diff --git a/.obsidian/plugins/copilot/data.json b/.obsidian/plugins/copilot/data.json
index 8841520..7f611bf 100644
--- a/.obsidian/plugins/copilot/data.json
+++ b/.obsidian/plugins/copilot/data.json
@@ -266,7 +266,7 @@
},
{
"name": "Translate to Chinese",
- "prompt": "Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n Return only the translated text.\n\n{copilot-selection}",
+ "prompt": "Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n 4. Blade翻译为叶片,flapwise翻译为挥舞,edgewise翻译为摆振,pitch angle翻译成变桨角度,twist angle翻译为扭角,rotor翻译为风轮,span翻译为展向\n Return only the translated text.\n\n{copilot-selection}",
"showInContextMenu": true,
"modelKey": "gemma3:12b|ollama"
},
diff --git a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md
index b952f0a..a18665b 100644
--- a/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md
+++ b/力学书籍/OpenFast/modeling of the uae wind turbine for refinement of fast_ad/auto/modeling of the uae wind turbine for refinement of fast_ad.md
@@ -747,8 +747,10 @@ In turbulent conditions, the extended flow field around the rotor cannot react p
Once wind-inflow conditions are correlated to applied loads on the wind turbine, structural models are needed to accurately predict and understand the complex interactions between their dynamically active members. Accurate structural models are thus essential to successfully design and analyze wind energy systems.
-The subsequent analysis develops the fundamental structural models employed in the FAST_AD design code for two-bladed HAWTs. The modifications needed to extend the model to threebladed HAWTS are beyond the scope of this work. Wind turbine geometry, coordinate systems, and degrees of freedom (DOFs) are first discussed in section 3.1. Since FAST_AD models the blades and tower as flexible bodies, their deflections are presented next in section 3.2. Expressions relating to the kinematics and kinetics of wind turbine motion are developed in sections 3.3 and 3.4, respectively. Finally, Kane’s equations of motion, which describe the force-acceleration relationships of the entire wind turbine system, are presented in section 3.5. Discrepancies between the models developed herein and those given by Wilson et al. (1999) and implemented in the FAST_AD design code and the Modes preprocessor code are noted using footnotes where appropriate. This chapter is devoted entirely to the structural models employed in the FAST_AD design code. Structural models, such as the commonly used equivalent-springhinge models of flexible blades, though simpler, are beyond the scope of this work.
+The subsequent analysis develops the fundamental structural models employed in the FAST_AD design code for two-bladed HAWTs. The modifications needed to extend the model to three bladed HAWTS are beyond the scope of this work. Wind turbine geometry, coordinate systems, and degrees of freedom (DOFs) are first discussed in section 3.1. Since FAST_AD models the blades and tower as flexible bodies, their deflections are presented next in section 3.2. Expressions relating to the kinematics and kinetics of wind turbine motion are developed in sections 3.3 and 3.4, respectively. Finally, Kane’s equations of motion, which describe the force-acceleration relationships of the entire wind turbine system, are presented in section 3.5. Discrepancies between the models developed herein and those given by Wilson et al. (1999) and implemented in the FAST_AD design code and the Modes preprocessor code are noted using footnotes where appropriate. This chapter is devoted entirely to the structural models employed in the FAST_AD design code. Structural models, such as the commonly used equivalent-spring-hinge models of flexible blades, though simpler, are beyond the scope of this work.
+一旦风速流入条件与风力涡轮机的载荷相关联,就需要结构模型来准确预测和理解其动态活动部件之间的复杂相互作用。因此,准确的结构模型对于成功设计和分析风能系统至关重要。
+后续分析阐述了FAST_AD设计代码中用于两叶片水平轴风力涡轮机的基本结构模型。将该模型扩展到三叶片水平轴风力涡轮机所需的修改超出了本工作的范围。风力涡轮机的几何形状、坐标系和自由度(DOFs)首先在第3.1节中讨论。由于FAST_AD将叶片和塔架建模为柔性体,因此它们的挠曲变形在第3.2节中介绍。关于风力涡轮机运动的运动学和动力学关系的表达式分别在第3.3节和第3.4节中推导。最后,第3.5节介绍了描述整个风力涡轮机系统力-加速度关系的Kane运动方程。使用脚注标明本文开发的模型与Wilson et al. (1999) 给出的模型以及在FAST_AD设计代码和Modes预处理器代码中实现的模型的差异。本章完全致力于FAST_AD设计代码中使用的结构模型。诸如常用的柔性叶片的等效弹簧铰链模型之类的结构模型,虽然更简单,但超出了本工作的范围。
# 3.1 Geometry, Coordinate Systems, and Degrees of Freedom
The FAST_AD design code models a wind turbine structurally as a combination of six rigid and four flexible members. The six rigid bodies are the Earth, nacelle, tower-top base plate, armature, hub, and gears. The four flexible bodies are the two blades, tower, and drive shaft. The model connects these bodies through 15 DOFs. Blade deflections account for six DOFs: two arise from the first flapwise, two from the second flapwise, and two from the first edgewise natural vibration mode of each blade. Tower deflections account for four DOFs: the first two natural vibration modes in each longitudinal and lateral direction. Rotor teeter, rotor speed variation, drive train flexibility, and nacelle yaw and tilt account for the remaining five DOFs. Each blade can be regarded as having a structural pretwist, but no torsional freedom is modeled.
@@ -756,7 +758,11 @@ The FAST_AD design code models a wind turbine structurally as a combination of s
FAST_AD employs several reference frames for ease in conceptualizing geometry and developing kinematics and kinetics expressions. Most reference frames, corresponding to a coordinate system formed by a dextral set of orthogonal unit vectors (denoted by a bold lowercase script letter) are fixed in one of the rigid bodies (denoted by an uppercase character).
These coordinate systems are listed in Table $3.1^{7}$ . A number of points on the wind turbine are also labeled for convenience. These are listed in Table 3.2.
+FAST_AD 设计代码将风力发电机结构建模为一个由六个刚体和四个柔性构件的组合。这六个刚体分别是:地球、机舱、塔顶底板、转子臂、轮毂和齿轮箱。四个柔性构件分别是:两叶片、塔筒和驱动轴。该模型通过 15 个自由度 (DOF) 将这些构件连接起来。叶片挠曲占据六个自由度:每个叶片的第一种翼向自然振动模式产生两个自由度,第二种翼向自然振动模式也产生两个自由度,第一种纵向自然振动模式也产生两个自由度。塔筒挠曲占据四个自由度:每个纵向和横向方向上的前两种自然振动模式。旋转倾覆、转子转速变化、驱动系柔性和机舱偏航和俯仰占据剩余的五个自由度。每片叶片可以被视为具有结构预扭,但没有模拟扭转自由度。
+FAST_AD 采用多个参考坐标系,以便于概念化几何形状,并开发运动学和动力学表达式。大多数参考坐标系对应于由一组正交单位向量(用粗体小写字母表示)形成的坐标系,并且固定在其中一个刚体上(用大写字母表示)。
+
+这些坐标系列在表 3.17 中。风力发电机上的许多点也被标记,以便使用。这些点列在表 3.2 中。
Table 3.1: Coordinate System Descriptions7
@@ -787,7 +793,9 @@ Table 3.5: Other Distance Variables
Relationships between the various coordinate systems, points, DOFs, and other angles and distances are illustrated graphically in Fig. 3.1. FAST_AD employs the convention that downwind displacements are positive displacements.
In FAST_AD, the bottom part of the tower can be modeled as rigid to a height $H_{S}$ ; thus, the length of the flexible part of the tower, $H.$ is defined as:
+图 3.1 详细地用图形方式说明了各个坐标系、点、自由度 (DOF) 之间的关系,以及其他角度和距离。FAST_AD 采用的惯例是,顺风位移为正位移。
+在 FAST_AD 中,塔的底部可以被建模为刚性,高度为 $H_{S}$;因此,塔的柔性部分的长度,$H$,定义如下:
$$
H=H_{H}-T W R H T O F F S E T-H_{S}
$$
@@ -795,7 +803,9 @@ $$
where $H_{H}$ is the elevation of the hub (hub height) relative to the Earth’s surface and TWRHTOFFSET is the vertical distance between the hub and the tower-top base plate, both specified while assuming that the tower deflection and nacelle tilt are negligible.
The sums of the tip deflections for both natural modes in the longitudinal and lateral deflections form the total longitudinal and lateral displacements of the tower-top base plate, $u_{7}$ and $u_{\delta.}$ , respectively:
+其中,$H_{H}$ 为塔毂(毂高)相对于地球表面的高度,TWRHTOFFSET 为塔毂与塔顶底板之间的垂直距离,两者均在假设塔架挠度和机舱倾斜可忽略的情况下指定。
+塔顶底板的纵向和横向总位移(分别为 $u_{7}$ 和 $u_{\delta}$)是两个自然模式下塔尖挠度的总和:
$$
u_{7}=q_{7}+q_{9}
$$
@@ -803,7 +813,7 @@ $$
and
$$
-u_{\delta}=q_{\delta}+q_{I\partial}
+u_{8}=q_{8}+q_{10}
$$

@@ -812,26 +822,32 @@ Figure 3.1: FAST_AD coordinate system illustrations
Since the generalized coordinates associated with the tip deflections are functions of time, so too are the total longitudinal and lateral displacements of the tower-top base plate.
In section 3.2, dealing with deflections of the tower and blades, the assumption is employed that the deflections are small. With this assumption, the tower-top rotations in both the longitudinal and lateral directions, $\theta_{7}$ and $\theta_{8}$ respectively, can be approximated:
+由于与塔尖挠度相关的广义坐标是时间的函数,因此塔顶底板的总纵向和横向位移也是时间的函数。
+
+在第3.2节中,关于塔和叶片的挠度分析时,采用挠度较小的假设。基于此假设,塔顶在纵向和横向方向上的旋转,分别表示为 $\theta_{7}$ 和 $\theta_{8}$,可以近似为:
$$
-\theta_{7}=-\Bigg(\frac{d\phi_{_{I T}}(h)}{d h}_{_{h=H}}q_{7}+\frac{d\phi_{_{2T}}(h)}{d h}\biggl|_{h=H}q_{9}\Bigg)
+\theta_{7}=-\Bigg(\frac{d\phi_{_{1 T}}(h)}{d h}\biggl|_{h=H}q_{7}+\frac{d\phi_{_{2T}}(h)}{d h}\biggl|_{h=H}q_{9}\Bigg)
$$
$$
-\theta_{\vartheta}=\frac{d\phi_{_{I T}}(h)}{d h}\bigg\vert_{h=H}q_{\vartheta}+\frac{d\phi_{_{2T}}(h)}{d h}\bigg\vert_{h=H}q_{I\0}
+\theta_{8}=\frac{d\phi_{_{1 T}}(h)}{d h}\bigg\vert_{h=H}q_{8}+\frac{d\phi_{_{2T}}(h)}{d h}\bigg\vert_{h=H}q_{10}
$$
-where $\phi_{l T}(h)$ and $\phi_{2T}(h)$ are the first and second natural mode shapes of the tower, respectively. In these expressions, the elevation along the flexible part of the tower, $h$ , ranges from zero to $H.$ . Note that $h$ equals zero at an elevation of $H_{S}$ relative to the Earth’s surface. Also, the derivatives of the mode shapes are evaluated at an elevation of $h=H$ as indicated. The derivation of these natural mode shapes of the tower is presented in section 3.2 where the tower is assumed to deflect in the longitudinal and lateral directions independently; yet, the natural mode shapes in each direction are assumed to be identical in each direction. The negative sign is present in Eq. (3.4) since positive longitudinal displacements of the tower-top base plate tend to rotate the base plate about the negative ${\pmb a}_{3}$ -axis. The generalized coordinates associated with the tip deflections are functions of time; so are the longitudinal and lateral tower-top rotations of the plate.
+where $\phi_{1 T}(h)$ and $\phi_{2T}(h)$ are the first and second natural mode shapes of the tower, respectively. In these expressions, the elevation along the flexible part of the tower, $h$ , ranges from zero to $H.$ . Note that $h$ equals zero at an elevation of $H_{S}$ relative to the Earth’s surface. Also, the derivatives of the mode shapes are evaluated at an elevation of $h=H$ as indicated. The derivation of these natural mode shapes of the tower is presented in section 3.2 where the tower is assumed to deflect in the longitudinal and lateral directions independently; yet, the natural mode shapes in each direction are assumed to be identical in each direction. The negative sign is present in Eq. (3.4) since positive longitudinal displacements of the tower-top base plate tend to rotate the base plate about the negative ${\pmb a}_{3}$ -axis. The generalized coordinates associated with the tip deflections are functions of time; so are the longitudinal and lateral tower-top rotations of the plate.
+
+其中 $\phi_{1 T}(h)$ 和 $\phi_{2T}(h)$ 分别是塔的第一个和第二个固有振型。 在这些表达式中,塔柔性部分沿高度方向的坐标 $h$ 从零到 $H$ 变化。需要注意的是,$h$ 在相对于地球表面的高度 $H_{S}$ 时等于零。 此外,振型的导数在高度 $h=H$ 处进行评估,如所示。 这些塔的固有振型的推导见第 3.2 节,其中假设塔在纵向和横向方向上独立挠曲;然而,假设每个方向的固有振型在每个方向上是相同的。 方程 (3.4) 中存在负号,因为塔顶底板的正向纵向位移倾向于使底板绕负 ${\pmb a}_{3}$ 轴旋转。 与塔尖挠度相关的广义坐标是时间的函数;塔顶底板的纵向和横向旋转也是时间的函数。
Attached to the tower-top base plate is a yaw bearing (O). The yaw bearing allows everything atop the tower to rotate $\left(q_{\delta}\right)$ as winds change direction. The yaw bearing also has the flexibility to allow everything atop the tower to tilt $(q_{\cal S})$ when responding to wind loads. The nacelle houses the generator and gearbox and supports the rotor. The center of mass of the nacelle (D) is related to the tower-top base plate by the position vector $r^{O D10}$ :
-
+塔顶底板上安装有偏航轴承(O)。偏航轴承允许塔顶所有部件随着风向变化而旋转($q_{6}$)。此外,偏航轴承还具有一定的柔性,使其能够在应对风荷载时允许塔顶所有部件倾斜($q_{5}$)。机舱内容纳了发电机和齿轮箱,并支撑着风轮。机舱的质心(D)与塔顶底板之间的位置由位置向量 $r^{O D10}$ 描述:
$$
-\pmb{r}^{O D}=D_{N M I}\pmb{c}_{I}+\left(D_{N M2}+T W R H T O F F S E T\right)\pmb{c}_{2}
+\pmb{r}^{O D}=D_{N M 1}\pmb{c}_{I}+\left(D_{N M2}+T W R H T O F F S E T\right)\pmb{c}_{2}
$$
Blade 1 is at an azimuth angle of $q_{4}$ . The zero-azimuth reference position can be located by the azimuth offset parameter $z(4)$ . Blade 2 is naturally $180^{\circ}$ out of phase with blade 1. Drive train flexibility allows the induction generator to see an angular velocity that is different than $n$ times the angular velocity of the rotor, where $n$ is the gearbox ratio. The twist of the low-speed shaft is, because of its torsional flexibility, modeled with the $q_{I5}$ parameter. The azimuth angle $q_{I5}$ , is essentially the sum of the azimuth angle, $q_{4}$ , and the twist of the low-speed shaft.
-
+叶片 1 的方位角为 $q_{4}$ 。零方位角参考位置可以通过方位角偏移参数 $z(4)$ 确定。叶片 2 与叶片 1 固有相位差为 $180^{\circ}$。传动系统的柔性使得感应发电机看到的角速度与转子角速度的 $n$ 倍不同,其中 $n$ 是齿轮箱比。由于其扭转柔性,低速轴的扭转由参数 $q_{15}$ 进行建模。方位角 $q_{15}$,本质上是方位角,即 $q_{4}$,与低速轴扭转之和。
If applicable to the wind turbine under consideration, teeter motion of the rotor is about a pin (P) fixed on the low-speed shaft. The position vector connecting the teeter pin to the tower-top base plate, $r^{O P}$ , is10:
+如果适用于所考虑的风力发电机,转子倾斜运动是绕固定在低速轴上的一个销(P)。连接倾斜销到塔顶底板的位置向量,$r^{O P}$,为10:
$$
\pmb{r}^{O P}=D_{N}\pmb{c}_{I}+T W R H T O F F S E T\pmb{c}_{2}
@@ -841,42 +857,53 @@ For an upwind turbine configuration, the distance between the tower-top base pla
The delta-3 angle, $\delta_{3}$ , orients the axis of the unconed rotor blades so it is no longer perpendicular to the axis of the teeter pin. In this case, the teeter motion has both a flapping and a pitching component. If the delta-3 angle is zero, teeter motion is purely flapping motion.
-Each blade can be coned a different amount ( $\beta_{I}$ for blade 1 and $\beta_{2}$ for blade 2), though the coning angles are constant, not changing with time. Coning begins in the very center of the hub at point Q, which is offset of the teeter pin (P) by a distance $R_{U}$ along the central axis of the hub (undersling length). The position vector connecting the blade axes intersection point and the teeter pin, $\bar{\mathbf{r}}^{P Q}$ , is:
+对于迎风式风力发电机组配置,塔顶底板与偏摆销在 $c_{I}=e_{I}$ 方向上的距离,$D_{N}$,必须小于零。
+delta-3 角,$\delta_{3}$,使非偏摆的叶片旋转轴不再垂直于偏摆销的轴线。在这种情况下,偏摆运动既有摆动分量,也有俯仰分量。如果 delta-3 角为零,偏摆运动纯粹是摆动运动。
+
+Each blade can be coned a different amount ( $\beta_{I}$ for blade 1 and $\beta_{2}$ for blade 2), though the coning angles are constant, not changing with time. Coning begins in the very center of the hub at point Q, which is offset of the teeter pin (P) by a distance $R_{U}$ along the central axis of the hub (undersling length). The position vector connecting the blade axes intersection point and the teeter pin, $\bar{\mathbf{r}}^{P Q}$ , is:
+每个叶片可以被锥入不同的角度(叶片 1 为 $\beta_{I}$,叶片 2 为 $\beta_{2}$),尽管锥入角度是恒定的,不会随时间变化。锥入始于枢轴中心点 Q,该点相对于偏心铰链 (P) 沿枢轴中心轴(悬挂长度)偏移了距离 $R_{U}$。连接叶片轴线交点和偏心铰链的位移矢量 $\bar{\mathbf{r}}^{P Q}$ 为:
$$
{\pmb r}^{P Q}=-R_{U}{\pmb g}_{I}
$$
Located between point $\mathrm{P}$ and point Q, along the central axis of the hub, is the hub center of mass (C) (not shown in Fig. 3.1). The position vector connecting the hub center of mass and the teeter pin, $\bar{\pmb{r}}^{P C}$ , is:
-
+位于点 $\mathrm{P}$ 和点 Q 之间,沿着轮毂的中心轴,是轮毂质心 (C)(如图 3.1 所示未标注)。连接轮毂质心和摇臂销的位移矢量 $\bar{\pmb{r}}^{P C}$ 为:
$$
{\pmb r}^{P C}=-R_{\phantom{}_{U M}}{\pmb g}_{I}
$$
Similar to the tower, the root of each rotor blade can be considered rigid to some radius $R_{H}$ representing the robustness of the hub (hub radius). The length of the flexible part of each blade is thus $R-R_{H},$ where $R$ is the total radius of the rotor (also not shown in Fig. 3.1). The flexible part of each blade is assumed to deflect in the local flapwise (out-of-plane of rotor if pitch and twist distribution equal zero) and local edgewise (in-plane of rotor if pitch and twist distribution equal zero) directions independently. Local means that the flapwise and edgewise directions are unique to each blade element as defined by the sum of the distributed structural pretwist angle, $\theta_{S}(\bar{r^{\flat}})^{9}$ , and the blade collective pitch angle. Unlike the tower, the natural mode shapes in each direction are permitted to be different. The natural mode shapes for each blade are assumed to be identical.
+类似于塔架,每个风轮叶片的根部可以被视为在一定半径 $R_{H}$ 内刚性,该半径代表轮毂的稳固性(轮毂半径)。每个叶片柔性部分的长度因此为 $R-R_{H}$,其中 $R$ 是风轮的总半径(如图 3.1 所示)。每个叶片的柔性部分被假定在局部挥舞(如果变桨角度和扭角分布为零,则为风轮平面外方向)和局部摆振(如果变桨角度和扭角分布为零,则为风轮平面内方向)方向上独立挠曲。局部意味着挥舞和摆振方向是每个叶片单元所特有的,由分布的结构预扭角之和 $\theta_{S}(\bar{r^{\flat}})^{9}$ 和叶片整体变桨角度共同定义。与塔架不同,每个方向的固有振型可以不同。每个叶片的固有振型被假定是相同的。
+
Because each blade can have some distributed structural pretwist, defining the deflection in two directions is complicated. The most viable method is to define the total blade curvature as the combination of the local curvature in each local blade element direction (flapwise or edgewise), resolved into in-plane and out-of-plane components by orienting them with the structural pretwist and blade collective pitch angles. This curvature can then be integrated twice to get the total deflection shape. Assuming that the blade deflections are small, the local curvatures in the flapwise and edgewise directions at a span of $r$ , and time $t$ , $\kappa_{\/F}(r_{\/,}t)$ and $\kappa_{E}(r,t)$ respectively, for blade 1, are11:
+**由于每一叶片都可能存在分布式结构预扭角,因此定义两个方向的挠曲变得复杂**。**最可行的方法是将总叶片曲率定义为每个局部叶片单元方向(挥舞方向或摆振方向)的局部曲率之和,通过与结构预扭角和叶片整体变桨角度对齐,将其分解为平面内和平面外分量。然后,可以将此曲率进行两次积分,以获得总挠曲形状**。假设叶片挠曲较小,在跨度 $r$ ,以及时间 $t$ 时,挥舞方向和摆振方向的局部曲率分别表示为 $\kappa_{F}(r,t)$ 和 $\kappa_{E}(r,t)$,对于叶片 1,为${^{11}}$:
+
$$
-\kappa_{\scriptscriptstyle F}(r,t)\!=\!q_{\scriptscriptstyle I}\frac{d^{\,2}\phi_{\scriptscriptstyle I B F}(r)}{d r^{2}}\!+\!q_{\scriptscriptstyle I I}\frac{d^{\,2}\phi_{\scriptscriptstyle2B F}(r)}{d r^{2}}
+\kappa_{\scriptscriptstyle F}(r,t)\!=\!q_{\scriptscriptstyle I}\frac{d^{\,2}\phi_{\scriptscriptstyle 1 B F}(r)}{d r^{2}}\!+\!q_{\scriptscriptstyle I I}\frac{d^{\,2}\phi_{\scriptscriptstyle2B F}(r)}{d r^{2}}
$$
and
$$
-\kappa_{\scriptscriptstyle E}(r,t)\!=\!q_{\scriptscriptstyle I3}\frac{d^{2}\phi_{\scriptscriptstyle I B E}(r)}{d r^{2}}
+\kappa_{\scriptscriptstyle E}(r,t)\!=\!q_{\scriptscriptstyle 13}\frac{d^{2}\phi_{\scriptscriptstyle 1 B E}(r)}{d r^{2}}
$$
-where $\phi_{I B F}(r)$ and $\phi_{2B F}(r)$ are the first and second natural mode shapes, respectively, of the blades in the flapwise direction and $\phi_{I B E}(r)$ is first natural mode shape of the blades in the edgewise direction. The dependency on these curvatures with time is inherent in the generalized coordinates $q_{I},\,q_{I I}$ , and $q_{I3}$ . In these expressions, the radius along the flexible part of the blade,
+where $\phi_{1 B F}(r)$ and $\phi_{2B F}(r)$ are the first and second natural mode shapes, respectively, of the blades in the flapwise direction and $\phi_{1 B E}(r)$ is first natural mode shape of the blades in the edgewise direction. The dependency on these curvatures with time is inherent in the generalized coordinates $q_{1},\,q_{11}$ , and $q_{13}$ . In these expressions, the radius along the flexible part of the blade, $r$ , ranges from zero to $R-R_{H}$ . Note that $r$ equals zero at a span of $R_{H}$ relative to the axis of the hub. The derivation of these natural mode shapes of the blades is presented in section 3.2.
+其中,$\phi_{1 B F}(r)$ 和 $\phi_{2B F}(r)$ 分别是叶片在挥舞方向上的第一和第二自然振型,而 $\phi_{1 B E}(r)$ 是叶片在摆振方向上的第一自然振型。 这些曲率随时间的变化内嵌在广义坐标 $q_{1},\,q_{11}$ 和 $q_{13}$ 中。 在这些表达式中,叶片柔性部分的半径 $r$ 的范围从零到 $R-R_{H}$。 注意,$r$ 在相对于轴的轴承跨度为 $R_{H}$ 时等于零。 这些叶片自然振型的推导见 3.2 节。
+
+11 The curvature of a curve $y(x)$, $\kappa(x)$, is
$$
-\kappa(x)\!=\!\frac{\displaystyle{\bigg|\frac{d^{\,2}y(x)}{d x^{\,2}}\bigg|}}{\displaystyle{\bigg\{\!I\!+\!\!\left[\frac{d y(x)}{d x}\right]^{2}\!\bigg\}^{\,3/2}}}
+\kappa(x)\!=\!\frac{\displaystyle{\bigg|\frac{d^{\,2}y(x)}{d x^{\,2}}\bigg|}}{\displaystyle{\bigg\{\!1\!+\!\!\left[\frac{d y(x)}{d x}\right]^{2}\!\bigg\}^{\,3/2}}}
$$
If the curve is composed only of small deflections, then:
$$
-\frac{\mathit{d y}(x)}{\mathit{d x}}<
\ No newline at end of file
diff --git a/杂项/NV显卡显存占用查看.md b/杂项/NV显卡显存占用查看.md
deleted file mode 100644
index b623e40..0000000
--- a/杂项/NV显卡显存占用查看.md
+++ /dev/null
@@ -1 +0,0 @@
-nvidia-smi
\ No newline at end of file