654 lines
26 KiB
Python
654 lines
26 KiB
Python
import numpy as np
|
||
import math
|
||
import akshare as ak
|
||
import os
|
||
from datetime import datetime, timedelta, date
|
||
import pandas as pd
|
||
import mplfinance as mpf
|
||
import sqlite3
|
||
import stock_database
|
||
import mysql_database
|
||
from EmailTest import send_email, parse_return_email
|
||
from dataclasses import dataclass
|
||
|
||
@dataclass
|
||
class BuyState:
|
||
trigger_time: float # 触发次数
|
||
buy_price: float # 买入价格
|
||
add_price: float # 加仓价格
|
||
stop_price: float # 止损价格
|
||
shares: int # 买入股数
|
||
atr: int # ATR
|
||
available_cash: float # 可用资金
|
||
|
||
@dataclass
|
||
class TradeLog:
|
||
data: str # 时间
|
||
type: str # 操作类型
|
||
buy_price: float # 买入价格
|
||
shares: int # 买入股数
|
||
cost: float # 成本
|
||
atr: int # ATR
|
||
available_cash: float # 可用资金
|
||
all_shares: float # 总股数
|
||
all_cost: float # 总成本
|
||
Net_value: float # 净值
|
||
Net_return: float # 净收益
|
||
|
||
def calc_sma_atr_pd(kdf,period):
|
||
"""计算TR与ATR
|
||
|
||
Args:
|
||
kdf (_type_): 历史数据
|
||
period (_type_): ATR周期
|
||
|
||
Returns:
|
||
_type_: 返回kdf,增加TR与ATR列
|
||
"""
|
||
kdf['最高'] = kdf['最高'].astype(float)
|
||
kdf['最低'] = kdf['最低'].astype(float)
|
||
kdf['收盘'] = kdf['收盘'].astype(float)
|
||
kdf['HL'] = kdf['最高'] - kdf['最低']
|
||
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
|
||
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
|
||
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
|
||
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
|
||
# true_range = np.max(ranges, axis=1)
|
||
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
|
||
|
||
return kdf.drop(['HL','HC','LC'], axis = 1)
|
||
|
||
class TurtleTrading(object):
|
||
"""对象范围较小,对某一个标的创建一个海龟,如513300,
|
||
计算ATR、唐奇安通道线
|
||
基础数据
|
||
Args:
|
||
object (_type_): _description_
|
||
"""
|
||
def __init__(self, TradeCode, type, riskcoe, Capital, cash) -> None:
|
||
self.TradeCode = TradeCode
|
||
self.type = type
|
||
self.riskcoe = riskcoe
|
||
self.Capital = Capital
|
||
self.cash = cash
|
||
self.TrigerTime = 0
|
||
self.BuyStates = list[BuyState] = []
|
||
|
||
self.tradeslog = list[TradeLog] # 交易记录
|
||
|
||
def GetRecentData(self):
|
||
"""获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData
|
||
|
||
Returns:
|
||
_type_: _description_
|
||
"""
|
||
Today = datetime.today()
|
||
# print(Today)
|
||
formatted_date = Today.strftime("%Y%m%d")
|
||
two_years_ago = (date.today() - timedelta(days=365*2)).strftime("%Y%m%d")
|
||
# print(formatted_date)
|
||
Code = f"{self.TradeCode}"
|
||
CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="")
|
||
|
||
# 将日期列转换为datetime
|
||
CurrentData = pd.DataFrame(CurrentData)
|
||
CurrentData['日期'] = pd.to_datetime(CurrentData['日期'])
|
||
# print(type(CurrentData['日期'].iloc[0]))
|
||
|
||
CurrentData.set_index('日期', inplace=True)
|
||
# CurrentData.reset_index(inplace=True)
|
||
# print(type(CurrentData['日期'].iloc[0]))
|
||
# create table
|
||
# stock_database.create_table(Code)
|
||
# stock_database.insert_data(Code, CurrentData)
|
||
# mysql_database.insert_db(CurrentData, Code, True, "'日期'")
|
||
self.CurrentData = CurrentData
|
||
# return self.CurrentData
|
||
|
||
|
||
def CalATR(self, data, ATRday):
|
||
"""计算某个标的的ATR,从上市日到今天, 计算后的数据保存在self.CurrentData
|
||
|
||
Args:
|
||
ATRday: 多少日ATR
|
||
SaveOrNot (_type_): 是否保存.csv数据
|
||
"""
|
||
|
||
self.CurrentData = calc_sma_atr_pd(data, ATRday)
|
||
self.N = self.CurrentData['ATR']
|
||
|
||
|
||
# return self.N
|
||
|
||
|
||
def ReadExistData(self, data):
|
||
"""除了通过发请求获取数据,也可以读本地的数据库,赋值给self.CurrentData
|
||
|
||
Args:
|
||
data (_type_): 本地csv名称
|
||
"""
|
||
self.CurrentData = pd.read_csv(data)
|
||
|
||
def DrawKLine(self, days):
|
||
"""画出k线图看看,画出最近days天的K线图
|
||
"""
|
||
|
||
# 日期部分
|
||
|
||
# dates = pd.to_datetime(self.CurrentData['日期'][-days:])
|
||
# # Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
|
||
Klinedf = pd.DataFrame()
|
||
# Klinedf.set_index = Klinedf['Data']
|
||
|
||
# 其他数据
|
||
Klinedf['Date'] = self.CurrentData['日期'][-days:]
|
||
Klinedf['Open'] = self.CurrentData['开盘'][-days:].astype(float)
|
||
Klinedf['High'] = self.CurrentData['最高'][-days:].astype(float)
|
||
Klinedf['Low'] = self.CurrentData['最低'][-days:].astype(float)
|
||
Klinedf['Close'] = self.CurrentData['收盘'][-days:].astype(float)
|
||
Klinedf['Volume'] = self.CurrentData['成交量'][-days:].astype(float)
|
||
|
||
Klinedf.set_index(pd.to_datetime(Klinedf['Date']), inplace=True)
|
||
# 画图
|
||
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian_up['Upper'][-days:]), mpf.make_addplot(self.Donchian_down['lower'][-days:])], title=f"{self.TradeCode} K线图")
|
||
|
||
def calculate_donchian_channel_up(self, n):
|
||
"""
|
||
计算n日唐奇安上通道
|
||
|
||
参数:
|
||
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame,包含"High"
|
||
n (int): 时间周期
|
||
|
||
返回:self.Donchian
|
||
DataFrame: 唐奇安通道的DataFrame,包含"Upper"
|
||
"""
|
||
Donchian = pd.DataFrame() # 创建一个空的DataFrame用于存储唐奇安通道数据
|
||
# 计算最高价和最低价的N日移动平均线
|
||
name = 'Donchian_' + str(n) + '_upper'
|
||
Donchian[name] = self.CurrentData['最高'].rolling(n).max() # 使用rolling函数计算n日最高价的移动最大值
|
||
|
||
# # 计算中间线
|
||
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2 # 计算上通道和下通道的中间线,但此行代码被注释掉了
|
||
|
||
return Donchian # 返回包含唐奇安上通道的DataFrame
|
||
|
||
def calculate_donchian_channel_down(self, n):
|
||
"""
|
||
计算n日唐奇安上通道
|
||
|
||
参数:
|
||
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame,包含"High"
|
||
n (int): 时间周期
|
||
|
||
返回:self.Donchian
|
||
DataFrame: 唐奇安通道的DataFrame,包含"Upper"
|
||
"""
|
||
Donchian = pd.DataFrame()
|
||
# 计算最高价和最低价的N日移动平均线
|
||
name = 'Donchian_' + str(n) + '_lower'
|
||
Donchian[name] = self.CurrentData['最低'].rolling(n).min()
|
||
|
||
# # 计算中间线
|
||
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
|
||
|
||
return Donchian
|
||
|
||
def calc_atr_donchian_short(self):
|
||
"""计算ATR、短期唐奇安通道
|
||
"""
|
||
# 计算ATR
|
||
self.CalATR(self.CurrentData, 20)
|
||
# 计算唐奇安通道
|
||
self.Donchian_20_ups = self.calculate_donchian_channel_up(20)
|
||
self.Donchian_50_ups = self.calculate_donchian_channel_up(50)
|
||
self.Donchian_downs = self.calculate_donchian_channel_down(10)
|
||
# 画图
|
||
# self.DrawKLine(days)
|
||
|
||
# 把self.N, self.Donchian_up, self.Donchian_down, 添加到self.CurrentData后面,保存到mysql数据库
|
||
self.CurrentData = pd.concat([self.CurrentData, self.Donchian_20_ups, self.Donchian_50_ups, self.Donchian_downs], axis=1)
|
||
|
||
def get_ready(self, days):
|
||
"""创建一个turtle对象,获取数据,计算ATR,计算唐奇安通道
|
||
|
||
Args:
|
||
days (_type_): _description_
|
||
n (_type_): _description_
|
||
"""
|
||
|
||
# if 不存在database
|
||
if not mysql_database.check_db_table(f"{self.TradeCode}"):
|
||
self.GetRecentData()
|
||
|
||
self.calc_atr_donchian_short()
|
||
Code = f"{self.TradeCode}"
|
||
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
|
||
else:
|
||
|
||
# 检查数据库最后一条的时间距离今天是否两天以上
|
||
current_date = date.today()
|
||
threshold_date = current_date - timedelta(days=2)
|
||
last_update = mysql_database.check_db_table_last_date(f"{self.TradeCode}")
|
||
|
||
if last_update < threshold_date:
|
||
# 如果不存在,则从akshare获取数据并保存到mysql数据库
|
||
mysql_database.delete_table(f"{self.TradeCode}")
|
||
|
||
self.GetRecentData()
|
||
|
||
self.calc_atr_donchian_short()
|
||
|
||
Code = f"{self.TradeCode}"
|
||
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
|
||
else:
|
||
# 如果存在,则从mysql数据库中读取数据
|
||
self.CurrentData = mysql_database.fetch_all_data(f"{self.TradeCode}")
|
||
|
||
|
||
def CalPositionSize(self):
|
||
"""根据风险系数、ATR,计算仓位大小, 存于self.IntPositionSize
|
||
"""
|
||
PositionSize = self.riskcoe * self.Capital /(self.N) # 默认用股票形式了 100
|
||
self.IntPositionSize = int(PositionSize // 100) * 100
|
||
|
||
def system1EnterNormal(self, PriceNow, TempDonchian20Upper, BreakOutLog):
|
||
# 没有持仓且价格向上突破---此时包含两种情形:1 对某标的首次使用系统,2 已发生过突破,此时上次突破天然是失败的
|
||
if self.TrigerTime == 0 and PriceNow > TempDonchian20Upper:
|
||
# 买入
|
||
return True
|
||
elif PriceNow > TempDonchian20Upper:#todo !=0不会满足条件 先跳过
|
||
self.system1BreakoutValid(PriceNow)
|
||
if BreakOutLog[-1][5] == 'Lose': # TT!= 0且突破且上一次突破unseccessful
|
||
return True
|
||
else:
|
||
return False
|
||
else:
|
||
return False
|
||
|
||
|
||
def system1EnterSafe(self, PriceNow, TempDonchian55Upper):
|
||
|
||
if PriceNow > TempDonchian55Upper[-1]: # 保底的55日突破
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def system1BreakoutValid(self, priceNow):
|
||
"""判断前一次突破是否成功,是log[-1][5]写入“win”,否则写入“Lose”
|
||
"""
|
||
if priceNow < self.BreakOutLog[-1][3]:
|
||
self.BreakOutLog[-1][5] = 'Lose'
|
||
else:
|
||
self.BreakOutLog[-1][5] = 'None'
|
||
# 一天结束,计算ATR,计算唐奇安通道,追加到已有的mysql数据库中
|
||
|
||
def system_1_Out(self, PriceNow, TempDonchian10Lower):
|
||
# 退出:低于20日最低价(多头方向),空头以突破20日最高价为止损价格--有持仓且价格向下突破
|
||
if self.TrigerTime != 0 and PriceNow < TempDonchian10Lower:
|
||
# 退出
|
||
return True
|
||
|
||
else:
|
||
return False
|
||
def add(self, PriceNow):
|
||
"""加仓
|
||
"""
|
||
if self.TrigerTime < 4 and PriceNow > self.BuyStates[self.TrigerTime - 1][2]:#todo BuyStates是空的
|
||
# 买入
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def system_1_stop(self, PriceNow):
|
||
"""止损判断:如果当前价格<上一次买入后的止损价格则止损
|
||
"""
|
||
if PriceNow < self.BuyStates[self.TrigerTime - 1][3]:
|
||
# 买入
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def day_end(self):
|
||
pass
|
||
|
||
class TurtleTrading_OnTime(object):
|
||
''' 实时监测主程序,可以处理多个turtle
|
||
|
||
1、获取实时大盘数据
|
||
2、根据turtles的代码,比较是否触发条件
|
||
3、实时监测主流程
|
||
'''
|
||
|
||
def __init__(self, turtle: TurtleTrading, user_email):
|
||
self.turtle = turtle
|
||
self.user_email = user_email
|
||
|
||
def get_stocks_data(self):
|
||
"""获取实时股票、基金数据,不保存
|
||
"""
|
||
stock_data = ak.stock_zh_a_spot_em()
|
||
stock_data = stock_data.dropna(subset=['最新价'])
|
||
# # print(stock_zh_a_spot_df)
|
||
# # stock_zh_a_spot_df第一列加上时间,精确到分钟
|
||
# stock_zh_a_spot_df['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
# mysql_database.insert_db(stock_zh_a_spot_df, "stock_price", True, "代码")
|
||
|
||
# etf_data = ak.fund_etf_spot_em()
|
||
etf_data = ak.fund_etf_spot_ths()
|
||
etf_data = etf_data.dropna(subset=['当前-单位净值'])
|
||
# etf_data['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
# mysql_database.insert_db(etf_data, "etf_price", True, "代码")
|
||
return stock_data, etf_data
|
||
|
||
def Buy_stock(self, price_now):
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议买入价格price_now,买入份额self.turtle.IntPositionSize
|
||
|
||
if self.turtle.TrigerTime == 0: # 第一次买入
|
||
|
||
|
||
subject = "买入"
|
||
body = f"{self.turtle.TradeCode},价格{price_now},份额{self.turtle.IntPositionSize} \n "
|
||
body += "回复:实际买入价格-买入份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
|
||
#每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
datetime.time.sleep(60)
|
||
while parsed_email_flag:
|
||
|
||
parse_states, buy_price, buy_share, fee = parse_return_email(self.user_email, send_email_time)
|
||
|
||
if parse_states == True:
|
||
parsed_email_flag = True
|
||
break
|
||
else:
|
||
datetime.time.sleep(60)
|
||
# 成功买入
|
||
self.turtle.TrigerTime += 1
|
||
# 记录self.turtle.BuyStates
|
||
add_price = buy_price + 1/2 * self.turtle.N
|
||
stop_price = buy_price - 2 * self.turtle.N
|
||
cost = buy_price * buy_share - fee
|
||
available_cash = self.turtle.Capital - cost
|
||
|
||
buy_this_time = BuyState(self.turtle.TrigerTime,
|
||
buy_price,
|
||
add_price,
|
||
stop_price,
|
||
buy_share,
|
||
self.turtle.N,
|
||
available_cash)
|
||
|
||
self.turtle.BuyStates.append(buy_this_time)
|
||
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
log_this_time = TradeLog(today,
|
||
"买入",
|
||
buy_price,
|
||
buy_share,
|
||
cost,
|
||
self.turtle.N,
|
||
available_cash,
|
||
all_shares=buy_share,
|
||
all_cost=cost,
|
||
Net_value=buy_price * buy_share,
|
||
Net_return=0)
|
||
self.turtle.tradeslog.append(log_this_time)
|
||
else:
|
||
# 加仓
|
||
subject = "加仓"
|
||
body = f"{self.turtle.TradeCode},价格{price_now},份额{self.turtle.IntPositionSize} \n "
|
||
body += "回复:实际买入价格-买入份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
|
||
#每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
datetime.time.sleep(60)
|
||
while parsed_email_flag:
|
||
|
||
parse_states, buy_price, buy_share, fee = parse_return_email(self.user_email, send_email_time)
|
||
|
||
if parse_states == True:
|
||
parsed_email_flag = True
|
||
break
|
||
else:
|
||
datetime.time.sleep(60)
|
||
|
||
# 成功买入
|
||
self.turtle.TrigerTime += 1
|
||
# 记录self.turtle.BuyStates
|
||
add_price = buy_price + 1/2 * self.turtle.N
|
||
stop_price = buy_price - 2 * self.turtle.N
|
||
cost = buy_price * buy_share - fee
|
||
available_cash = self.turtle.BuyStates[-1].available_cash - cost
|
||
all_shares = buy_share + self.turtle.BuyStates[-1].all_shares
|
||
all_cost = cost + self.turtle.BuyStates[-1].all_cost
|
||
net_value = buy_price * all_shares
|
||
net_return = net_value - all_cost
|
||
buy_this_time = BuyState(self.turtle.TrigerTime,
|
||
buy_price,
|
||
add_price,
|
||
stop_price,
|
||
buy_share,
|
||
self.turtle.N,
|
||
available_cash)
|
||
|
||
self.turtle.BuyStates.append(buy_this_time)
|
||
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
log_this_time = TradeLog(today,
|
||
"加仓",
|
||
buy_price,
|
||
buy_share,
|
||
cost,
|
||
self.turtle.N,
|
||
available_cash,
|
||
all_shares,
|
||
all_cost,
|
||
net_value,
|
||
net_return)
|
||
self.turtle.tradeslog.append(log_this_time)
|
||
pass
|
||
|
||
|
||
def stop_sale_stock(self, price_now):
|
||
"""止损卖出
|
||
|
||
Args:
|
||
price_now (_type_): 现价
|
||
"""
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now,卖出份额self.turtle.IntPositionSize
|
||
subject = "止损卖出"
|
||
body = f"{self.turtle.TradeCode},价格{price_now},份额{self.turtle.IntPositionSize} \n "
|
||
body += "回复:实际卖出价格-卖出份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
|
||
# 每隔1分钟检测回信,解析邮件。
|
||
parsed_email_flag = False
|
||
datetime.time.sleep(60)
|
||
while parsed_email_flag:
|
||
|
||
parse_states, sale_price, sale_share, fee = parse_return_email(self.user_email, send_email_time)
|
||
|
||
if parse_states == True:
|
||
parsed_email_flag = True
|
||
break
|
||
else:
|
||
datetime.time.sleep(60)
|
||
|
||
|
||
# 成功卖出
|
||
self.turtle.TrigerTime = 0
|
||
# 记录self.turtle.BuyStates
|
||
available_cash = self.turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
|
||
self.turtle.BuyStates = []
|
||
|
||
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
|
||
"止损",
|
||
sale_price,
|
||
sale_share,
|
||
sale_price * sale_share - fee,
|
||
self.turtle.N,
|
||
available_cash,
|
||
all_shares=0,
|
||
all_cost=0,
|
||
Net_value=sale_price * sale_share,
|
||
Net_return=abs(self.turtle.Capital - available_cash))
|
||
self.turtle.tradeslog.append(sale_this_time)
|
||
|
||
def out_sale_stock(self, price_now):
|
||
"""止盈卖出
|
||
|
||
Args:
|
||
price_now (_type_): 现价
|
||
"""
|
||
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now,卖出份额self.turtle.IntPositionSize
|
||
subject = "止盈卖出"
|
||
body = f"{self.turtle.TradeCode},价格{price_now},份额{self.turtle.IntPositionSize} \n "
|
||
body += "回复:实际卖出价格-卖出份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||
|
||
# 每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
datetime.time.sleep(60)
|
||
while parsed_email_flag:
|
||
|
||
parse_states, sale_price, sale_share, fee = parse_return_email(self.user_email, send_email_time)
|
||
|
||
if parse_states == True:
|
||
parsed_email_flag = True
|
||
break
|
||
else:
|
||
datetime.time.sleep(60)
|
||
|
||
# 成功卖出
|
||
self.turtle.TrigerTime = 0
|
||
# 记录self.turtle.BuyStates
|
||
available_cash = self.turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
|
||
self.turtle.BuyStates = []
|
||
|
||
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
|
||
"止盈",
|
||
sale_price,
|
||
sale_share,
|
||
sale_price * sale_share - fee,
|
||
self.turtle.N,
|
||
available_cash,
|
||
all_shares=0,
|
||
all_cost=0,
|
||
Net_value=sale_price * sale_share,
|
||
Net_return=abs(self.turtle.Capital - available_cash))
|
||
self.turtle.tradeslog.append(sale_this_time)
|
||
|
||
def Start_short_system(self):
|
||
"""启动short系统
|
||
"""
|
||
|
||
# ------------------准备阶段--------------------
|
||
# 获取数据或读取数据 -- 计算ATR Donchian 20 50 up, 20 down
|
||
self.turtle.get_ready(100)
|
||
self.turtle.N = self.turtle.CurrentData['ATR'].iloc[-1]
|
||
self.turtle.Donchian_20_up = self.turtle.CurrentData['Donchian_20_upper'].iloc[-1]
|
||
self.turtle.Donchian_50_up = self.turtle.CurrentData['Donchian_50_upper'].iloc[-1]
|
||
self.turtle.Donchian_10_down = self.turtle.CurrentData['Donchian_10_lower'].iloc[-1]
|
||
self.turtle.CalPositionSize()
|
||
# ------------------实时监测阶段--------------------
|
||
# 9:00 1、判断是否是新的一周,是则重新计算Position Size
|
||
# 判断是否是新的一周
|
||
if datetime.now().weekday() == 0:
|
||
self.turtle.CalPositionSize()
|
||
# 每分钟获取一次数据,判断是否触发条件 9:30-11:30 13:00-15:00
|
||
stock_data, etf_data = self.get_stocks_data()
|
||
|
||
# 根据type,code, 取得实时价格self.turtle.PriceNow
|
||
|
||
if self.turtle.Type == "stock":
|
||
self.turtle.PriceNow = stock_data[stock_data['代码'] == self.turtle.TradeCode]['最新价'].iloc[-1]
|
||
elif self.turtle.Type == "etf":
|
||
self.turtle.PriceNow = etf_data[etf_data['代码'] == self.turtle.TradeCode]['当前-单位净值'].iloc[-1]
|
||
|
||
# 空仓
|
||
if self.turtle.TrigerTime == 0:
|
||
if self.turtle.system1EnterNormal(self.turtle.PriceNow, self.turtle.Donchian_20_up, self.turtle.BreakOutLog):
|
||
|
||
# 发出买入指令
|
||
self.Buy_stock(self.turtle.PriceNow)
|
||
|
||
elif self.turtle.system1EnterSafe(self.turtle.PriceNow, self.turtle.Donchian_50_up):
|
||
# 发出买入指令
|
||
self.Buy_stock(self.turtle.PriceNow)
|
||
|
||
# 已有仓位,加仓 / 止损 / 退出
|
||
elif 1<=self.turtle.TrigerTime <= 3:
|
||
|
||
# ---------------------加仓---------------------
|
||
# 继续突破
|
||
if self.turtle.system1EnterNormal(self.turtle.PriceNow, self.turtle.Donchian_20_up, self.turtle.BreakOutLog):
|
||
# 发出买入指令
|
||
self.Buy_stock(self.turtle.PriceNow)
|
||
#
|
||
elif self.turtle.system1EnterSafe(self.turtle.PriceNow, self.turtle.Donchian_50_up):
|
||
# 发出买入指令
|
||
self.Buy_stock(self.turtle.PriceNow)
|
||
|
||
# 触发加仓价格
|
||
elif self.turtle.add(self.turtle.PriceNow):
|
||
# 发出买入指令
|
||
self.Buy_stock(self.turtle.PriceNow)
|
||
|
||
# ---------------------止损-------------------
|
||
elif self.turtle.system_1_stop(self.turtle.PriceNow):
|
||
# 发出卖出指令
|
||
self.stop_sale_stock(self.turtle.PriceNow)
|
||
|
||
# ---------------------止盈退出---------------------
|
||
elif self.turtle.system_1_Out(self.turtle.PriceNow, self.turtle.Donchian_10_down):
|
||
# 发出卖出指令
|
||
self.out_sale_stock(self.turtle.PriceNow)
|
||
|
||
# 满仓 止损 / 退出
|
||
elif self.turtle.TrigerTime == 4:
|
||
|
||
# ---------------------止损-------------------
|
||
if self.turtle.system_1_stop(self.turtle.PriceNow):
|
||
# 发出卖出指令
|
||
self.stop_sale_stock(self.turtle.PriceNow)
|
||
|
||
# ---------------------止盈退出---------------------
|
||
elif self.turtle.system_1_Out(self.turtle.PriceNow, self.turtle.Donchian_10_down):
|
||
# 发出卖出指令
|
||
self.out_sale_stock(self.turtle.PriceNow)
|
||
|
||
# ------------------结束阶段--------------------
|
||
# 数据库更新当天数据,增加ATR、donchian数据
|
||
pass
|
||
|
||
if __name__ == '__main__':
|
||
user_email = "guoyize2209@163.com"
|
||
t = TurtleTrading('513300', "etf", 0.25, 100000, 200000)
|
||
# t.get_ready(100)
|
||
|
||
a = TurtleTrading_OnTime(t)
|
||
a.Start_S1_system()
|
||
|
||
# # 全是股票
|
||
# stock_zh_a_spot_df = ak.stock_zh_a_spot_em()
|
||
# # stock_zh_a_spot_df.to_csv("stock_zh_a_spot.txt", sep="\t", index=False, encoding="utf-8")
|
||
# stock_zh_a_spot_df = stock_zh_a_spot_df.dropna(subset=['最新价'])
|
||
# print(stock_zh_a_spot_df)
|
||
|
||
# # 全是基金
|
||
# etf_data = ak.fund_etf_spot_em()
|
||
# etf_data = etf_data.dropna(subset=['最新价'])
|
||
# etf_data.to_csv("fund_etf_spot.txt", sep="\t", index=False, encoding="utf-8")
|
||
# print(etf_data)
|
||
|