vault backup: 2025-08-29 08:12:39

This commit is contained in:
aGYZ 2025-08-29 08:12:39 +08:00
parent dbd3d49118
commit 09465e575b

View File

@ -87,7 +87,7 @@ The derivation of the equations of motion follows the method used in Hodges and
# Order Scheme
To avoid unnecessary complications of the equations of motion, relatively small terms are neglected. This is done in a consistent manner by introducing an ordering scheme, assuming $\left(\frac{u}{R},\frac{\nu}{R},\frac{l_{p i}}{R},\frac{l_{c g}}{R},\theta,c\tilde{\theta}^{\prime},c\overline{{{\theta}}}^{\prime},\frac{m^{\prime}l_{c g}}{m l_{c g}^{\prime}}\right)$ to be of order $\varepsilon,$ , where $c=c(s)$ is the local chord, $\varepsilon<<1$ is a bookkeeping parameter denoting the smallness of terms, $(\mathbf{\partial})\equiv{\frac{\mathrm{d}}{\mathrm{d}t}}\,$ and $(\mathbf{\omega})^{'}\equiv\frac{\mathrm{d}\mathbf{\omega}}{\mathrm{d}s}$ . The angular acceleration of the rotor is assumed to be $\ddot{\phi}{\cal R}\sim i i$ . The ordering scheme is applied such that terms of order $\varepsilon^{\mathrm{n+2}}$ or higher are neglected, where $n$ is the lowest order of a term in the expression.
为了避免运动方程的过度复杂化,相对较小的项被忽略。这通过引入排序方案以一致的方式进行,假设 $\left(\frac{u}{R},\frac{\nu}{R},\frac{l_{p i}}{R},\frac{l_{c g}}{R},\theta,c\tilde{\theta}^{\prime},c\overline{{{\theta}}}^{\prime},\frac{m^{\prime}l_{c g}}{m l_{c g}^{\prime}}\right)$ 为 $\varepsilon$ 阶,其中 $c=c(s)$ 是局部叶片弦长,$\varepsilon<<1$ 是一个记账参数表示项的微小程度$(\mathbf{\partial})\equiv{\frac{\mathrm{d}}{\mathrm{d}t}}\,$ $(\mathbf{\omega})^{'}\equiv\frac{\mathrm{d}\mathbf{\omega}}{\mathrm{d}s}$ 风轮的角加速度被假定为 $\ddot{\phi}{\cal R}\sim i i$ 排序方案应用于使阶数为 $\varepsilon^{\mathrm{n+2}}$ 或更高阶的项被忽略其中 $n$ 是表达式中项的最低阶数
为了避免运动方程的过度复杂化,相对较小的项被忽略。这通过引入排序方案以一致的方式进行,假设 $\left(\frac{u}{R},\frac{\nu}{R},\frac{l_{p i}}{R},\frac{l_{c g}}{R},\theta,c\tilde{\theta}^{\prime},c\overline{{{\theta}}}^{\prime},\frac{m^{\prime}l_{c g}}{m l_{c g}^{\prime}}\right)$ 为 $\varepsilon$ 阶,其中 $c=c(s)$ 是局部叶片弦长,$\varepsilon<<1$ 是一个记账参数表示项的微小程度$(\mathbf{})\equiv{\frac{\mathrm{d}}{\mathrm{d}t}}\,$ $(\mathbf{})^{'}\equiv\frac{\mathrm{d}\mathbf{}}{\mathrm{d}s}$ 风轮的角加速度被假定为 $\ddot{\phi}{\cal R}\sim i i$ 排序方案应用于使阶数为 $\varepsilon^{\mathrm{n+2}}$ 或更高阶的项被忽略其中 $n$ 是表达式中项的最低阶数
# Transformations