDZ4IJBfucS7ZhCz+ltC/tcyv5Y4b+8BO/jiTDihMCSJdOJt8is5Zcl2/5coDAEwAdQEApGIQFglwBsA8mxAfAIyRV49QOAFAfQI12a7j1LQdCEbM02p5zlTeE0OZIvVIpKl5CXSIg
aET/YW4vQe/UqlM31I25Zm1A2bs7iWYLc4OS3RgQH2YGR5WBm3HZmH124sDEB2HH+rhwTz4dBBFzMMkn1EGwM7uuYQjNIP0qyDrgeCC4I6lFpoMvQx3Djv9yrg5pykqaXRGC1VoY8e8+gihmnyMHdEx8ucXBp330rd90eSnDFqpyTjqdwhm2V1oHTrYE9LON6EeNS337OC2UlcdEetmvyh03B05EeFakn5GsNO4wVxg40rYf8CRQ/FeGcRZHz9oh
EXFEknwxzX9Yu8XXEolz55LVImYACxqyM/6i9aSEgNYP6A2C/xNAjJccIyUGCGhsAm4CgDeAyaMkmhdTfXrxEOCSk56jwRICRRkIDDV6oNKiiTy64jN/27wkfuQJmHTc5hXvBYfNzdzQx+KKwu0msIj77C9E2zN0hwJ25+YkO+3XgYETw6qVThCfc4SIJT5XCJB9UO4QLSDBXgNgYuM4J9xKJ2U/m9ecomLmxBzJ+EbeFWoJxrKQ9oWzfWHvC3h4
fdsQMIqbDYOrKxVra/fFEUmyGbr9xgEw04jizxGTCKU5InFtKx/xEimRtIn5DaIraCRX8VrUfj8kxEWcmI84/2ouJ4jLiaer6EcZ/xGp9tTyl/aLnyOmrBNx2SXcJilziZbi5yq43cbXW/7LsJAPUY4BQGqD0BJAuAQYBUFIzEBBgFARkvEF7DEBXguAOoFBwmBoVR6qA/UfIUVydC1Mf1DXFJjwGyY9chAkPErVIEFsYaTo+GrMIg7zDFmHo33l
7n94gNca3AgMWwO2Ef1H6mzX0tHyO6x8zuQgtPAmPZpiD9K1wvJL2FTFYxUy6ldRJsAbA5jak6pfMQWQBY/M3uzHTYGWLB7wiIewnasYYNrESdIRuIA4E2MioL4lJ6LLHkiM05JUCWa/V2rBFLY4s+WbnH2qpE36R0Li9rP4uuJCFHEw6MbM4iPD9ShcCROnNxkcRwneCCRvgoIQZwP5dsmeW/ELhlyEbhTBItnTxoiWRyRcjx7PBIfyPv6Cjee6
QgXlBG+Tpcq6iUnIY+LyHcYOAmgRqPoA4C9BDQ+wAhOSGICtAKA7oXADVDYC6i9e71ZaLiFIiddZxz7CaOpQt4ftBuP3CAMMKp74UuhjvXRG7wRpejz6bo4iXQOWEMDfRFEwPhsOolbDgxOwsMfRPW5R9DhMfaMf/Xj6Mx4xbPZPpxKTHc08kqCfiUXimSPhnockx8Kx1eF/dpJFRfYKNnlzZjtBgIkhmQ01o1i4WGk2ZL8HEg6TmGLYthkeUREd
jceTtFalvRThnEZxV2ZGQSMmmk8TJDbEzljPxl7iWeKUuIcePSmnjkhITIUTlKvHtsjOPDYqSk2lHoACEpGCoB1HiAaA6MgseIPoC8jFRpghQqgr2C8inAOpMErqbxCfBGi2my0dXLgIbD4D0Jw3bgFhPG5ehRac0giQtJoHe9LSq0siasI2nrD8a20wmK/VDwhjAxXAvYUFn8LMTTpcfQjuxKumXDwGEg89t/SKSmUnugk7qOiD+FPhlB9lL4X7
EDn1xAZFYvQVWIMG0cIA4Ikwb8Gei6JLBsDOEbYIMntj1GTgqcUHRTYzofJ+czbIFNikEifia4/1hih+KvYipTtMyWKyYhhDA6jc+ElEN7axD0SMXKmQKNSG0zi6uU4eB4NbiUlkmO1VmRAENDHA4AcFNYBGA4KkAYAXkDqHUDYA1RSArUeIBGAek690KMuVoasFxB/IRCO/Y0YNPODIStcystCTJ3Gkh5MZBPdTGMLkGOj9MIHZ0ZwM96mEDZaN
BafBxNlKhKJ9sl0qHzolUSHZxzY4TGOTxsStK5Mq7jdM9l3SBYHUR6T9EEmjhgU2IUSaHMknl83gPwKuEJAIYCc0WlYlSfHMobqTW+kI7qA+BhlDE4ZQIhGYZKRnEz85ircztuLADVo38FPSYlwoQmctnJ1cglo5NDYbV7aEU4ueEJ9a4hdx+c+RXwoXFJTM63IgdryMplBNqZ544URkLAQV0VFLk5mRPJ/4SADwM4U4DOB4BUdjgdGRgr4ENBGB
CMBCTcL0BnCNC950Eg+Q0wmi/CjeR/e4GJkvlmjl65FIYSHiF5m5NZqsN+a7w/n4SXRhEpadB0WGejrEAC9aUAs2nmzn6O06Shh3DE8CmJfAumgINgVnCgGHE25pzR4kCwao6CujtQ1vD1gDgStN4cpjDnfTZI3UABlkjIW6D1alC0EWJxoXGCWywKISKLXTkm1M5rYzHjnMcGdj1saIyceELHFDjEI6ywOjZUfQ7KSRPxRReEOiWqRjlnIg8aiQ
QWDsTxOivuWsjSGDz6Zdk+iFXI8mSjchuXdAYyVaiMkhZy4CMJuH0CNBGSygKghGHiC9BNAtIXefiGQHJ9OprXXiMGHglTTEJjwP5ErJ1wEC1ZQYUYRoS8F3Y8J7vDzN/LNK/zYO/8n0djVNn+j8llssBXs2KUBjIxqsFibGIunVL3ZiY5BRnwlwpFfZ0PZpRCHUp+oDgey0vuJNQCfS1B30oSKNmxC/SaiU4QZfpIoWN9VJCcpOZMtrA4RGFqPP
SVnN74OCiqecuRXG32UxTEm+c+kXmzgiyLdlByB1SSKdVWqWWzPZKRoqulaLMSvczKf3OylPLn+VOZOISsSYPiWZ5i9ANgFQQbBGgcALXpuFpBUFSAM4KkMwF7CkYqQxwCMEr0lm+Lb2YmXCHLO67LQngV8wGrfIwlUU/gjMmJfaOMHxKtEiSklcZldE/z3RK0qlWtJpU5KzZFNC2ah3YF7TZKzKyBUcP4EnDKlcYrlalOum1K0+9SgkJVCaVwNI
4rGUKpmK+aST8s3SwsWYKeBCExcoLVVUatjkjLRO+lbVfWP2BvAuksyhOfMvhn2CJiWLbGfnMFa2ir8xywOoOMZbgpeGhcySGXOtUnKR4zgBKcEIpEjzGUP6l1bqmdXqNNl/6xFO6hg3JQ3lUi4LoxGMViKUZG6URe8uZHobiglknGYTKxF4ob0fYnscvDg3qMLWwiySO5Kw0NtkNtGzFDeiH4Qab0f6jjfEzdXytKe+PFccm00hQaG2ImnhSxt1
Y4ypNt4qjdOR9Zkb85BU+3qykkWyb85FFQ+IhrMa1qm20m+jfps/X9TYIMmx1h6vUUjseRk1RIaOxSEPKB5T/CYgZu4W3iLNBVCNWYqfHoB9AcAVqJzjWBsAeoCAVBJVEIAIBpg8QaYDwAoDtQ+J3ilAQWvQFiZ/gJagaQrLeB9DzRK9HTf0xDw3i6KsS1NOhsPrTCklX89teSs7WGzu1xs7JU12AVbT6VQ62iUyoOkRjSlUY6BWdNdnwKSOPKhO
UutwA6iBVmWP2Tn0ElnB/pkmI4KxwlVS1ZV5RBhOXlCoqCARMc4ZRqqoVgjxlEIyGb9JY5LIJscyhTgsvYZsLc5Ky67bugOXqMxNZ8yuJ5oEWf461LbTDVpvCGiN3NbVEbMZtNW7425G40zUTPM3A6XOhmhTd5OpGGp8NjxAHT1Qinupkdp/TuWTO7m3KueZ4h/hO0vHBrDFeU1tt5py6IIEAvQZgI0HAGaBbwRgTQNMFaivAaogwDRNgDoz5qWu
h8waViAy2EUL5xFeUrloiW4rVYGshtWGoPo6zklesoiWkpIn0CGtvaprbkoHWtagxhSzgXSpSLBYnZvWl2edzdlzqPZw2iQdwXG1pF/Z/4Z8LeGfDHrWOY0z4XKq2DMIdotcaOeQvPU7bRlV6/bcnIfDvB9VptZhQiKu3LL314Q+TW1WJE2sSNiEG9N2PMmE9BNG405T8gl1CbJiqe4qrIouVdyyQdmjKY5uQKPKXNoo1PY9v8GmLSdv/boHUEIy
Ml9AqCZgD1EGBbAqCxUKkKQEwC9BYBKYpLQiqllIqLgs6LASEowhhKyKgwkXUVpkSxKsy78ira2qNIy7UlPeGDksPq02FAFyu/tU/VAXDrwFIC7+jrrKUncKlIZA3QNp0pcTeYKCgkIaFXUPC5CzHPWEoJ3VHQ91g0CcEITwTPgFJdfNVZ7vIaXrXYvuyZVcFwiB6n1LCl9aKLfUcKTl724oDRppHhCE9TczTZZsDqg7KNgBdTRuOB3RTC5m+QIS
Qdngcj0dXqudT6rzrY7dFuOi8fz2eWWMK6ErEnWL30BUgjAM4VqKRm6A1RsAgwXsIQC5I9Rio5QvyFn373NC0BdCSEIwhaZfrglF8/6ihJvnA1q1YiA1tHQZFjcG1WEJtVMOPrS7rE+s2rX/MyXUr76u+hiaGPV1v0R1dslrdrsdmn7TuHKiAInxqVgMTdd+3AL0Ef2pk/gUywROxy+4f78FXws4B8A+Dyx3dQy4EXHO92gHwZtCyGd6m0knarBa
faAyHqWWA7w9XY7iKFKCmcKfi6ejcbizf4ttIp62GqroaOLRtWNBI1GW1QMOEbmjSii1QhHaOWsTFYXfcXnqgJY7b+9y4vc5vx3LVujF6F7ZtXHnV6JAjQVqEYEGCNAqQUAQ0Nzi6DxBSMpwKAPQCMCVRSA/KuFVBOS2c6/FqAbYE8HwPyyVo2wLFSrLvkTTRajvHA823K3GGqtKSjtctLq2WGe11hrXSfStnbdbZwJw5sdN12TqYFF+uBcR2v23
SM+fUc3UmSm3F5DgOFNEBOGL6f7uAnqZhI2Hm0qryxHu7bcAaFWJywDPRdSqWSVoPrrBhqi7awvyMasbt+m6Yxhr84ozOTPyWowxr8kNGvkemyniI3eNKpeNzG7kzjJ9ZR1K9DbWU3XIk0kzPVNmzRQXr9VF65qj/SY2XttZym7OHykqV8sGCtA1gZ7UWYyVeC9BjgVBNgB1GqCkAquegRpdIb1FdSq4CQR9tUe6FlqJMah7FarJt4QhWjs+htfP
oSWL75pph2XWvvSWkSt9jWh0hCc4GgmbZASFMwcJP09aYTfWy/QiZuY+G6lEgxgoEZHxNMZMC2+hr92W1f7b1AKR6CetJMJHSGIIkA9rSCozJaTjWKA+dufWIzbtCBpNiin1rjhZosde7Qqw0ijm+uuKFTd9q0IznxzlbKll22j0Kt5F9kh7ZtgBA5sYmunLtp9qwPrYy0WkhWlSmFQtz1sxKM87WAU0EEG2gpu1XeI6NfbHVvJl830bw0qnrN/b
b1RqbuX+qnNga0vdOyfPJ0dxr5yquwcnmPQvI+AAhOu2mCnB/DBCKkKgh6iaBQK/JD8G6cRVc7UABhm409tLUrRSIfXS3qNJF1U9bzF5/FUSSPO2TPjU3b4yvt+Ny6u1AJxXUCbHX772tRSzrSUqhNuHz9/SmdcIO5VILfDGfXAGWcjhYhxwwPY7ZKrKy708TxA8cFgrvD/6dBgB8k6DLUmpGJlNJjMnJN7PB67BA5sPUOZPP3JaLCmivYaZxngb
GLr2ucXZczHnmHLrllPW+nsvSMfLainxlQeuU0HOeoxoC+MZAu6np2flzy3ebqo/asI/CuY9SUjW+aIAVBCcPgF6CiwIwM4TQBQDoy7AYAFUaoMQGOAwB2peFwfQRe6jmhFDZm5Q8tAXpSF5cRJnaLwmO4TTwLB9GaWVql2sWYzq+0huvoyXWlATiHQS4OvsPWzHDmZo6dmbZXOzWJVSiS0bqG3Fm/DmgOS4iCeToTfgi2ms1KplWYN/uwKWZKYK
bOKSz1+lpvoZZ1rGWbwtJx8Perk45G+zMBqywUZsvqMg2B5wo+tltUQW09k5ynr1ekYQ7oNubEG9nth1ZVc9GO/PT3MAtamS9MVwXhDaXiPbGqIvT5YglytUF6QhoXYDu0kDIV6ozAGANMFeCaA1QawDnS0MuMNgGrTG0i7rGGkDdemIulQY71JGRmvjdh8DmxZq1/GLDE17i1NYgV8Xdph+5w8ftcM5nylU6uE2tcN3XLjdW1jPtgF2teg8EyIZ
jmEdzF631LaZG8LhB2iNh4jelxIxespPXrnrwYDRNWeQLvWu+n1vI330HNMycWWN4o+4JhtozFNDcj85gcTarKPzIG91b+o/OzGPsSrNKoDdsaudlW9PAkdWkc6uoRT1VNO/nPA0VGA7+5/ycPOT2F3PUANjtIjvLh+3BI5yyg2qf/Mo26DYx7U3jqYME6k9RdoU3Rqgteb5jYvOoKRmtOtBnArQOAK8ENBQBBgPyowKQAqA5IvgjN2Q99wwgAgz
BPwe8OhKYvz1yLfCLm1+2DOfzt6sSny8SujOmZ2LcZ+XUbMTNK7kzvFkE4yoEvS2FbUC3M/rvhMXDNri6iQSypFgW70TUyQ2FXCvBaD39TvU21XAIiXBWM44a27ddtte72zsLR6wdvUoK1fp5lpk/2dD0/Wfbvk+Nr3bcvIiyeRDrxvXb/PUGALzdyK63cYMijnyycJKzWm/MwWo1lQVBMVE3ZsBGCpGLqOgmwBrAYAm4LyNUBnCoJeaNVlLfzGf
BJB0QipTe4bG3shKHjAZp45oaUx6olzDvErafYX2C3bZZKhZhxf+MS3b7PF6a2ruDwH6OtL9yE0teO7uHp1nK9axre/viC/DEEo6YKtgayDykW6g4DcdY5F9Ijcq4bL9LwQhySTN15kyDPutarqTjt9ByoIZMfWLL2cr29ZfwclzpI2j1lFubMYZ3l+j2Mh5Dq9o2T4S65oqg52Ketx0DxD+VAnfc6GQwbGrXJ3rjHNNyDgrT9ONZNTvxSa5RB/A
2hoNsdPZza5wDb9LGfLnfOpTtke08kzjPZ4uGojTaoWedPWUT4eO+U/6c9GqnkxRc9M6bmlb4bG4i4o9Crs48ejgVzyes6Wd7Oenlqw4Hk9xQnPiDaO8Lpcts1N2IraNiY+3YmIjmjn5KN58M6r1i8XApGGcHRnqjFRnAmAaoF5AoDwXUE8QKAPoB4B1BoGUji44WveGJA17Cjggco56G9c97PTA+1aK0Ohn6LiIPRwLZYtC2jHXj8wpxbMeCULH
dj1M0/c10P37Hit5a3rtWviX1bg2qS1rco7TBdbqsKuLrCODyQFtDur6YWIohMcdYWIeB7E7bP23Ent6hBjg2O6pP3b6T41a+qufZPvtQ/AuwSxvPxW6LEbUuza48ti4ErKrS58ZBpeMRINYUgkesErj8mFWcVl1/a47QrPOj4Qykd69KPfaa7HxbO83A/Ojh3XxEeRTc6sm+D9nn+U83a/vNNG3zkdbp4HbapqaOU9c315kY7RRvy5nCit5sRz0
UPDxoV6h785pnRWAXoorhGlyrfhr+7k8mAKQEIwwBXgqCRqVQSEL4Aao4QGAN0HRczhqmOLpm3i9Vj1WGwbNzLc4F+kVrUJGhkXb1ODDHd+rwYc4Gfd1nDXL7o1+MwrvMdS2j9YHNM/Nb5eMThLSts/SrbEsuPRXiJ3lZR2UDSvuouIPYHrFOuqXCLpt8pL8LODepNX8MuJ5quoVGW0HCDXCBYLduwiPbll3B2yaTuODBM+7lbLh/OBBXz+SN4Y9
opod/O23DDhKHu+PdQQaPuwPG8acQQ9QhA6iDIAQkb0dRCMgwVBMoHqiHHnwzUJe/qMwFN49XouCC76Yg2qHr5gZ541Et5sn3DevdlQYNaZfVbjHV9tl7ZkltMCFrNE2W7Y9vdPuHH7K5x54cukbXxXP9vw6aFROTaZBgkoD28G0sdLwjhFkvktrOtyrNg/cS4DpaBnKSkHOrhD8FTHAHBIPWDrbZdtZPwGLXRRh1+84HE34kv5boN15eLdXmHtn
p7CP5djppvy3waPL5EIfyeuji85pNlnuU9fnVn327Q8G3M0FfOFtr4Nwpt6PJXVFTr3Lzm7aPsbUDlX2N0CQDc8s8DOh58xOAfyapivu6MN/m+y/pfXXxR2b8eYe3A2g7U0OZziyK89eZ0WXjcx+d4SPOPX3ETpKuZw3Lfw7D2sr7BHUTJuj8zrjL7ihxBHfiI231r21UNGnPRUb3x7/nEze3Ifvi3xiLhCpah2KvkdZTQU55bZv3vc5sO+D4e0w
/fvjEXWKKiR9A+EIGINHw94x++0+vcO31+j5DetxsQL39/kW5fyMWEfCrSuRd+p88spvO3yuE5Jq+6Z6fWHpYnxv6/987nMzpYnm8VJ7mpnizvn3U4F8/AiPMQkj/EN9Wo3W3Op9t4w959isnoCbMjWw4yvz3mAR1aYAQlICkZGCbAboK1AIS7BJAhGRoFTr72nHL2A+6RwxWItBKpP8uReu1Y3W4RZkGjl7rS6LJpsT3Jhi+6LZMfi2dP17vT4+
6Fv3u5beSlw2/eVuwn33Fn2dW4+s8eOM+hAaV28E+C3qNERtqVaODA8KRJMGIDbaeq1dJHkHMPUL12fODa43rp2x9eh4ycmqOf8X9hUCXjekOdnidmtq5NbhQ/BFfTnv2tSh0Z64vqkGffbQ/M5fftG4on/eYo3Sptn/wJn9vGJ44/if+yTvzWwEZfeKRhD1n3N7Mb822/SG2O9KZtUEbZ/J6Znxf42Urn9/LTx1w20ckD/enr/yX1yIbtUOfnSQ
lu+jcV9BefKTYNe3dh3V42AAhF+QeARoAIQKAXYDowyMQjDqAOoSQEIAMQYTy6kPgVmzRVz5ZaB2gt3dQwIEvfCIztEX5GHUKlC2f3yGtA/TTwvdr7TfQ5cb3eWzvceXIWwWtWVRx1EtzpJP1ccxXBdTT9KOQYEz8umcwTAcVLAojTJIHHCDQlkGaDxYVYPXbTGVq/EyyzE8iLIwzkm/U1zgNzXfZGs5xyZ/19dBvednEUUvMFxxYanCp0vNN8RN
2G9BFf62LsW2Pbx5YdzJwMEVfBVwPH9LON/1nhUdJ2gsDdnVuHF8GnEkm79mnStzJ9igfwOH9VIfHwRsG3K5Ux0yPFtz0U6ZDu0iCU7aINHgmRDX1Kl0ARglQQhAZgEwB6AbAFIxaQGcBXljgNgA3ZnAZQBgBlAUswXdl7BRGuNvTccVIsbwTmwpdreKlxG55/YrXF0/ffR0ZdDHDTxZcxrBM0YDw/SxxlsNdNgIj9FrAV04C33bgK8NJLfgO4kJ
BXCx9kJtSkz8cFBV6QfA8/EDyVdazb7mxBhsBhDUCBlZsxttWzCvxC9UHML3OAzBHBii8yTGL0yc8HXQOw0M2AwNU187bfzqcPzRyzLdVNfoOVRrXSTQ38HLKEJ/Ngrb/ybdf/BzXl827KjypwIQ+iFBDlTHIK+UadBAWKg4AboEaBeIDAmYAeAYgF6BTgIwCEAeHDANa5PgbALxk+dPAJwE1HKtWIDlMDILCD61F+RLcnfNT1GCfjIPy09THUPy
mC/RBYIM85g8EwWCOAsz1VsRXK/ULMbuTYL8N8ATP1GxDrC4EkxcTUJ3KIInb1A6QAvaL3uC7bMGSeCa/X4R+B3gls1gNseEh1+sFWKIJ5DexCIJ4hS5d0L9cvXL0NrkvQxyS58CfD9W5DbJZeFiCQdEMPhJwwz/y+d1TZEO54spBX3RDzNSMPwJow8F0nl/QfACdNBgIQCqB2ZUplaBioeIGnBsARkmSIbfXXlqtLjB8C9NbjUi0UQ2rWuDRAPf
O8E5CinSwJ99NCKgPU9hQ2gNZcxQ70Umtpgrl0j9WA2UJmDX7CdXj88zT+28NVQ2/Qz4vFHYIAdHPYvBGx3uL4BB5wHNWH1DHKSTAbBLbUv1uCEHM0OC8LQzsxMtykHEHr9sjY12wcvrTD08C49achhC2qbwMrtuvWHxO87/KKS9cb0N8OFQPwkuy7tnzBEkM4mnUMK2w4QzhRdCoItzWEVRUOCM2dgI5KGQjY6Cg0+chjGX1oNkghg30Uh5NCNT
DWDRj3Stcg0hjqBdgaYBnBcAIQHqgq4Epl7B9ANgHiAgVKgiAh6Qgi2YQ6wki3XcXfJsI6tWwjEB5suwiox7ChQkW37CJgq9wlDaVKUIKUHDaP1V1Y/acNfcE/VYMs8U/DYMXDKObXhXC0TNcPXUdYOV0fA3PY22lUwPHaG9h5cbgM20Pgs8IpMLwuHkdtykIJ3UCztE1zbEvg1vx+CnaTEKedxNH1y6MKffD3+D7/AKNLdlTS/wij5TeEOI8QrR
INl9yPVEPocDFOkXog4Q3EMQQIwHqGYBGCSqDYB6oDYEZJegKACYxtwRkg4AIwV4EYIvHeFRkN9eX4CZClDZ3zZDZPdR05DstSCKlJ+rZPXEiPeMYNoFBwjGl09JQycJYCbHZ+2M8szJYIVDE/NYKs9tI7PD8NqrfSIc97hVMl+kcQBWlxBjgiQNODvPQsXOB/gRFn+Ey/GD21cnIusRcjnhGZVQ9mxB8M9sW/Z8P+8T4dkyKoZ+TsP0CKAoKJOV
6jZ82xDfo3ZXQjd/H6OjdgY4iO+jAo6N0RsEo5GxGM//WhwADkw1SBBi4mTKNACMrGcF7pNwOjBGAPFQgFag8EUgDApNAbAFaBlAX9yaD9eMcGOhV3HALuMpoR4w5CRdNGNIDIaFAxN5BQgaL7Dxgy9xvtZIvtX08FIuayUi99KcJOkhXDwwWitIosxs8M+OAGld7wYMA0EoPcB089jrf5nKJFBHCCvBdQ6JwANTwhQOSMOzZyL1dRwbP1tC7g+0
KMl18bD2+DigC72CDQbEKMEhAw52OH5uo4VCCDKjXwXqdfYxN05iPYoRRwhanFtiDjKjNmJXQI4mMOwiKZJKLwjEwtELSjIUSGOjjsgzGPIjqgbAGzjWoNqWmB9AV4AjANgVBDYA6MNYFag6gZgCMB8wamI9MrgHiKd9OEJmPZCNDTkOu9j7cM27dJdFtXPsOKEawHCQ/IcNGi5I8aO5dJo3lzHiZouPzUjZwtW2VD4sdxzVCM+dnXs89g1MkNgv
gdoSidxAlWDeBTbR6GH1vYN/RuCYnC6IeCroiGW4QJwG0PcjG/TyMWVvIl6IAivw5H2MhxTAeAbZAI96J8iomO7z5MS2PvxqMzOElC+ijiGONudXYo4idiznQOJrlp/dML1Zp/DwLu0oE0eVjjpfeONwjEYijyTCU4jbF5NwIo0zIivlCwA6hMACgDgBfkfYGyBegaoBah9gQYEkBeQWSzrjWucVUbifTThHeACAuTxxND7VWFeNYlQg2GCKBXsM
ki+Y+gK4sw/MaNHDbZKPyM9mAkz1miVraWM0i+AuWIEDcwZkDXjfHVMlGxPUYbDvlOlA6K1iv9HaCQYnwUhRPDy/c0IetLwlyN4RlLBhgb9GTU0Jtj2/XyIJFAfTf3RkCZb+PtjM9ewO7s/EmU1CjUvVTR9YobAY1Jk4Y0jwTicElKIIjmDZuQyiM4tKx81yI5gEGAhHSqCgAqQTQEIBXgeqBVFugZgFIBWgKqI6hrfYejOM7fXF1S0iyWdHpjmQ
5q3WBd7LphGlubARMmlM7dmIYsxI0RKPsJIs9xFC6A7T2HiZE0eLkTpQxSMUSY/CWOhMZwj+3niCzReNT9l4yjhyBdEl5kEkrItbRvAFtPaKkl91PXCEItLOQOBlLo+xLNjr4swVvCNAh+M+DnonQNCTooo4iBDVILyU+Tl4EeDjsMZNOI78wo7A0BSDsH5KmJ/wiCNCCoIkVChTQEgIK+TwUykRgiI3CcTCjYYxEMSjsElEJSCg1QF1eUMYjJIW
N0ADqEqhlATQCoIaoQ0GKh9ASqFeAEANYENBSMUgC8gqCDYFb1OIy404hOE9oPXcFFZmLbjqLIwOfkNCEoyJUhkyrXETRkqSP5iGAtZhHDpo+RPHCMzOUO61BXd+2FcP3BeJAYl4nSNzAldCGFXCNo/8B2ixwe8DVjd477kgdKkBWkhB+E0+MNjbE88JuTro82NrBuAo1zQ8nklkyfjXkl8L8iAkzuBv8V+R/2MgxU0DXfM0E8nzBjq3MDRBDw09
1QxTKHJEIRicU/CNSCJierwrto06GPLkso8oBLjCMKkFaAOoNgENAaQTQGNBWMRkkIwABaoCpjKw/eQaT+YAJUd8uEuXG2ABI9314Q2w6i2CS82EVIYslabmNJVBoilQ31pEwWJ31hYhlQnj5gqeMWCZ4px0VCtUtZJ1SNkvVLyQhAP9yhl/gc4GOSIQfGEd0VtWvw0E71S5KC9HIl1KvinkHBg9T7o3SXcTvrX+P9Ty3UFOQNwU5hz6SmWYFILd
30sUT0De/b4jRSY0iNOvNA0sBBxFE3HEVztzVKNNTjNvYKRBD/knwWV9WUV6I35K4X8MjojlUf3IcsIzBLSkEktNKTjUowiJYMqcaU3zSJAboAIQYAXkDgA7wOjEaBCMQ9mcAjAcQzWBaQDmU5Sl3JNzbTeUlkM9NXXb1BkIMQO8yFSuwvwVUZ+o0dN5ihooeJGipkoWPkjZ0/i0ni5E+UNUTzPGWI0SFw5aIz553NaPXiMTJ4Fzhc/BbQ+FlXRy
h1gmEEX2PCz4+QOuSEnZQMdssIYMBdtPUh6KfSnwv1Iwy3Q+DLAAUM7xIgzxgMOw9i1vYtya9whFrzfj+/cFNizcfGIJgzZ4FFMdUJnUNLrdf0gUyGdIo36KTTG3LFPCtEk3FNAtMbV5W7ia6TOK+UikjgG6B8AAYBqh9AVoEalCYhACOpGgboHN9eMxpMIttgQlw3tiXUfS1kXgUwWBY/gWsEzFtw3oMPTQswdJDNZMttXkzx08a3FD5U2RMVTZ
k0WPmTlIxZJEsVg/rTXTEFJaKyQJBNAUNSDI41MjhwPGsGPVrgrzxA9dw3eM45Rwd4FFweiC9Ib4r0lzMtCTLLCD9QUPVxLSdHojD1i8/MpCNCzkDbH1fiksiHD39RxXKn/iM4Bb18SXyB/H7TYbGfw69+jct38joSYVmBJJvSHKYgYEonJhzUcrHJYdavArISD4YpIJKz00vFI7cuo/7NX9W4UnIzD2HIQA7pjgGqF7AqCOAEntWgTAEaBDQRgm
wACEZQAIQoAKVzYSCLLYDkd17a3S3thsiolGydYcbLeyps0WmGEl+MBN5CNCbQyA5Fs5fWlTJEiZKUyp0++wXStssExVSF0rTKlidM9RK/dpLSjhQpjMvROLxWMP4BX8IzB7IkD94vcNqx3mccA+5Ps9VW+z4PX7Lcy5YMaS8zH0+yI8TvbLxJrdicjnKslic8LIIM0Mucyn9RnezNZR2fdOA7CEU9IMQz85UvMyDX0nJwLyNnT9C1Ys7bLMDdic
g0zBCFzH+PLg0RDBLiScI4rJIyA1PBPIyPQjKNIjMkr5UZIK4yQBWNiARkg6gYAGqGcAYASQGKh2I20wKEes/mCmgBs5XKUdVcq1A3VbwC4AY5awOV2osh/V0PmyNLIYIZcxEkZJoDzc4aKyU77ZrQWSJo9TPnTNMtVOWD1Iw7K/sN0gzMo4BST3N2T6OPYBm0NwhbTEkzE6vA3DRwW9RND7I42Mr9esXV1lg9gTMStjTw5PKydU877UZ9vwrTjJ
YPzSrMqMMcoO1xkTGCHPJz7zSf08kMsvVjXNwUj1BecmC5vKKoWC4F1joUUmnO+dU0hMMHzk44fM4LC8peGkyy3ajPQAGQKAAIR6oYCXqCIwOfN2BqgRkhKsqooQGXDak23waiupWsJ3zFHS/LUoMIETO2j2uWsB5tOTK/PEQTcqgWWzzDSlUnT1s6ZM2yRYu3PD5VU593VTlkzVJ4DP3FUJv1AC3MCMBM/W7Jm0PsncKsyzgwojvAmEBhBCcHU3
SyNjnM6PIcTxPG+MBy7wr1JBzm/M10dDT/Y/3/SM84KQ3hwUi4h9jpFdywrzvtRySKKyjBBNB9Asln2xzvzThQ7jLOfzMRRE3V1l4K4w/gpx1SM5JLSCeINovKQx84lIgBCMDqHXZ6oVF1eBioVBDoxsACgCqDiw4gB6gOoIzK0Kqw+3w7BEgATMmFfTKGkPz2IE/JsidcqJV0QZpGwuFszchTIcL2XJwpUybc1wvTN3Ch3O/y5ojSOT89MgItOy
79TQGDBpXUcA4hUQcPPAdgPAsRsy/UMwVLcI8oAwMsfs1IvQKHwePIfTYZbIq0CHQ4yXyKiqPHJxKeqD8w6LCRQJN6czVHosbs+i+gwGKM0svVDUxisXm8BegfADWBWgXkEzJegDqAqArgQ0DqAKAZwG3S5cy4yEIeUg4qWhZZLMSeBGsLXJBYhUywr5t3tZizvyeYiRLuKJ0h4vIknimZJeKH3d4s8Kf8ueKVCjs+dU0TNk8oABLdgTP3vA0QAE
E+AVBTpQhKTkxyj1gQUTXAczHU8+LsTES25Nf1dYVEqBz7wnzLBy8ivAsDo8Szu1zSwMs/0CzmHIVkfMQQxfwlNobUCNhsYyqgo+dBjQjJuV6cgfOAsh8lJKzSHAz2Ov9OcjK3oAGwXoFaghAbmWKFnAGcFpB0mfYFIAyUnqFhUtiptMXdesswRFL/1Q4ueATCsTM2AXbCaQIK4szuL5D6XZtSjNT3B/NVLVsyZKtzX83bPfzDPKaKUTp41SOXT5
ol3P8KkTRIgBLkgHZITlZBHECNCzBDVx3CzIw6O1gjgDAoBkDYxIqdSo8vbVczxPO808y0SphQxKvIl5ODK3kmN1zz/bUyQAqs0dgradAs4vN3Qj0YNN01QK9OESzUc2wLgrW86LIxFW84LJLkpTKosq9/00lhxZu8slhRFySn/0pL//f5xRiKM/B0kKIAXYGYBWpXsH7ohAGAF7BWoZYuqDauYqF/EV1QUqXdnAPNCNEVY2WG1yukNSjwR1cjEF
1wS8f4BUEJpR+Q+NeooDQlSl9WwpVKVsyYMeLp01TLa0VyjTMVTHcjVLUTvi13IlczSvWBCLMQEv0vLHs6AshLqwZhDMEFVaxMcyrki+OvS0jMcDwR3gFJw/KDVQMt9TfymvLQNQYswIrkgqs+WX8GYqGLCqky8u0LKAq3ZUj1cUIksY0Iqv4IiSTlWSp4UcbPAhvQMq2EPWUiKlNOzKBC3MqEL8y3KsStoknti/4SExBENB4gY0AK4KgGqE3BBg
GqCwhUEaoGlzTgKkEIBWypATqSdCpFVrA4gUB2xBBKkFmErD046AlKJwNEEkqd4grXYEo0qwpETb84ZOVLbi1Spkj1K63K1K1M7Ss/zdKj4u0yV03wu1Tjsk0s3T0AAEoZtDyy3SmRAPR8C2B/czWIkDLKmys9gawIFGDBHK90qcyXKr0tdT3K7aDuj/SrIt8qfy7EpDKefaMsqq87EELhqrNBEOTSis+zWKqorPMqGKjAuG1S8qKtYAIRWoTAHq
hMgZQDqBF85iIqB6oKkAIQnwBAGo5uK3rPWBy1EQlYLS1O1I1w0QO9NvVvUK8FGxqLIRIbUEq64uZdZytSo1KNK54v2qZQ+3K/y9Sz4r/z5w34oo4TKjYEz8KIRBjFxZA9WMgcRwVND6JECls2QLHgpEtuy2kLAuZMcCh2Lir1sD+OkZEKzwUwriyhtltrHGSNhvQha9xjdqlNOfi9qFTbVjwzJTW5ASqe8zFLpziM9GrodBizNP1Ng6ksvIjCAQ
jDWB4tAhFwBewYqCEB9gEoTgAaoCgAqkjAeis3zGmSTH4qxq50omrcAoSGmrTBWar2Bj8hapBAQ8AEDK1HeCcEsKR0pbJUr7CtUrWzxa3apcKpauZNXK385RKXSuAhWvWDLqwIokAAS2uJAKjywSQohNgISFpjWOW+Oez/uPBkNgrwZxIrIbEj0udTAam9M6Qnoc2pwcgyqGr/LW5SO19rfJaf3IKx/P1IUUA6oCtOdd8WOt9tY9RRGfqP61+t3R
76yowvyoIib3EVP6okoE0FKnoxQTjIT6LLygshMs/jfXcMKB0b65r3/TU0UVD1zYG6r0QiuvaFM2dIsgBq8kCGh/HOcwG0byCVIg+2vNYo4mY2wzsvc53+jp0UVCQbxULG2oK8G2OggqjiQIRQbwoj4hSyO0OgrjLGi0M3X88MwBLLYkDaCLKc13FdEYbo7VZQ846Gsxh3MuGoFOTKg7dBv85Y7eBofqEIAht3xdGlPT+SjGr9CkaLnb+vI1zG0x
vTLYk0OviTsUiOuRj8Eygqas4GqjOqzEEVoFNNJAbqsqhugEqN7BigxoE3AqCXAGNAaowusnpNGUatfLy6+WUrqxKmuvmrpKkPAMa9DF+X/rhasdK7q5yy3J2rFy8WOXLpat4tlrTPE6q3LDKncu/cTKoWDurAHPayuAGwGQgPTsGSB2+FJMY9V+qHy/eqfKlAmPL1dOkeWlPrHw8+rtinQjgsArB+A714bA6dJpgqNG9OniC+Coqv6LBCsjJST5
mgLMWbUraqvHzEEaoHqgqCTqoIRSiaAJ6hGCRitahSATcGcBjgZrKia8Aw71ibxqyTzUpDefsu+BxMocqUI5S2JQ9q1qyVPvz+4890Hj7inuu30+6tcqVS50icLKaVEp3NOrdMoyvli9y04CeZ6mwyPxMSFC6yOtVBKVTXqA8x0qHA/UT1BhK4Su6zg9nygZvEwfgc8qNowa7zKTzn05+O+IDvGRpSqgSEZx2bijd0LaLeFZRo4KPzd+riipfXvK
wT+8pxrIr8EtopFaqK1BAqA4AKkEaAaoCmJZS1geqHwAOAXYFagOAVoHoB1ix5vWAFclmq4KEmxkJmqJKuutSaqKJos5axy0VOya7CsW3Bb5ygppV0im8eI/y4Wo6rlqKmr4t4CUWrROnrTgemrnr7qkMz+koZbgM6V5cU21PxvYO1O6bAvL7IRKUi70uY5DYNOW8qg9L8sfjIa8ZvxLA2UKtxttG3+vNZUw+PVj0qjfEVU0Z9OfhyqpG9YEbbxG
kNJiTVTFGrDrHGtZpKqNmoYrtbWkj0PpLJ5ZQAjAIwZQEZIaoONWcAz2HgEcUeAGqDgBegJgA1CGa/jEURTW0QvNbSIS1rmrrW6ixgbogqwsLceWxSr7ikaUFukiBY91psNDpW3NeLdhaFr0rvCgysDbqmt3JMqHuTFquy9rSTGGxQHO0vc89gU2z1cdYq23vKU2yPLTbqWk2szb6WlxMyKmWu0JZbwcyBIgauW+gshTzAqRtcavOVotj0qRHZof
wjGyuFEaCcgjrI6rJd2KAjSvAjswiMy8VqIzu2qkvWao65nOo7XlEAKJSxeSqGULioYqC8h+DRgmmAvIbAEwBDQAoLWA4AVBDuajWzYAfZhfevPNbjoDdS5rLgQ0JtaxEbBvtarC7WV7jpykFrGSwW7urdbe6wptsMYW71plrfW8psRbKmt9vWSTs5WpDapDcNoabCiJ4CfBJsh0vVlrK4luIErwEbC+Ba3XeqcrL06Dv6bYOuluzbGWxPOQ7fM/
yqJKok90KOtsRachYaejStteII4qZuCkh+CBIP5yqp73toiuuYlsaO2wrK7bJWntoxrSqoYu07B2seW47J5RoHoTCYpukkEIoboBnA1gXAFOAaoGAGwBNADFsbSfFZtMaZDvITBSsEmzpA5r5Osap5qcGTTtt4/mhtTxb2603JnKtq69rM6PWizvvadS+FtHqDs/M3/ynO2Mn+LTgKQW/a0xK4wohRJVvFXrAOqItVgFae5MhA3Snpv+rPS9NqBr
EGaLpGano3Iovrra7Lykaq88kkTpwK/0On8qGnKk8F/QkDOCqqqhjvsa+8tGpq7I6mkufIxUEn3SS9m8Yu3AqCVoCeAZwfK26AKgbAG6Bm6fYBytgKRWLXaJu0iBeay6t5sPTZ0VToER1O3muW71ZKTJy6z2gzovajOq9rlTdu29uD5tSsWIs7n22eJWTDSs7snq/ih5gBLbhG7oEl/wBS0PCby1jmA7g87BiEQmEEvwpbEHPpp90Xy2lqzbAe0H
L8qQeokuxqNsF+Nn8oK18Nbaa2d0Jdrcs0tsYLZ4f2MGdyDd0J3NAGj2KD6su9tt/NKuhxuq6WO3trY7nyCFCTcvY4dvYdCMYqB1hCANQGmBewDqGOBGdRkiEAhAaoGKhaQXoBqT+q7QvdMkVPYGOgWeiTwPo1KKaE+azCn5qooBazJqdbO6l1pM78m8XpnStKkpsfbh69cslj9K53KqbHOpXuc7rq04DL6DhHx1AKHqzMRyIXq/FpA89VfXt4AN
cuQjvk7Iw2uSKYOjNoB674txOZaEuu3vgTGiwVqR1Z4DlsHbHevHikb6Ouxs7ao+jHpj7auvtomIAW3sWT6MrXAHSA6MDYB6hXgKAE0BegQjDgAeoHrucBAVDNQTJGeyeihpa+oSorqFcpvu+aLC5apbqBrfToD9DOmVKkT1SyFvM672qXp2zPW4fqWS5enwuRb324ypDbEtNzqxbdi53QsrV60xI+rpVZ5wOBGwZNtNCjay+Lcr/uq3uP7gciGu
B7C26Gr+t4yq/vTh62lNFkGfQ6MoK7iNZQfyrlm3otWb3+rHqZznyLZssZ8eqUXYdMAGcCoJDfRoH0Bi4/QCAl9AY4CG7DQPyDYBVahAbwCnkeCWm62anCHNALzUTK+bBy2UvLaDchiy6QNu5Ss2rcmsWuIG9u0gYHrtsoeqXKR6jcrHrTuxWt3KTKvqrn7dgr3KmQPgHomLJWmp3ner/Op3muAUSv4RN6HIiLvN6aW4Qfg7ZOWLvRLxB7QMS6ne
+FOrysq2tojdY9RGoS8TWJ2sJ8pGorrO8O0Gxrwrp/HocjoHexBKQzAhukQv70OsLMUGFm+sMx8lh9RpWHfaO/wKrUawvSSTsehKAF7NhyxqoqhAVBBnAjAOAAKjNAHnC8g1gQjF2BuDLyH2BCMeqDzwXB9pJGqxPV5vr7D0ndurqrWu9V56SAoIe99BevAeF6CBi3OfzOXfuv77B6nSqfbjquzoDa/Cifv0zletFu9lITefvnr1w+TsuB/s3Xr8
7y+Wup9hRwA2ruCBB1yqetQOo/oZbEOuLutiUOlobQ6YqkJIISKfEBNDj9cuYYIrKi/odaLntNYfu8vYh/y29/0lnJwbxR0UbJFLGlHuf7I+9Ht2HSsjG2vF30yUZwDf+8iNpBcAROp4BWgVqA6g5AIhCEBBgWoK8hpgTQA4A1e0bvOMOy/jEvlN2pTrZrbwObrU7FuvmoET5B/pLqRQUxUvWq5MzvuD9XWnvqiGJezYViG3CwfoSHKB/bN/yUhi
evRGp+0hlOA0FdXqekpqrEDbJ3pcB0JbXq4oarhfgWI0Ng+BpAv37Iuw/pEH6Rx5LzbnkiQZcFL62yzd6V0PlvSok+stoWHy8jhvCq7+9CJ7GlDLsbaHIe8roj7ac1/uVHGcsrKghvRkIKHG+7ZrvYdzTCsswA4AZBHoBGCA0bsRXgbdmOBhDI1tDj3BhcQSaPmnwdMKMBnpJI6Mmw3MvHAWpSpuKtuiIe2re+zStmsox/aSO6khk7rnDExpWou6
Ve/rsz9A5X3NtKnu02xm0nkaZU+7IO+Evidfum9Lg6YuhkcaHT+sZobHQemn1y7OFIfjUaMNB3u0NvetLxw7RhwiebG0MLYY0GKSrQdIrKPfBN5YkDXDo/QtRr5Q2BewbADBV6oVoFTrqgIwHAGEAU4EaALR6YDqA9ItsrG77RwQm2AnR+5yEz6rTnoW6NO6i2/6HWhixvHJygxw2qHxrvryboRpgKH7LOg6p9bERv1uRHx6xaMn6/xtFpONsRrI
YX6IQVNHrALk8B3tSiW8vmBQnweUjxbd+ykfLHqhqLqrGEOmsaaGsSyQcbHpB2YbtZhRx2KbbiJ4KM7GiyqUZCzSJiKblG4MuKce1Acf3s/DuxkwNQS0qpNiUm/49selHnelHzD7EGokWYaKpkceRrFRiVrf7qJzGomIINAlKYnEEZcGV5a0xCxkIahBgjowYAMns0A0x20fqTxJ7Ch1gvqVmsy15DJJoBGpK1mIVLSBWaVwHqA/AcfzFMnSYVTo
Wg7ul7DpWXs3KUR86uNKkxiyZMquKpgZ/a0AeytiNdYZ7qlU9e9erlUvOxyYSLoJylsUDfJysbqHXbBoc/Kgp22LQn7erDJSnsKpKeDtfXf2P9d2G2Ron9IpniE97UsqHrimS3DKZfqkZl2rLteIsqnImCMxjqzLw6zHucbh8joaHENR2MqqqjBjK2yZlAQvraljgXJmqA/+JgCgBKoJ8EGB4B4acGqCLX5GLUpuo8c8Gq69V1mn66++VtbVJ5Sb
qR4Z28fPbFpS9tlTHC58clq4RuIYRG9JvaeSHvxsyeOn0+NFrG1zp27vXsHwN4GGxdejgeKHhsO8G45nJ0Lr+rnKn7oP6/uhCet6ci5ofP77Of9LYa2W8KaYhYZiHqgj0Z34J/SiOjsY2GVyaCrkaxGjhps4I5ucdZR/gARvM1/ZwfkMbYZw4ZXRKO2+q9m3UOFPtb2irkbv7Ri6qfii0euqYnHqS3QdLoxZ6RrjqvlIQGmBGCXAC499AQjGZn6A
KkC5KeofJPi1+QfceFKpJ0X2asq4OIF3ba6wEZF1Suq8aJJx5qWaF6ZZkXrlmiBpMxIHJeyMYfb3xmzoRbR+pFu3K0R38e1mTKs3T1mNeqZCOADYMQKJb1ZI9Oszvud5l5qKRpIoBq4JoQcdnRBgMpQnbekKfQmiqMUzKn85GcYA02RBtoAWm8vKeaoS27KuAyb+13pKm+hhKe01Y9EVt/nzG2GanmV0aOZzntlTkYBTQZj2fD6apscaVHNTPYfL
moIFBftVMF4hP2b8hQ0AL7XgYgBYrJAGAErK2ARkmVBNAfQFCB2Z0SbtHmgtrmY4Jps1rZqCIbwbehfB5vpF0SBE+z06py8EdnnIRp/KsNdJmMf0mB+teaMnbOzefs7UR9dPO695kNof10xjBX/ACTAEAtTz5hRGJGvhCbP4QSxCoapHD6p+bpGApjyNrGfUgtoBnAMm71hmR4aYbzt/Xd0MpEEFroa9miE4osEhAlv8NDdsZ1Hpf6CFuXxVHAAv
KVeU5WzxrpJpgGm32BWgOoAIRWgYWWqAeoRkjowrwYgARdXTDmcr6uZzypLq4mtnqNxjC08YHLzCgRLF0+QjjrBGVpiEbWmQxjaY2ytpsgfiGKBxdM/H4xjWdlitZpdQBKAjAxeFVd6bqCeQTgfWMtSFEY5M45GwbEAnBKIWxZ8mUjGoefnqx5xb+nPE0KZUagZgUdRFMJs5eB8U5pHqiqfejtETmQqsJdhnJZ0eX8Xp/cJZhrT2yJZSnthqrvqm
kY6VuHzsaynLJmqKzcHqg2AWNWLjSMewEYIYAQjHoBWgQjFOB6AOoGsH9x5715n1xBJp4T0B/wZ6SIZieZDMcB6RfaXZFzpe77ul5wt6WV5w7vXnju4ZdWTFesZcMoASlE0PmMx94X91vUG8CKHasCxZ88xwW9W4QoJ/ga2XTYh2ccX6hpCd+m35txYhSJmnO0S9ke/8sCyoG4U3AqoZ9BdhSfBKqYbldVmYbimfF1EVj0cJyzgI64erf2CXUI5K
egX0EnKe+x/F0jsyn4s+HMSnI5wyDQXv0uyU9Ww48VhDqYlkucIX4l8irABMGzIIlFyZ/G3KAZwYgAqB8AZwDZJrSioEIwEAHgCEBGgaYFIxSMHnHRXp6F3T5mpplmzknuahSYESV+7AeWrQh+8dWnRap8bDG++18dXnR1XUvUWX2sfoc7tF8yd0Xp+xoPZXDF9dW0tvYJhF5WfmDWNX7OBngfuSRsY2Yg7RVh+ftn4JyVe+npVnytlX6x+VaLbc
pkOaOXKeAlc7hZmkkTDXXQyxntoaGgwfIXgpERn/r7aK9d4afl8caDXJx1UejisQ69erm2pryFwBGCNugqAOADqBqgyY/YFpA6FtYGmBmAKrn3GTWiLwEWppxkOLXuepbuosFp2JS+mq1kWu26xe+tZfHrHKztKa6VoZYNLV0pld3nxllC0z9PgRFgusR1p3hdtj0waF+k7U53RFWyx+dYrGJV/yalXAptdZdmP5+3vgWf5oJcNWhfTGdUhfZj2N
WrAggTavrM5o1ek24pm8GE2KGjbCSrzGo9cu8Ci0Ga8GipnGXMbD24cdwWi5gNaY7o+hqbq7M0pAy03spihfGLMAfXxOoYXfAEeoKgCgEwBaQGAAqBwtRkAa53hlRH4Wt20tXwg3Rrno9GgR0XS7CxZ/0aBaNJmtYw35ZrDcVnG12lbUWN5tta3nx+zteZXLunaymW11O6FrgCIKynt12m/6W6g/9TZdY2Ppv7tzgjgUGpXXc2g5ZTyd1yYitcfV
nkZdiQFhjTPWca5Vd2V9WWGaz1Uy0zkLmxW4ueM2/l3BLM2y9CFEG2vOKitIwEAILUNBGgHqEz5pgBAEGAY1yqGqAqgZ4bk7ZZZAfiaAtzoPg2QtyTMJWvQUhci27x9DcfGdu+Lb2qlZt8ebWPxkftS3NFw6c1tUWkyp1sct2QUC6MQbjj870GB6fKILIKuBvAd+86O+6D6x+ZpHaYsXBzG9l++JcXLal9MBmiCzPNBmhhkBuCW1V/YmCXZNhyQI
7sdn+qRnCd9Rj3WXVjrcKccOokr/nCp05dQrQZoRtFav/IzbxnmO0zc/7RRenZZ2qK1qBKYKgQYF6BieuAHqhDRmqFIweoLXgNaqU/cdzg/N50cy0sFILfkmee8RYk3xZmSTbrlpqVM0ngxilYUXNpvSe2nyBmXqRGNFg6aNLPt4Nun6/7VIkuzbu+RyMSeV4JzHW6N/ExMWmmr6a8n75u2bY2b0tV0Ncc23Ixt65Vs1WHNkM2Gdx7iIe5bKNYMp
Nn5aLVn5H0H/sDBsGHo9+ndDXo9zbBZ3fF8VCuXgFnrdAXbkajrDmMNZPez2ZR81jL2sF91ZbR45y5D97Msy5Dj2wNdSEr3uNZKrJnK8nCu1WDV7dYFbgZuo1j1a9g/hNWOWr1dI13Qofjz240zObMbq9zdZGH3Z/1dqmxt0udY79hqnGD6l4J9CorMANYC8hnAQgD1xqgQ0GmBCMVqBgA6Z3AF5lsAegBEny+7YvG6PqEfS+HWen4eIFH8E7dLW
Zs7BmQ21upSau3pZswy0nIhxeeiHl5x7abWnDVWYt23tq3eI20hkNq8cLs9aNu6hIVNBbw7yxZZGEN+ypFGxgjM6L3rods3u2WTazeNTQnZzEv+mN1qQY5MvZlQYwq1/T2bimSd9Oxw6290Mpw7mDiPRw73l9RgKnEoW/oHGRD4bbZ319jnZM3/lmieHyCpiNaorGCaoFag1gGgjgBdjYqCgAOAWkEIxWgJkswBF8kbq4WRpnhd+RUQVFS9Xeyjn
s5rgtv/cWqtDS4tiVLttDZybwDutcgPwxmaxw2DJ6zuS36VwjbOrrd3VKnrp+2XL7Xplp3gmyzgcvDwUQdwaBbwEeH6vK3/dyrcD2JwRsRfnwa7jeCn3F+1ZAji9q715bXVrCav9YF77TU3WUDg5rcR4ao7q9ajqJYVH8FwNbiWn1hJavxk4Dg6oqKgZgFOBiAFiO236oUjDgB9AHqHqhSAaoHHseS5wbKX8LS41+R0tPCisOxS8cHVyDaQRAVoZ
tMecAOyAkId13gWjpdrW7tzw4bWfDlRee38N17eoHX2rRYurMt/8YbTrJo1MwPgwUcHHByhiIp1rnwRBhwZlVF6bnXUjig+9LsFQ5KyOkOpkbP7eNrkan37+1DK9nKjsgoI69N9TecDY9V/k6Heh8OdZGxvWG3RPn8eYbZGwIvHY/TGi61Y5HPl/vzX3mjjfcfWy5qcfWGcTtGUUOUlval6A6gX4GwBilzAFY8WFngA4AjATAEYIm51zpMPOZ+Y9
mWql74fRVv9mw/m6S19XZ6TnlrXd4BiV9ScDHwh9w+OOX8qA4jGYDpLfgPjJy3dMnRlkjZZWyoTPzvVOkW1J87gR/MfL5o0W9JnX/jljcBPxVwPc6Q1MBPOQn4u1CfoOmt4tq79yjuZoT34NIvZuWcZSnfx3qdyniVO+TFLtjPzidQZxnRt6Q/G2iF+k9RikDGtvxP31ukhgBGSTcFaAuDahdIAqCIwGqBucZjL3YoAVeNmPqwnivoVLDsON7LSI
X/YVP/9mVz9G+bFw/2Potw49i2F57U68OrHBRP6Xzdw08QPjTn4pQPp+jP1+3UyG8GkCfhPUPiOIQE4AKx1XZjb36KtoE6q3nqjIq42fT9+byO4TuKb4Ok2LrbqOLziUfPPDlrIJKP+D0GYHa0ypOcEgrzoG0rg6j+9diXko4NfwTxRLo5ZP0ASqCpABZXsF7Bu6NjAjA2pKqQ4A15eAFWjRT8pfFOrUA7ZqWuOYRdxBRF88Y7PFPcMz2OSVvXZi
3btzDZOPsN0c5VmlFtWa/HGV1IZqaQ2oQPnOTUxUnRAo5cB1umYCy6dPy9YLaBSOYdhdaEHgUXCHfKfp1daPPw9zvNrtQZt9a/inz9Ha+XGdnDIYLfXVpaOJK9jdzROmeb85aPfzto5DWNL8KaznrNsXllE6gY4GYBlAXYEna65qkFOARd6YE3BItdcf3HVoJY+bOxSrwdxXGl3C/kaBgsgNVORgvs7JWjj0i6HPTjii8Or/Dgjfl6iNui4/aQ27
YKePHdo+e+5IQMwRVigdwolNtNcNEGNC+L8g7dPBL6yIPP9lnI7oOI9oGwRr3Q7fga8uTbTY/VK584hrlGeWRn5av0/liDRVyXfZcYD/GOY3EkWQM+5HlWE9F8uG8wflXJm98a4n40q7S5pPWjuk+fW6RV8kmvI1pj3KAhAHgFYmEAOjAoBSMbIH0AaKhsCAhioVqF2BGBpC7mOGznBkV3pJ5qwA81j5hA2O70lvq07NdqwtBPp5mRbAODd7SaN2
elk3b6XKLgZeouGVhXriv6B6ftXaIj3LcKI64fCDgdwHYWY93iBcAv/aFl/jlIPbZ/i4D3BLq4DCowTxkewLmR12Z1XKWPkaDSCWflrAbSFqHOFZvF9PbkuGiik/GAETxGcJPYbMTZzyvZ9Kd04CTkTenFYZ2U0I72bhRpj1ub586G2naZE5JYar3m8kal9y5BinUpwfeRVJ931Yzg59wOn1ZK95Rg8Xtmwo9wLfk15eCW+x14jo6+W81cb3SNKD
K9niTtlFH2qTlZvxntBwmfzLNdsGaorWgDYDl46MfYxULiAPo81FNAMXY6hugETv3GvBvuZN4xS1uqzF1jsvGeuRdDuPeulpwi4OPgrgc4hayLhLbOP4RyK4NPW164/bXbjo6dNPLuzQqfccRiNqDAsIAGmJM8DvFuRvBEzS2iO75x8qqHdzwPe3q/SurdD3nZ3I79PP5wRQd67bsumzTvV8m6xOxhwLP+16r/AvMawGh3tlkHz3ZX/Sn6qzdCW4
3Fe7qNSO6q93uHz2a9TPN92Pu32V0V5TH3VrmqvKAoVVoEYJMAQjCMBl5fLkNGOAQ0BgA+DOoUYu6znYra5nmj/br7pTuQT7L6lvwe8uHDkbj/mVqgK6VL1T/XdFD1pv66pWAbmlZ2mutCc6Lu0tjtbuOy7/8af3Mh545Svxhfz1LJwOvA9NnOOL2DmQrgbdWdPtz105QdKD71G+AaD78vXWKr5O2wWq2r2aSrVL4iAmGGNLPeJn+xHGUEfEaw+7
Cs0zv8+Hzu9gcaEep+S+8oWJALXleBWoGcAqAeAYqEbBcASqEYJUQWkG6BioQgDoxNi5/fbKzDkbF6klcZY8RBPLkB7EWekvC/8vZhkA5nnvr+B66XEHzUthHEt1B6EtC7/aanOg200pDbELyu5sncR56SeAJ8EhRXOXJr4U6RfgavtMXrZr7qxuCrhh+BPHwHWBYf82th8kuYF9BbkfufJDV6uhroVC4fmbvk140QQla9U1uNWp5OVBHhp92Umn
pM+iWpDiR+PuP+uPsF56d7M+EeqKljygAvITAEqgKAXsC6zugUjHwA4AY4EaA6MRstaA5z7+9f3upCw7Quv93gBPGRFs8bxWOzpU6sL4itScCvYH4i81PQrmEepW9T3x/t3/H9Wdoufxmc5TGGe6G/2CLEtpGmyzF/A9XPPYADzvBz02dZdPsbtI8Eudo2rcPOIT30/YfDb2E/BnTAxk70b1VpGbJOQ4u/rbgCWBM4LnSb/huzm0X987B6nzr84o
niKqidkPGp5nPonALhcYytWoHa8piIBNYBcUxZTQFJrIKRklwBZO94b+BEgKO9VzhwVXflPENgRN4flTmR6asXHr69jNxk+ReHD/rpRdN2xz3aYQOMH97eCOACjEZMrazpK4wPCHu7vRBhwRHa+f3dq+Yu3YjM5JC7laMLtTbYJgS7h2jezeJye6xnjZPOK5fjeH2bWeF4InYpwffIbwFnk1x3uWn181vmqOjsDf+b8Q4M2Rt9nc6faTrfeIXA57
deZPqX8iMkB6yghA2BCAeqHiAYADYDsBYATAHKhoV/GqNb+XjZ8Af+Xts6FfcL5upPtgD1w+dafriA7CvyL5VLw2orq44CeExzWZwe0WnRNefptYHmdKnTr544uJ1zYA0QKIP44xurXqDptecbu14OTHX1xbyeSSwa97Gc9kou3urvAjqVuk2dkS9CMu9nOj3D30TcaOKu6k6PvY3k+/jfkoE95JyPG5N5rnWUjYEQtlAaYGwRBgbk5K46MNgDqB
cAXABMfIJCvsuvGa68MlPP98t+OI47x64Tutj4V/57oHgMY7qNTxt48Pm3nO4ivDJgu5S2VXpA/BuvtkNu2T+3spAuA8EZ6FvBqNxu5NeneW9UidrgLc+8mdzwq4XeKkES97vNA1h+dfB7xe7deN7zhUcl+HqcyROpNonczn1L928uJjbuKabqt3xg+k/K9hM7taOWT2mhnl4aW4jCnz9T8dvNB52652enqCFjPkq5T9zOJAZds0BugTQHZAugZk
ssBGSZNR49gBR49MexJ8x9Qv/7lAflk5CAV4Q3PRjs+FuRNqB+cf63oMfcfDd2V6Qf5XwG/zuqL5V87eRl6c/ovp+g1P/tkrjleop1awFENf8xvMR+eaN27IBB676d5tnwuud5BeWPtEDY+IXom8hOXX2vLim6dqRqSrGrop6DC/o6tsE/RTdr5S7U58MvDP5R896dvOdsl8m3p2Hr+63wzqirE7KoVN9eAjARQtpAjAbAGKhQBVqF2jlAYIq5fA
uNy55HDi7Z6wvdnsB4brrRHY8hoCLtU+Q+4H6V4Qfwvrx6uefHs3aVf0HuL4efu3p54BKBS4j8jghCR6Gz8Prkd7AmBEdVwRvaHxj/oeq/God1gz8gm+9PIX48+4+2b8N5kvwZgju4O7z5Gblu/AqRqMuWjGwLDfaryzi0viXwqt0/hv7nefIRi4nSAvSGGLV6AHqSqF6AxjqAEwtewGADqBJAYgCMASII1rFwFDPq88/0taD59h1ERO4ET9Bw57
evgvlD9C/frm74lqHt+78Ve0Hu55ouwbx58S+UxwD+8dwn6u94AXpVjEeuoCsD01wdoGJ8Be6H4F87uhBp4Ccol31HdZbZL21f1u+vwKtYPx9wLK0+zbxosr28Jzm4R+lN/kL9eVLtgujPBFeRTEeifnYavfun0++ShbWPE4GeqfoQHcUOADbf0BMAFuhqgjAVoFaBXgSkDZ+KgCu6A+X90aYVkjgJs52+PL4B52eGll65G4Dn+UtImJX0lbcerv
jx9l+oW5B+ueHvpX5w/nv1X9e/1fgEvOyUvnV7S+xVQcs+BMrrpQ36tcVZb1cSDmd5gmqW+d8Q9JShhWh+ZV8S5XeFVwNkJKD1sW8qeMFoOf8TsF/f+P9FP/rYv/vliP9+WunnQYzPl4Qz4feCesXgHdc/gwCqiKgeqWYBJ7GAFZK6MGcAEIUJ5F/Mx4ieCiA3XfuaHFcZiC/J65wfPz40NQL7M3Jv5EXfs4kXOLbZ3eX653ZWbRfYG6xfe579/E
05vfU4Ae5bV4mZHIaCeE+ZfTe0pSBEbBzISJwL/Yr7WvZf5lfVf4zQSr6lXLf5cfaF5Ctbh5W3cb4ozZ2o4VHBY4yLrY83GOjafSiYk/CbZk/QXhnrMQEOMVqblAIIAEIOoAn7YqybgaYARgUjDFQDBCMvNYDHGW6orPEv5cIDdrQbfzbK7AX4I8GD7C/OAHgPWbKN/PmyRnZAHp3Fv7GdGX4jxW76d/BX5A3cc7K/UG6xXNX7xXafrAFUgHZDQ9
Lg7D4BFYBbRFDcvgNgBjYWxBj5+7C37MfVf6/CB5IcA2H4SXVd7+VW84Maf9IX3YMIK3BnZ9XcKownAoHz7eTYifBjQ7kM/67rQBb+vNKaCHfTT1AuF5rvF86+uBM7yAn1CarO/pdAphoSHWMKSAob7SA/T6x7LM7CAqiobAZQDMAGqDdAOjC9gHJiIreqD6PfQALgTAAQrNlYXXes6M1C4A8vMwFK7FkImLTC44MA761/M0BHuA9zCJAjzHcSX6
XfNwFNvS55eArAFPbOA4xfJ774AgIED/IIEpjDb6fffEx3pWgEnxL560baj7XAEbCogb4A18M36g/ZIEZPP7qvWMgQb/MS6ZA7f7L7YeQXA/DwXAiQEkvKQHpnRa72qDEF0ea4GKAoqDdAAXJbsCrgckRoBs/YgD0AAWS8yIQCsJIwFmHDpyHjLFalqbCCYXRsCQgFEqktEXQ9fKwrDpXs6nPVAHnPdAHofTAGYfPw7YfAI4xXII7IHQf5CQNWrM
IdpA69cByXzF7qDzEhQ/Ae7IpPV6am9Du4pAsLy3RKd6cbDIHVfKF75PYtgF7d14qNT+p83JTZP9Ab46fYYF4g9o5O/ChpcdF/6TyXiBCQegC9ACgAdQEdyNAIQCEAegBUEKgis/VnC6zLYE/3dYBNRMt64BbqDbABKzcg3hAliQ4CYDJAGkCUa4d9KX6t/ML4eAuX7ePZ4GwHdgJ4AlX6fAwgGKg0hBMXKZCpUZ6znJBbQagq8p3QHCD5DQr56g
gE6wg8H5IlY/J6wdgHI7BrYwvIkpZNbIGeLTh4P9U/4XrXvagzUa4qfdBb4vZoGPLW0FFUDNwVFNS61Ag5zB/EW6IvHzgKXIM4fnLDqqDQ/5I/NZyBZM8FI1QzYdPZtwM5Ba7ug6fbwZJH5UVWkC/SYgCGgXAAVAR0yYWWXjFQTcCMEHqD6AUtIffWMGrPdYBl/TFb+seWQr+LkG5wdMHhOc4qt9VbpkBYVK3As56ofLU6PAyL4oPbv5+PXv4fA+
UH4fW3akMSECZ+LYCEQVOSG/Gf6SYHBSZia6yMA2d7MAy35w7OurZPJEH1bMq53nMhqP9LcHNwF3rT3Q/7ArdoGCjN87R7JPbCA/Doz3MBoBcU1bDFCRqRvSQ4XvGN7zXON4P/OSFU4dXxU/YgDEANYx0YbJg1QSECEALnARgboC0gEsJGAApJydQ0SJg6CH/aVMFwQ3kGZggRKXbPmx1vYUEXfdCHS/B4GKLAZYKvHwGPfPwGBHWgY7zN75VwIE
pfAUwSFbHcIggl7quRA4AsIHeqWvBiFL/d6bMQtBzH5SbK2/Ym5QnN2Zzg3iE2gx35RTVcGKrfRobgupz55QSHzgtg67grNjFQuQZcHWGap7JiCo/dRg03RKD5Q1YZPnJoFFUNqFCQyW6s7QYE4g10FSPFJI03PqGzbKn69AYQA84ZoDogXoAbAa6jS8BoD7AUEAhA5z7cLfUTpgiAHR3OpB64ObpH5KQjHyMdbDCI56ivJwFoQ0UEYQi54+Q/bp
RfLD5vAwKFyg4KEZbHt5mlA4DCBAECpoYfRT/U6HjrAsbMcWQiraNu69NQ0Fwgq+LH5DEA93Kr4W1bKG1fY1bcPVsYRRL158NVBZ17VT5BZZBY8Q2T4fRKRrBvIQ4Z7OqEFQ9GEMTJfzYnf37NPUT5IzCmHbvL2bk7fby23L0IJncoEgpUGZ0wnGGM3aKrhvfCaB/VTSKfDr6Z6PmFtPJo6DfGQ4jAmP6P/eiaVVKiqnALyCbgOAAdQQYBODSQDj
PQYAOmLyA9QOoDd6IwAzHUCHGAssjgfAB5Jg8UpjZKUqTZC17DCSB6kCdT55gu4Gi9cUFYQ3yF3Q6UEPQ/CGVgwiGBAiG4kQ9LB1gw9K6wd4CROUd57xGKGtg94TlIZjhCEYd5dgoF7pPXsG3JHUIMIekwh7Dj65PLgFWgj+YovXfabvEP4JuE25VAjCYIzSe7hxGHqZzD356rWeClwgfYIvDCIe9LH4KfHDqs3XKGFQpiANwhSGDQ4n7DQvS74J
Qz4twhR7jFDgDbgfQCMECMDhIXABeQSqy4AIwCZ8CgB1AbADYAWfrQAAarIXHipZjA2EefDkE86Y4oZQo6FnbH0bDJC6EZ3NAGDnB2G3QnCGK/PCGygmgbbzF6GhQt4Z/AvWzKkHCCJQ6gEb9SEDqIF6QfHEH5JAmOGoFC3o6hdqxZQmr7w/aqFVwtOGkaUBHElHf4O1cPTiPW8E5laP43vX5Kj5Ez7oAOz4QXfACMEGs6L5ZCyMkHhxUgeaEzgT
ABftZkGbQmci8vJMHjMTeGHQ0/JZgkOaHPM74nPDyGXQryFofY+ExDLv5nw256uw/wHuwr4Gewyz4VhUIG2TIMDewJvD7pWJ52nSxYHqEvAr9X3bt3Ur5pQ40GlDXWAAIy0HjgqM6D7XIHOhKRrMwpS4gEDF44dWSFeSXd4R2MT4Og6owE/bEHtw0WFugkNZjfbH5UVTQDQCQYBsLfYCtQCoABgzcCtQFQ5VBSqAIARkiJXdaGmHfUS6xbaGq5CU
4SlTXJmwxCGOHcLYnvZwFBXVwF2wo+E3QthHeAnAG+ArhFBQq+HYPUKGcLMJ4EPNL67Yb2BahcRF/QkkYT4dexAgqOHm/b+FUmX+HXAV6wqIuH7cAkqGQZRuHow2SGCw7GFgVNGZ5w1E4E7Jm4+vNmGh/AjpGrGBHxhAmYArFJIGXTsYB/fERUVGcDYACkBk1SYqi5KiIqPGgjrbWLTGHQJFinBs6fUMhHQQi1omwrA5RIneEgjL0B+jfeGJI+eZ
Z3CUElgqUFtvGUHRXS+HpbHJGKg4yg+w3ejMIO8BLdQOFWpF+HEKOWhQgz+FyIpiFGgrsy7Ag4DpAocGcQxrZD3AM53EbOGXLJ859I5rYEdNFGklE5YlAlvY92Pj5XgqN43giZEu3KZH9tZODdXZBEQAZQ6lCRgg5qRkiSARl5ngGcC/IKACEAfYA9QH7bEI6WQ3gT4YCVCD5JgzMSwQnkEZg6JEjcXMHnbIFrXIqV73AlhEpI6A5pI+6G4A94Fu
w56HvI74GWfSRx3wp3g4KeSS6gv6H4mKQJCEDdQgTaEFfw0GGxwoGq7A7qBjrL06b/FEGpwtRH/YcBEn+Bg67rQkoVPGqGEVG/4PrFSHXvNSGjefH777Kn5sAe4ZsAMtKyFZkrk6IuKkAWkCkARkjEAZQBf3XWFmHdzKrww7aZaa1FCo+CF8gstbAHHME67NO4JI6VFJIu5GsI+VGlg/U4uwi+E3HD7YhHDV7T1XYDYuLVHPgWsAtolfqdKMXBgT
PwapyUsY1I81E/wmlrL1OQhNIrIGQI/RqlPYz4v+H2rdI3pzCHHjTpdS1AUog/guWMk4S3MHQYaO25ivddF2sTdH6sTRE9Q6Kb8w+1DRlX34BzYwLTNC8EdQ4EKqrK9HdwcHqwzY4gz3e2hzoo9HLOJtrh/ZM7RvWBFStOQ4pJde6qfFr4I4QZ6Z1YgBviboCzw7oCyw6giMERggEQKZ5EI5NGwSVy75rdkEZoq1ARI02HvZc5GivAUFSogeIlo0
zr3bB5GtvaMZKox6GvIrB6l3UKE7I/B6pffta1YdMEEjJ+HueKuDZXYbAEQQvgMA1J4lfcFFgwtyrL1NiAjo1EGuo6qjdDaq5oncTG23VoZlPY9afmHFEh2YJbUwmF6+vDE53nHuFwLTObuhTm6hVAQE4/bm6d7EM45ZNoH9QgEKlPHvYEoxSEiwyR6dw6R5MOYiZUVQAQd6SqBUEGfrVAKgiuAaoCmmHgAydYgC0ZEt61hQ5EcgtwYYY05FYYr0
YnfIkjkBWhF4Y2WaEDUtFyo3U4Ko52FkYzJFPQ7JFUYxUFhtQRERPasC/6c5Kdg/VHvCU2xPCUOI4MYGFkHftF1IwdFxFRBhCYh1Fjo+Hru9GdEKDJ846Ih7SYvdS6YvU9GY7JuFRY534RLaOLOrFtivow+CfnTFGQVUSFz3cZEkVUn6jA3sSvKHuFUVcri7AXoCL5Ax4GtDEAwAISDgDZwDMATcC/AxDHSycEGhIpMHZaeyHCohCHUWJwHyVaLH
uQzbqeQgsHuA5TLFgu74Vom57jqDt4EQ1VEZY9VG7ABDH5IujGRHcDzvAa0pWzQrEWRF+FewH/S/6fK6VYh2xCrBhBEKOrED3FpHHotKYjYvHrc3DHFj8LHEpdSM7tbZVbTY0l5iwhBEvkEjSAY3ZoUzciKMkXsB1AVoAIABYFUEGjAVAOjCGgXoDFQRkjwCVFzZbLlFIqcpAdcFDFQQjkHeSShGnFY6GN1Gt5rdIUGFokUEHwsUHJI43bYQ9hH+
Qnv7Vo4u61o9V7JjSz4inAHGj/ejHmLJ5A1bVyg7hflblEf4Dy4R8DjgXtEwg2pHw454QWQcF7mgmGGAI1HFSXevZogs5RFArbCKbcxFD7RS4PaPCbcQp84tQlvJPnFF6B4r0IR4g+7eon86JxVSH4g/gHj3e26urKioBaCgBUgEvpTtOADKAbACMEOoD1QOYGSAaoBVwPB4Lw4D7bAtoSOjfYG3XX0x7pfaEnFTpDUI0X5SZKRbnfe7FMIx7HeQ
xXGOw0+Eq48+EvImtFqvHRbjLXYDXdLVGXAYbDpXD4D/IrK4vw72CtkcIqgokGHyIiFE0mbUGbAZHHlXcBHJdZrElOJuHGIkp6QLV85XweW5NwpcHsw/fH7ogkqZzJLponMk4ivSzh23Tcwo6cgyWIyP6+o+BFqQuP5egqnF4hAdzObCgAzgDYBCAAhA+AEoTS8DYDpMCoCz1Q7F84twaQQsNjQQihGyYBvHbwnpKWwyRaIfKLay4m5FxYwjEYA4
jGwtZLEZItXGYPEu427YJ7XVXYA2jbLE6/SfHvAZjimg8HEWvJu6n4XOCtorjH6gyoYr4vjEsQkxbtkdiF93Wg5cQsqEHYPOZiHfvacKYQ4RrLCbIJL0K9QtrEbmRkS74vh6w9IbGQWf3HesHd6NQsUbMiSuDdQ5rb73ZFHjolcGaEoqgsiQJZE43EEjQoYriiZJaPvRBBq8OoApqGcAzgcjD6ATmRCAU4CbgCoCubNYCbgbza84rmaPCE7FIE2U
4HQsXFIbBwGxKVTx3YsIa2w25H4E+5GvYx5GkYkgkD49XFD4rtYj4+eHoHMgHV4I4JGhKj7mRch5fCc4DvcCiAWvWRHL43jEWo8GEAgXgab4kQmYdZYb9YyYax6PGGh4puGyQmbaUaTokjeXGFnvUcZWYu/6u3IYq9Eizh87Kn6dAIwAUACgCDAOAAzgUgDFQZQBHUVBAEISQCSATcAwAMgDc/DegIEjai2QlMFUoNMGOQ0VFmgZx6kCNyEy4xhF
y4q6H2whLHeHVImqLZ5GfYlVHpYiglXVEiHnXXXH5Ey6Z/6dMGfPbL6XTa1KNgF6R/AeiHcYpgGpQ1fHPWN6C9pQQnJwp14o48BESffok9In17e/YT6Ew/yqy3cQFkw33EyfY/4ZzaT4GE22honSwkx4nS5x4v1EJ4927/ozUaUoxkikYQjCvAVoBZrEsD7ALyC9AWkDVASqCaATcB8nVqBOfEAEufETwKKQLEZo0nyi4xvFxtMtYSLfQy4YuInV
rDvEyozCGPEkc4kYl4lVojIlkEjXHD4lla7AfRZao30pxFBArBOUolyqGBw4gKejW4s1E8Euon8YwXQwok/qcAlEmOoiIQtYswluBatoh45wLTXA248sfLryEqRrDI+ljXLZGF7vAjrY4iioJvNokB4sTEqEltjVtK/El5Q9Hl7O1hkkqBGdwSvYuovkxknep6V7B/EZwWSFjfDOB+k0THc3RQmU8d9EpdbRE1w1mFhvJTayQvMnknQMmZ6RyT9b
TsnX/T9FEombEk4/1H5SZ/6/40ghwAe+51AKkCD0WkA5xV8F1AdMH33IQDOAbn6MhGyEcgzoIhYibJhYjs7DYZCEaEA54xYueZ4E0MYEElIlaki47tvKgZ9/KsEJfX7HhHWgnudQiw7QPWDxQm05hbSHGJte9B2ksFEwk3gnpQ6vpyMREnepO36odOKSpVGqH9jNxqJ4/El+1SKq6Y7TSCPA/EqNcDSV7IEkIZb0lrwRni3o/7AInMzHCQ8ISRwg
nFVwzq5VXGcH4UzOGwUjH7eJcilgUoikDAuOJzXXS73gkNYNxIoF9Az8jBor9ZUgZfKEYXQ7vibAA9ATcCSAViLFQEwbc/JhBsgoXEZo2boyktAkdnfLTKndrw6dA8lyLa75Fgjv5K4pLFPInUlvE7hHfYz4mhHEiEikrX4FI/XGoAZ6AAeVNDGJdzwjYKQKto+8CQFU1Hfkk2K/k40G2lJ5BNE+FFgNcVEVtHEnH8WGoHvc5YDeRHK+U3Caw9EM
lh44YYMyEKkAJV346bL3ExkjGFe48BrtktMlJU7mGqYg/4q3E9opUkCppTOZE5nBoFZU8/HX9c1hhknDR97asnbggAhKYtcHAaKT6D7eS4XYaKlbYYKnoUrdbhvYqlIVL3Gpk/kZ8/I/FWNL3GE/XslKQ79GTI39H9tainno3uFi8GFwprKADEAaYAbADgBKtFiJCAQjAsvA1r7AUvH1RJeGM1ZDFU5Q4nrwv5DnY7NFOQjs5jg3eG8AWIk3E9vF
3E5hHqk7vEnw5XHpIgKGpYijHkEutFa4s3zSuJpqjYNshT/Yokhw4wSvQX6QlIxyk1En8mOkliEFbTI5I7V0n2o90kNY3r74/MURYUqCnsjEJacKJe7e/SIRo0yaktsWSH44rbClkrtgVkxFFZZYkmFA93H5sBcEwnTGkWYtuHv4xinx4h8GJU6mnNyEkHoAMQyNAYgCMEdjLNVDqA9QFFYK8LYDTAKgiS5MSnM9dz7polkKZok6lnE/mq7krUg2
wh7Fqk66GPU1JFvY3CGcI0gmqvBUG/Y5Z73k5gbiIdEAHBSOHg4wOEUPHtJEmPVHVEirEOkgdF9ggiAg4jykjg0Q6QUokotbTmEo0pKraYj0nZUkBH+0qm5v42/5R/e/4J4gOmBozmkQAKTrouaYDKASqBdQWkCNAV4akAaYB0YQgBUEWZZydd/Z8ow2FhEsSqRIrcl2AvFQSoiX7Kkm7by4+LEa08tHPE88mvEy8lfYj4mfUk6YNopNG/EsIEXb
I7Q3hKynmRB0qxAp4SHAU35L4+2m1Ex2lxwuDFzIV2lW1W/GBZBKlNQhKmtkxemuqGa5Ukhik0kz/ER00NSGDKNYSAdl77AJwb1QKACEYIDatATcA8kPkikYXoCMETQA/E0UkbQ6WRTQU+RNxXaGtnFAlbwpvF+fFHLTSK4FBfCuluHe4kK4uV49456mKo9Ik6UrJFvIn7F8I3YABI2jF64yI5i4N4APgdc4FDS0mFiIGgYgSylfkiGnOUqGl/kp
piJw0S4cQt0lb4j0lhlMhbGEuMk+0lLor0nKkr7GgpR6FLrf0phnR44akjEsOljEzNIsMvfY70ta4SAegDLFVqD+NVBB5gIQAlBNnRVSfAAbARgjDuR5p/IG4zG5NcnHUk4kOQkVHn5Ls6SLFWmqkgjHHk5IlPAuumvAlLG60vD4ewgj5UEqG5G0i6avdbMTPOV8ksE6j6bAArasYW2lQ7NJ5w4tAo8g3zzT0tHaiE2m6gU6hmUU7TTXLOCku/O5
YPo5QmU0sJnXoqJkDYukRo0h2ho0rraIUr+bhJcClALHyn4owOg4Uwa6Togans0+KYyYlE6Z6fGk2reTEDQ+imXvD/Hh01mm9JX1btXSwLR0oQAUAeIB801qA9QLkoRgaoAOXNYA1QJui9gIwDxAPt6wEgixN1FpItRJaAAoLNEK09AlzZbs4KlZSnkrJ7ELlHU5PEs8lGM8BmN094lQM/Sn1oqgmF/YymA4mG7LuGsDXgG0oLaY16agzSwliC4C
Qkrgl2LWHZ/kn5GDg+GkWg5pHgImoFJkkk6H/fp7yPd5LEQbrHOWEEItk7ykdHPHHxlGqkdky1CroldF4/JPEZwSvYiMCuHBMsm4BMqalU0lfyEFVomhMpnas5LFkTgtqkdoHcx40nxIKaJKqksqPQh0n1HM02km1Mill77aOkIAKkB5hLQBwUDYDcTU/ZQARkjFBXYBQACgB3k3ZG7UrfI7wcZnivSZmP4DcnSlc4kSSS6kWvRZkhXB4k10xLFa
0jhEfYrZm6U5uma41ulUErV4d0oREyub4A2ROuDRAyBxkfSKFg4u2nuMh2lVYvsGtoz05JwoCmwwoBFosyhn0MlMKMMmdAqfabylQz36CQnqkfJERoVQz1F6IpBKqrOFmxVSFnpwJqFLo5yxpM+MnH+C4iL0xNlCw50FDA6xE2EzNLfIKWFU/QgDC7IwAnAcoQLtRkiVQAARYIY4AzgXYAEICWQuDHcmis9dGHFXoTy09RnwfCVHpaStb/0ht73U
9WnAMp6maUtImvUkxmBPOgbmMkiHDMvVk5YjsDaWHgaUfSIpA0qQiiSVyLlYq1lj0m1lxwj4BMWW1HIgt5mjoj3ExUoDLYdL3HovA9kFMrZw47Z5wwbczTifYCo9GKqFu/Q/5aNO9nBsgKQJMuBK+sp9mDYuimZlZSE0szems00FleBaOmoIfABgbIey9AZxEUAe0zTwwYA8eGuKSASZZBEmsIKMg4BKMtDFv0ntIf0uUl+fNvoEqLAnXbABldsx
Vk9szWmGM8sHKojVk7MlundrEiFEfKxm3dE4H3gFvAz4iHG5fOiFH5K3Gw461l24qBzO6Hxn2/Tg7xUxfYFMinGB1GimRkkkSymD9HtPEanEovT7iw1JLoxPhlX3CQCkAOoC9ARkheQIvEorVoC7AIDl1ANhbOAc/a9AQ2mCskD78YToKrkzLTgFaZnNsvz5i/G7EBfeVmZ3JIllo5VkkcjwrkYwfH60mBnJfB3YIM45kKWeXDJggoaXMoGkMIIs
TvcRIFOUlAqrsy1GNgXOBeVYhlCEzj6I03dltkwOlI0uHKH/JKoO9JKoXU1QlfM0eBgLDKnH+JqHCc9LokU1ensMl0HpsmzH5lVPZlc4y6TyY8CwuVqBKtKAQIASFT6AGcDeoSqAviIwCWMkzkV4xpgSk6vGQApaDV9QumYYuiHbHaIn6GVO5t4+Imq03RmUrTwEaUlVl94nWm6kvWlEQygkkQkCHjsnX66wSenmkz44b9ODGZtZI7g00emQ08em
xcm6aITaGFn1d5kekiYk8KHolE0/z5ic9rFY/f1ljAucFlUzuBA6H3GCZFtjqYi5bgJF/GVuSHmbEKlmx4u8Es0kNZduaOmYAIwBsAYqCtAU4CjHACSEAAhBoBBARCADqCbgDYBYjQblxgrEDPASUkshZ2nWcy7ECJN672c2q7xInAnFoxIl6MlzlrMoglaU4xlbc0xm8IkdmWfTX55EzulXGf9yByZJ7g4mIEb1C2LHqYWaWsnjE3cmLngw58CP
gBLnsfR1ku48BEU4uNk4s9okIw0ilWEjuFMU2ibu3CYFU/OoCt6IQzHAWspLPf95CAQ0BEYOjDMAfYCoIHnEjM8U58LSnnNWCjY08nNF+fenkn2a6kLclUl3UzvGyopVkc83Db9s1XE88odkhQxUHD/Xzl/ErZ7SBHFTRQyBzySJ5CjVDjkrsrjlPAD4BEMtXko7J1mu4gNno4hsm9YhcF39TpFETfrY4ddEm9OBqHNUomnENYObhvW9knghql40
iT7Zc7oaw86knw82lkhrdKlDiINEOE8oCEYQjDMAdn7HNQ0DZxJZGDAGABUge3ldMq8CQbXn4eDSzkGGJtm08vz7WwiVGJ9R35M824m4EqEaePF7EGM9ZmkcjzmZErzn883YAkAg7kPkz4B64XEBsXBu6W0r4TmZPXDPVHBnXcvBm3c8GGA8L6abskhkI0shkZctml9UiAWKmSZzhvZKnxs8GySQZFkVArKnZcy1Cm3C9F5U+/HVtDUZ5Mlg7msI
kpdXcbGl8wfZk051i5U9JmPmMo6MkhnhZwygUiPCUb9bPflZTco4G8mrlG86R7MCz3H9DF8FzIRWGcEVoA9QOjL6AZQBHAfQCeI2kDVSfcb7baWnoXBSz14jDni421oKklpa4c0A4s8o8krc8/lrctzktrN6mecnblfEyz5rQ+BlJ8vBAWQTMTMY8yKsYl+EMcLBmNmbPkK83PntWYPaJcpEnLverGpc/9mZct1nJkxoopM1pET3F1ntQgrkf+Rv
JNYqhl+Cw/6VU8mmzjGgUtGONlfcsxhtQ17kINVTTNfXMkTXePSwZNgXWYjgX5lZa7R0g4DZLKgj0ABgiZ1YqAL8ikJQAHKw+QY0lu8hs6rHCzmy01aCSss5HCvJWk2PK5EdskL6h8h6lEc2umX89zn6Cm/mGCgymWfA7GP842mV1EvAto+xmzszi7SqQ2DPQQsaRc3BnRc3PkqIKGFO4p7k7skTFvaL3GAs/j6RM3wV7syTZz3EGYnsrEkz3DAU
EiDrHqE5uHEChk4o0gOlJCr+ZyEthlScjhnVMrhmiiPLn1URTmKPdAD/ifAB2mBADdARggwuAhBs4yoWnAYoTiGTlENCxmpUoCSmIE0tTk8n3lnUkunLuTRmDBP+k3Uxbk6M1nlaC9SkgMvtnak7nkQMtLEUcrVlUczQDlIaVwPgTMQiSdG7Ak6f65fckbtCM4Cy8txny8//mK8/jHiZU5TLrR7mjNZ7kQCv2kQCpenZCyKpvCgWFCA+M4Kiz4XC
w6rl5ChHkuNOQHZssfkSAQjBsATNS85RVpbE+qC8ORhL0ACoBMgdP4lvYuoHE0HDyyQECTc0LHTchx5SZNQWuPDQWn89v5LzVzlDCvQWDsrt7Vg9VGjgC05EmSEDvMKiG5fa4BOURjg8izG58ijYWeMgHZVIkUU7CsUV7C/04TYpFGnCvFCJCnmEow/YWyscW79bGAULo1Fkymatq5k4sm4VCplfs0akko8anR1cnGU/bUXoADYCtAfQBTQ5hZUg
boAp/SmySAWQq9Acs4c/Et4e80bk7QhRAH5d+lUIzDnYi/3nhmcukEi4Pkn8mV5qUr0UR83w5c8zZlxjSBmUY3Zla4hhA/UyIE6QJMUmJQvwIFDEC8XK7nLspwUJi1jm8ckCkEOCgUICl9IkwxMplwh1YFcrXmpZSPFonSTkqitNlqiwfnG8kjTx/eR5UVPQiYALFxrAXsCpqUojU1QYDuKXKIIAQjBMgpEVtCUrQ2i5ijoi42Ea5KbnmwhTyS4s
gL7knoX5gtWmEciL5ki9bkvU6PlUi96n6k7IksrP4CahbqC4MfX4LaD/k9KTMj3gSiGXiuMXG1OOGb2Zjh3ilkYBpNKk6Ettr5MqAWwaZqmpdZHJdky1Dt8gEI4ChSV5iu1gSQ+GFpTO26iAtSUswgplknLrabo5FKKiw9mL04skA8immD7GIXxSUfYps4Ymqi0YmkozNJ3vC+5UVSQCkYQRyDAMLSwBaoBQAEFSbgRoCVQY/YcAZb4lvUnwYSkl
zaolRmV1NRk787EV4tRwGuiyV74Y4kVn80kW9syiVgMgdkx8/0U3kvhEAgYQKUQJ8BiIncL90qIzjgb4BzLX/lXi/kW58lBkF80UVA9TwX5ikgWI/Wmnq3TSX/pFvmY/YyUvs4JYBC9ODN81qVtbNLk68/GGHssSWic3MXZMvvZPCxFKFii4UkiIgXzS6oFFcgqkRnFaXCPfr62S/8X2S+sVl6V8hai70HsOBoS9ACoC2XeiL043a6MkfAD6AAhC
MEBamNASYX30oJHSySMWhEjkGrQGSmf07EUivQ57XEoPmV0wBnV0gYXeiznlR8/vE0SgwVmM4iH0inWFTC6xkbhVTpMEjtHLLL4T0fKyhewRwXVShMUAwkq6wo0hnNE0nYaI4uFUw4mVDI0mVt8sgWZM9GEMk8zFybQfY0yvClb8TS6B9L3qTSxRow4QvaCNIYl4Lb4U/smpm2I15RTE5sXIEVzY7yZpDEAQpjTASqCtAfACtAQ0DgqSey1ghDk8
VUoZpouQWXybfm+82KX1/X+lIAxzmHwoGXkStKW6Cl7bqs7cUfU2kXjLP1BKxPG5TKGNruedBn0bVZbf6IElJQqEmMQ68W/wugE2CuGliDOFFu01vk0M0imRpLLl407wVH/egW8wxr540hM5qS3IU7S8l7TsWM6m84WUCTcQxeQNqB+oGuITudPEsZOjC/IO+ll44v5mHEBxvSyzlHFScWRE/FbhbBZnEShImaClKWrizUmgyikWbil9xXknhEBi
3KV1NcfETgT4A4MJ0VkPdprt8eVSuyuXnQkrGVey0bDKIwClF8jXnkMnDqwzLPZ9ShHrBLOSVu4w8HLSjeXxCzaU8yuyWcMhyV7S15TDk3enoAfAALA1BBQAE64XDKkB2fCoCk2MnpUgHqAlcbn4s2MKWq5W0oKCqcVKCrQwCg0gTaMkPmkSoBlGy4jk+i02Vbi6kU7iyjlWygpBfIwiw4gLCC/6ajbsSjBlXAEFgljTGXxir2W8cXGWvM53GqIi
AVrKArk74yIWPg+r43oUQEryolk4C/rZlk1IVLNKrnbSg+W7S0b7k4+zFU/DYCq8eIB06D8FQANgAHAETrxADqCrArmQxg0nlgQlzyoiw6nlyqv5PgaKVayo75aGFQWG5OJH6yqunOcjUmzBPO4ZS6iVmyyBUWyg0n/FRexwKqohy0fnFVmSBwQk0EomokelVSrBWDo56BNMISUk3N9KNk8IXlQs9EaEzeXJC/9L181eVIzfrbgabAVVk8vmSS2P
7SYmE5Vi/PYsCneWopbeXmY+OXMKxOXUeY+XHDKn4fgnqDVAZgjvgRnTEANYBZLZwC4APyWtQIpLc/ZiDvy3AJT0B0WbkweUzi64GiRepVtLFAGAK5bmNy1ZnNyyPmtyzKUQy0YVQy3bn0i2+G0c3V7+ecvBLdKf7BwxYVZjOgFuTTBV8Sy1HPQMrHOKnKEh2QkEToLEGfs3Gbfsjen8y/BL0eNJLrKxrnsOVoB9M+qClEOACEAGABcs+CgPUGqC
lRIx4wE8RV6wjmzbfBFK+mdCTVKqVniLa7En2WuULigGUEc4BWrciiUmyy456K2iVZE+457lHgACIuGWYHFfxCEFXnIKyBxcSzPk+7XkUTy+xVIlCDxg4kAVJclOEpcpqV1OXCkmYk5SViqhUp0YlV4dNAyLSwllyNGhVN8omn0K/DJfC/eU/Cw+XPkR9GdjJlXR04qDVACC5WAZQCvAC5qbgBAAZ1XYD0AWkDAqVoC6sp6V7I5EU8zKx7uXdWRN
RT6XTixRUjcCLakCaXH/S/Dl9C7tkgKwYUty+unaUsFWQyvnnQyngB5I0wXC8g8KogDyrzCyBz1gHogbLHiUYquZVXxX4RmCVXn1SsPbCY9MX7rL2Z+K9+K07X0JjY5qnehTcEfikKR+MrbDkq1wStY90LLyymVNU/fFt7RJVsqlhUJQenakzdoFUVVvS4ANYC1RU/blSOoDcTW4aMZeID5Lb2HKy5EW1gQJTtpBRDlqTWVYi9VUXE7MHCJABVLi
1SnPY1KWgKo1UbM7pWmq3pXmq/pU8AT5Hj4oAVvZGh5fPSXnfSarZXAI/JLs3iWCDOHb849yZLKuGF0y9LmpcnLl989ekD839khrbGqj8w6UZWKy6Ggdl7xAGqCWq2kAKw/ACnAfxHFQSeyn7fcY86F5VHtcbkqqyuWykn+V9BCLF7WBKXN/d0XLintVNyrRXYAnRXgyodV6kiFWvQ6eo8ATVFDKtL6CrZjgbHexklSuVTnAI9QuuO5ndg23FoFf
nEm8XFXuC4CnCSu4VILZqkJnMyVRCoN4Pon8VBstvkJUomlYvSuH+/INXWgiIVZi4Q6WSkwkn44RrSfbr5tjWlWnvTTb9bYQ5pqtelVMvmW/C6dgFTe5ZUVCMAASfQDsZUeH7AXxERgU4CEYHgBGAJ5CNADqBjs2VVCsuXCykZ+kNqp3hNq1RkXYhRUizLQwYE8MyAa5pVdqtv4ri9pXgal4FX8kYUwa2/kWqrLGwq4ZUbHVjCxHdi7WpD8mhGWZ
UrqtByuRDMgbq51l6YrLk23H5kxs1TT/Cqp5KaGp4pdVp4FcrdGUaX5moGdNXSa9lW9PLM4rXKirdATcA1QdOr6AaoDHK8ASyyzABeQVoBCAHqCtAWkCwywzWmco+T7UopkfypqJtC4umtq4gThbHJmfXIDVJShuWei1zWP2ftUeav0XxfIJ5GCngD/Y61X6s7kXYmBsBMcl1FlI86wFfE35Ji8eUeyyeU0tRdlnAGLUl8kHq/c3r7Nk8QmQUh8y
tA/HLYvcyVPiviGTYrJlo/QxHyQ6sWbK2sWyc0nHkozSHCy2kCLtEtLvAeqDVADJa7AcJqoIegAFnCdwPK9rVDc/xQxNWQWbPPXCyK04k2c2KX/q4gQ9nP5W6qoBWGyoFXGysBWgqiBXgq7zWjqnXHLaidnKYGI7Pk9tEsY03GN4Oao4gTyboqg7WYq25KuRW9SO4vGVgCgmWGBYVrR7Rq4FlBQG4vCQnsauq69YjOFY/TqWuK3rGdU4zHborbDp
zNPJzglXUM0yplbKg9U7KomaVzPrG6YqirHADqDOAUgAEIVBBjuCeHprOoD7AQs4RgFnTpMfzG8/brWVKizVRSqzUtqmzUaqrHWSouuVLc5KUTa4c5uassHDC2bUvfLuX88mXhAlTMSMcR7rgOR2V3QaiAAgY3G2K5dXUjSLV3gX4A86vBW7Cv1UIo8gUQCr2n8ahqmCc9GFNfRr57qqTXbKmTWC8SuYnqkcm/8OoBEACMDHK+gChtDqDEAfQB0Y
CMAVAboBsAV4BeQTX47UjrX+KDFaKqiv7qyBXB9a2pUDatMje61CG+6okXjalzWB6qbWdK41WUi6DXbcvpULamgl+a5DXyqARAFYk8Uz/ISD8IPXAFY/bUpQw7VYq9SifAU7XOowELByhaU6YoJknKOhXaSkkQvovGlf6/XmSarXVwInXX5lAqZsUqrLCyueG0gKkCkYMHVwBGeQFBOeGoIUjDOAeYF2eGtVtCJAbI6wB6m0j5XtC+AG4ilCEOal
wHAa7tUrMlfXFNbRXEEwdWk6s1Xh6i1WFyoXn6souCSVKgEsYlsGLCziBHueZZrCv/kc6oGqvZZYX36l7kj3DGYvCwgWQzKcEFMlTGrS0zGPiuUW9OUpkRyp7W9U53XTo2JlHg6Bqcy4iA9E5r4ovT5mqGh7TJsqNU5izob5aqvWFazIRpJFPFU/aDn06fuiGgSQBCTCgDe3DgAK0FjykAYCRlKneDNCr3mGwL+VVyrDkES074FonVWdsvVVkSwn
V9qtfUDq3RVUG4dU0G0dUZDQ5l+c2QQ7RZXkuqhu7x67BiQ/c5J/fapE24jxkW9UcBMbAQ1Si1fbtI5Q1IwtmVhTOKZZk1on+/BKllk8aGMTYBFsalOYEdGo0Mnf35xqoqEFMnjVxk/36BKlMkeouAXtGkTVCckY0Ai7m7jG5uTVtSkmMKoaHsC9UXSPB/G8VE+X8M9ADKAdkkIAV4BE8i5X7AcJCC06YBrAdP4cAUohGtb4D1qkHlvK7iLNq6Vm
dnWbkvyebkMI26lOawsGgaybVkGiDUUG6I3typuk0iwxUq9HgAk8qnV0Ejqw4gKf4ZGiojlIPWC/AGMWL/N6bX6znWyuAQm+y1+b4yzyl83H2mwCzE3e0+Fll6ycEn/JuHdFP/Xfa2bFycl8W3iOvWnyo8ibgdb6jaZNbOADzYaAxkhQAUjCMkKnr85M41O66x4KIc3hT6vCW2tHWXi6TtVEG5zVvG0g1etdcVgyzbk9KrzVjCvZmkMHgBDTJDWm
U2VyvBWvxMciE1i4HCgYFMeVs6q/U8Gj1UHAX2DFG1LnCHIkptQpKqJsihXl66cixyivX/6n9HJKqnDJy6OlMVCoAbALhAwAHqCcK6b7FsoQAzgDqC9gWrg9y1CWrAV0Z9SetmfqyKVyK93W3GyOnj3FarCmsbUei5fXhXYnUXkmI2ym7fXjChdqMix6CyEXulSqELlsG7lY+5Vxmxit1URasLyjgavgvMv2VomgOUiSvFmjlf1UWSd1HTkHhnOo
/CowUqUXB0tLVz0+00kmgckR0toqUmtY3QAPKJwARoAxaMTp0YZdrMk1rnHAIwCkYeeRydNWUo60Sqqq39WIgToUXbX5XBG3oX46jRXh8jpWSmrpXfGrwq4fWPnXwwf7QBTPwQk58msi8HGamnUHD6AF4p6ys1p66s30fTtGzy4cEz0oBI+CxQ2A8pQ20yymHvs5LJnsiC2L8aPbhytdFNG1uGa6oc02I2ibeC+C2kww5UZWOjCVQQbpzPbsUUAY
uKDAKoTVAas6VspbVFy0AFHY3Oml1fOnoiheg3G1mKHOcwEXIuJQK3I/nPGkU2vGkg1pm6bUh6rKVza4dkWqs6bKmyI4TgT6GxFDbUoy76RrqrcJZjcLVfmrsxWULYB1SlMUNSglWtmmjWTTU01Ki0hUhC89nMWyXXlM7TQ0qoy1oGLvYzSyhoTojq72cPrZLSsxj1WOvK3XMpnO6jVC2W17XqMbqBWWxpkbKlM4OmsalOm8zTTbGNnSw0AZ/rUA
Ys6NYxNVIAmNQDgCOmYAEUWsUkvS6i3VLFHXnGhi2zMti0N/amnsWwkUtK/3Wpmlt68W30X8WsPU5SiPViK4E0PkosQGJCKGvkzU1WlYapZfN2X3MsVYuUxS3Hak02Eq/cH5c3S0GsLS2GWly3TkSUXfqOy2U8LgUDWvAWNPaaVTY4k0yc0k2k4oz71M4K1U/aqKsotYDOAYAb+mw0A8ADrlsAKACMEAhA9QUgCbAx5VmHPNbQzN5Wu6mM2nUuM0
IA0gRES3HUhGo81s8zRWr6s83r6tuWXmjuV6U6BUMSg+YiW45m5DD5gr1U7kRilWJoKuS2uq9nXuqtyphchhDbC3nXbs3PVeU69ltmp/Xfcw9kovZJkK6gNX6Wg4E1GNGkNMrBrJq+bFfi9G1mMellOrXFFyY2JXpZUC14Ukw3a66vUhqV5TsK4WXTARkgwAfGqaaxoBO81NaMEMICvAOcB1AfmSPNJqJ1sp+Tjc2sLpW3A2ZWufT/CnK2Lizi3L
Mm9o8WyI0zakq0EAsq0Wq+oV76lU2IKj56kPL57XASxWGzLcK6mis3Q2qs3tWzMRPm4jXq8ghWpcjdzwvEaWBuSkSXgyrxwWrQ3JMrQ0+/Y95iG5LyeCMgz7s5H7+C2C3T+Em1xnQNlQW7dUxBQm3hyhCK028C2x2rwLx23wJ3aqe6fa3y3IWjNkduLIRNi09XkRX96AmqgiDAfQDO8ujD6AGggm6zQCzfbWGBE0M1HQP5D6FIbKVKnw1bm7DHHt
R40wPY/nK2rvHAytcXnHKI1QazM1b6kdULa+DkA2h4SKCW1Jg0vA7FmzgbcvGraMceS32LVdXHyHI3JixG34K8UWpc2UwXasBGl7d0LDazQ18AiDS0MySA42knyWoNAUAEIk1zGqxEASw9UuNOzFjmpTnXVbC10YU4CSCkZ49QOAAtMmkJrAX+BRaOBkJWh+mtcWRz7FHspS28ImoEr6Uz6yUbesli1tshYaK2/5WhGwFXaC4FXpmhumj23nlxGh
bUnWyq3TCp4DQmxeoA0hYUTrW9RnJRBhoqy236mmG3r2rYAUQTq0aW11kp2jRi18j1kRkyo32W4nJHsvQmzwFskO9CxrCa7cix2SNmyjZs2w5ILK5kkcoyO09mCA7h1COwc1zW4c21M+R2+JRR3TUyeT5WDm0VCO6jnAHjzMAOoA84DYA37FeSPNe8DNRMVnqyW9SYi240K2x3it4p425Wl40q2hWaSgnB0mqvB3XmtVG5S3tZT21MgUbHjj+eVj
isGidahi/xzra1e2PM6s1YXIPIom7I4NmgC0QLbFmv6rW6R2DE3wsjuQP2pmmmGzNVQQFLVNdQu1fKNeRzPSQA8ASqCnAGDGSALyD1BFjDNQRkioICq1gO56XsJbLRQOnsRvK4tR8m243J3RaYEGotHJmkDXcWwq3q2vi0ymse0EOnM0oSvW2IM+sCIMP1C/QzpQL24obmZOZBHuSqWp6te2Rav1C1+Vh156zMUcO8PGo2lm4WWz0lEs4O0w8glj
DW4bFehGSEPO1mXGG2a39klC1EzLtyAi8YqnAOjCEhNgCfAEx30ANnAIAVub0ASqDd0OAAHlVA0iqZ4BdOxPRvKjpgd25vH7886EL6vK1L6sU1q2963D26U2b6/B3a20dWu8+Z3HM0vC0fI3oFDTbVN3EvCUQMsixO2157OnumHOvjaBZKY2dmlFFiOguTQWtlDQ8/Ngz7ZS7/M4BIZMulUFcoficqwnGvO4nHvOzZoV0ErVU/SqDhaQYAXK/AAX
DHqCGgfayeWXoA8AeamPNO9Q2OyM3qyDeh9O6fRzMk+zzig80kS1pUB6rF1D2jW1TO/F3zanM2Ii4l2yCJ8mvHbEwmsufF9KLEAYyqG0MO6200mK4KReP83+y1J2Eyjh1HCuJV740y2r3L3HICrW50C4C2BM2Kq3C714cO7lXiGsJVoU7xVrgqPbhqh3pRKlVY/Mj/UJkgc2ozLl332llVMKjNUBW5GlJ4t+1Ai8aSoIdYyjPDl7CGfYC4ADplU9
BAAEILKzkWofUI60XTNJRqz6unk1xAJF1yU3c0+6x62Hmy10FWjD7eOjfW+O7KUOu+U30i+3ZV3Kq0zQd7gYOXXrZXJ4CHqSf50ulf7xO0J1MuhjXYmx9kcOit1/i+Y1P2wA31dXkz1u8Yq1RfADAoXzF1lI3URgXsCVQaYAwADqrrgUB39un+7fCRXJEuFXKVK57xGu/FZnO964IAtRWAy480D20802uyZ14uvx3QMiPVoHEf5J80loFYJq0dot
Z3l8Wj7D6KKEfmq20KWgN0jYHlFnu6qH9W/xn8cno2B9M52/JCJXq3GQmRuo96jWzPQSjO27jWsMK0M5j1VzF/yCe7H6qaacwXs8OIl68o3Psgrl8eoLKjgwT1xzN9l0e2R173cVApu6JkXoSR3cNcVANPRm0AG5m1n3Az6yu4WUUAAhDQ6gErYW9lF0YCoAVAegD3NWkCDTLOk6u841wuscVO8V9jju2KV2cn5VsW+D0AqgnVYOonVFW8BU/G7Z
lQKy2UMSgVnEO6xnyqe9iedJFUb9K046wc2bbOz827O+J0XWF0n1mvnXom4BEo0hrkSSpB1dW5eAUMo50j+aR2o5JKoL0lLo1e5UWps290Jykb6C8VPYHS+vUSABFzvgaYBUgVpl0YeIBsAUjBp/RoDDwp9W+Ylz39ZeRyDZcD12inw1Qe2zkNK/EXmu+uUpmzF3jO7F22utD3LuwS2jqoyn0G6nWkfLqz58JjkoKxyiBOUvDJ6or7uyv10Ue56y
MceLk0ewqkqexenyGxelMW/G3sO2Q1uxQT2L0q1y1eow1SGjXU1itR1Su/toWMNr1UmlP51APYx0YfPGBAI0mHGtqocALyDkgJ13w6n+6uRbsrdO8bmaMOb2xS7DmRY+hE92ji0jO4g2q2tb0oe4q12u9D27i7VkKmlA1BO+jhsQL1V6ojtEROgsYqxYpFG23I32knPkEa4Lona4N0pO3xkZu4r1mrArnwVBTSrozR2S+lLo+sON3icnh3Fczr6k
nIY0vC3o1fJZ50A+39SHmC50parbB1w5R1qXbJ0RsxFm4/Hy1fo4H252+Pq8mexGJ/OAAEISqD1QDqARgOjB6QvJj5IOyCRaVkjGctH2rPT6GY++F3Y+neC4+hB2U2/fn40tB1462d2re+d0heknVhe8jkRe/41Qqn32JGpPnL1M5krOlg2msssgNImRF6m+E0Gm2G1fAAxIPe116Xogrl6+6vmG+zj3uW5cHhBLLX8OsHlMy0k4syoO2By+FkRu
uZrQZaci6GyOWkqwzHH+MP0U3afit5IamVuxr1JK5r1U4Yf208TC3kRegAqPQb2tVHOqvASqAVAWkDKAU4AcAAQxc4YS2nW/Xh+oId0XWz9V/DHCWOi/k1iIE+3KnM12uOpW0k+0U1jO2P0TOyn2begS1x8wMXt0mL2YHA9S3lEFFfPDDWg7ZXlMIYH6Xelq1MfNq0Buv4QC+pJ3gnJG2NSth0bYcBFye803uzY+1oB+r1bSyf3Vu6f1HDdmng+8
c3YAXoDxAbACzyQYD0AXsD5MBoJAbKgg9QTnCtASnVtOuVUtpT6huenrXB+k5E1Ky/1io0SJJm2LErep/1eOuP0ZmhP3myuiWQqs0o8AUB17enX7IcuIE/fJjmABxyjIMc4DQOXDXRw/I1HaifDm0+21zyx20le4aW4mrE1GB3v3Ooq03m+vsmSuq31ABJBHz+r5SADYgDFhHJhNu+gA1QblmvAXsAn7FHmZrR5pPgAlyTe3fKGFA10qdb9WyU7E
Wgufq3Htfc13+9B3PWkkVgat60U+0L1fW341J++iVGKgbnf+4ZU2A64BBmBu6UO4oYs6n5G7RI90sA6s0PIMbCC+3L2Nmt1aZuhQ2fepYjfev70VGpX3VUO50fe3h1rgrRwSejoOtB9ODUHFoNa+m2pAuAy29BoYMeWkYPve72aUayYNOW6YOnLfT2Om3AMXoWYP9zeYMJTKirTAYgCVQXsCMgZzbFQNOpgQMwTMkRoD4ACgD0+g/1dSY7FsBypW
aMLz0IOtl2XU2/1E+tx192sPlIeoPWVoxd2iB/RXiBuDXXVHgAHMmQMPk1bSGsxWhFbF+Gu6EWhNWy/WF+xh2RauwWuCwvn/m4X3BCwr2zgyr15VEV0VcrMU0WNnKpcvEP4svAqLB/y3LBrxWi+p91i8YgCEYfABbbTACYADYBdc6YCGgFujOASdqlCp9W+B3oQ3Bmb07we4Oe64HYsW7LUfGfz0YOwL29qw1Uv+5IP6lX4Owat758nP9z0fUANs
ik20b9HjgPw6dXc+qLnwh8oPqIFh1VB+APqW8r2k2iUXE5U32BZSO2cu8N1eLa+ofi1YMYGLxb8Q8jU1+853NU2f1kTaSWUibT1RUzEPFuA+2o0kRqIwrmVN86fwS6vFGYsls3tULh2+hoHDcy68HSct53WByjIuhqMNpK4WUMowYAcAGADL5BnFcyOAC9gVWGAURkgMmtARAe1Z5/CPV2S2i+Zju0IPwOgUMKIKTKE+pD7E+/gOjOsn3P+9b2oe
pd3v+m82Bi+K3Ah42mAwyupg4jtEFBzjgHqOLm/Q2EMGgzjkEatpDyUre3Z61MXI21j1DS3Mn/pVdG+Kx0NP+XS0gG4VDUawiko0g/nZujEkcO0T3hCLrbHhpO0eWte5K3EkN1imt2DjaT0faVY3v2iADoISew0pGcBe3Ob75nFrV969001QXfW++kv4/fSsMfGcbnXXGW2xS/9nHtWCOihuINtK8U1jhYQO4On4Nk6uU17il54M+4+bqddgkOM6
wUTKzgaG2USBFSsj3XejL2KWiHa1Yg0M72tMXGhs4ViE/I6LDEMONFYt1aEtiNd86gVgWgUzn+T0NeW4a6n4uoMFunSXCRhKleSPW5pdRC1A+xMO1crGoV0aOmtQUXLVADgAeErFx1Aa5rFQHgBrsCqA5LQwGN25aCTZMuUshFkg+8saQ9WAI0MWaIMvB+/2th0n2eOwglSh+P0pB8L0GK9IMq9f4CWlLXAfMc2nPwiMU/m/Pni86cPcE3n0FG0b
B26WiM56hAMMRv3F1B9iPmE3vmcwpTbohlAVwC38UNex+1NemQEhqcnEEBt8MOKR0y1gVQpQAbqocANgBMsghD+m03X/Wy4NDVdEDGR5qw3hbA0McVmJ3W3z2H8hCPR+wQOORzsOv+7sOlWld1a4rCDSuQTzlS+ZCWZSBysYd4B0AvbUF+mcOhRo7V/U/UOwBwm50RlcMZu58MGBu94xRkLqHhjJ11GShUPo7aPpuvwKMqro1BZQ6OUarSVJM66O
/6vJ2h0nAPZRhObvpPcPR05vRm68JCCAENFO2ZwCkYJSOkAXYC30uTpdlT3m+mHEB8h2sNqq+sO8AGuWN/TqP5WmP1CBpyMiBlyOJ+tyMSB6erdQIEr7uXXCQ2vA6zqwsTAoW22g0pdXpeuJ2KWgxIFY3QMohvjkosqmXXh+v0jWhYMSu6wlyR1zRYhNm2lOxBD6AeqAEICMCEAfnJPIDgAslfQC0gXdjSqqkBsAJtEGR41oKdSINLQW8BDzTgNa
5SJQ1qZRWRYoI0xBqP0Ix7qOnk1CM+O9CPUGgl1GC94A2yl4JIy9zwneocAPw20ppe8j2URgN3quLCBl+xBYCc202lGtjT0qjl3yU1LUH8Ca4JM/2N3Rif2ZRqf1PRmoxYhdvkH7L4B6Q4qBaauWVeQeqBbbLmSV2/YB0YYCNMBozWT0FckYG3ALra3w0/q/mpdhToKLerWNPWrqPthpGO9R6UPy1Lb0f+vhE3gH6mW4+Qz4e6yls+zjjPVKj1Ng
311wh/123e4yLqIF2Mce3kZviqnZZiryR23P5Lehy7W+4hTZi6yCnFx3cPiaqeMp7NE6+2u/FehYfkoafX0bxiT5XhniNu2ncGJu3Cb8u+o6HxhoM4EUmlC6ssmz3Dl2duJzgfixo0riZe67h8k1/aMMM8QYQ4MyklVdideMFcryRknf+OqO2SP5C+SN5SH/FUmxgibgQCTwuMy4UASqDMlOAAVAYQz6ANkiDwuTo8JUGMKxxBhmRmbmH8x3g46p
b1+6jF26xi/n6x74OoxsQNyhwf44QNWo1mq6zhiuJ7SWhybiQLg12KnUOKWzpp6o6mMhu1EO+uPX0ovbjWE24Q49EhM5X22t2xVMRNi+w1Zo00uQPC3J3Bx/J1M2sw0capiN2BxBDFQSqDNOu3kVACMBCARkikADwlsAPYwNZSnqp+ssPGA3zaYJ2rASkfkMWwvA2OtJpWEGh/1cWiuM9RpIPORmUMYR7M2run4CWlFsJvwgiMnWA+JNMME2lBhR
EcJvWCIglaMw/Q0PgC1LnEs4hWx6S0Nyesk4pJoBNWBtmM87d9LgJ8c30APKKG+QjCcKryCGgQjDt6FgCr5LqBeQdOPmJlkGiePOlrwzLR5xqfWqxrQx5ok+xKk6d0WunWOuJvWPIxtCMUJ2UPk6k2PVqnCOwFPCBPgI/UM6x1VnADAoXi8iM9xm70IFYvyuy7hNC+2mPVFDokXOlY1PndS4Bcf0NMqgO3Ohs/EXOrPayQtqHy+1qGDEma33R6lk
FOx8NV7QqEVwqiq0/QgBwAPJh/u+sol9WDHKAVqCMEGcAUALV1ydUnxeG30zNNZqMXehB2zizJrjWyP1lx7pMOR3pNVxjxM1xnsP+O/nmvAQZXOuwSSPCb1CVmHcJWx8YRRtUh2cEvDWaBrFV0mLPU5e2JP86rGkT7Mt1cw0e67x9X2EUpTYLxseOf1TcPSXC5M4eJg7Mpy51DeaHJNwtlNHxleNezFB1Zi8+1ippLWWuLtjN+yOifx0e7Ma5eMt
UjmVce/qWVwZAX3hn7VqQ/KRPJqn4G+ZQCACNgCbgMZ7VAfADKAWvSwAflnHANnAuXSSaji1XLKyHBOi/SyMQgboWdJ5b1thhFOkJvpMGxgZNeJ8e3jC14AwqrINj/bSwwmln3ueJQO1Ye8C22le3dx+aOeyo7XsEqJNOLbe1RRo0MKe3gGt85KPz0r2PRuyq5zS/FFap+a1qQu95E28p6UoyqCVRqH20geqCEATpDVcCpirGfdg5vB/kgRlNHPK
sfWvKpaANgNHXyK8yON1ZpaQ0B62EJxfUCBnpM+ppFMoxzxNGxwaO0+2u1WqtP3C89g2zQWZbBOMcOf8jED+OP1CsJnZ3kxgN3mZD4CDxy4V1B0e7JM+KOCKdoN6W/v2J7Iwm3pyOjJM9XWtyKm3BCx+OviyuEvCj2268pGbPpnDLE7IXVGIq+OXx8NXX+yziWhmPYE28m24lLH7nRtqF4k0XVUCsm16GsxhNQveOMywtOH/dDMkqktPqOkNap7b
DMTQ4WUcAHWD0gLQGwAUHXhINgD7AZiLCMwErvDeXBcmpVW70YLHKxybItJr3X3GyGgR++GPEJydM6Chd2fW2dOxG42NBp8dWjJo3CLOOtAWx6wWam8Dx9pxBjqBvtGzhgo0wm56AnpkfYWhi53hyuVMU7O+oxq/KkbSzT2WcaVMxu3rGmZn9P0ysBpPpp507hiVMsiDT17vQ5NSEiUYJUitOyY3TN8O0GZ8ppmE2SveVVugrWFO91mFQ5yVaQ4I
DCTNlGAEigBQACMCdTNFxCAJnEGajOPD6triGid9VBB7Bjt2yGPbmoMCuph0RwxtF3uO/u0GqkGW+p8hPCZrM2BpnxOIarFPrhI9RFjAoYEp0XQ/fcDwX6uaMhRpNPkpoLoI2pcNqWuJMGBxq7MurDN+/X3FTGmZGD7A8M8QMDM02/eM8sabOvx5lU3ukOOPRubEC3IoELZ6Ok9QKgjMAbACSAN96GwTvSKymnFBQeoRKm2qMVLCCHdpj9UxppWP
n+mpUcZg1ESo7VWlxmd3wpojGIp9xMzplFMDR7b0mx6WO1ZyOCpoKiANYKf5NZs1LggjzJKZvI0qZ5NNV8SlOom6oOhu8v3xazxUxRgLi6+rtj1Uk53CbFGlOgrAPLZwLP3J7Go5Jt8OeB5wC9gFjxhgTQDLmjqCnAVBDf24XJwUHuZMZ8fWZGgWaSlR0UPZhsOts7u3Nh14POJjx3vZqdOfZ/pMVZ6Z2iZnxM0Y5dP6swebdpZUPMEzdNhOSonW
RWaP0OhZMOx273MII00aZ+FEWZkt1nnDeOuZxmESjblP+kgPofizbAPsvhOyprZM7mRzO6ItyQCbXDMg+pqYJ9W4UOYnroGARkgbAYgBVO4qCaAOjBRaApbMEZwDxWmpPBIhVVhKsGOrHZpN9pSd2guBzmFZt4P9CkrOD28g0biyg2GxkTPzpukWvAXzWhplU0a1A2hWCqVSBJtg2luVHWah5q2kpmHPkp+hTeq1S2+q6KNZplHPH41LkL04wMRs
9AOswi+2mEgtMMaRq7nhiGJzg03NBJIHnCMWOxJsxNyj5qNlm++HQN+3S2POzAP+Z7AOE5skPZijSFfOhkqVQRoB37UY5zuZQC/iCnrMkuACrGB5oMZncnpZ8KUIFfONhBmfVxIx3iB8l7NdJvjPepgTNkJoTPfZrW0558ZZFxMiHa9IsQbagmOOUQiDmzYaphJ2ElLJzaAN59NPLh5vMPCoko/6xfPrSv5nqS8t0xq5VPuZqCJjZomnvxyDPFAh
mOmqW0O6WhM7+hz+Pu0pXXj+pbOKJgz3KJ+NWFQgu3te9AAzgTcD0VTQBVMRgjrjfYCGgOABIrboC9gKfkIAKXPh57lGbuKxMsZ6M3o6/9q7uSd2qhkbWOa5PP6q8I2Sh6dOi5r/PXkn/MsrV4CMBgcPWM53QEjafFxHRhOFiYFjZiHtIQFyAOa5+XBPZNNO9ZpvOZp4Q05Owm1R4lDM8sPCaMp+ootE0eO0UkeN2SO9Ysxw3mLGlJLko58FU/It
I8UmLTgUCoDLgUjCVs04BGQmnHYAPt2LwlLPmHTw05x+WROpzWWDp21pOHNbrJ3XjMTpt/PYOj/OZ5/1Nzp37NBpsfESZyE2n4ehQA04AvqyRBWJPKcPtZh5n0u6s2bxGwtmg2At9ZmlNyKbFGEFwwnxKjDOXJucF8Ay0Otk79NGYt2jQZyYhtQyRN4oUN7NG33H00lv2/phJn6EiJl952JXO5pMNGe2v0bBqn4MpfYBGAXYAiq4gAzgLbO82jgD
IgUgA1QOoBEO5LMDu8w72pxTo143tPWO2PPykyd1Ek27EepohNFFoXPv5srOf5/1rU+363/FV4Dpx3Qu3dN7h2ql2mI3Qj3/cKyi7RJvAWF/BmdFzqzZehHPUpvL1vp7TOY5v+Of1b8U3oww3su/vNdEjpHA8rZSE0ulOhsuKYz5pVZcwobOYk0kt+sw3Nh4rHP+/f0PJM/0N7Ji25WrJj0DIgkkg89orkyo8P257cyBxUNXm53S3XxqUvH+eQ1X
hya27KMP5caMNV1+yngsiMHl7FzJPTsAC5lTKipbG64b9gVqAM46np04zqA9QQCEcAXjyvqjoSbR6PPs5oukQp6GMR+rVVDO5nkC54rPKF0rOqFv1Ni5+12VFnxO5E7D0rpwHivHKxKlIql143XNDghhNMdZhE28G5YU4gHXMKsNElbJ+Q24C6y09YuoNKfXMty6uoOJ21Ut/pQan+h/+OOrOUvium5Nw82gtBZkKZ/Fib5U/OAD7WhaEVAIwDKA
MqMdQdvTCkyqDxAJUTEAeeEiFpFT6wBqNgx0rS2JtDirKli17KxxPDOuyOP+/jMlF0EtlFoMsQlyL1Qlug3hl/VkqIPpRc+8HFERgsZfQ5Xlu6RMvtF490cJ3/R1m3EtrR+Au3OGctb+A5VZ2i33AJoItY1RpXog/dzR0m8CtQCMC0BwAH1QNYDNIRkhtiyCj0RCqBAp860b8kyM7kqcuizb3WGZ7p2FFr1PAllcsBl8rPqFzuUS5oaMJG2Eu6vK
iAW48kZGFiRGYaiElvAdpQYlgAVuVPWqKCdMsM+R/rWBMNkEsLPaLFrhCUiUe4LZzX1GZyrzC6sZEBFhY2AS3XWVzJCtGsKiqVQA9jjHNgD0ACqSVQR32NAQE2VQJZHtZOTrlKwXFoizLQ3lcFNc5mGP786/2wp17Ov5tCvBe1csXm9cu1x3sP1xoE3S5/b3Modg0baxXMGhLPxmQUmP2xg9PPWSymvHeivcesaVqp7eUwnRUs1kr3F8p7Mubote
6BVnysnslslr3TzO1Ut9F+VnT3QJJ3MCVu92GelthGKI0tU/ZamCwLujHAMZ4VxbwnKgOACF9eqDuIly7pF+pMy0xqNfq9Dnfy+aZcZyLF/S5/Oep+yPGViI0YVsEsmTCytop6GVwCRkVbhV6DHiljFSWwsT/kuSCJQ4KMXlsoNdmKlBCYbyv9BxeWUarH6hK9BbvxxySTF+uHRh6mX+h3wRTGhO063O+qSYjkvL5+MO8yu5Pr5tC0qDD3OGgFoD
eQLACaPMFYiOIQCtQWnrxrO1PjlhWPF1eCtX+73WEZp+QoV1qsnk4XPp5qU1qs/qPf5kMtDR/f0F5xBmAgTzog2vA743DkXJWTezy5yautWzEszV6ZTr9aJN2ovEs1B1N3JR86PHRuDPRTTGGgzFKPa+omFDF/qXWSxv1Y7LatarUQ3+KrMUBceen6rc8HsHQW7RksxFilmbOjFuT5sl0IUo/OjVWrHl1+rIV1BCgkS9Qgsnm3RJPBLd+MNGxYuY
vRAtY/VANPnM5MGI9JOsxkBMTEMaH/armPlAdEBQ69yAPIZgAqFHqAGPSqBs4CgAVAcTPnZ8U4K7cQvSqXp1sZlqM9JPIt8hOD1J5n0vvB1PPIekGvnmke1Z5yrMzOnxOtO/CvIayf6n5GTOl5+q3bQcwQHl9GsQBzGs0mfM3xp3Gtbsu8sOF1HOd7NE5oLfObd5oVMXO4sld+9mU+st9ONU2aW7hiT51M7y0KYqmGV8iQkoUnDrKp4smSGnisl7
cJkJVwnTd14tMpVrKOrZjfNYzbTZUVZwCcnbAAcAJ0ybgbOIkhLsXwgfAARgfuEjJh2sNnDeggphWOtCt2tuliaRtJtbpNh7Am9232sp5v0tp5z40Z5sytYVn62bljyM1RmGsku56A4UJUivkgvxJe1tFbAOZNgBmvMLRpEr5m36QPcxvP93frOIBohXylwYullqo1cu80OH/Mus3h5naEl9v0N1rl111wSN5lzaPbkJitIzNzPXppkvHeWKl1FL
2awNmF64N4LPEw2emCQ9mtKGiBs+Kp85651DPT+OhsJRsO3XJhRMPRtfNhxshXQWlBuVptRPlAU67iGLFw9QFxQYIfABztQZmlcEuJf+54txgxc4fV/EzClbItJ3F0XtsgEvjp1CtA1kEsdVtctX1zVnJ+s0oT2P9wlkP/SRp8yKNFjSxWnej4whtosY16itw7fM1nlzOugC/GtI5pRREl1wslUlsZBx6gtsN86scN4es0anws6O9hxjtfgy8x+s
pAQCY6YuWkDCGKkDj1zIPSNsCE8oqRW2i0tT1gZ1MdnO510IvgOHkoEsaN9Csi5wMs6Nv43uRvcrWmbGOQw0EpZ+6wVmNwRKFjJJ5Q5nn2dZ25ItZ5h6RRuAs51hktZUi53XprAsexa9Mt5omVzF2IXDiJauY2hjX+/Oks34nqXSfQgUUdcZurFy0MfciTW1l/vn1l+5P44nNX9Qw3UZvGqCmDP8vU5t977ALJVUEBABsACMBGAaL0JNvWGTddSv
SKkyPS2yzXZonItiIPet8hAhPNVwEvqN/RmaNgpuYV8EvdVjD29Vp4uR1lU0iSK3HmF0G3GFmzI4MQ+L0fKisCiuxuvwgPRtNvov4lh8V8agXXu/WC23+cNU/EMbPSE2XUuZwl7R7aQl4Fn4govclva1wItCV6ZEQoJN6G1iQAs/frk+SlbYEIaYB1ZImwQS3sCGgHeQHMkcsVLVuob1+RuSFgdMaMhqvVgbJsqUpcvFFkytaNy+v/N1FOAt/pWR
NOBUV8KQjcICh2m2P2Gb2dEvnlmxsIttBw/fHmrzV9qkFehKnSEn2ZYw9xu7/MkvWt01vwswlv4UgmEcuhYv9bRq6Ot3ZTut/wsrN/dVrN9fNcVqCCy60rW9AbvUqtYqD1QUbAcTXUbNzVBB1SE6Wvq3lE0WhpMmRjmzfFuSme1w3LPZmyOxB8uMyt9qu/NzqtGnAFs0+3PNzO++t+OcTLSEKpv5+RnVrnGWBbqSHZq5xNPJlq+KPQW20AN3ov2F
4BsxRi1s917q3os5W4cOiKto4rl0kN/tsse/L3ws27V0xketaln0li1ym6W3XBr5l6m4dSgKnHg1XUFMybPlGTvMY0xhuZ6PCa5kw9sCer35+Z06usq9htD1kXV2qDuugSnNnrEowCNAQYCP3VBA1QHa4J1YqAIAHOIEIDyX7jQLhCt3ejFqb6s8BiVG3t+F0A16VttVlQsFt7RsKtn7N1x9FNEu8tuCSTewuuSIEeuiMULq0/Wb2eFt24xswWJE
1v0xmE46Gh27EFYJZgNa9PTt77QBcTAsNG64WH/SbNMwiguUafkuBUruukNmmv56jjsJKgeuhxoeu2seTVU/XAD1QftxH7V4AUBscBuY0x0MIW5XXDP9s19DIupNoDvZZgIaoOt4w/SiDsuJvNvQdwOsfW2DtdVxVslt3/Oo+myuHc1+EA7enXWC5EvSWoTCxGWPXzJ5ttF+xFs3leHPJOxHO8JjFnoLPSVXJjl2Kfc6MJ2nasSO893ws2eOXulG
nCp8+MfzBy27homkJ5yLs/Ia9M3xk8PlwYslNl+LvDFZmUfin22SRm9MipyAVarRFmK+8YPHLFmvO/PUu61v4UEpLfOTyeCUxQE4APDdN41CGcC9gLJj3FqADdAPlspFl4v2Tdc2APLaK35usPDCRx6Q0L0tH1xctadqDv+lmDvytgzvwdyyvop9d3a/B8meWORVv8gAMHxUbAW2NUEOdpMtOdw1uXAAcGEdglnowymtqG4XhCRwp7KpzLWVc1hu
3JpRMNlgguDtXLUE+KiqsEXYCDAFjwRgGABdMzAA9QOjClnbABbUtqpJZ/lvinJoWKdzStl/YDt2TRCsuO7Nvaxoyt5N2VvTd4OvlF7POQ1hdP0pP9wUbSIHy5jtE1N0/JlYtI1f1jQO155ptMYm1EOsvQO72gwMO9fZMSfSbMhxOmm0dto057OZv0p/3523OC1TGvZMZk5qGNQiO1Ly3g4QUpXXse8rvvliYjZqknMNu3+ARgVxGn55gAmQ4tnD
HV4CqwsoWSAEzug9hs5ufSqvoXf3TpN7EXlrFDaax+HtwpxHvfN/Ju6dnF1g1kOvi5zQtQly5sgtyI4QFF/STJkolgeY9Tjga4Akp0ns/18ntXgRJ22FqlPZ17tsDNq91hylAvFPfTTNfYdvkGFoHaaK9ZUtwSvP24fIvVIdqUozACUB/ACngOjDO+3mmAQvPGbgbAB2maYBh5rrtxgouC9d3AKzQA3uQp34ujpj5tqNwGsW95HtW9jb3g1jQsY9
3PO7encv7eh8DPQcTJV51n2OqxxUPgCFs7dqavhJtOswOZE1B928sZp0PsGZy9O01wMNDN5ksvCxYv7V6ZtQNiDO7x9S4/ENivt1v9OreE4WBNolsSGiDPZlnW44t72M391gW8dlbNyc/KScxpgsQAB32IGtV2uBzACoIKFQmDAhArjHqoVSYcXJWqU7V9nH3b1nSubN+tl82XnOH1lsM5Nr5vs8gOvn10GsqRKn3FtyEseRi4PId/8BHe+VRPm4
fsz/Avh6xLeK4dtAqPQbjhIhn1VAN/osvp/yuFl44UY7IP4yGzoOD+ZFLfeDqWarMoE5dsk7hy2PuZdUTV9tqRNcuohtEFrFtCDwe7vajduA+r7WW+/UspKwNvR0iMD0AXpl8q/AAdQASYVATYDNSGACFBJFydd8vEV99esQ9kyNfVlTsCJQU2ES6yN852yMID5vtIDz4PvYtAdv+ubs9V5Vup+p3skuxVQVfY3o7hEauDQMOHD6KyJkDi3oUD/P
hHdy1aJam0Nz0qssFPWbOD+CUbnR57tRhcmVKbP6sYW0O3yfQC2PC8NXZl6XVjNiwMJhjJMVdnHqlM+luv9yQAbASnSQDV4BlRnwCxaY+kRtwGNoWYcUKd3XubPI4AitqzXPNsVG/Fpqum9wyu5Nlvv5ttvtdh23vBlhDu9VqRueDv7b1dp8ktx6wVtxlEu3qW3S+Difv6tvDtQm9f6ONvFXIkxfsbR3oFFkmp4i9nLUGYj0lNQsk69QnvnR2gk3
Uy5fsFirDOTFwfOV7ZeXV+1NVPLRvnMxn1uV6+7v3Jwz6Cd4WV1AYqALU1jCNAYDbjHSQCtQGgitQVoDMzaXjDiiqtJtqqtgx1NsQD1Tu0Ix3iQPTTuC5pHsjDlAdB13F0d97Cv29jyPSB3vuyBltE6wD4CA0x7JHl8vijgF6R6uPdNkxjoszVtIG4K4PsL92gfl1+JPtm+fM9Wh9N/WcBsMDurwbh43PBVjGZKbdqXSXRNWLVudv1QimvnRhClx
hwlFFDnWsS9rJNJTE6NBNjKwYpw0DiOeIAzFJ3mXNRggdQf02O+tsXYDq5vmPYtQAdpYW3ZjnP3ZmQtYDE+wwp7Ee+loL14j9zVjDtHuh1nCuY9+JszD1MgvSEFDsc7Wob9c3EIq73shDmlp7pTMRUDwBvCEtFvRKlNWUlq2o5l+uvotu1a+FtT4XOvCZjt9h1q+nHNTt+RPeNu7t+tvxtArEp2v9gD6d0I9g8ASQDskv6MateIA0RJlm0gaGvWj
2CT2O52vPOWvvQx/H2gjeQtOJ8bs4j4Yc6d/Ed6dmbtFtwzuYD0ptAh8kdVW9EDa5I4JHJZFUG0TWoWs6xsp12xuGtrXB36lFtdt7keQN8N73D2o2rF1o1ipy8fVG68cTZh4XXt/oGXu8mFo02uv5D94e5Dz4f3974d+Wh8Pr5g5POm18MNu9R7rE5wCEYUgCkAOAAi23YBdQegCoIVoB2fJnGO65JuYSzSvKd2qt+G7z15Z3gAN9gYcv5oYcODx
IOjDvqPjDjct6NzGOl4oMfSwL4BDYeSTBOaNO/PG0qLsmMe/1i2Kw0uftud5xsedxAyDU67VK6kjssu6PZMdueNK6vlMSfLnukdrqU9GmktbxtiuHt7IdQDhC0kkn16Wh5JnKpujtaYiUaWhyjtTG3eNuZv2Kylx3PSS28NC9w9mLFsDtdOd+Ofc1Yu7o9nvSR2Qdvlmlv9tMb4hLKir7AECiEYSp3cTfYA1QVAJrAVBBrAaoDd0Pa6YpjtOwSN+
W3NlJuaV2b1ojnpL2JsZhP53CctVyDu4jicfej4ie+ju3td93/P9hxcfG0pRz7uxZUm4kDraWWZZo17cdg/Xcdhef4DtKHrOcj9pv7DpBvhvQxHaEiQe7xgBNJJ5VPyGiLusDhvle4iXyilrZTdQaSccaIaeFDs6u/D9fPu3Uae8NiQAdQOdyYAGZ4sVL7uvAUwDOG+qpBQYb0hSxEcpWvruvsNNuxSjNuRYnjM+10ccejiUNTdoifVxuDsQ1yYf
Kt7CMA5kMyqIdsGb20cPWpDMitKWE3JQ9XPuV+swTZf/09Fuws0D5McDF6mvUNi/Howu27Rs9Wv74gscQIlOi95o4j7trFEvatMcHtjVMXO1smLWzMe7y89sBZ3xtXt8lF6p4WXiGWYERgKkDYASAmBmujDU1GqBtzVn4IAUsPl9iRXWOipXyyJVT9jiaTfKoA7upsdPou/CevWj41pTq6ezdm6fzd3qsyq0zsPkhQPWhCl2OV+jaIMY6LmKvVs7
jg1tVT4Iy/mnYcka4vmok/NODWtBtovMSEkFB/Behkhq6EmtzC6lF69Q5SVOZh4eCjhVgsiZSXi9xydNTcUSRxqn7S8TQCMEKkDxrd8HfdqAZGPAhCzfcVU0c1es7A83h2jsfsDdqGN2J8Vt7wk6d2D5Kfjji6eTj63vODokfX1sifXVXP7kbP1DMoRQM61SyhlY8s1wmxzvsJtOsAgQhQRDp1Eekvs1S3G011z/E0vlywPqj52eajwqGUhyeRNZ
FeRIG/Uf6AHbM+ThcC/J6AIrjPYkU8h1NgDl0tTcyAe/Vt0fxzqVsTdlKfJzoWfIp66ed926cmxkOc4D9dTPgQEmWd0vNyzupB3ZCcBWNptu7dsuceVhomHfRcN1T1FsE1oePCDvLv03Lwt3o1qc8NP+NdsWGeD50QeRV4mGxV08Oc94aeJ6eqhJ91Kt0FsYMoaFyc5sjxT33XADqIa6iZhtYD8kQgBaHMDnDlpmfGA/zzIT6/N7TmKd+fLmd8hD
pO8zorN+10+vID5edfZ1efEjrKdaFnzkbu6YX62VjCQTCxVED/Pmogbbsk95TN+9oGor+JhCuduAMh948cU2xgUSD6bOZC+0G9+iSdrS6Qfd+8jsaTw9nKpj7m8D0/vpd9asINvuumWp2cp9v9GvKd3Mtlwb3YAOoCbyb8RUEdsWEAQ0Bp0wdzKD5IuGDiRV/3dod9d+x2KN8LGxzzQgm9mwc5tt7OLzs+vkLtQuULjOclN/Rv7crecvcQHjkjN3
ul52tuXTUwrK5ZifNN3EB9pquf8p10O3xj7mKpzLt2tiaV81psuu2uKvgJGRM6+5ql6+99NpCtAscO4pcMK27t1lpYN+NlLXlLynFUm6YAVQPKsRgWkB16TQDEAXROKiFiY1QZgD6AR6Vdjl6WiVVmdKdmsPoTguMe1hb2oO90ckLz0epT4PXpT8yuzjm+ulNwXm5T6xl/U6rb6vD6RatyupSYT6dXe76esj8uc4MYAVU9mmP3ijENxR1rawNU7s
zFgUd5d1skpRzRf3uzNJMOPKMNuv8TPyuYGMkCcmTHUtXlsgdyoIC9WD69BclyrAIRzh5tu6p5vGulxcLh6Zcn12ZdLz+ZfCzmceuDpVsmxhPl0L2L06wIHNz2o17Iq9EAMbPGMcL6HNcL1tuOoYSKHjoGd3zyPZMHZwt01jJf3Lzo3RDwSHK12uHhs9kbpDj9Opuo8N3hh/uXtuTkjFF/tUmghCNAHHkgqfYDMADYDhttYBQARy4QaVoBsAAi3c
/UrQQryeec53BMXWq2E8zxvt8zxAcCziU0o9wkckTjAfLL/RvtpyWfG0vuXDYS4BDV6wUHzwoh/w7/QNN7UO9x36c3hWqfz9+qeCL3JfHdvWefp+FmwzzbCTZ6QnKp0lvaZxNxIz2UWEk/ZM7mWGcRqldCap/lf4zuTkJryzhEzhlvoAHQGtQSqyHNeUS7Ae9XcFzYA9QZSMr10KcvStSsHUyKewVrofQriZdl0txdwD/nOnTmZfnT7xfIrleciz
tediz5VsmCy1fWM9sEqgmUpx67K5G4+TquViiM/Tu9T3dDtuAzpMc0rkxH1fNGkkKu2fgz9BsKGnJdoz/2lklZNcTTvxt5kjufsOTQDFQew35BTP7TARkDVa+iIwAEjPCTENMDLofTMQCOdmDsZd3590uaqufSStpZlnThIOCzjtcULrtdUL9edBp/peUT67LyuU/D2y93sEHE4pGzCdeHLy8vlz7umJLpAtZi0rnnRh8dB2ESMkiDIVSew4cgLw
etkmyuZVi1ycdAfyeMLM3w1QU4BFMLA7MACgAd0J4ta9xmonAORu70Dpj7ThB3e66Lv/FoheKFsI2Ir9tdfBwtuTnU1eZz0hhYgIEooMvpSx1x7IOrs2wKZ9DvKziqeqztkeVIFS2dt6lcuN++dpc9LuUiKNf0x/OZB4oVNuZxq7TTosvoLbjd5dz8U3snLtW5lMcrBgjd8duTnJwK3PGl5MCNAAM3fAWK2gVzCzMACqRskaoDVs6F0TQEcXvFsb
nyN/tPdD6iwuQzAkqN3jfH1pQsCbshf/r3xeAb/xcYx66p7AP9wW2Q2DE9lUP+DkVQKqV4J0Okudnzt1d3qZDyzrm+dHj4GdJsa+OE2tqGcVzbBsV3aNo5YVi89um6vp63NfetfvHOzntJMnDrH9rzP749XXPLtKtPhwdrxm6Ck6j8iJW8+qCSAWDGlJtTk1QWme0gOyCAUbr1SNpjd0IOtWmay42b1yLd1rjs5zlp4Ofl456JTz5v2Dg1coR0yu
o9xZdorozssrT4DkbQkzzIJG7ueOkdRGRq0OTWJfcLjcI+y9if8Lrke1bnnyPlgkHflsacXtlNe/as7fg7wjyUo9OmSAHo4jANoB7sLQ45LQgBxo44Bm6+XYC4qtcoTlkK4MB65C/TY5fKouNw99xcI9/mcnmxwfa0m3sZTiYc9rowUEQHdIlkGIpMcgYMci9exFYYudfT0uflb0XnOxqlfzrrTeYnXr6xRfj5dfWCpeksSOfpHptpZSOjTZjOEX
EUgokNJdvpuEWtYVSOjbR0bwS7hcz0lzFvSfGNXNtNJ0dHZjuiaAOl67qmsN7VHO+gpHKKmIskesaXejYgAi1FQTZcu7Df65iyWSj1YsoVNH7ed4PH27j8zlFeZwV+0DKi3GhvF1rXdjFqPeH+SzRjbsBcPJ1T7BZKip/iADaMkDlHdcwAE9QLyCXymcCe+3AD3r7bdy4cAEiEYvyxFOnW4BHmqYXEbCzCyisCJTJt82UgpfrhVmYOttfJboTf6d
1FeiztwfM7/SMPTn5hgmkv0EDqZNJe+rt+DH3ucLppvcLvuU9BQHerR4HcLrinZdsQaWwNMk5lkqOx7g7o35lpUxAxJsYSGzfdz+CUaq7lYt814UPcr0pctGnsmVL1ZvVLoevOToWWZriADLAinqVQIi1n07oCkAVQASquwBBS/AAN20Od3sa65l79ne/CLoRLQavcJWWvc6hevcdnGLf5FlvdOcl6007wicpz9vsmrpZdibzQCbAEaO5XLU1D99
zzWdo6LFkUEqNt0reT9yAtZ+XhDLR+fcxJgRcg76UvMV4qbowtivRsiDO9QsbMKE5hrIJbg83Dpudqj6ltaL8Ymp7SBdgGjuhGQgDY1QfYBUELyAxrCgAmL0EVqu+JvF77CiiVUByn6hWeb+X0xGot0bk8o9xUPMVt4J3WURlHuKqNvVdXblA9/rzvfTjkTeYHgJfT1XhBAlUvB64Nbtsi+ieEWdpTP137etticAvQRJfFk6GcndhXcD52snO7n0
NBH+tzfjnO3yDnfbjAnyRUVQLcVAOoDQBcoLht6YBQCWkDQXYtJZgPtcqHtrjoSiKcE75qwFYXQ8IMJ2xI8MtZSZVRVzz79etr39eGry6edr7vfdr3vfjCnaB5mhHbq1AGkFbo3AQg74AI1kleNNlts0VpxlT04XfJchqdKTq93FjiNk5dvlPWb2dvNFWrynp9dcgSqPsDEwanZ5H3dZLybNeSLY/YnF4W7HhBJnt1UfjTisdD1oFbTDBZGDAAhA
dQRggcAPPPAc6An4Aa4YLfKgi6iwuV5HqAJtDjQ8zacA/fcQ0QwA2D6arnTrxSvqLzl70strhFft72neqstOcYHh7dzjs0p64aVx7AFhC0xSj49H4wSjYSIG0upTc9gyqczV8deU9twUO2mnuIBs03MFQYspWPnu778GJndp35W79jtgpMI9xCqvlIpFqdx74pnV2c1afpYXV0n2NIrHtF4Cn0DQJ7h7uFMybcin9inCyysBUgVxHdAVBAwASqBS
7FxT05kqvFQOAL7jbBMgHm6ZgHwB4ZiGvdoKyMX/T6GPDpsZgRbeFeJbmE+oHnxeFNvxe6N+w+Zbstf9r/WYuMxxVul5GUbduDEME+Df87xZNZ+YyJ8Lhfferhg8wvK9karZiPil1k+MRx/GfpUhq2bjDdoNYI+MxxwKlFGRTRnlVORq8PcVLssdVL0kN+N/O3xHqn6CC2kFQAVwAGPMxeEYQWSqtIqy/IRjegr4JFWoYZeZaJh6GnuvcmniaQfr
8MyIHg2WIe/2uwnjbn07+7c979FdtHkKcun3V4D9lkUenqNOni0vCbnbw8jHlNOJL5UfR7+hvRlP3chHimu5k3DeQ7vGd7rq9vEbxgtUmoQBQufQBem0QB26s4bdAHqCkYG6uaACMBsAJdNfHsCPqH9GWV7+WSiZUo/qUIbA9D9WS/Fg+t4cs3vU7j4M2nlLd2ntLcOnjLfib+9dgbkJf61MErz2x1U/fCj687g5d+njXP1mdCRul1ZPud9ZN0Dm
JU0n4SeUaLQ2fj/Hfcn6Ndn7ybN+xJuuQUofM21dld7n1fPQ7tSGxnW33CyzQAEICChQAWz2EAU4C21uma0VEnrTADqDB3Et4YgLBeq5L8+qdPQ/lHv8+70LCdpdn0yWn/jfWnqw9ODvbIInkc+Pb/4pcZS0owlaaN7zkDxEHp0qto0Bxul5OvKbvDvn6mAO0HvGv0Hpfcpn7ffkXj2IXEHzM18tc85uvg+bt4sudYte77Jy8N8HMU/3Jpnu+rJS
/zI6YnvH7oCEAP5SZ96Js1lLyBFJfKzxo96s6nivdaHpaCa4YnewAoVKvNkbslxi7dN9xOcET9S907+E8M70ieOn8Tf214JcaWAvipoXBQ7hEy9rnbhAnArcenzig+WF+szMiqmNnLnhP4XiHx7/DM+Sp0OXDXzDfFuJHJ0TVFGeXwRSF6w3ce75M/al0KpMnjy0iMRa+TEUSq44jM8tq5y1EXqW5ye5hx7X5kTmWma9wVeQ2Axek+tQ26PZnjcS
UrmikrX5IXXXkw9b70NZPXvLIwxXdfnHuTnnG1imEpJ/fa+NgC9AYCvl2hWioIV4ZVOgErHAQgBdM19W50348fn0tTmZNs8wHjs9RKOzUvyYVMoc87eU74C/6ryw8NHtA8+j4c8tH0c+ru/wmATCudbAQ2wWkx1XDrRTOLnuxsenO+S4XzicDXxHxk18NXbR9S4BtqN2cd81hLNoXWKfPAsyS9C0X7pNhcHym6tU5Lsy79Bbc3pto6TnAWcppuGd
uOsmKj/Y+NTomvzHiT4mAxHoAEJIciMeY/o58NXLyzAvLyvAsEt1IerF6i9mz8Hl4B6W8u7zqFfDm/e+tu/dyciFBUvJ/eEYexTVAJ3l8xuC5wJw0cgu5gBUEMXDbUhs/co+qxvnsOEI3zLSlkZG/Gn9sK/VhKc43wYd430C+lXuE+aXiq+ibqq/YH/7O1XtMgIK9RAlByFukVkwv/ZWbTMjtytHLjyudIRNqJL3ES8T3AyYFxyRsV9wLbHrZTaO
+Golw0WvSfXkuwZj4dzgvldRHuQclDhKBsX4Vfjmgej1cadxCANYD0ojICMEHPGN0SjCa98O+jl7OP7paO8ZXsZPfn/Q8VH/w2XEufSNroC+p3iw/p3gm+2nv5uQX4pvQX7A9S5uC/CImsC/SA8vH6iMWOKpphhO/E/4a0IedIPFcAz6reabrieZO7NNIZgzcC14TRNtCsXlivGmVix2efX128LW5Y1uz4WWpoVoBnDZQf85PgySAGkBPgSQC75t
94Ij/irw3ne9HQGPO4L2KVdnh409n9RXIHi+83buVt3boptpBu+9qHbGMzQRFgLDoJNqhjh/Uj309lb/09vZCKH+H8BHbRvE2EmvDdiHa90ZRmguIP/1G166OlH0oQA1RQLQbGDdh0YGnQydfahUgUoVEPqO+aH/49HQH/ac1WS+/nvtKTLiC0GVvCdp3/s9gX6w9MP+0+33/4Pib8i2P35TB1oF4Il5k4KWK1dxlHhm+GtoWhNWlm8OX0XchvLa
+Mr6usq3M8eLHwp7RPl5QUU6bfJal/WJPmQfZ20e8aj0b5YhFOX/Xk6U96kXbp/UjD9c089FRU4CHNGAAAH8td84tQ9PCd8+kP6iik+Djful9WOChowy6r4hfQn+o8MPo1dDn5h/ox5x/YHnQtrLzA74HuiHvb6pumssVTAsC23kHjYfkD1tEWvYJ+L70J8EvJuFjZsScvjzZPNU4slDbg9GCDjl2PL/Tepjwp7+h29bEl7m4dcI9wNX6ZDhRl6/
/jkf0Z2yIerrtwLa81/XBXv8dZsm+oLI+IAMz5QBODLhARgDqAFxbyXSyhAAbAIwAGD4uWwSVVc1P7e+GP6ijYSx0cqxmQuPlqB4ovlS9t7zp/KLRo8Ab5o9AbpndtH6osD7iojmCICbjKx1UFbFBltZjq+zP3+9lkIM90HpZ/AP0Hd4efZTPlnGenHqHcHn5zew77ZTPlpQ7mlxggCnDqDLtKADgqTgt0YVoBGAKoJGAXW2VP4ImCotK8fcOp9z
abz6LdULbn7n+l4iqZc1H1vfihzF9+QqiUOPm+8sP/p93DbLeJPRjPUbZq/piRxWbxKu+Trmu/1mOTB6wRJd9+vLvv62UcU15elS73q12m6ciiPDLWhHm7u5n2/f5nq9t9Pd5fjFfgvgiujDKACoCHUe0BwgbR5/2tnSnAe6dyv+Y6l4Yh+1PuF/VbbK/An50X78k+/qChLeqX/V9Owi+tGv3F/pb019hlxPkrppkVPIeApWv4rH+eHSDm0yy8En
lTdp19WrogER/br5J+IZnGR6+7UeRJGQbSSk6/7P+p5406d9eNmR8+Nrl8LWixhj3abdUVac0djuUCCAXoDOACqyzAXYBjHHjyEYNe82LjBfQvre8GPwB40Q1V8ROdV+Dj4gQ4TlO/WP8++2PjO+Dn8q/E3vF+tHsm/bl+t8y5mWAAeRPz49kDrRGXw8WX8qddvvDsUQFvD9vgQf7PunuCa/BsD+6RcK+xBvDvm2/BnAuG3LYV26W3wSLNxNyWhu
3MaGltjLN528/Dr6+k4t3OAT8YrEALinouDYAMz/AByFHPGpqAMGgqAhDVJ9e9czBV88DUA8x3lkJXvyt6hbfSt82LNuPvpKcLzpOeCbjS/8uUPXaXpE8OHvCtDP4ZXuZJ4SAfljHuH9ybq1RTfrDlWeQf1vBVbr1e3z5Z9CfJg4jZs/c8fRTFqexoMFc6QnkNwfY89xKOdNuAX+dylWKT+zcspnqeK6yjSYFxq5vj9GH7J3z8nHyzGcv8j9qQu5
8egwP5zbDNTOE/ABUgQpOEATADTAMwDeNOnGEYIpjDir6jl7pV+5vvWDHA7C4b46uUNrgq9ify7fFX67dYvwm8LL3p9/Bt75H7VE/g7R64vTh2WOq4FDykbSz+PqqeooNicAPwz81bxy88AsvnYh8J+4h7W9JsyPutfXZRuv5GFvP/df7S6rvsOGcDCTRkhlJJP6T2Kfl9MunTbB/vX55h9fBEvYFHAXj91PxFj5vmwHOjtTsB80bvwD+edjjkq+
X38C/X36t9QX019nZgu8l4c4BPCKDcRLg+Ja54MA+unT9WX8gf/149PjH/FWTH9z/rB/1fg/istS3yH+Fun16nOkUthuiZvsl2jUSDhY8wzFhshvl29hv1Nfu3LGeoNmbdfKBYHbjLsv/vZwC8eKiJ1SaEsRgAW2MBvI/U4RRnVEXUilqDXLx3zZfiLGD1vGQC8lvqE9Wn8t+94w1/Gr7O92H1h+lLGosMcAGGLOCaOAo8vAiIjt/gfn++xjg78r
9RZ8hn/r8YklT0XXwU8fLMLddOSa8uF568ANM0M0eHi5L9JbolLsXeWcXCiXP0Irm/25/nOTc9Ul0X3uNU6+P1E/c5j4mmRH0j8/j7VN0kiuju/wn+IIGqDguqxTYAHgBLtRoA+5gKd8q5YU4HlwYGGNezrnRkfue9vgnf0ncOPWQve1sw/tPvn/vGu7/2PoX8fvmt+1fqyZEvweau6YcANFnWp+oH4DVT/h+dX1OseVzoec7uy9Z1xl9s3mnx8R
+UdEofIEbxrraM9ynJ00shps1jePZlw5+x/BhtbJuC3j/tCZUduJkSwiQdwW/geeNwSEaemb9D1tC26L4WX7sLoCVQeFZDMni+9Af7sApgJpEIZQ+cfy4z1RxP8Iqr4Dhbsh+3Z+O6nf5yFxTttWWP9F96vvP9dP7F+pbx79OP2r+djtx8YHCNRTmoChiWHTDUFaFXcPUMOvxmrJ1V1NznXCY8fV2GLGilN1y6pITk4nxGbNADvW29/aI8x7xIWF
6Nsn1f7cnN6qhXNZOkqQByQVeQeAGmAS4BZAD2NR5pBUUZ/M4pL33EpQT9DDyjzezkBQh1fJA94g0//Cr8r72E3K80c71YfCOslPzS+cGM/A1d2EdcZ/mz8b44yp2pfXT9AfxuAAz8OJxCfJl9IGye9UoF1bluXY/xH9V6tc69nvR0tGstsAPSfVudYrHwA+b8MrGayRxRzTCMhdalNwAIQOdxaQAW+egBF+QlnPI9xbWYQYr1tDzStKlBoDwTvK
IlsrWwkG/JsbybXWwdrvx/XHgCDX0g1Qv9qvyoTdVEK4k1CPG5o9ULNKyotW2DAAJwTT07fRX9f6w0EAClNZzJPeiMLPzxtOYM3d1pXIoC1g3ahI9xTf2ufMW9LMxU9KGhKgKufHnoLf1qAnoNJPmGve0NNnEP3aE51bj6xB68NjxPZEoCyywGAuuwR7wcnIQ8mplKZBkkjrzzVXoBSMGYSYgANeEIAZQ4IBH2AOEA5K26AYgALShcGXINWbE8Ai
A8JSCBPJ/8J3RdHfQwKdxCAjxdze1u/L/9KvxRXWw9ETzNXBw9ZXwnPNL5wSQrzaX9MO1WWK3FN7UyAslNmm1qlel97L3b/C5d3dzKXJHJ4PzOfChsscw37PMco5mfnSIJv53JJC0NxJwtDBRcJHSC/RmkF31C/BPFvBXFTZsthZR2uZoAKdA1hB0wXNhAJZkpugGLiOjA7612/S4xW0mQ5Jn9Nnkr4NP83gh6SYT8T7GOnbP8+NwxfCICK31QHL
O8i/ye/Wr9J7TL/G3QeiAVUDDsoW0vAF4JZXBdXdYVz53rMUSBxeVV/Iz9VAIVYd0MnwyOvGtw3Lw3jMr0/50/wEf8H4zK9bht9NnLcaf8tk35aY0CKL2DVFMMabTBnYe5J/0X/QT1LQI9iZJkZ/3y7OmlpU3X/OTkz1mdA+pdCAwcUYqBynyWeWfll2ioIUoRmAFpAG1Nz6V8DanBr/0r4A2ApLw+lWw41dgbAVgCnSyuKCE8xuwTnCT8rgN4A+
79+AO+tQUDB/l6gTUIIoQ8yXyNmvxfhTywAdi2iaAC06xm0VjB/Dz5HaWsPYyBZUt1bh3XXcR8rlyYvAnMWLwjpUplD1wsA9YpljC2AKuA0kCK4AdxKhTyTeIB03xpAvjJAuFXcPYDq8BRUFgDoPROAsgIaHwQ9Oh8X33z/aT9EhnQHEX9TX0CdIl9HUDSAhVxJAIjFdbUbwgcFb+9fgO4XaIw7bT6vNZNgQOt3JldPPyjdZ39R3xOUR4Nzu2E9a
MoxF3/AxzdH+wWtbwUSNyp+SfIpnnqgXm0FtxPXPUVGSEW+YsJK1Th1OcDesgrnOsIPKjlcfU9zeFXA/Z4TXXDMDTtOAN7PbcDSFwHPQX8en0cfE19avzLbZ4DTKSsiWmIcIApdSJdCLCuCG4BZQO4NeUCjZl4XAEC2/zV/Yz83CyNnOFJnfysnPoNAzmd/NY8JvyGAiMMFHQC/M0N5j3cCcUcYwzfnXcNpfT+0IK8EHxx/UnEhFFF9cK9VpVe7O
VcYAB5wXoBBHHqgVcZ8lQ0KFUAvIDqAVwCL/x4qW213BmViIo9fTEfAWRUTgQaWaiw2oyFNTMCrv1qPDp8eQIF/KIDyIONfPp9avyQ7GiDEGQqlSf4uH28fF+EDYAYQPNBJ91JXafdW23CjGiM8gOp7AoC1biGlT2lHPykXKUUutiSqfKCgIIFXBa0z1kHA8iIOoD4cfQBiEDtMenEJK3JAfQBQVGqAOoBBmSNaeQR7INmQcKUXpDy/A74rsUUvS
79m12zAm79yv0iAr40q3zuAuT8HgMy3EztAAP1oawsz5jZFMHMwSUIOeX85AIB/UIciDjYhNKDzlzI1S5d112JrDFFPQwOg/Z9fBCGNNIdwWU0xE6sOX33PLEDamXxxEz0n93DBZgB8AAIRdrIkKA5KLyBlAFvVRL8evXrPE98zDjrvdqC7wE6g1uocIMN7RvcO1S8ggaCwgLqPPyDQGVGg6ICKIOCg4sDFuxMpSI4nVXXOE09XpwIOSwVa4BPnG
Z95APWg4FA+3xB/PYdEALXgUR8coPSFVsC6nkpgtAwXvXtoImlCBTLJQgV+m2fRamDUn1fLYocMnxf4doMyoK+UbVoGsl66aiJzi3QsHEAqQD/WKFRLqDk6W0cYXwvfXAJIYW6gtyDYpzltTyDhxwXLQaDwgOQjPMCC/0Cg3/9KIOLArD1f32p1U/JM9S7jfGNC/DKlXOB6b1vAsnt7wPq7G8tlAKBAnaDRRzdjNBsYTmkffHNZHw0gsL8BwOjpe
gB1QEkASXh8rB6gTABwVEFyGAA1XTWAQgABxT22N4ssvz1PeWDcvy8uXqCj7wbUfAICs05A0t9uQK1gkaDK3wRgoKCav2LAx3sRAJVNORUGrzNgr54xnznZF6Bb/y/vf78IP3IHYyJZ+x6/R2DeINVAmDNprw5dLm9mGQo1Y6DxFw7Au/pePVDJB4VN+x5rVHNN41QLKaU5LgRnTHFerVrrUmsdk0FLZF57xyUXOzM8uwDCAzNoqzV1bksZ4wATY
owcaV3QUSdijEsnR/p/OySTPD8xUxI/LH8yPzkfbECSNEUpEFYqfgoAYqB/gGYWY4BB3Cqg7AAeoA6XYXJDmj+7VSt9v3jgvj9mrFesGaY92krnRU4uN25/N0Us4I//HODeQIJHXWDxoJJvHS8VejWAHvsjYJ1+eWhT8HPA9I1W3ysiGJ0bYLJXGisAaA5HXr8gHw7/DuDlb2X/FiNqEIudbjQaEMPte58BXUQDfLpYBTqNPgEEM26BDs0sflZdZ
jUWyUxeD1sSREEQgusxDnovUaUYZ0tbTT4VR2C/a6Db4NZpBQ5H91f7dnBZ5HfAMxcNgAC0THdoVHwASFRqgGUfVSsOhEJXIGDVcnlgMBCR5iF3bclEK2eDEr8irxzA4aCEEKnHMaCBAMPA2r8rRxmgv9ofgGn1ZglPtzlUMftV3DcieuCsgOabRZwtgESXNa85F0wAyv1Bi3iHRECzzkcLWKodn3tA8Qdb+wpLPm8OjV9xaYsOIwCVLZ9fSRLrX
JDMf3nfcsd5EMR5cnEt/yf3eeQqQDTUcgNioF6AKjh1vgzxcz50LBigVSs44MO/OF9QENBgmfUzT0RAUT9zgKp3Gx8SILsfPcDYxi0vFBD5P0y3DwcS4KBxKbJ4oQrA6wUmIMCcJpggbTrAjys5tHtZUk90oPWjJH9fcS1vaMkUfwZTJu8n4y8pdM8Yuzvxa51JPULhADkewK9g38c/GzTXS4ho6VpANYBYJ3XkP+0CED5IDqBCADNTf51zfEJqd
BMpaXPfP49AHnMERWDQHn5BGFM+bDOA0+8n3zK/fG9rgL4ArvdkEM/fUm8tcTWAaYcpkOOZV6QAQWSAwPJ3Dw+6MAs8g0GPV1dBH2L8VpstoP6vF8DLM3DeCDMiaVHuMskeiW2jNitps1YPJ0NYIi3DViMGO1EQm7VCBWPbUIULQL0lOC1eSxZETSVhUKKgvsDWaTzGDmlKUSysDgAjHkRcEQxmZg5kQgBmuxDvYMBQoJfPJqIpugcgzqDVjk6Q9
0sIUPaTTcCAvT7PQZDX3zIg998YgKGTNo8yR0wQqq15M05qTGCWMU1NSTAwhyl/IhCkoJIQ6FEHYKB3NuDKEP/nX3EjN2plSqYWBxEgggVg9yzLAT5jZ3GGSKlkl1RndVNkPxPHJTZYZxwbDHMlBhrrMKkLc30zRdsVfWzQv1kxUMXfML82inKHKk1tIWCAMz1a7TqAZQA6MG6AJ+U4ACMAdn4ZwDWMeXZAELaQ4FDAuD1Qk6FFL1nnTODefzLfW
GDyRUcQ/OC9YKRguIDAxwxQh4QsIBhKV/kAaTAA0HYPMk1qKl98YLWg2MdzMgB3FuCfUJVAv1DYkOL1KBZS9WkxO/pF6TlHONCRi0gpdqdepRhAgZw4QIeQq9Cku1h/MzNqZVhnJVN5myovZ9CtlAEddl9ZEOYvAtC74PCmAR0HESW2GcBaKncRTcBzgHYAVqBXwUb0bnJWnQ1QiqsSH3aQ+1hk4J6SO99dfmsHPpDcb2ffU1DdwLKvfkDLUMwjB
dM1gAXHW1DphVfhLlYR92sFdw8PKiC6eaDq8197D1C7GxhNSfASYI8FDpsGPT3Q0PdBIQF7J9E0YVlvIut0YSmNNqFJsx5vCr17bxiZHftaFWnzMTUsfjMneRQzJx3MVl0vJFvtHF47JzSfMYCXl1pKCug+YMQQUJpHfQL6cTpKoGvVGkNlvzFjRxRJMFx3bN9YX2BQ0rRh5kkqM4EjoEndQhc2ny5AuBDrXW//CC9h0MLguICKJ3HQoIwisCkqD
+FjbTxQ+rB4CnPFFZD6zESeTaDW/ycbFQCt0IzFN8DQ0KTddkYtALXXXoFKG2gFafwiPwfnFACIolxzHgd90LEOdfd2Wgu7O/pZaxnuNGlo2U4wjjDr92vgn39S0wTxEQ8qPzF4A1p6ADYAVoBQdTZJUF9GCBBUHqBHfU3AJ4Attxsg5EVi6n0fIFD5YNrURDCMm1h7I1CxQxNQpLdSIICgi1DEYI8wvhFgtEAmDQRs/BHDQg9R12+Oc1I2ILYTA
XdM9WfARJd0f2+ZCVN5DUZ7V/x9kIAXXdCtVimNPztB733xYe8jANUw8bd8u0m3Se83wx3YY4AZ4QYWPudWoB3YKABLVRd9WkBa5kZnP6CI8zHnA79dT2AQpyDxKWsw4/JbMOlULCdzJylId/8ZsLUvLDDM7xk/TW0xkMmg8TdZwLcfXFNzKXJaNPk58Xq7LL9QsKcoCfAyENbgzdDKUIkQk7s3QNQ3PLsJOSDDPe186xzTDJDl124jCB8DnFj0T
fs7+zSQx58WSw2fWRc5309gzEDikN2VEjRxrz9At8MljHXYT2dGgFHaakFMADqkX0BpgFpAVqA65nRWH48c3zbQ44lq/jBQ+UlGwymwxCMrXXJ9VzCHvyRQ4v9iwIlnQACsDlVccaNEbjBzIFA0FSBoCnDa/xOXI7CLiDGzLrY8C37/Du8t4zeHCGc5EweFNasYfxiQsM5nx0zQoUsPxW0nDd4di0jwzJc30LILVus+XRDZQR1rP3lLN5ZsW0w/P
hM0TiSHRLt1LhovU3d7nSy1H4hLJwtAzdELQNZdGvCZEIxAopDvYJHNQhJ7CSf3MG8WAH0APQASk3KYXdhPZ1OAVqA8k2c9BjNnvGGw6HCloFAQuHCIELkpKTJ3m0Kvcw9YUPofbWDhkMGWA8D7gKwPfQEfqSNNd78y80DyOTc2rFNpfZ0PcMJMVKDIsN2HZjCwfzh/RH407VK7LLCQLSudSM9r0Ie1Amlshwa6HnDntXK8a/C8l163RrF04jFwl
fNewO/Q1ml8C2yXSikqKjowV4AOoAXactk8EHKjHCAOoC4pdCwl61+gyF9RC1aQqHC6nxhKa989YhEiVtkOQPi3XtDs4Jcwm4Cmj2twosC4gKCXMKCSXQdxCx4q4NpHKQJNgBQZYddAkLvA1ttXrAPHclDnwOdggi8MOg9/Of9JINlvQNDZbwnjZOZHQKlTXX00Tj1AkNDO7z5TVLt78QKXbv83olmcfutRgK5gkwDUuAroZa1hZWVaSQBGSCwsc
WD+SGrQi3xtszowMFYVBx7mCHCgELqfcLw0OXdGG993IMQrVDDoUPE/IaC4UKXw7DCscNXwiaD18NWXIjDrGQWVciEBjzcPEDpyRmumXbD900dfN4BTIirzZUC+vz4gyYgA32/wj0Nlbww3ToEUiI5vJ29qsJwA7mCAJy1Hd7CG3WYAaYBn4OUAWmdhvQQAJdpDQGVPXnBRVwz3HuYW0PQIuF91KA4DQWZwEIsQyh8X/xRuYt8YEIII5zCLcOIIn
F9SCL//YsDMVyW7Y2kFaBonQqc8DjBzFkgsNSiBd1DhjzsbR8AX7yOw2ut0AMHuKbch3w0xaT5zo1kIrvlf4wifI25M5kvBL0CFrXpJUIthZVqkPhUvIATRbIArwEIAcesiA2IAIewqQE7HF887FzgwwB5b9TMQmzC0wNaSd654I0Ig2h9uAPgQ/yD4YKQQ5xC18NzvI41AJlmqbhATGy+/WwUFkFrAUJM5iL27KqcXpE21GIiKELpwnlNTwU2LB
NDBazKXA6tvL0vwtId9b1XjXg95NmtnbXcOpywAzIjjAPGAjtw73lxAg3UqfiMADuZdfBEMJ9tKoH/eDYDComFwOb4QewGw9dofjx+/XIZ3PQeQNn9YD2xFYbtIsUGSNWDITw1gmGDgSLhgvOCwSMLAwYi4gL7XNx8cKGGwAFBXyWtfZTBZCE98e18EN2mrGkwFLAzEMJDijhuvJslfcQD/V2MJDQLJTUslj3DcDD8t7htIi7s6aRD3BucJDW9I/
g8zj0lw4fI+PTtaaYCwi27FO6UJyRqgKwBquC8gDOlRGSCaC3x0EzqI9K84XywgJojH/02OF18PayRwn2JTcNzbSbspP3cI/cCXBy8IyEjQN28wkfAatkA8PHtLYw97XaJJ3lsiBX8WCLcqBSwVhW9wtxsJU2vTBlChRld/MNCCdh3jADNeyLBZYJY/SI/QhvC8z1uQoet2K2lwv0iwCN5wKtDN5DZNcsJoAkNAawY6MBhUPr10E15Ra4BHoBBqc
UisAg7Q35pU4IeNfqDQgJ8g3P9lSIHQ1OccMMWw2IC+ETwQVE8HILGcCEN/I3wgVrMTSIwvKddyeQavV19wEW7NBIVKL2K7Ab8onyXgkCjLoM/QgAiboJKQ8KZCvVK1QkIOoGKgbAAKoObofAAYAF6OevQn1RgxTecUIP4wY4gtUI6gsJEcVh8Ao092fw6FY8jTvjzIzxdJPw73ZfCQbkoTK1DV3UzEQCYPMgNoAg9yMPT5MzIcVyfNH4DbYKvic
nkVQQbvITUXSKP8fiDc4SHIga00XntI6op07R8vLVZRyO03SnJNQO4nffFr+yUNJSjRIy1Wdfd703evbX8hRyslDM9r4zD7UkikcmvjaLJjiLUhOxECvE2DQjBWIjfeZlIOADbCPGIRLw6qeIBC+jONEUjdyLFIvl5J9SsBEncRfg7OZDDxIJRwgEitwKBIogiEUJsPcEjSyLvvTpBwoQBAZ+8aRwkCMHMjZhYQVccUSI4gvBgfvldfJJMTKKK7T
utE0OsnTKDYGhDIzrx+RzLw5AtkM0MAukjnsMT3OP5I3zF4ImwCEHq4LyAlK1aACiBdjG71SQAZQG6gXI8hSLN4QxDtULCRFcDkwMFedV9Dpxe4U8iLgJAvHcD4UPzAxFCoqJxwrA9awBGjKE1bSia/e1d2mjSuUyI8YL53AR9ML3kgEHFPVxpw2Ij24JfSJLDnn2ZLPoC7AkkXThRl5VXbReCxr3dtBm5L8WDQ+/CEcg9Wa5CJcKbwoAjxRGl7c
Yo8ohqEBkANgC70SckwwQTpboAYAE39N/cjWgXoRV8E4OghCVlfKNgBLMiAqIsfHSjmf3lIrMDoYN8gy8j0pVBIhbCC4LvI/nkPgCcPeVR4qOo2TU0c0HspWQCl0Ibgi3o8GBxPRJdBs2C7WKotf0jKO0F/KW2vZa8nLFcbSKo9d3MohPF9TD+vV/sLBhgAc4BSiEHcDyUCiLWAWkIOoA4AcWkKCK+PSPMjEMcgsUoFaElI1G8qKHRvQI1wT0xo7
yDdXzRw/n8VSL5AjwiSyMWo3O8tgGlcN+FAugcpBu4DSMVIF+9h6SJQuUDytyzGORVBKOprdSi7zikooU8JCQTSe38ZKOko33o+T0YvXgjJmyRmR39qnGdbYSiVvBK7R28Y6KtA9JC+a3kong4dk3N3HhQ1i333YmEfaKzogQjwUk/jFus5wSoLQpCJyN9/BRCkDHYvJ/cmgCMADUQhAHldAO5dgAoAGqAc8XV4RsdwJ1agk+QeP3qI8t4JL0PIq
ig/5Tn0OUjggKcI0r87ENcI3OCTaOLI9OcyCPvI5CDAAIRLQ4BicPyDHP1vvgL4MIiWR0Q3Z6wsQCX6OADAHxF3U6ieT0DVXPD1F0FwqO0ydjM/Tu91r0PomZtwUj4rAzN/aLOcPxYMz0ckKU8czxLo0N9JyKf7V5RX6Nlwht1ugB4LDssLgAIQHklLqBnAQ0B7PSyYVAJPjz6o9phO6MhwlMjAHgnwZkDbAQQdJx0IYL1oqGDzyL7Q3GiQVX6Ih
ajkUNQQvcocGH6rdSgWE22XN+sGR0YXev8aXxpabejkwRQ3eudY2X9pPX1cuWbAscikLXpItTDWFXgyTTDo1lObUCRakMd5QjBba1agfJADIRPAZwBLmy+PA5Eu6IQY3AIvgFnQQ4DMyIRwh/M59GgQxKVuiMNo/tC8aNVIgmj3MKJo6GUGwCtov4QQAw2w8yIDSN88QcoF1Qpw7eincI4IvC9sSJ5YH3DJrwuIdW9MhyFrGLsPtVU0Ae9xKOrnI
31c62Lo8XDG8M/o0nE4/mPPcc0CMLhcGAAKAGnJHqBewH/tRuhCmGxAJ0wIX0otUctkyOy/HuiDcPhtds9OoksHPckf6Mooy4D7EJBI3RibyMJohiitcXUQbLcCvmEuexkmILKxcLxCUK1DF2j/T23o5WIG70Kw4IVpR33xIkpFPgfolmiMaRToh3NE10mvVslcQKuo8MldPS9/aqjVCIZI0ocXNx/o6Ok+cF8RUbAc3jODXsBxwGUOApgeJlr0I
FMBqIIoiupfv2EWY9RhJGCMBHCMx1eVUgRk7zQws+8F8JmotwjMcKno0ZCCGPGQ0hh2WUMbE7BLuWXol+FOmjghREtmCN4olsiLYgIgGD9uOzfw1JCYTlZdPIdrTUGpNIjBqUSQ3pxLwwEQte5LJ0CvGOV/L1pI9+jsfxCY/1Ez1hAI1d8qfnPpYHCBZFEFMkFliXFwXEAXeX2AKkAoXRljdrhAYNVo+mAQg02AX5Eixhdccx99+VgHEejbEJcIx
fCJ6MQQvRiBiP1g9VENgCXTNx8KIFwgCOFmDXMYkDpualCoNC9wA2XQpEpPgBmgBMcNN33omLDkAPhZffsE3XS7disti1yHL20N4x3MMhoD+2AzFGddi3Ug3FiE8RMBBbEGsMnkTkpSMGUAQjAel1wAUqB34J+TCMBJcg/Bc/YtT11wizCjmOYgVTo2WNvMOPN1wIJUIpjpqMww2aidYKFY/BibcNFYmq9KCL8cLA5aYiVnIeUkvVeyXLwbGLigk
/D10ODPWnCuCLCfVvM2wNLYpJ9mGLYYt/Uq2IFo2pkUtV4YiQAUCFFAa+kEABqgX+BGADgAUqBKAOYAROktT2grQaig2PTIuKD5kGi1HpJwYK1fHjdHMNgQrRicGMEzeaj1SJFY+8ias1e/CisvVThbC8DJQKNwWZZJWNVzWmigkKBqQEB9aBXPDAM54MTJXq1QG1xDfpsUuivY8CjxyI/osuih+V5g8wDyIhqgSkJUEEzeUY5cAFEY994OABOoH
yBsAD3/Et5gD1kYzJijmI1lQ+JY023TWv8aEQC+e61HCJ5/RUicaPCouajIqIXYkdD7yPzvFNjBJGZFFXkISXeAzdjRdDloeTpd2N2ohv9CT3NIibJuv2vnchDNWMcY3nDTPw5wvmt34xZEVYiddymNHXdFi1FdKkjD8UMnDl1l5UWLfjj68I4YmqjxT2zVD29X+3iAb2dCQnWKXYA5wFhAbbYKymK4SCdrILBwqi04GMsI9pCuyjvMU5ioOMqDO
SkqHxHTeDiuiMQ4i8jkOLjY8pj9GMqYhdNWxQtOTNoA+zIw+EjcvkjLdzIaaNI4mhiVWP4QNMsmMNI1FxVJdzpXRIjOinhOIXUCW1WILyRi8MHzS/sub25vVLtViJVvKZs/8NxnL9CoKNomV4VzES4Qx8dA/zNKcDENgBZmGqAWSk0ARoBXgA0fOAAWsjqqb6kuXnGYfCjjEKOYiuVWWIVodliFaHRHWDjjD0TzHtCTOOwYszjaKIrBNGMlsOJon
b9AAPloOlpEvQ5FC2YiY2NZdKjXaPiozBxvOO1nD0l/yMJrAND2EMW46m1rh0G/U9jhvzK7a1iH2JftXKNn2K+UTcBAgGUAKkBW9VpACgB5nmOAHQ5Fe2qSD4B1UJgY7qQtvhd0AdiEmn3cE5jIOI2gPTjsRQNQ/C4o2IGQ2bChkKLIkZDhfwhImKjXHwrI67JaHUNsBMt3+WKxfuVj6moYgmDaGIK+abj7GNZvOjjnwktDL0MXx1yyW/CQei5XZ
oDc5GxJfZ9NJ17vH15zo3KMNGlKO1WI9utkkx49DQChpXfQp1tBqVWIuT1xEKEXOFiTJxPZR7DZmJbneZis1XfSPHjQDSf3UjAeABgADR5XgH0AaYBsAEaAbdgeAAK4naAVHiDNbn5w51lgkbD5ZC9VNY5h2JADKvMY5yMPOcUfuIwwv7izUPmwizjhWPQ44mjBn18IzA4cFUQYWBw1xwjHc5Iy8BWgvdjmyLh2fuUk9U6Yy/pX50Q/UoDSeK2TW
uthCP0onD8uimN9DGlJswC4J/E1CQ79WKoqO1rY6CjKnlu1UrUXAFpAb+1d82YWKWM6gDDBCgBqQibmaxcUCKH0VaBR8KsIjMgNeKwuLXj1XwM4jWM4tynYzRjiIMN4jHC33xN4hNiZ6OJowl8C714QOpjxQPBKdppGF2dpErc3OIR4jzjT8m4gqLCnYN84wdsCvSPbAMkz+2/AqB88aQyFLFigmNLo2rDamSPPT58qfngsGABkwCoIZU8eADowD
OVqCAfuOZBJAGcAZdicKLEwBXBC+IaI144S+LvSGiExqNkLfStUcNr49HDY2K64sjl6KLwwukUNgBhLMHihwCNRE4Ad3WC1SHFkGA0QbiimyKBY13i3uFBYmbj55QgFfAtYozvQhyQOayDo6hV6a33xWSFo2UkI/Rpp/F1LLbjl+PwzQhJFsSp+AHZiAHwfHnABug4AHC1mgBLiEtIY0T2JdfknuLZqa/i47k14u/icCMupFfon+LCo3oiIqKcQt
DjeuMMYut8sV1u6A79CV2RIn5jMOyPUQqVWi1WgumjEeLiBGAt4ANB/MmCfAiYHTYj7P1TQiusHlk41deDliyfw3OZLkK2wRhCR8lfxQwTdzE+o4JjtuKJmBPo/qLF4euYEABnAAw5O9TT6dPFhgDZNYTpP21flbci9cLA4xIBtOLe485jFJjn1fXj7mJjYx5iG+NNo6eiNSPvIn99hBOGVcfA9QzIjL55nUIR2PPkq8x4o4hDIBNo+XeiaOIQA0
M9gKOmPHE1YqgKgxhjwQlKEk5QzTXzQ5LjpHgKmBtiuaRW3W+lmpDgAee8hAB4vSmwvxH8RctllyQYEw5jnuPA43YFJ3ne4i5jJsMhgs8iDaOf4o2iryPQPIHjoqP6fEuIXt0DkR6AHOJA8MHMRJFPwUgcJuLaYmv8WQJR46LC0eK8/FcQxs0auRFiDhIzopIdhdSOEwbdDkIzo0sdsWJvg76j9LhErascqTXoyCXhMlieQ5QB6AHAYiME/EU4Me
qAcojONCwjW0N8E17jBhMCEl1NyKMixEISx6P5YhxDryMiEl5jE2PvIsX8iX11iSiAkhLZFZ1ChmjI+CatwBMyEtBwKNiMSMFjuBREw2hDiYQqwn14KRLb5JbislyqEwMjNmmAlaOlsAH0Ab90YAEWKZPiOXjZIYRlS4g5eF6sjWmVoxgSppiPcN0ZQ2PiseqsAgJK0VF02uOxo0zieBJQ4vgTUgzN4wxjS/wLvKZR4CgkAiQSCOOvCIRAnUDtjB
19N6OodW/8vON2E0fjllTipXSVVw2KozqcJRjMnNe4+Uwd/EnjqUOVTZFjV92ryUW98eOG3fMsiXhUInniuGPHvdUZxOJLQ9j8i8VKTKkAHhh4ANHlJ7GWJFYwuZH5Eyx5rUV6EpgS3BhDY+riw2MK/WVlekJ5Y+fCYRIeYgVjB0LVIxUSBBP6VHLiyIQRxf9p7GSxPDiAmHl2iPUTTSKn7LejqUEUEvei8hPV/G1sBNWIVNjsOHl0ldPCT4FtIv
mtg8L2gwoDkG11Yj6jj2WJhLG1hewsEpfi8M1omQz5bBMnkcu0vIH2MeNRlQHuPEqIkKGq4cC5eDD22czC5YLV43k0EeFYE0djLENhXLP98CPa4wgi5RPM4hESZhPNomKjhAMt43V4J8Agma2CG7krEsE16OTAE2QT92L4o7A5eEA9oo4gcux6JWutgJM0uGY9OV2MEhO1jBIC4LASEsKJODlcwImgkwXsCkMX4+9j8BJlaQhIykNf7LFwusjlAN
gBOcGIAdRBBgDGeRkhU1k3APoArIUZYzqDG2Qg4sEToOOzIyES78i4EpCNOuIB4lfCzaNeY3HDNAA2AakCJWOAcVRA2KO4fCMVudXkEVw8aMKn3eYiCRIavdykYBP0DEBtaYKnggplVuJ3QovVTxzpEh4SduPCmOoTkCFtMbR5OfluGXPpbqGZJcEU41gPpVqCehOq4tXj1aP8EuiSPuJn1H6U4OIzg88SZRI64q8S3+Ov5P0cSRyIYp4D7cNeOa
xUSKy21b6RbbWpHTvjAWPxEsLw2yAtsdsj7WxSfS38ycQC4pJd+PQSkvfsZEzROAj80pKE4mSM5mL9Eop1gJQBHJ/dyoHiY5Xhh3E5wOLQwXXZbZuZyhGPAjN9GhSokkxCaJIGEs5j6JNwuIuMLTxCo41CJhO0Y3Bif/1N4osSjBW7oEIpFnC9Q/UjgiOr4ajCMhLowqSS2wmH4s/CfOLNEzzsygVSk8jsiqLdEzJDUmTzw7u9pPhOE3G0uXVEdU
kSz6N2krni7hJqwmcSiZhxAvIjxikNAJhIOfggEcuIkj3rSA6hGCGWMQCFqIK+PZepMv2BEvoSbCNFEjliLxl+rdRjRtRr47gSOw26feNj+BIMY4sTgW1/4i7YsDnLAxiCWvzkVERF16OrvA0TQxRq2b1DC2JOorViDixX/LMVPQnlrZeD2MLJlLLUwuIS1emUdzzVrSR86Lw9g//CbkKsE/Mo9dW0kyQB9gCYIECQCEFVAXYAjjCMAHgAKgAQAD
qANEKjgsSkMmPhopMSz/RhNW/jjxLx9RS8pROckrBjLxJBky3CCwMLEiGT+pOqkrDjNehL8fCMHVRfhKE0GrxI49C89qK/ImWA59wLYhl9fUP2E5PCt4zdA1F58sK9CO6jTZzdidHIfxQ3jVLsfP0/jEzdFPm9tLWspxLQk06TpkQUnCzg/0Kp+Fn5lUMrKApg3CTnhfssKAG6ADoAJKxDNQA9OtQU6DTiPiKKwEUTUxLFEhiTzvwnY1rjZZPGE4
GTK41BkxvjwZKs4r/jqIIlY6wseeg1NKQIeUWVkJ3j++OVY25IMjla/JsCNuPS7Y6Nl6XG/D2IJ4KAXHaNu+XUkm1jamRN5ZHlioEaAJqQ7jwlfKXiqCEIAIQAkKCbmVbFMOJfPKvF4GNA457ji6hYE0vi2BKQw2GMOo3ak6bDOpNnY0otUOOVkkuTxljoIC04hICPcI9iN2LLvRygpsiNCdjEbGMA8UJDZJPJPNHMfXyefZGdwH2/jQ5RXPwyHS
JJf5JqAhjQhbkyk+ydspJew3aNtRyoqRkhKo0GAfUZwLjWAL/4KgHiAQYAaKgqAKeTHixLeczkVeLHw6sAy/nXkiWTteMbqDyCyAkf43eSzcLndAuTFZPnY4+TP+NPklGCjmVkEVZYGODxTN8S6yL1gL2BFWO/rSaSIpN8PYWZMSNo44tiHtBZ4gcjaYT7/WnjhWEvDYwSpryirTBt6ZVgkkkTZb1khTcwZ4KgzOeCTkKqo46SsiLUIlm0idD24r
TCPFD4VMJpIaKgANYBNABrOEpM8ABnAMs8S3kfwKrimWKDAA8SiDg3kyWSZ9R0gnspSBDak6US5ZJ6IhWS+iJ6kpvjohOJow2C4hLDTWhgeOGo2V+tcvn/JImCwP2/El3iCRPl4uQtT8K1nWAS2cNAfMtiVblzJHptq8OraIRCBHj72DDcem3Y9YfMhOX8+HHjIn2c/NaT0UXFubjiskJVuPJSadiSpMk5Euz7ErZR/Q1bJEKsfWHtE9Z9QhU2wB
EDqyyvw3pSSS1vY4TiwFMT3NxTaNCurKn4jqFIwUogH1VzxHaBSkxkAUgBVe0bQxWi7uK4QcaY4aJwUoMBNzU5qH6TGuL+klxd1ujIU/MivFxootiS6KMGTWhSWVg2AYuDHxLH+QqVFAI21Smi5lnCcMg965LkElVihml+hfhSWxLiI+NCIBQMNHD8OyPXgvVj3wMacXpjVbwewxms0XhU2eBsjJxlHYWsF9lLwxAMEiN0tFIV9AK9fHuDsVJGUr
KTfRPAU4jd6qMnkWz1aKhMgsgDegA8JKFwZwBEATcA7hg4AZNi3pPWebBSi+OQJb/Q5XDvwJO5FLwcwufCc/1ck3xTeBKHQ3qSVZPGFDYAbUJCU0FsS/SPFAGkfEP3UImMsGXz9OJSIBIJE55xHwI2Q7aCx+K3VM1tYhzaRbZCz9wR/GZtA8I40RO0k8Jxki5CsP3KorjVBt1ZwzM4tn2czEGcliH7k+mShijS4cJi5cMwAKFxP3iWJBuZMACgAa
oA2ACLxLQAOoAb0bn4exxA4kWShRJBg7ExbMluwewjjlKM4jRiLxJ8UyhS/FLcw4VST5NuUsdCHlNLgqdCFaDtXKVQXzXBBddkk6zxE7hSuzGoPA2AwkN1nU1SWTzypLslq1IhYk+jegXhY5IiQFJUwsZTxTwDk7cRIFK0hVoBJAFQQTI90LEYISQB8AGKTGWU6MAJqSEBW+LP4waRDeG2UoviX11d0NZZzIELjffloRL5Y3MS4ROmEgUDAlMMYw
jCJVMQZAPsE4RCwoASnOId497gEoKGPVEjy1J44A8s/lOUE/IT4iKDfEb8G1O/khjQWriGtKB8ROV/AsJJSxXYY/FTBDxyk0eQI42jpIhAEADpxaoArwCayC3wApyZAcXAVDn6w1TjH1wDYvcSmBL4WbTiqiAKwRWN/AK1XV0cE1MBkpNSZ2NYkp5jAeJ3UxdjiaK8w7NTIjnbBXhdWJVPUgjjvXV1ifWSlWK+UxuTDZh0DJ8CHGMEUnEiuXT3g+
m031IzLVns83UJ4/aS1iID4+7V/SJC/ekTQE2zHTLiioAgNfa1K1RAwhrIRcDpBP5NaQEZISqIYaIOYyySmBMBPKh5LcWGqeG0QTysOHMF11M1g4jSIhOeY28TOJKWonKcqNOOZN7dKHnhk35iLbHQceHiG5IPYwLoTZOo446isSO4094UGOMKpJqc+ez4IqMoNiyG/LYiLnVEXSvZRFwSpOLT0QNGUglTE9zAzIKjf6Js2KqxegASzRK9zAGwAD
FN3FApzTQBSAH8nfkS0CLkY57j9NJv/MxVjNMgQ45Tqjy8UvOSWJLcky5TuuI/47xMqmPxw6GS0yGF+GsDKPgWQ68I/JKqJUtTJJIikme1qcI3QrGSLZL+5JuFR7mLJeRS7WAtnMRSE1QfjT2SycnQEjeNHJAH/TbTEtIA05PsgNIr2CrI9FPKAOwZNwGIASdxr6T0Qvpk1gF5pSQU1t2KgEFckNK5mALFw1J2U0IhHFMr4arSbKWcXXXiTyKr43
lSnMKI05rSSNPYkqITyNMMYu3CutPC8SupNnSrkmKCSFH7lL8TneOVU0bTRJCbE3ISH1NbE2LCDAyiSVpSt4wa+XFT9iM4dAnT+/Vj4/BII3zX44WUnfVF43oBewC39OUBWMkgCQehBgETjIsJWoLK0leS0NNlOJdTY1Lp5RS9+hxsQ7MSN1LCEvMT4ROs0sjSlROLEpLNAAL9hJxIPunw4m+S7JhwYSvgoAM2E/airInOZF+SMoKvQvjT46NPot
Yi1nwyk4TTM5h0nJRpmqUpERYsOKxy7emlSdMBWc+5o6RvPXpcOmSglGNFcmD18U4BVjBP2brJ3hlm6OxTwpXEwUZdudM5U+tdZWQBkhQtp2P3kyzTzUKLkmhT2tOs47CjAAIqQc8UM2ONtJiDxMhZ1DOtnaPYg12iVZESXLrYL4LimDwsIz1POLl1D+wFwmtTAuMqhGNCvFT10521+NKpVG3TpkTS4C6SxeFpeKAAhAAOAHRCacTAGbMJWgGhcV
qBqamQgl88gRO7oo5iWbCzED7SjNK+0gKi+dJ1Xf7Tw9PzktxMqFKPk1yM+pNFU2hcRiNi9bETBVhlU5C9guh1wGxjcU0gMTXStkKzHH/oOe19xebTxvn9+fpTLZONU4wSv5wudLrES63UU5nCT41fA3l0bPyuEg4cJCVuE1CScWOdUr/p6JmeE8c0VChayNlJ+ZHvleYlShXrmWRkeoGmAK0cXz3Z0iNShMlTk8fTDNP+AGrS/PjyvZWlRhKmo3
7iX+PCEqPSbxPF01fTGKIoItx91tS1NQIjnzUsVF/RoxQ/Iw2SIiIsSfawq1PSU/OQLTVhYiR9P1MbnMoSeDI5g5udANPAU2oTo6UhFWkBXgEuVfYBlAC8gGujDU3m3ZQAoAG65egBz/0e0+Y5GQl90/fI1ljm6QPSV1Mzkyx8zNNwM/pCDeIIMkXTt1Nww2PSv+J8Ig9TjmQByCfF/MLZFA0jvhH77DK4D9MnxcbTMZP80zVSkBPKpcNVw5TwLO
C1wz0Ehd+Mi8NpPM4d/GOUwzmDktPFPCxhK6Nf7DJYd2AoAWUQWgD2xCnRWhJ1aW2tPBPeGUhEXtKL49jcDNP8cDAyp9NilbpDiBHq03OSuAKa0gVT5RKFUgJSwdOLE4YjUYOOZE6I1lmowjtEmII98emJEdM+Un8SWyJYlNHS/NIEUzwzl9zUEi8N70QkHfGTs8MUxTeDZFLb5G/SpJV6xRnt4M34rH0TBDMT3FaAK6KuPKn4yznglS0YEAHAEP
Yx5igVoOVc4AG4kl4i7uP4yekDGAKr3Q108jM+0+S8neFUYwWpPFKIXPiZ8zS2AoiCF9I+zJfSFRJX0kVTGKItXQACKVylYmVi7pnfEuu8fz1rEz8imDKUcYH8TRPNkgLTBFFSIya850UjowRQs9jIaJe4+Tz6UoXV+Whzo7LwrZ1C4nPCfDMHzK+jXUAf0nwy/kjIaNqFLN31Y9H5k3Ra3H1ghFiNYg7wxswuHMlsDvF2PYoxR4KYORYsyyXqjZ
qlto0O8EmTBPVbqLLVxPVGDDbBJiy62RkJy8OFMjDcfWBd8Cd9FPT2rDoDXnAUXXwRN+x3MXgdEuxJMmT0ygIsnB9E5PX8+SZjy4USHB9ERCimDXEyTNA3DFtoJDVoVUp4vaJ44n9SWEKauH2T/9PQk4fJl3zdUoCduJhYmVtj4gEDAqkA5aK2DGWjayl5VeXZ1OM+kui0A9O/5eXjrImRfFl9TtzRfQrMXjIorRrTzcMqM68SxdLMMqrMqmK1Iy
HSxqlgcDBVcxg97L6ENcmmfLoz4lIikoS4j9NhMotjBjJw8MHdeXwh3cIyBDL20l7CTtyfLZsy5NPQAHNRoVTFXZPjqCBn6RdpR2ipAY/jKQnDMj6SR9LtFAxhtOK+qWZNo50wkZDDrrgegJ8B+CT+PTtUUzMegNMyKFMX01NSrcJqMiXT+pPLIhzSHhGXHLqwM9LZFf8TsYN+EZh0ITMYM1GTz9Q/rI7DmvmrQVcynyRGw64SHLEVTYDQL6K3jD
dwegTEOf8zDBKAsnFg50VHubjQM4VG/Pk9BE3IgCAwrTlv/CSDsvDuok6A4LK3iA2AtDWXlK4hULOT/DCzvZKskQj9fGIRZXGlYLOmQNCyeOGeo9GE7N2+0LPZFKQdMhVhxNX9QbCzb/3iAbIcedBIs/7ZmLLyw09DC6KbhT4AyZMR+XMl8uhRM/qUHaCZgpJNCaXlMrnsaLLngJiyuJXtoLm83GO00KLiULNIsnCz5LMHIrk9XLwsJJHJU0wqU2
SzyLOy6BlduBg4shMCznGY1FSyTLPHMe2hdz2XRatpN0RJrHUyXlnFuS9A3zMg8OnVqNGhZBLJoplfM8LCL30AXJuQuECWYyW8AfH+QVyy5YIpIlW4UXmOjPHNaZK+ogeT9LnLTecT2HGjg+ipmsPrKULRUEH0AegB9sTKjXbMqCFP4r48jgXnUq/iLDjQM/Iy4ijuMq8zLqTdLa5FNzLeMwEiKjJTUwVSCxJ+MjNT/ilvUEIo7VS86GTckqIcM/
WBXXQpwyJxoSmfMr9TiL1E0Fu8p+P1Y8OVkhzIKSayIVOSgZEytkzRMhrdGK2FYHTMLWKbUxtSr8CKXJrdjjwSkrhAC6MJtOpdTdNvjY6yVHWFYcTVYuLOsnoxL+3E1I4SGLKOsvX1+p3ws3fAWt3DlNizCdMCs4oxzhJHgaUzPrIuHCDN+WmAaUCzH+jGzTbANvFvjUgtvzMPgo6zH+nfjX6z4bM/qE+DuqTWrJGyMsI2wRWs0bOapa9N04L44j
cNmOOPgqkTHQW2ku29110FMwnSpixJspIi6g14QGUVD4E3RImkIbNE0rPQRTIpshkzJi2LJP6yP5PikfeCuNE/qfztfrNWIlUt1bgVM72NznAaUtcFYu0JpPPS1qzLJYVNylMs4a9MeEib5YskzN3gpNBpFmyH4JT0D+G2jBPMFbK2wabMqLK34URcJbMmIFv9n8Ps4LyRbsN3jFSdd43OjOLtCST6Y2ut343Ns0r0H0XmzTWzOT1E0+uoJ2wP4U
yU2YNjdB9FZE1eIRmyEmT+SfrZRXW/1Ne5ODLijOfiDALy7A681J3j7F2Dlbxkgims1IOWMtszVjOI3KZThZUIwX58Po2OAXQiBmUhdHgwRsDqdY4AEDI2U4WhMvzM1Uj4miIn0goy7jPgPFCFzNKVIyPTjeOIM7Myw6y1xHEAvI0C5Rq8G7gWQ9RBAnHaES9TiUP2ordQbFWSU/ICT9IW4vmsSsMZLaLSPLwUI0my0XjtuXqFJs3gzbKDcdhn2C
jodtNAUyIz7kzveVLiIr2FlDqBrpWYAOIsIwGQsFYkABDqALyBEEw0KY988+K5mNshiH1FIj4sRVDQGQ+JMNORAGSSv6XaIxtQnJOr4wjSI9KB0qzTSNO7s/0c6RW9gYQItIBfvDbUFkLghDcIRwEGswVYgn0401Hj4TOvoykSfDNBU/Wz4BSlHDgdupX2szGdOK2zLYW8OKyOs6hyEuKugpLjpNImA8lF05meTZBd6SBnAQjBOC2trHgB7ANhcY
dxIBjVkr49GsHgkKm9odIxooTIjTXVyRuyKrJg4p3w+bCeM0ByXJPlkpqyqjJasnrjfjN7strV1ZIsoBtsbeI21WVTb5JGwVsi++INksjju32esZkU5dOP0+8t9ZzEOTito6MQEr3cyl1ZLYXCokMhYkUdU6IKZYwSb2JILeOzCHMHzACzIKVmMoiJQZgjdBvTxiVjOQFlJgRnAJ4BwGOlXV4AT9hAuZQAWmX2AGABkF2pAoRz/2yeET+y7/xlcO
tUMNJZIf+zIB1gjbVcQHLn0oGTGrN3M5qywZJj0nMyF00OAEaMFVESElt8N+kzIckZrGNV0qddmRWZFb3DhlM+s2uRzkJgtHwyzkNRUrbBmOIkw/kyJnIyIzRTOGJewgjMlEKpNcME0XG+AJwZc/g5+SAkcLT6ZbXwgt3pYiS91Dxyc9z1SPjqWW5lCnKqIHStAqMzEhDilHOTUqpzVHJqc1qyblPas+OTXv20sMy9BJOMvAlddYHUQNBzOnIiI5
kU/qWyopg8jkzIbQZiwIh1084UUlxAzFJcRnOL0tvkYrMS4yCjGHLztYCUkrIysZwAUVidMelJQNj8RCghWoENgRXgjIQSNF88tlJ4GOuzJHONRGNSg9LwXbeSLrWYk9MyVHMzMqBzbyLaslXojgHI2cAoUNTqtR1UtokuAILUwpLLUmkwZkIXDe9TSYMfUtsSVJKYYvrd5rOr0g2dpJW7JY6DokIZtPAS/ZP7aIck0wyf3KkBpgCSYn/4ROxPpB
qBJ8ltrNEBCMCeA4lyOhFEcvwNxHIHmHgYpHPQMmRzn/xVg37S9ZVOUqijcwJMMom9oHK8ks0oHwE1CT1BLbCig/aIwJmq2ZYU65NMc9zjbkimyZUgrSISfDYjHzkiQwnTuNFWI6bNXo24wyJU45WVcl3NRRDAzZNyZp3QAQgBdxjLiUbAXxCoILf13wV2AEeTRV1VdSDZzrXNc745NnlI+FljtDMxAFOCs5L5CGWTFHO8UwHSMzPckzzVMp2A3V
d19gHHPeejXIkfhT79HslnQ/cIISXNSZjSuFJG0rsxtckwc9VSKUJwcsM5ccwlLJwso1WjQsayM6PXDeRdeazfQuz9w3ifxRVyBNKjo12Cpj1zTNdzihKr073FgrMAk10z7hPis2iY4/mjpXkAJjlCaTABmMGibFCx1gEjAwjA65mfPDZS0yJEcg1wLXLrcnciTmL/ss5z4zNo8RMyEzOHoq5yO3PAcrtyWtPf465TzDPGWI5sQil1IsLVizN+Y2
WAKkGnc2jDZ3MFc2VwNZxnszZCbHNvqRsz6PCdU90zgix5fGjzKUVOAQIBegAyWVyjd83IEy1UyajmnPRMHS2A822VMIIrqFXY47ndSA2gIsNcU/BdIaFKM9tztzMRjW5zGXJB0xETm+OhlIDZ7zU6sa0pxeUIHXL5nwAYg8nkPNNY0oGoflIK/WszJtOXcsNJNeQtA/21mSxpMoQ01rM3cl6zL0Ic83jjRNK+s0IQvQk/jI48e7ztU0wTMBXJkv
eyxPgPs9tSj7PXzO94xXTxAquiGA32AIrSBmVpAGoUV8isUkSlJ8h39aQVtyIOc/fJVtAg805zsNK3kor8nXIa08oz6XPk87tzZPzvE/p99gGTYwACdIBvAFYVguWKxf7pKOPHs1pjJ7LP1I6iJtI8M+aTSlwvdDvlChKnRStj2wN/U3s1B324Qns17l1CZcJzo6iyfCnSn9yvVVqAZCh6AWAJmInqgUgSsLAFOPJgHtNfslC5efhrcwTzjxjGw3
+ysvIAcmcVwtjPEmTyCvJ3Mz4y9zKVkh5z0PJZWG3VUT2kCarZq22ig3L56wEogXBDM9L2w/08hmlMEACSeCNP0oC1dN2QE7gjbVNXsj+ZLmJ4bSTS5EI0k23SciI3uKioPxEYwY/jTgGwAWMjAVFagU4BKoBd9U/NSAGecmdS1nlgwtLyhPPS0GS8yjzMfMij21Wzkxnk6XPO84GtLvOoU67y6nNgch+9IdJWHdjFox2vkwKTCY1TkBRiZBKR08
KS53IA8AeNrHJYwmdshcP1si9jp+M8c0vVl1yGvQnSqbgX42KzLBLo8l1TH3Sm81/steEV7MXYEViR3KABs+kQohOMjqEIAFUS8fN4gIRYy9zrssLlMvMUzKDzedMYk7XZiv1uYmFCcxOF0rdT3XOZcx5zWXP64rrTrwj9gKog7eIjFdrhiyFfEj7zwiNRkxvEXGQ94g3MIQI8Y9lN4uN0tXeNmpzFTejtSBWVTCT4HbPiwoXC0hxcc6/S8xyE05
QinsI7UonNpcKicqn4K4ls9ZVpHeV2zFfJjHjqAOlIe9HZwEt41DJVBEDza3I+IuIo97zkvGDjGeRgHTojE1OucztyGXOK87HDbNNzvfYBQeJPMzaJAuntxTE8QOh5BefEhtKVU/nzBXP2dOyTfNLa8gYyOvPf01hCV90lrej1eaK0E9QSWSyt02LiDf0l8tH5s/Iv0lldB9m9EgvzgvMrHEjRAxPHNC4AKoFlAVOpts26gGcBpgHqgdFyFoUw8r
l4EwWyczyiv7KNwYTJ9vOt87Ly4D1+rAiD8vPeMypyLvOqc6PSGfJ7s+pyLeKsM/YILgSvkzUSFdKNwCZNXrFc40NyB+PDcifBer0Xczgj6zNPcmbT06PvMBKll5UhneQjj0OwEme5gnIwA6mU+U3gzZgKk91lvZVN4Mz09dNz9i1jQnOYwvIImKiolVxkKaoBnwB2DYGi1XV6AUXJn2xMIxlSNlIseD+ygAtyc0/Uq/hmgcALDvNQYobV8NLD0i
pzCvPgCu5zEAvUclly9ykzqNWotQjsZf3yCONlcbBQ2wgYMsxy7cXdSdpBfvIkorazp4z5rbNz3GLb5ddsQ7XNnG84ltIkNeNcs9AZ4yrxgSECC/MsOAq4QZJkwnL4CmI8r8B9AkvzhZQA2YqBFNTllBhY9CB0BTcBFNU5IY/j6rITk/xQdex3I9ypgArY4YNiTH1J8gw8W2VlZG5isxL5U5RyivJQ8jyTe3Pxfftyf+In8q3R5IDz9GdlJo3MpX
3IF/L58gVyLHPzNRKERXPPwlQTb9J7k0CSxKNvjf3i8aTws4FytVipsk7DCSIp40Mk1gu8zDYKZtIV8hFy6ZOV8wAykphYcqn4f20IwZiJ9gDgAdI8qQEYIa+lyAHzxWFZBcBsU6tyW/J28tmphPIR4UTymOByzaigkcN0CkccwHI+M2nyEAq7s93ybvPasoQSN9Kd2cykYjldlTpRx3LsmL6FDegcCsNzDPKNbHIT+jP+Ug+iuOw8CoCjqlLrUy
Zyi0y/HW/yVjKiMthUHWPYcYqBrgBq4TYAmsgjAICBa7R4AVWFk6UGAFTiNvJ4qdvz9nJUCw5zyRjWOD4K5YH5BJHDpPPKc/4K4AsBCowLgQoqYj3yzAtiEiELhlRkICLwZlXo07AKbGW5eaAtBrMegJBhliM2fWYL1d3mvA5D3FTjtNxyF8zxk7itUC3G8yrtN80sNbf9N/SLCGlSyAOl4+qBpdgLVTYxCAGFkbn4WZ2b8gTzLXN9MZep0yN5C8
TzoYxbsyGhrEMd85wiLNIgcogyszJBCxnyMPMU/DoKchhxXCxtXySazOKDVtHe8lpis9K+8igcUaPI8jVTN/J3ubwzvYxNWKz8Yn3L0xM5Gih6JcSEHnS6KQLyIjOJCkK8RimJU5KyaoHoAEwiOoDLPb2c7eVIwFQENgE1EdCwdnIKCp5p1OIt8uyEwAqw0rQL3SweMx1zJ2KFC/vykPMH8poKe3MZ3L99e7OsrNx9+cT+pCudavLO5YFgj3FiUw
YLiPOGCn74ST2RDJdzyAvo4pdcCZM75IUy9eXPY/718qOP8FdcHlzEfWr0z2I0Uv/SH3IAMsvQ73kbCjKwIwEpUzV1ZeKMAQ0YL9gIgXR5NwA0BfTCc6SHC/bchwB50ETzLKU+CsndcvOnCgXT6gpucwwKFPKuUgNNkAtgcl79tHJFUI0S5qi3CgPzs/GcgzoyCAs80q+JdVAK2KNypRWZo7gyuDM9jNgy0DG75aq5zAz9jL1FM7NAXcU8fYyZk5
H0qkylyDvUXFAqYX9i2FmYAeIAH7L22PHdtvK9C95o9vJOczQKdK3S4vqwStGgCsozYAoMC0ULMIta0tDzowtu8lESC72VkJBkAkONtOEL3hBCQrZ01QrlgDGSzZLrMvMKPXgLChgLZ4Isla9jOB39ff9JL9KSUkHynItGNfMsQWRf0tuSSvDfZalC3MxEdHQ036in/WOw5IKiimsLWzO4ikK8cQNCzYWUPxDYmXkAf2zvPamZY0Va5RghKQEnrL
wT+PLEcutyE4R5ChCK+Qtq0iUS1ul+C9WDZwoBCn5svjOqM4uTJQq9c43ztSLDhG6ZhuII4q8BdYGIUQjyJJOvUwVzpAiuAYkTwwz10w0yBjTXlOVyjoOZs5JlL/mEXaZz3wpOkjNyk5XVGMkKMrAAkWBkdIX+AO4jWgGDvBChSAF5jXVoAxCZUuOCLfIucApzFIsVpO3zrZAd8uoKAdLnCxoLgdKwiios+3N7sgADIdOV5F1Dgh0VCznztYClY8
wRyzIoigzyqIqqQGyLAQLhMs8KFR0JNHFSoYvLwu8LJ4JQ/KVyM/ImNC8LerQCPWKKBDyzsztSH8R/CrOIIwGKgGH1Q7juPQnlSrGqAQbo2AAClWoIylWgi0UoSWhZYyIEfzyqCwBzYV25YhDzZPJITOqK6fOX0kwKmounqfYAHxLQCgd5bdGoPDbUzIs36e9gj1GRk/USzSOGCuLk3DNsi0zyIYsGDIPC8SL8Cwds6jTRpc5NxovbEimz5+JJk3
VA+ezWMiQc50Uv0zoF7ROTsrdUia1z8gkLYfzNCpXwYKM0Ip/dewB0TYAkTFJ2tYsNMLFlQmqBUEFYyMgCYaK2854LZIutjPwTRwqKcnDT0wPajWlznXOKY8ejXfKq/KMKcIow83iSutMRYc5IbFnVBLVsUQDlcIKNhtP6i4YLD1Fa89wyN/M3VEkQ/HP2jPIFRJURU0pS21NrCzGL7k1KZHtThZSoILeRB3A6gAhBVCidMIx4NcLqARU9SAH/4e
RlFciDc75oGiLeCnE9Sov9CmSogHL6xDgCYAoaszSKOYqBCyMKJQtBC1lyfJMh0iOFM9TmWawKlQsOsZDx3XV+csPyRCFaI02SwYrsi4uKaYVxIh+NDJQfjbMs14xuFEls7RP2Qo8M7bh3MNus9rN0tUVDd/KlQlsyMYviikLy7dMpRPgxCJLYACqwNgA/EOjBFYX4mNkjYACEAFkK0mNGZY/0ixEPUUyzdvINwjQKxwuKc5RttXxni0KiRQvnis
ULF4ss4nmLrqn2AYUCC7z8DbnUtakzYkbja4E2XO8zHArQKakcuJWGi+oNpXKT3ISCMZ3lcnyLtyFBU9LsZJV4CriLCNxAgiugjtIkAIcsoACuoWK123W0eWlF3WJGeWkEhAHHPPI9vJFXcRBLeXNUCibIrfPQS1gDPAKytSOLsEo6k2qLLe05i74zuYuXiswKoZLjCuyZJ8QUY/1yVYE1NZ2lpCDK2feLpYuyEwo0C4vli9ryz4o5o8tiVJXRpY
byMlLTdVYjCQ0jDL8DPW2QqauK4osES+R9Icgbip/cS0nWMHr05eHo3QgAvIFkZKjhOZJKjZAi4EprCWF12lFtKah57FLY4WWQSfIZig+8YI05/dBj4POM4mqLcEqMSheKmXKXivSL2rLVkwAD2CX+ebT9khOKxW205A0liusTKD2kIQwthfIvw3FluwLAfAkN2IojOb70PUXUA+9zFov4C8R1HLTWDbSTCJKrZRoBzfHoiSqNlAH01Pr0qCADzR
8AdXUvkG4wxLXq7XTSppkKNTRLQ4p6SYozeADUi07yNIpp8vBLtItQ87CKYHIw8suSutJEILXoerKDhdppt00N6RryMwsns61cZpJSUuSSe22jsomSVPRhZMrpevNVikpSvRIxnTUyPLNCEZFLdTNxDSRSOEpE9S00sUto8lVzM2WY9FjVQVmN8YNTVQAvskXZra12bTa57wFa1HV1YwNYuSdZBymHiicUnGUqCspKEHXHYvkJagtZis7y5PIwio
fzPCNK8t74ovKto/dJOam+SiVs58X/aTcc6EuRCqiLv9DzGNfzC4oxC7GSFrPZQ06yTZwkUiUYjhKKXLQ1KOy0NOC0qHK63Go4jUv4Mn+KokttYvMlRDyf3Dt0sEB4cVPomsljRKAAz6XeQ6mwJHB1dWtRE/wZSpLJvQu5eC5KbfMgCh1zIaDbspDjwws7sghL01KIS0hg3J2y3Nq9CRm+iql1MyFrudvhBrNZYmEycwtPC+yK46NG8suK6lLTdY
msAFI9EphsfmVi0nCoS0qSpQJjFfOnEpaKEoCzcr0zxikMXf+irRiqsLjIqOCrZY0UZD2izadT6f0UQI5L8krNSP3TiopKS/e87jOafH5gFbWp83lKtIv5SjiSkRP55fYB6FKSNIIx5DEiBXVtWFO3C61FnphD8jeiXEu45YSRXApYCmvT3C1hsm0CCWJjc09Nnfz2kmvSfwIvQKpSDhUUg9T0hdTNDd7lD40IciRRj6OEwq1iBEqc3TSDdU1Wi8
iJTlTzAKkA6gEuVTgwe9EIwe+U+xQoADY1+wpqk3rJgWAHir1KrCPhtP1KIAoOncLYoUO5S+5LJ0seS6dLQdMPM8YV9gGCUmUKw03KQEFgbpmYXTDsSyDiBdq99wtzi7ITmmhBS2ezKPN2g92CbVJGiu0DIYrqDYwS5PSPc0qYxjIFwjjK/UmEgnEL38MOLRxyTP0EhexyChzdgtj14XPocxFzofP9k9UZUXPIiHgAKiNfYiwZB7F/WAARCAEOMR
+5+9NSYxK12EjL+FRLIfjUSrkLpSQqC0pLm7Mni/nSQwtHooXS6+Nf4hcKSvJH8u+99gHuUgWLvcizGTbtR3MDyUWLxVBc8L5pekshMg+LvYD4UrBy9hLM8gUcVPWWC7rYVPRa3LVLH0sGpOW9yyyx4+KsOXSXuW7CzQ1vSrEKrkLbzYj9xpRXQfNLKqLP8x0zLVOn422KEoGiMggCqTRdYmAB2sgQ1QU4FK1LSNZLDHhloxgg0FxUMpdwOEl7Sq
vh+0vS89tCrMuHS5tzdfx6iFrjp4vUi2eKHkrqS/BKGksISsxKvXIwQrzKpkFeyQqUNRM6Sgg5VtFe4D5TAYu6MuHZchhhxIZKJgoTeGZLfPM1/b19FkoCsqfMrspJYG7K9TLuy9GKAyMUy1VzmPVgoqn5KbFaAJZEbzwFtLvUqoI5wUjAQ0WoJaBjusrgyrAJTMv+edvguQuZS+mKRsrHYyeKxfgnS9mLZsqeS5oKlwpRQ+py3EMh0xHEsLkjco
qctsuIHRVTaMo4gsUiFn0iy00SvEoYrbqlCbWDXQVN8ywETYyd8HLc8hKSk9lNsz+TRmP4jE0yqsJmckTi64uTgW9DH4OFleIBVI0FOaBT1YTsAms5jgAqATi9irEFfHV1ZHE9SygFvUveaRGjR4rsyMqK5KWuSpmylKSji6NinMsIMsNL5sojSxbLeYsmQyxKiyEiIhHYYQpYxOTdRIHWw1nVF/KGC7ISZkz6M9fzlUqm0gJsUaT5TZrd0bLC07
xLkG3tE/D9DZwtDbVKDvB8/JXcjhIjyiJKzUu/Sn2CwM21ywXKn91pDXABGl1L6GdoacT/BZlECECEVRggeZJzpCHCAvjVwTdwJ9AtEBcNhyknioIDWnxnCxDzDEtb7XStHop0il5LPXLyQGDL8IoUQaQISxHWoos0dahIUH/l4HDGMehKXyl+RSIi5YpPihWLM0qCrJSSVpNkxHey1uMN/OmynTJOUUQEgrKUdITkV8sh8hhyXsszSOQF18qUOR
khmsOcAM4NUECJqEIBE0SHsdOkyki7S6uyDDD23GmLBpGLywXRwlCn0CESW3MhoW5Lq8rZi5cs68q6QfGjjAra0ppKM+HyCwyLa7xMilUMDHJDMcfBnwDdQz+EB8tlStIxh8vlwUfKeINPi2LVwf0wLKYZOSxG3TArqZR8/LH4J4zROdy8UsrYy1MNNLI3EQ0zUkxvOXFLq0unGZTKlByMAS5oqyherCkDuqmhUWkLGUip6PCKhHNH1E/0VHBy0J
/LLREN7UdLqKGDS2UTkPIby55LnotaC5MZcADpYsv9hJFEkSykYy2o+H5F93HfNQY9YCsIC11JfYDFwYFBmEtCShaVc3X2fQR5lTJBCLoCQ7P1i8wqpWCoK+ZL9fSxCA2tX+z0AQUlICPTeIQAA7igATABoVE5OG/ZNXRzpN4tC8okIHhByXCt4GzLYV0uc6pKa8tqSuvL6ksU8mzTZ0uIhXAAlZRqLLA5z1JxQveJKxOS9Z+9dsoaIDQrKIvgK+
8AdCqQKkfjwYonyl9IzCrDdF4V18tpTRopZJ1fZDW8Y11dE2TEWNRYy2TKaRK2UcZyj6O5yhaKtFN54wNsSNAWc8c09rXb1LyAQmnnyDN5zhmR8wYBmAAZUhn4rIU+GO4xehBLyvLRIBwHo7s8DDPQw0IT9crdcuOLGkoTiiQR+91e/Jv8Zz1lYhEi4IXYUu+YciqBivIqlVBV/cnLiispyja9yhJGS9BZsUuti0sLhMr/M3MkP1NoFP9TTUueyx
9zpHmm2OtKGSiLiEXIZwCW8wtU1UN6ANJyjACk6E645OiwCCM0qwx6EcfRH8sn0AQqEHSEK5+MUIvsy3liwwrEKyByYipIMjRzafVgXNWp/nhVBcVKTbEBRawsoUQabC4r9soO0X2BK+DRCt3KMdIBUvzIdVIUUuiyranQqFOyV23knRSyUBI/ZfQTiaS4sygtt2yhchOiPYkwslRTrbmptecwqsp0UiyQmRKpAfwl1EHCaGZ4nTB9zfvTWmRySU
4zQcvXadfkC1hkmGwi7DnbOWKVsDOrASajDDI2K4wzY4tuAg8zSDK1xJhBsYxViF6BQc0L8FULSMvOKyKxB8pqGdjT3ErHyzxLUCu+0cTUsy1rYLMs+YQfwWz8dQJDVPFTD7LrCv8drrIqU4QLg0UNAPnBx6w7LHTUXQsEAQjBY1F6AOC5DMvAdN+z8AmdrKQhQUPseANKftI0IQULUIrui2vKvRzmywkqPXOoXS7pnTzcfeuB5JCnoeXSfosvAb
/k/7xLUk8J6SsrMmvwAytYMvEKOXWAUt0NRrJ9IhnD7sOplTkrnL1LC+AS5IPBUl50v0uAgsL9vkCSip/cmqgQAR31IJ3gCYWRQMWgoGFRCAHgoADyDSsaYap97FwrqRRAvLgRw65LzbKsfUML27NDS3/LxQoWygAq0WkHc96K/hC1knsqE0ur6DQ87SWHK5HTRyvzi/dKrQxpMiUZi8Po1fREEWIMncHQuBx6A+Y8MUvDVdCr5osrS32TqCum0z
N0TVNzVKn5R2mgJIU4qQHagHnB/YKeQ0gBW6AuafYqTfNmqKvtzWlGXWwjzSu0C/fksR11y/AzJhJ0YyeijcsdK4kq6RVKfQCZRwLMvF+sDSPNEc2Ysiv/AMCql/MdsMcrjsrFcmKTEsKp4nEMysvXPHxLFJIXK8X16yT1i22cHl0HzN0C+Eo4CgNEdWJCrMkzQfKAtI8Nma3fFdNDY8JfjWCroVLIbYUsKGxOHFcRL9Ptk4KKv0yt03ZCFa00E2
TSHSPHEvgE/csQFUrteEqvi4N8ecsL8/1tyURxir5RigkHsfAA9riMg9xQePA01HVpCMECnMO8ryqzjOBj5Yxe4CGM5Th8+ULYoU0NyDDLwis/y7TskV1RyxcLKrzvvb+01amaLA9QRpNsFFBkIDCJyw2IZKqdyjByJ8Sgq8FyyRPEy0SiI6L942yd/vNy7QHy14Om/OILcAIvqd4q720p0qjArpSpAPyVNXXoAYqBOkFIAC5tZ8lRWLcjJLyE8g
qqWKqreT7igHLlZTiqjDO4q7qS01P4q0wKTKgq873ycFB1CQZKG7jxQm6ZH60XxdQrfSrgKu155KpM84MqztQi/TwKVKo24/WyDr2Z4k9isxTk9bjLe/0vCo/zx4O8cgILDQrEywTLmpRz81qdNdwsqlhKz9zX/KarsiIKOfm5wfJNA0FYvsrqAWhYWZIeGCY5gaI2AMFZ2l1wAYQtr8qNK1DEZJmjNVyDQHguYwKi7Mtui+fTIisbK6qrXMriK/
pVvCRCKc8VNcESolWBfmA5FAeUeajpKj6rNCpvSb6r00rICkorAVNxq8aqMW0YHWYtTkMCyNu88qPhipxyRDUcqwcTX0JknR0SOEP1ChZL7KuW0jWrBIRETBYK1apudB358y0VrbSj0uwaNb3LRkX8szZw4KpnuClsTrJc8p/SzdKUgq1TBqSeHNe5MhUDomRcshyJktvkK0t2CuKzPwr0GYCUgSsnkQgBGx03AaIBi3JKYHstA4JvpIdxTgFFXP
bZ9vzyq8YQmiPEqFojhZgmkX6tZ8LrKzmq54pRy3DKlPN3U/mrMOIJwhZVD8L8HD3tIk1v/PcKOqulq3IqvqsgqhSrMdMRitpSRcMbrAacrZLZypWLjVNyyoeqt4y7vEEC0hwt01eN5grnBJW9tq2sK+IKFFMHacwSc3IgAGcBT9hlAdB8qCEWpUjBwmg2KJqoZCrbiuToJSGbPWWljtnMHat4I2KJId/Kq6v0CmbKoiqbKp6L0exeihdMxwEZFX
gYi4BrI8yJFoJlAyMUfSqL0P0q+wXrcwMrkCvHy+4qu8jmspGL1ITDSEhzlbxZM0wqD3nQa+MqgvMTKu5D6uR3K1/tHFA6ZaIsuCENAfJht2E0ALeQdjHaXXHyhHPdCly8jYWDiqFcZmT95LCcH3xxKwXS8SvnC8Qq0ctqq/p8LgAtOVpQbdDMY7vKqwK6iyMt+8p7qy4qWISga38iF5TPc50ygku+SBKTu5OOcLWLSBWjyv4q46sxse+C/0riqt
TUqQHXZSqBDQAho/4AXWLWAJllA4K0coRyCj3oapAljnOutZhrpSKkyefV9Er3khsq5lx5q4fy+aqMFS4BaE1BKMqUXNO08r3soCvwC7IrJGoZKtEj1zIHq9kqHb3BYk9yPG36q0sLDTNCMj9LSwtFdUGrD2XfjQ0y59kVKo58p9g1fQXjX+zpsBbZuuSyszcAZwEYICz55ZTWAapJCMGdYvbYAUKRHdC5J0IcdONSKos5SkQr+VK4agkrP6s8k1
sqVemuAR8idojfhbWT/I0bMRTNvgNPUTqqDwvrMTZ0xavlqrjTFYqI7HoC6cvXXTita60v7GzMyHOy7OzzEfxImA/cjrNCrHYL5Mr2CvFLmcjKHI4LhZVsGbABjgF1GZVDegBuaeoBVgLHAVFZKoFnAt6TvJBvq5qwMDPBTbgM9rC7CRkyd5Nca8hTsMtrqlzKvGuU8/pUdOU1CJhS1h2BBYeyx+1NpRdDu6vAaz6r0oX1gbMLj4pga36rUSUdqU
TSglRy7eAVCHPzdaeqkXg93QGyu/y4SzFA1ypEyqVhWUOo7elrgfPAXHWqs0tVS7zz+bzp4m5dQgoZPPkxLQ3qeDAT1IAE40tK4sod3Abc0qTPQtKZalMGqrl1RJzRqqlrKW0/ilRqu5PkNYyrznA4SoSibYuxq7RSiVQM+TKsOL2KifJU4BE7LQdwxABnAPvVAKHQROiq3pLvAVjcPD3VXLgN+nSRwzJskcq/y7mq66tiKyFqfGtXCv8r/PDjSy
YjC/C8sIGCwGtD8ndK71D9hXPSrW0Dq7olQKK5hI4dglg4C9utYgo3K4qCv8WL8vVq4krCaOjAqCBnAVAJNwAPpPjxyzkwAFR5kJQycjZTuEF2qhGiWWIiJcZcqytw0tboFHI/ynlLkcvfqzxqBUrcyvhq8IooM345OyoCkpu4IQVfhWYiYCvCakcq18Qxa0GLsWqLikMq6ty6Y31ws9jwLK4dwqRhU0DMV7MJC7nicGqnIsaFm9KTq1b44XAfVA
PtFChKVCgARHE3AToAq7Oyqlqw/CpfpH5hdUPvqo6rYV3ZqzDLpstBaltr3WqJK66qG0QMitvK0yFe3W8yKMoY0il8qNgka1FqZaqdJaidx2qKKlAq/qoJxKFLsCrWa2Dqh/0ToSoCdpysCEBokOtAHegLD0pE9dpSzQymNPX0CKvia1Kl70o7QRYsjQJv8tdra4vXzChl3RMKaqk1NiUIwCMBc9yoIHkpiJI4mQqIeABivKjcdvy+PFjdna3VC1
prsyLQ6/lFeAzWKu5jnfM2K+0qSCKuqyNLLPhaiyHTlSA8A4dYXyJsC4pFc50Qvd6rgOt7q9FqwOqbAwTraLQgFDgzoNF065NsBsxN/ZDrOIqJCijr911M69Dq6PGjpAKdK7QIRC0ZHAKJiWgMTIQ5kfQAMCDONbacbOrQxUZdq2rfXYYQOUsNySur2GrQigfyHop6axvLJCuXCn+q3ovNy5TArFkwC/FdWnO5qeJd2qsSKaZq6MrrqcNromsxC5
ZqhpUuE0hzbKt/TAzMeTOdIvXTzWM6K7Cq3TLOa+Pp7WPVc1/tZeEz4KkAuDFzZZxRj8vUAYYBqeg6qfkT6askpWWlunBD9AccAL06ahoK+UvBattrvGvGFKy5XSveU7sr40tBBPoh0ricSodqNOqkarTqcup+qydqoOoh/GE5rbz0qlWq7avzwme59+znzDfKFMv+K2lsbfUTq9hxqUheGX0A+TkqjKZ5CQi5IZkgqQEMeRrhAgCWRAzBBlz66j
StZaWkpW9rXFKwnYMKOatfq59q3Wom6mdLPWum6pOKjYLwwe+lXgGBAbagFnUtOKATd3QIOcJxSWhoylFqQ2vrEoVYx2ut6UvzN5ENAb+DH7g6gWrhHLlV7MCRaQrLCMSlDEONK75r+hIcajHV783C2B9ryqqba11qPGtfalsrv6rpFFbE/3EOAZ/lbaJT0+Np2IBcPKSrI4Ey6jiD2rC8QsYK5pLga0Gd1bgKwwhtua2Wkz0i2PSlapADvC31s7
Sz+TMNYrCqY6qV82rrqsqSWXRrEECpAYmoXWLeaigBmAApCsyFF6wjEovp32PcoxiqgsVrXRxq6+yuik6rgWrOU6ii5sI/K8NKpOpNyqgkLEpWyocABwRK2RrMPewz5fd0parW6iJqZqwWVMnLSAsWaxWqj7VphCKzY2uNnU/t/HP94qNCA3lmS7or9tNUlaXDgDLfDR4jZgIqATm0l5GgJVoBBZAfVaJsi+0A9DZTuIlvy6B1EQGsdaHsOwDwgt
5sqooVImpKa6pfaqHq8MqdKn+qWksh03zwIvCdo/LdJo1syB3jQKuHa8Cq06xT6xjKKPJF8uH8VPWFvWCr5J0L0h7LvYi2rISC2VxtA6jqj91P6vlMjQLtuK/r16umq+gspIN8SK1LX+0ZIWkLhcl5VWkB4XAOoaFYAY3qgCgABgCL3NvqGeoZqpnri6tdLP5qjcAqS1YqMGLGErnrKqsLI7hqaqsEAvhr3kvi6/+tzMmjLDnyqXVRQE4BVQtNRG
XqBdzX6vQqMNxVMwf03UVuysa5JkvIGnIUtWp6K0TC6PTAg4WUiwlIwX5143woAc4LAQ1/YhNE2AB01UjBjfK+PAviTByZ6w7cvetNPWQsuUs56rDLm2sh6hAbeaph61d1AYyto5jhkSmO9a1J8io/rHaiMuuX62SrZmpCMEayvcWfSvSr9bMpEVGzywtBczHIFSpoG0vqrQ3x+IOThZV65DqBjQAyq6hZlAEbQmJyl7xTUeYBW8ukY/b9/Cuvaz
3rWeuhjL7jOUt78gjSh+rfq6QbIuokKr+qpCp/q6aDIdPihY9RyMvxyiMVctzegC8zxJJq6CBrmm0IG3LqVUss4TsSCSJRpbLKbQJJpG/Cc0snyh/r7zFJakJyJDQnq60DahuOaiCjTmtwqmobM3VpMod9+dmsAMXZJAEBvY4wZCrnaGxRZeCdS/pcPmoLqiT1a8Ssw7etwBulUfJiiSGda06rbSvOqudiuYv/y3Yr/il2ABdL0/Wcgq4IHGzF6l
LqZMHs7dTq8esoPeSB3eNyGj3Lcx3GLV4h4MxrkAJy8eEYQI9wzOus81hL7HSRUxfMEzgTaj4bkq2Ta8VDEeUic9NrX+0RWaG9IDVagQx5qkio3ZBTK0h3kfKwylUaap4aM0XqjaCMZ9WFSXRKnSxdauAaLlJkGiFqG6p8aojKGjL+2Z0pd01sSx7NMO2YlJP8E+uOGrq9voTOGrbr3cuiyj+Zemy5uKIdUao3Pb4aLOt/i+/z4MkZG6Olb5S8gF
rr1ACZDQ0Ba7QIQAhBsAENAB4tXgDPa1kLesj2hCW0IIzqQG1qkRvfXPvrDcg56vvyIiuH6iIaIwr4qxqLQ+pIhSjSI+qLITzoTonzUugjbBVVY8EEmCV92fAb/Ty1BTApzhvpG5AwCHPKGqqlVattvL5IzBooKfPThxJD458xNaxtA86jSSmOHHhCAxopk0Mbb+pxq6mzRfQYGp/dqgDWSmqB2Il5wIgBqnUDnXa5jgHwAVciaGru4vhYW7Wm9A
LZe6KB66GMfPTm5Ubr0IqnS0fr66tqMnxr7NMNGjzwmmn3HCUClQuUtIORDhu59G0b9qLtG9VilBNFcweqmYzqDHAtI+LHEvaC6UICi1hLQrzXDaYL72XhUrxy+mLXuUslE3GfimUtK/SXGiKquitmcxPcUtQmUsSsqflOAUMEqCC5IKMAF+VIAL4TauG4yBDVVgUeaEzLh3SRKjw8HRzAGuM1MStLG8LrxuqxGybq5Bq+pTrT4utlgQ/I1P2g3F
IbhLkP1RIF2xqnXTsaW5OZGuD9gxthSxfLJv2oGn4bACKH5QoVKUQjA6XLdEwLiOjBpgBfEbgbuFRysaEq/20TbeEaqeWwgwsbOZzRoybK7kqfaqQaeeorGj1qcRpzNJurIdIPUBjkNdP9aqQCRwHgsoDrKRsb/BAofjhICk8KFaqV62JqDAxQDWUqMatpapYg4YvWPKFlJ6ry1SwbwFI+fS0Kn916AfoA6nS8JLyAOADAkfABBHF7AOjBeBs4IW
BVgtza4WxSrswyzczUCqv86wbsolAckkrQB+qxojUbwhqom18boetom1d19RmECKnC+XL2GsG17KjWwpfrE+pHa270eJtdypVK2Sry6pOitlEDGqQi/zIw3QONz2PyQ/Z9ZTA5smB8stTgfJ7KpNK3yvUxGxRES9AAZ3FBFRoBu3V7iqVdJAHWBe9VJ4TgEIlzFAtlkK/MetUYalnqYpXZS46qWYokGiibueqqq3nr44teShiVwQvxGoIxTaVttV
IqhxwI4xeiXDxx6zQa/JpX62703oGgE2kaQpryGpANhjJjsfzjCdKz2Rez6ZVaKvHTxazhmCNdzn1g63oEogroVKILKxRReQ6aIxu1aif8YKJUy/bj3IGAoTvU6MBzqIQBEKJZxZBSRQH69PbYIcMLqq4wGpNqmwoyZ9TZAtbpEcoWGsTq7StKY3irmyvam5vKAQwh0+LqzMl+/UArvEPT5JYTdVCtGqZqtBq6q/7caDyxaiDrYGqnankdsdJefW
KSS2NWmzXqhpToCuvS3Pw2UETS9dPmzOobSbLppf0bHSI1i+GqomVyagQL8mrOIz29WgHp+Hd9xZDakU65WBpqCQ3wpGOrsm1rexxRURp9OZzEG60r1isBmpYbD5JMS1YaOpqMVKXTIdOGqH453nIkCcSrt2LqYjibt0vx6+VQRJM1CmIcsu0jaqzcLQPRMw3qqWsCst+LTsONYrBqa4o5GqciTKsLKUSsXu02Mm5p9xtB1VjwKgH7cE64R1JBdI
bpypvPa35BNUOMm8KU84x76rkJ72psm/WjYBoLIzEbIhp4apAb5Q3j0rrS0yLm0Wfq4Zuxg775hVm1mlGSd0rRmworZpNm4uASJPkK6iQ1i8K8YvkrVj2tEucFiht6xKY1DrM/0jWsIkOJhIIy6+Q0atKbLuqGKRRCLerpIPbFX3TzKzcAy3MFgHpc/sIzxM0clyQYzHjrx50yLLTjHm15BO4ylWrDMPkJZ9Jfq4ULNRocm+ObEBpcQ28119O6ms
pB9rEI1fqbbTl7KxtUtwhbqnOapYt1m/Obxyolc+ezwprzTVuTWEsXmgSMIfMUla2LJrWZmg4iuVQdi1/sK4hK4dUBfQF+AGZ5BgDqaygCq7QtTcqty/h7TGNMzJrgdBczci25Up8b7opfGzebZBucmvcVyDIYm6mifnKQvKsCurGViLurRps4m8ji+431mh0almr7G9dcpB2DDXztQ6NqDWW9Lhx+5LlDKCzkypobY6v2CzNyK6IumxBBFv1jWT
kp8uD/tRetDQCkM3gtNwGpqS8rpRrvYV0Y7R2EkKOcvgplItc4kFvca1qbqJrfa6TqeAEsM4jLTKVwgR+sHKgYTJUKREQ4xBULVuuIW8xyECgyMdGbFUo8S7bq/yK1C0TT261SwksL3Ase7CQlcOvRnJvkK5vn/UeATptoG9KsNIWjpU7Sfk0bRcY58mAPAZplJ8gjANYAYXAqfE3yWmpFms/1EX3YzdgShQxXm0Lr6yq5qjebtRtBmnYqFZoBNe
oyGFKc8Bok9l1h0oJr8IyOykxadZsoPa+byFoz6xQiYlSRqvJq2PXoQ4UdsZ18Sz0DZJsT3cUQARogTOwAFaBgAKghXNnGeY4AEAE5kWoIvZtlhV9U4Rp86kyNsEycXJmLqyqhEkTqnfMcyoGbjaMFYv/LdIrWGgE1/jJZ8r1CjGyU6pUKSFCGwYXwL5r6SqkbqlummnsaYmr9XA9Cz7UMqmyyJJUu7HxarBqEw32NuzIgAEZ5M/lIAOadcADpsI
AFv+1UAJA1+jmgwwDztT2nm1JtmAOImtG9jqvEG9UaKqtjmwPqymM/K43LvyskDPMyvxunlIWKu8seyBwzaAWGwIfjTltCyvOaLFoLm0FLX5NVrCuKu4IQasSbwj3XXbZMFXJCsuVyENCy1c69JCRiyPvYEqTJVWcakqRCrUtL3aonMArk/cKKyxJrnFvikgvTA3z6nJgU0GnbmqHzO5szSPj18pNf7cy58SEzef/hAY1lXEC4mqOmAM4ZrK0Ks/
YkQ5sdTBRs55pLEBeaBnRPsUhS/epdckpi1lvzE+5zTEtRW+DVjzNrGqdzNjkdQ2TMfH2Q8LYAkZqHKlGaZmr1m5DlAXPvZR0Svcu37ZxzQ1peFRZt0P3zCzayCOvX7KdtRwR/CdlrIVOZsklrUUoBZDGdZTGMqtq52lOzW1KbZVq0aqnA2iiIcyL8Wy1aAZbZegC4vVgBGgAlVTcBgMp6ga7S2TiLK9p0uZgaJd3rGk0RdKFakIUfq/LAo5swY+
FbzlMRWkGbempaCmLrc81byiVjKiQnDKv9bBW5WZNK8Bt9WrLqLloWa7ByKFrcCyCk/DLlamvTFPjYrDrFdbyOIZGzesRMGraTaLxYWk9bvPwN9XrEEqRVrPNbN8rlW0UQ2L1iq0ghJAHLiRkhHDVEbeqQjAEgCdR4ZwIqAPkSuXmA4sbLc4yNWphqTVtXU07cbosfanBL15pUWxyax+oEq3/MgCq/aj7ozSU3izAblCqzEKiApevRqLIbeDRJWs
Cbb5r+iTuSU9BZw5KaiNueW8BShaKym9AQOAHpIYpYMmDy0qjdCuOYATnAIVlnsIFM3pvGGhWNxpjmWzHVA0qOnXtaYBskGlqb4BtQW7EaqxqDTTtq7quonCpBrcvmQ7K5QSiZvQlb7zJ3S3cjQHEj86/ztw1QEz6za6xqKzOYkh10nI1Se5LKUl0bcHK5hI4iOlvFPY7DjNsJY5ILmPPCzdxFsAA1woewM6S8gH5dMlUH0oWaONoMtMGNXazuzJ
F8jlPaayGhu0KmyqDb7Jpg20Ta3xvQWzHtP2vtwx+s8GDVmlWAkawI4vtNmJRMcsJqxpu0GiitVZuYSg9z+jSNi1aynx19xWGcViMM2rpwD4JPohpa/Foq2jxzF12UnbpsyL0q2pcq/aLPWlcRM6IJ4/si7Q3gqySc7hw2mgstWloWmsnYY2v9+TyKmFvP0rJcfKuk+T+csflhnLPYp4qfm8eMT2y2kxbb6ZXKBT+bk8U7GObaz7N3KtgAP3LqAT
f1P1vtAJBN6AFkAVrDhXy46oWa4bx8EvoT2c2SaeHCrsSkyNhqwerXmsLaRNqyW4db0csIY5E9k5qhmmiFkGU087P1PXWC6J6pg2sqWqkbwCl+RXpzubikU0QEJxKaUvda/KV6tGcrtBNxktSrksIkJVjjzZr106NkMBKtm1Hadeox/KlbVUyN6k5r2FtN6wNtBZR7mxtjUkv5wZQA4ACoSegB9fFEcY61tVtgARRLAPIkvdQywOOyY5mqzCk7tE
T8lFoyW8La3tqi66IbR1vGWWVcvIyhNI4rS80rEuhi5kET8a0aF1oyog7tDlMuW8YLFKu1Y4oTfQmILezMy9NFWw2KXqM63UcTfXBlraYyKisCc0XskhzuwqrrjeqrSmwqbZLcaDbNKUR4AbAB8AFQQLghX2KbmJuZ1rUqgI4BCiOOAJXQhHNClR7jExKFE2UgbJKak1fzhhGQw9oaB0nRGhFb/uNg2ysb8MsYo38qvxo/rbaITuTXSlIboTW/0A
YLcetB2rib5DENxcDrC5tSUgwNOEoq63j57Fojw0VaOtzKoy4bJyux4kza8spIK0TTKO2v68RTv4s0ajhbnyHaDJ/qqTVIATa5iAHXATMRQRsqgJgh7FAnceAiPCTKVJOTIzMy0V4JQRMj2i5jJPNlIkIa9Aue2iHrMlsNy7Javyq2WohjvWvi6rHr7Ki8fXfDLIm+OWZZfJtMWu3FnaVbqtXbFeuxm+nCvOzKwg3cqYMD3SaLd7OUa5jUXipvo7
/bRkTDlAA66HLYWk3qWhrNqxN4g22LPXfjmAFx5WNFgVE0TYhBe6GqCaFxBHI2Ui/iWVM042U4yPmaaDOTd+Unix7bINoMSwXbXtt3297beGre+YAQlYmsLIelX72GrVQbd01vmJTacNt/EusAlANZKq5bQptaGsmzpjKU2Tg9d+s1Sw9l5j1a3Joq6vBZ4nz8WeMv7a+MfPykOm9aLuoLW7ayE6qo2pP5JiiCaSQAbSwJqHr14gGSc8wBXhkD2x
QK9oUv4lOTnvBTEnA7fpPm9HnMBdug2kg6g+p1G2pyD9rNKDYA4hq/G9c4MClNG3FCpAhVBG8JefIL23ObdZvSKE4AjsKKUwDMcqNyHXPZsTJ7I06z1S3I6Y3Tj3iXqi3N742K6+mVWXR8YlJCjQrBUonbvbPcW4naQDrt2jer8hpn9Snb0AHqqBtNQmjqyGqA9ELFUtbZi+iJqNFDX5RQ01XimBMO8fBSR2MIUrtaKfI6apZbXypDS/ErhdqiGv
pr+etPk5bKtFqBxMSBojDrgzyabAuhRPG4T1IqW3w7KDy6sImCI2s2C5ca2IwQkzHJ+Sw+FRfNPCwb26Y0OxJ63Vcbquo/C3vb1CMLWqjbLqCUMyp16oAqCX24qCFIweUQU6m4mKXjX5QBQ94ijmL2hEw6GuPxgHqxjvIE2vAyzqq6k5Ya5Zs2W3JaiGKxyr8ajel9gHoLWnMPiMs1L1OAmpgyVhzTSjGay9rBS45Dqa2XKssk8C0NMs2aDurHGz
Gd2D34OnFh5sySHYk6ZVtvW+Q7koDAzJ3ad6qnsCz4qMB6gL2KE4w4AP7skd1IAIRwZwNflPHcVaL90xSwUMvHC4YQ0GPs1CDamptC27fahdtIOkXb+jpiGr/izctrGn3zAQGaYi2lJowA8BRjOFOl6pXbXaKg/O9Tbisg6zXk4LUEnR4qRmOxC+8L+kXAmi2aR33aWuCbqhKu6rkaf5qpNLhx/+F9U6FYmqkYSQhEdEO3fUF9aasDmkD1irJTk2
x4FIq0S+1yFlrqQUPS/grCGsU7rDqRW4PrdRodW66p2UkAmTewgcye89w6YoKZ/LC4QdrmOsHatTqCm6xa6RtXW5lqe5Iv8s/dNNpuW/Xb+T3jtMCSEKuM3X8yRp3OE8xod3Pl1W8cZjMFuDDrSwrD+LnDSsrG8izb7kzqotXyqTTxiqLQDwHE6BhYaElaXV4BlWmKWXPpG/KQM17TBVkilYGpZk05CL+pgzuwYZ+rQurqs/taA+sT2iLanJvE2/
tzx1oYmncjRIAKGOEi2DUvnWIpkWqIWwvaSFuodLiU10KsWoMqbFpe5PDrVmsLrD8V5TMz2Y2b9WKahIQ7hdTIafwy1tMCq6I7JMtjKoujoyt4Q4LiF7nAuzTZbrPMaIQ7SC25vXz9R7jahPkzb435aQVEMKvB6cKLzvCv88N5UQENqjjR8Lo2jKFi+Uzk9Cw5tKsOFMyrCilZdPpTV0SH4U7xXiBHgPBAGYOKMaWyNwy57XkzeB15MhRccbMIFe
Uy1q3lM3gcZMLNMj+cg7IpJIOzJSr10oQLCSX87dcFGLrdq6ch5s3ss5Rcn5sNMxKbLP1I2jPDktS9svXT8aphSLFSCmUWLabMBWsimllrJmnapdLsutgVvLPqx6o40CwarTqRcu2LOxnsKqk1kXEwABYDeIC+w4sJ32MYIRVpykBWJdZTA5sA8ZQKSgtUCqBwbXPKszAzpSKRwxqa4Vpjmgdbtzt6OhObt5vVRNEBSxIxg9hcVQwCyncLDNIzOy
+b+kumUVXbl1qiy/M7CmWI7eDr1bknGjTaJBz/OkeCTk1GM9GqaLPquq4adjrdAhO0xSu8/fWq3zoOO23acKpsKvXUqNuL6SgB+cDQUqYEWJj5iy2tCADvPOex/MTNcgOKiorOxEOL/UsEK34syqriuoTaMRsHW9ZbkVpD62M6o0vom+LqSyC+hDETmCRqbSIjUqHXY2Y78rqpGhJ4YTUCO59S8dvLgeDMTWMZagtwLQN1S2uFF2uplKILMXhOfc
rrGtv8bD/SKqIk0/fz/Kt+KjuaKTr8YmmksuHAAfSACQDp29UBPIG4AfKBoACugDIBygCIAC3AlgAYASLQ3xF0ZFkA0lkJugVkIABAocCdHYAjABcBgVEH6qDgSbpEABGAKbvSAaoB/eu5AWm6ybqyABm6PCXqPVm76bspu9UBe8W5u8m7ebqjOgW72bsputqRDThFumLNKbtQQfAFJbo5u80UsgBowSKBUKNqwbG7Sbp5u9IAFbp8lXTKAh2+gO
W7Kbt8RX1TG9ThAFWBkCCi0GlR9bvSARG7SACgAQxdKQHODEIAlaktu8QURQDtupVcroFwARBA5QHtulm71bsFu9IA3brgTOpIIYBZunbNKQFVAAIxd6Hycj0LCopbgPUBsAHDu/AA+oBC3Q3gAaBeCXHxxeDDRRoQ0AD/IegACACCgCEBx5Gdu8W6cRi1+Fm7BQBIAMVcjAF1u7G6K7p0hBcBFYjaaAoALPBIAcFYckC14X5bggDJMFu65yj/If
1Ts+3KAL/deQAAAChrNagBeAEuAce6x7rmsAABKXUBJ3GpmX+BrECHu3ABR7uoObCdSQA3u8e6/EDnuou6/bqyAPm6bQBlu1lFOAGh4Y0pJ3GzAUgAswF/cHO78QEyATu7pKsisV3bXk3RqdSb0bpq6YQAahSzAFEIi7rsADyUlkUp0dSaxdmAShAAO7uKa7u6+QFZRRgACogZAZG6a1RAockADABwtS9huxqisGeEoHv3KsNENQgyQHKBwAB/IZ
XRUSGAAbKAQAGygIAA==
```
%%

View File

@ -0,0 +1,89 @@
结构体层面
```
use std::io::{BufWriter, Write};
use std::sync::{Arc, Mutex};
use std::fs::File;
struct sometype{
pub writer: Arc<Mutex<BufWriter<File>>>, // 文件句柄包装
}
impl sometype{
pub fn new() -> Self {
let file = File::create("MultibodyOutput.txt").expect("Unable to create file");
        let writer = Arc::new(Mutex::new(BufWriter::new(file)));
Self {
writer,
}
}
}
pub fn write_header(&self) {
        // 按照这样的方式写头文件Time (s), Wind speed (m/s), Power (W), Blade root Mx (N*m),
        // Blade root My (N*m), Blade root Mz (N*m), Blade root Fx (N), Blade root Fy (N), Blade root Fz (N),
        // let header = "Time (s), Blade 1 flapwise tip deflection (m), Blade 1 edgewise tip deflection (m), Blade 1 flapwise tip acceleration (m/s^2), Blade 1 edgewise tip acceleration (m/s^2)";
        // "time", "TipDxc1", "TipDyc1", "TipDzc1", "TipDxb1", "TipDyb1", "TipALxb1", "TipALyb1", "TipALzb1", "TwrTpTDxi", "TwrTpTDyi", "TwrTpTDzi", "YawBrTVxp", "YawBrTVyp", "YawBrTVzp", "YawBrTAxp", "YawBrTAyp", "YawBrTAzp"写文件头
        let header_vec = vec![
        "time", "TipDxc1", "TipDyc1", "TipDzc1", "TipDxb1", "TipDyb1",
        "TipALxb1", "TipALyb1", "TipALzb1", "TwrTpTDxi", "TwrTpTDyi",
        "TwrTpTDzi", "YawBrTVxp", "YawBrTVyp", "YawBrTVzp", "YawBrTAxp",
        "YawBrTAyp", "YawBrTAzp"
        ];
        // 将字符串数组连接成一个单独的字符串,每个元素之间用逗号分隔
        let header = header_vec.join(", ");
        let mut writer = self.writer.lock().expect("Failed to acquire lock");
        writeln!(writer, "{}", header).expect("Unable to write header");
    }
    /// 写入 Vec<f64> 数据,每个值之间用空格分隔
    pub fn write_data(&self, data: &Vec<f64>) {
        let mut writer = self.writer.lock().expect("Failed to acquire lock");
        // 将 Vec<f64> 数据转换为以空格分隔的字符串
        let data_str = data.iter()
            .map(|v| v.to_string())
            .collect::<Vec<String>>()
            .join(" ");
        // 写入数据行
        writeln!(writer, "{}", data_str).expect("Unable to write data");
    }
```
调用层面
```
m = sometype.new()
somevec = Vec<f64>
m.write_data(&somevec);
```

View File

@ -1,12 +1,12 @@
{
"nodes":[
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9.2/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 8/10","x":-76,"y":-693,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9.5/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 9/10","x":-76,"y":-693,"width":456,"height":347},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\nP1 工况点稳态变形量求解F=kx\n- 文献调研,初步确定思路 done\n- 推导方程 done\n- 编写组建增广矩阵,求解广义坐标代码 done\n- 测试广义坐标到叶片变形量功能 可以变形气动Cp会改变\n- 连接气动测试,完成。存在一个问题,气动是否要用稳态模型\n- 直接迭代到变形量收敛 思路确定了 完成\n- x.qt x.qdt数据如何从dxdt.qdt拿来/更新,预估校正方法 steady中预估矫正方法去掉了\n\nP1 职称评审系统填写,材料梳理上传 盖章\n\nP1 数值扰动+回归的线性化方法原理探究\n\nP1 dtu casestab开源项目稳态运行状态叶片模态、频率计算方法研究。\n- 形成项目研究报告\n\nP1 控制信号到多体调研\n- 调研完成\n- 控制项目集成\n\nP1 产出的报告 线性化理论手册编写 完成","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force momentmesh.orientation = coord_sys.n\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架\n\n\nP1 编写线性化理论手册 done\nP1 上手Bladed \\ fast 线性化功能研究OpenFAST线性化实现原理 done","x":-700,"y":134,"width":440,"height":560},
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\nP1 bladed多体参数梳理 完成\n\nP1 控制调通\n- 测试编译方案 搁置\n- 上传git 完成\n- 封装controller_init函数\n- 封装控制模块结构体、计算函数等\n- 完成多体模块与控制模块数据传递函数编写\n- 完成正常发电工况功能集成控制模块\n\n","x":260,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 控制调通\n- 控制输入参数调整\n- 输出测试\n- 气动 多体 控制\n\nP1 湍流 气动 多体 控制联调\n\nP1 bladed对比--产出报告\n- 稳态变形量对比 -- steady power production loading、steady parked loading\n\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-693,"width":453,"height":347}
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\nP1 bladed多体参数梳理 完成\n\nP1 控制调通\n- 测试编译方案 搁置\n- 上传git 完成\n- 封装controller_init函数\n- 封装控制模块结构体、计算函数等\n- 完成多体模块与控制模块数据传递函数编写\n- 完成正常发电工况功能集成控制模块\n- 控制输入参数调整 done\n- 输出测试 done\n- 变桨执行器二阶微分传递函数通解推导及功能开发 done\n- 变流器一阶微分传递函数通解推导及功能开发 done\n- 气动 多体 控制 初步调通\n\nP1 报告编写\n- DTU Casestab开源项目研究报告\n","x":260,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 湍流 气动 多体 控制联调\n\nP1 bladed对比--产出报告\n- 稳态变形量对比 -- steady power production loading、steady parked loading\n\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-693,"width":453,"height":347}
],
"edges":[]
}

View File

@ -0,0 +1,13 @@
{
"nodes":[
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:\n多体模块完善 线性化模块开发\n### 每周盘点一下它们\n\n\n关键结果多体动力学建模原理、建模方法、线性化原理掌握 9/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果目标工况测试、稳态工况对比 5/10","x":-76,"y":-803,"width":456,"height":457},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 10月已完成\n\n","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 9月已完成\n","x":-700,"y":134,"width":440,"height":560},
{"id":"30cb7486dc4e224c","type":"text","text":"# 11月已完成\n\n\n\n","x":260,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 湍流 气动 多体 控制联调\n\nP1 bladed对比--产出报告\n- 稳态变形量对比 -- steady power production loading、steady parked loading\n\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457},
{"id":"86ab96a25a3bf82e","type":"text","text":" 湍流风+ 控制的联调bladed也算一个算例\n- 加水动的联调\n- 8月份底完成这两个\n- 9月份完成停机等工况测试\n- 10月份明阳实际机型测试","x":580,"y":-803,"width":480,"height":220}
],
"edges":[]
}

Binary file not shown.