955 lines
37 KiB
Python
955 lines
37 KiB
Python
import numpy as np
|
||
import math
|
||
import akshare as ak
|
||
import os
|
||
from datetime import datetime, timedelta, date
|
||
import pandas as pd
|
||
import mplfinance as mpf
|
||
import mysql_database
|
||
from EmailTest import send_email, parse_return_email
|
||
from dataclasses import dataclass
|
||
import time
|
||
import threading
|
||
import yaml # 添加YAML支持
|
||
import logging
|
||
from stock_em import stock_zh_a_spot_em
|
||
from etf_em import fund_etf_spot_em
|
||
import random
|
||
import urllib.parse
|
||
import requests
|
||
|
||
'''
|
||
todo
|
||
|
||
1 运行过程框架调整,支持多个turtle同时监测 done
|
||
2 增加运行状态写入yaml文件,读取文件恢复状态 done
|
||
3 测试每分钟获取实时信息,是否稳定。 done
|
||
4 etf实时数据使用异步方式,获取速度加快了 done
|
||
4 获取数据,调用clash代理 done
|
||
'''
|
||
|
||
@dataclass
|
||
class BuyState:
|
||
trigger_time: float # 触发次数
|
||
buy_price: float # 买入价格
|
||
add_price: float # 加仓价格
|
||
stop_price: float # 止损价格
|
||
is_gap_up: bool # 是否跳空高开
|
||
shares: int # 买入股数
|
||
atr: int # ATR
|
||
available_cash: float # 可用资金
|
||
|
||
@dataclass
|
||
class TradeLog:
|
||
data: str # 时间
|
||
type: str # 操作类型
|
||
buy_price: float # 买入价格
|
||
shares: int # 买入股数
|
||
cost: float # 成本
|
||
atr: int # ATR
|
||
available_cash: float # 可用资金
|
||
all_shares: float # 总股数
|
||
all_cost: float # 总成本
|
||
Net_value: float # 净值
|
||
Net_return: float # 净收益
|
||
|
||
@dataclass
|
||
class BreakOutLog:
|
||
# 记录突破信息
|
||
data: str # 时间
|
||
breakout_price: float # 突破价格
|
||
lose_price: float # 亏损价格
|
||
valid_or_not: str # 是否有效
|
||
win_or_lose: bool # 是否盈利
|
||
|
||
def calc_sma_atr_pd(kdf,period):
|
||
"""计算TR与ATR
|
||
|
||
Args:
|
||
kdf (_type_): 历史数据
|
||
period (_type_): ATR周期
|
||
|
||
Returns:
|
||
_type_: 返回kdf,增加TR与ATR列
|
||
"""
|
||
kdf['最高'] = kdf['最高'].astype(float)
|
||
kdf['最低'] = kdf['最低'].astype(float)
|
||
kdf['收盘'] = kdf['收盘'].astype(float)
|
||
kdf['HL'] = kdf['最高'] - kdf['最低']
|
||
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
|
||
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
|
||
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
|
||
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
|
||
# true_range = np.max(ranges, axis=1)
|
||
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
|
||
|
||
return kdf.drop(['HL','HC','LC'], axis = 1)
|
||
|
||
class TurtleTrading(object):
|
||
"""对象范围较小,对某一个标的创建一个海龟,如513300,
|
||
计算ATR、唐奇安通道线
|
||
基础数据
|
||
Args:
|
||
object (_type_): _description_
|
||
"""
|
||
def __init__(self, TradeCode, type, riskcoe, Capital, cash) -> None:
|
||
self.TradeCode = TradeCode
|
||
self.type = type
|
||
self.riskcoe = riskcoe
|
||
self.Capital = Capital
|
||
self.cash = cash
|
||
self.TrigerTime = 0
|
||
self.BuyStates = []
|
||
|
||
self.tradeslog = []
|
||
self.BreakOutLog = []
|
||
self.PriceNow = 0.0
|
||
self.Donchian_20_up = 0.0
|
||
self.Donchian_10_down = 0.0
|
||
self.Donchian_50_up = 0.0
|
||
self.is_gap_up = False # 是否跳空高开
|
||
self.prev_heigh = 0.0 # 前一天最高价
|
||
|
||
|
||
def GetRecentData(self):
|
||
"""获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData
|
||
|
||
Returns:
|
||
_type_: _description_
|
||
"""
|
||
Today = datetime.today()
|
||
# print(Today)
|
||
formatted_date = Today.strftime("%Y%m%d")
|
||
two_years_ago = (date.today() - timedelta(days=365*2)).strftime("%Y%m%d")
|
||
# print(formatted_date)
|
||
Code = f"{self.TradeCode}"
|
||
CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="")
|
||
|
||
# 将日期列转换为datetime
|
||
CurrentData = pd.DataFrame(CurrentData)
|
||
CurrentData['日期'] = pd.to_datetime(CurrentData['日期'])
|
||
# print(type(CurrentData['日期'].iloc[0]))
|
||
|
||
CurrentData.set_index('日期', inplace=True)
|
||
# CurrentData.reset_index(inplace=True)
|
||
# print(type(CurrentData['日期'].iloc[0]))
|
||
# create table
|
||
# stock_database.create_table(Code)
|
||
# stock_database.insert_data(Code, CurrentData)
|
||
# mysql_database.insert_db(CurrentData, Code, True, "'日期'")
|
||
self.CurrentData = CurrentData
|
||
# return self.CurrentData
|
||
|
||
|
||
def CalATR(self, data, ATRday):
|
||
"""计算某个标的的ATR,从上市日到今天, 计算后的数据保存在self.CurrentData
|
||
|
||
Args:
|
||
ATRday: 多少日ATR
|
||
SaveOrNot (_type_): 是否保存.csv数据
|
||
"""
|
||
|
||
self.CurrentData = calc_sma_atr_pd(data, ATRday)
|
||
self.N = self.CurrentData['ATR']
|
||
|
||
|
||
# return self.N
|
||
|
||
|
||
def ReadExistData(self, data):
|
||
"""除了通过发请求获取数据,也可以读本地的数据库,赋值给self.CurrentData
|
||
|
||
Args:
|
||
data (_type_): 本地csv名称
|
||
"""
|
||
self.CurrentData = pd.read_csv(data)
|
||
|
||
def DrawKLine(self, days):
|
||
"""画出k线图看看,画出最近days天的K线图
|
||
"""
|
||
|
||
# 日期部分
|
||
|
||
# dates = pd.to_datetime(self.CurrentData['日期'][-days:])
|
||
# # Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
|
||
Klinedf = pd.DataFrame()
|
||
# Klinedf.set_index = Klinedf['Data']
|
||
|
||
# 其他数据
|
||
Klinedf['Date'] = self.CurrentData['日期'][-days:]
|
||
Klinedf['Open'] = self.CurrentData['开盘'][-days:].astype(float)
|
||
Klinedf['High'] = self.CurrentData['最高'][-days:].astype(float)
|
||
Klinedf['Low'] = self.CurrentData['最低'][-days:].astype(float)
|
||
Klinedf['Close'] = self.CurrentData['收盘'][-days:].astype(float)
|
||
Klinedf['Volume'] = self.CurrentData['成交量'][-days:].astype(float)
|
||
|
||
Klinedf.set_index(pd.to_datetime(Klinedf['Date']), inplace=True)
|
||
# 画图
|
||
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian_up['Upper'][-days:]), mpf.make_addplot(self.Donchian_down['lower'][-days:])], title=f"{self.TradeCode} K线图")
|
||
|
||
def calculate_donchian_channel_up(self, n):
|
||
"""
|
||
计算n日唐奇安上通道
|
||
|
||
参数:
|
||
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame,包含"High"
|
||
n (int): 时间周期
|
||
|
||
返回:self.Donchian
|
||
DataFrame: 唐奇安通道的DataFrame,包含"Upper"
|
||
"""
|
||
Donchian = pd.DataFrame() # 创建一个空的DataFrame用于存储唐奇安通道数据
|
||
# 计算最高价和最低价的N日移动平均线
|
||
name = 'Donchian_' + str(n) + '_upper'
|
||
Donchian[name] = self.CurrentData['最高'].rolling(n).max() # 使用rolling函数计算n日最高价的移动最大值
|
||
|
||
# # 计算中间线
|
||
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2 # 计算上通道和下通道的中间线,但此行代码被注释掉了
|
||
|
||
return Donchian # 返回包含唐奇安上通道的DataFrame
|
||
|
||
def calculate_donchian_channel_down(self, n):
|
||
"""
|
||
计算n日唐奇安上通道
|
||
|
||
参数:
|
||
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame,包含"High"
|
||
n (int): 时间周期
|
||
|
||
返回:self.Donchian
|
||
DataFrame: 唐奇安通道的DataFrame,包含"Upper"
|
||
"""
|
||
Donchian = pd.DataFrame()
|
||
# 计算最高价和最低价的N日移动平均线
|
||
name = 'Donchian_' + str(n) + '_lower'
|
||
Donchian[name] = self.CurrentData['最低'].rolling(n).min()
|
||
|
||
# # 计算中间线
|
||
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
|
||
|
||
return Donchian
|
||
|
||
def calc_atr_donchian_short(self):
|
||
"""计算ATR、短期唐奇安通道
|
||
"""
|
||
# 计算ATR
|
||
self.CalATR(self.CurrentData, 20)
|
||
# 计算唐奇安通道
|
||
self.Donchian_20_ups = self.calculate_donchian_channel_up(20)
|
||
self.Donchian_50_ups = self.calculate_donchian_channel_up(50)
|
||
self.Donchian_downs = self.calculate_donchian_channel_down(10)
|
||
# 画图
|
||
# self.DrawKLine(days)
|
||
|
||
# 把self.N, self.Donchian_up, self.Donchian_down, 添加到self.CurrentData后面,保存到mysql数据库
|
||
self.CurrentData = pd.concat([self.CurrentData, self.Donchian_20_ups, self.Donchian_50_ups, self.Donchian_downs], axis=1)
|
||
|
||
def get_ready(self, days):
|
||
"""创建一个turtle对象,获取数据,计算ATR,计算唐奇安通道
|
||
|
||
Args:
|
||
days (_type_): _description_
|
||
n (_type_): _description_
|
||
"""
|
||
|
||
# if 不存在database
|
||
if not mysql_database.check_db_table(f"{self.TradeCode}"):
|
||
self.GetRecentData()
|
||
|
||
self.calc_atr_donchian_short()
|
||
Code = f"{self.TradeCode}"
|
||
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
|
||
else:
|
||
|
||
# 检查数据库最后一条的时间距离今天是否两天以上
|
||
current_date = date.today()
|
||
threshold_date = current_date - timedelta(days=2)
|
||
last_update = mysql_database.check_db_table_last_date(f"{self.TradeCode}")
|
||
|
||
if last_update < threshold_date:
|
||
# 如果不存在,则从akshare获取数据并保存到mysql数据库
|
||
mysql_database.delete_table(f"{self.TradeCode}")
|
||
|
||
self.GetRecentData()
|
||
|
||
self.calc_atr_donchian_short()
|
||
|
||
Code = f"{self.TradeCode}"
|
||
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
|
||
else:
|
||
# 如果存在,则从mysql数据库中读取数据
|
||
self.CurrentData = mysql_database.fetch_all_data(f"{self.TradeCode}")
|
||
|
||
|
||
def CalPositionSize(self):
|
||
"""根据风险系数、ATR,计算仓位大小, 存于self.IntPositionSize
|
||
"""
|
||
PositionSize = self.riskcoe * self.Capital /(self.N) # 默认用股票形式了 100
|
||
self.IntPositionSize = int(PositionSize // 100) * 100
|
||
|
||
def system1EnterNormal(self, PriceNow, TempDonchian20Upper, BreakOutLog):
|
||
# 没有持仓且价格向上突破---此时包含两种情形:1 对某标的首次使用系统,2 已发生过突破,此时上次突破天然是失败的
|
||
if self.TrigerTime == 0 and PriceNow > TempDonchian20Upper:
|
||
# 买入
|
||
return True
|
||
elif PriceNow > TempDonchian20Upper:#todo !=0不会满足条件 先跳过
|
||
self.system1BreakoutValid(PriceNow)
|
||
if BreakOutLog[-1].win_or_lose == None: # TT!= 0且突破且上一次突破unseccessful
|
||
return True
|
||
else:
|
||
return False
|
||
else:
|
||
return False
|
||
|
||
|
||
def system1EnterSafe(self, PriceNow, TempDonchian55Upper):
|
||
|
||
if PriceNow > TempDonchian55Upper: # 保底的55日突破
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def system1BreakoutValid(self, priceNow):
|
||
"""判断前一次突破是否成功,是log[-1][5]写入“win”,否则写入“Lose”
|
||
"""
|
||
if priceNow < self.BreakOutLog[-1].lose_price:
|
||
self.BreakOutLog[-1].win_or_lose = None
|
||
else:
|
||
self.BreakOutLog[-1].win_or_lose = True
|
||
# 一天结束,计算ATR,计算唐奇安通道,追加到已有的mysql数据库中
|
||
|
||
def system_1_Out(self, PriceNow, TempDonchian10Lower):
|
||
# 退出:低于20日最低价(多头方向),空头以突破20日最高价为止损价格--有持仓且价格向下突破
|
||
if self.TrigerTime != 0 and PriceNow < TempDonchian10Lower:
|
||
# 退出
|
||
return True
|
||
|
||
else:
|
||
return False
|
||
def add(self, PriceNow):
|
||
"""加仓
|
||
"""
|
||
if self.TrigerTime < 4 and PriceNow > self.BuyStates[self.TrigerTime - 1].add_price:#todo BuyStates是空的
|
||
# 买入
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def system_1_stop(self, PriceNow):
|
||
"""止损判断:如果当前价格<上一次买入后的止损价格则止损
|
||
"""
|
||
if PriceNow < self.BuyStates[self.TrigerTime - 1].stop_price:
|
||
# 买入
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
|
||
|
||
class TurtleTrading_OnTime(object):
|
||
''' 实时监测主程序,可以处理多个turtle
|
||
|
||
1、获取实时大盘数据
|
||
2、根据turtles的代码,比较是否触发条件
|
||
3、实时监测主流程
|
||
'''
|
||
|
||
def __init__(self, turtles: list[TurtleTrading], user_email):
|
||
self.turtles = turtles # List of TurtleTrading instances
|
||
self.user_email = user_email
|
||
self.email_events = {} # Track email response events for each turtle
|
||
logging.basicConfig(level=logging.INFO)
|
||
# Load previous state from YAML if exists
|
||
self.load_previous_state()
|
||
|
||
self.clash_api = "http://127.0.0.1:9090"
|
||
self.node_group_name_encoded = urllib.parse.quote("🚀代理线路", safe='') # 根据 Clash 中策略组的名字填写
|
||
self.clash_secret = "6Gp-fdt-veS-ugv"
|
||
self.node_names = [
|
||
"R1-0|香港-NF|深|负载均衡",
|
||
"R1-1|香港-NF|粤|负载均衡",
|
||
"R1-2|香港-NF|沪|负载均衡",
|
||
"R1-3|香港-NF|湘|负载均衡",
|
||
"R2-1|香港-NF|HKT家宽",
|
||
"R2-2|香港-NF|HKT家宽",
|
||
"R2-3|香港-NF|HKT家宽",
|
||
"R2-5|香港-NF|HKT家宽",
|
||
"R3-1|香港-NF|BGP静态",
|
||
"R4-1|台湾-NF|家宽|原生",
|
||
"R5-1|日本-NF|GMO|原生IP",
|
||
"R5-4|日本-NF|IIJ|精品",
|
||
"R6-1|美国-NF|BGP",
|
||
"R9-1|狮城-NF|FDC",
|
||
]
|
||
|
||
def load_previous_state(self):
|
||
"""Load previous state from YAML file if exists"""
|
||
state_dir = "state"
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
yesterday = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d")
|
||
filename = os.path.join(state_dir, f"{yesterday}.yaml")
|
||
|
||
if os.path.exists(filename):
|
||
with open(filename, 'r') as f:
|
||
state_data = yaml.safe_load(f)
|
||
main_state = state_data.get('main_state', {})
|
||
|
||
# Restore state
|
||
try:
|
||
for turtle_data in main_state.get('turtles', []):
|
||
# Find or create TurtleTrading instance
|
||
turtle = next((t for t in self.turtles if t.TradeCode == turtle_data['TradeCode']), None)
|
||
if not turtle:
|
||
# Create new instance if not found (should not happen)
|
||
turtle = TurtleTrading(**turtle_data)
|
||
self.turtles.append(turtle)
|
||
|
||
# Restore attributes
|
||
turtle.TradeCode = turtle_data['TradeCode']
|
||
turtle.type = turtle_data['type']
|
||
turtle.riskcoe = turtle_data['riskcoe']
|
||
turtle.Capital = turtle_data['Capital']
|
||
turtle.cash = turtle_data['cash']
|
||
turtle.TrigerTime = turtle_data['TrigerTime']
|
||
turtle.BuyStates = [BuyState(**bs) for bs in turtle_data['BuyStates']]
|
||
turtle.tradeslog = [TradeLog(**tl) for tl in turtle_data['tradeslog']]
|
||
turtle.BreakOutLog = [BreakOutLog(**bol) for bol in turtle_data['BreakOutLog']]
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error loading previous state: {e}")
|
||
def switch_random_node(self):
|
||
'''随机切换clash节点
|
||
'''
|
||
selected_node = random.choice(self.node_names)
|
||
url = f"{self.clash_api}/proxies/{self.node_group_name_encoded}"
|
||
headers = {
|
||
"Authorization": f"Bearer {self.clash_secret}"
|
||
}
|
||
try:
|
||
res = requests.put(url, headers=headers, json={"name": selected_node})
|
||
if res.status_code == 204:
|
||
print(f"[✓] 成功切换节点为:{selected_node}")
|
||
else:
|
||
print(f"[✗] 切换失败:{res.status_code} - {res.text}")
|
||
except Exception as e:
|
||
print(f"[!] 请求失败: {e}")
|
||
|
||
|
||
def day_end(self):
|
||
"""Save current state to YAML file at the end of the day"""
|
||
# Create state directory if not exists
|
||
state_dir = "state"
|
||
if not os.path.exists(state_dir):
|
||
os.makedirs(state_dir)
|
||
|
||
# Generate filename with current date
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
filename = os.path.join(state_dir, f"{today}.yaml")
|
||
|
||
# Save state to YAML
|
||
state_data = {
|
||
"main_state": {
|
||
"user_email": self.user_email,
|
||
"email_events": self.email_events,
|
||
"turtles": [
|
||
{
|
||
"TradeCode": t.TradeCode,
|
||
"type": t.type,
|
||
"riskcoe": t.riskcoe,
|
||
"Capital": t.Capital,
|
||
"cash": t.cash,
|
||
"TrigerTime": t.TrigerTime,
|
||
"BuyStates": [vars(bs) for bs in t.BuyStates],
|
||
"tradeslog": [vars(tl) for tl in t.tradeslog],
|
||
"BreakOutLog": [vars(bol) for bol in t.BreakOutLog]
|
||
} for t in self.turtles
|
||
]
|
||
}
|
||
}
|
||
|
||
with open(filename, 'w') as f:
|
||
yaml.dump(state_data, f)
|
||
|
||
def get_stocks_data(self):
|
||
"""获取实时股票、基金数据,不保存
|
||
"""
|
||
try:
|
||
self.switch_random_node()
|
||
stock_data = stock_zh_a_spot_em()
|
||
stock_data = stock_data.dropna(subset=['最新价'])
|
||
|
||
etf_data = fund_etf_spot_em()
|
||
etf_data = etf_data.dropna(subset=['最新价'])
|
||
|
||
# 成功调用,使用logging记录日志,加上时间
|
||
logging.info(f"Successfully fetched stock and ETF data at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error occurred while getting stock data: {e}")
|
||
return None, None
|
||
|
||
return stock_data, etf_data
|
||
|
||
def Buy_stock(self, turtle: TurtleTrading, price_now):
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议买入价格price_now,买入份额self.turtle.IntPositionSize
|
||
|
||
|
||
|
||
subject = "买入"
|
||
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
|
||
body += "回复:实际买入价格-买入份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
# send_email_time = datetime.strftime(datetime.now(),"%Y%m%d %H:%M:%S").date()
|
||
send_email_time = datetime.now().date()
|
||
#每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
while not parsed_email_flag:
|
||
time.sleep(60) # 每次尝试前等待 60 秒
|
||
parse_states, buy_price, buy_share, fee = parse_return_email(
|
||
self.user_email, send_email_time
|
||
)
|
||
|
||
if parse_states:
|
||
parsed_email_flag = True
|
||
break
|
||
|
||
# 成功买入
|
||
turtle.TrigerTime += 1
|
||
# 记录self.turtle.BuyStates
|
||
add_price = buy_price + 1/2 * turtle.N
|
||
stop_price = buy_price - 2 * turtle.N
|
||
cost = buy_price * buy_share - fee
|
||
available_cash = turtle.Capital - cost
|
||
|
||
buy_this_time = BuyState(turtle.TrigerTime,
|
||
buy_price,
|
||
add_price,
|
||
stop_price,
|
||
False,
|
||
buy_share,
|
||
turtle.N,
|
||
available_cash)
|
||
|
||
turtle.BuyStates.append(buy_this_time)
|
||
|
||
# 记录self.turtle.tradeslog
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
log_this_time = TradeLog(today,
|
||
"买入",
|
||
buy_price,
|
||
buy_share,
|
||
cost,
|
||
turtle.N,
|
||
available_cash,
|
||
all_shares=buy_share,
|
||
all_cost=cost,
|
||
Net_value=buy_price * buy_share,
|
||
Net_return=0)
|
||
turtle.tradeslog.append(log_this_time)
|
||
|
||
|
||
|
||
|
||
|
||
def add_stock(self, turtle: TurtleTrading, price_now):
|
||
"""加仓
|
||
|
||
Args:
|
||
price_now (_type_): 现价
|
||
"""
|
||
|
||
# 加仓
|
||
|
||
subject = "加仓"
|
||
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
|
||
body += "回复:实际买入价格-买入份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().date()
|
||
|
||
#每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
while not parsed_email_flag:
|
||
time.sleep(60) # 每次尝试前等待 60 秒
|
||
parse_states, buy_price, buy_share, fee = parse_return_email(
|
||
self.user_email, send_email_time
|
||
)
|
||
|
||
if parse_states:
|
||
parsed_email_flag = True
|
||
break
|
||
|
||
# 成功买入
|
||
turtle.TrigerTime += 1
|
||
# 记录self.turtle.BuyStates
|
||
add_price = buy_price + 1/2 * turtle.N
|
||
stop_price = buy_price - 2 * turtle.N
|
||
cost = buy_price * buy_share - fee
|
||
available_cash = turtle.BuyStates[-1].available_cash - cost
|
||
all_shares = buy_share + turtle.BuyStates[-1].all_shares
|
||
all_cost = cost + turtle.BuyStates[-1].all_cost
|
||
net_value = buy_price * all_shares
|
||
net_return = net_value - all_cost
|
||
buy_this_time = BuyState(turtle.TrigerTime,
|
||
buy_price,
|
||
add_price,
|
||
stop_price,
|
||
turtle.is_gap_up,
|
||
buy_share,
|
||
turtle.N,
|
||
available_cash)
|
||
|
||
turtle.BuyStates.append(buy_this_time)
|
||
|
||
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
log_this_time = TradeLog(today,
|
||
"加仓",
|
||
buy_price,
|
||
buy_share,
|
||
cost,
|
||
turtle.N,
|
||
available_cash,
|
||
all_shares,
|
||
all_cost,
|
||
net_value,
|
||
net_return)
|
||
turtle.tradeslog.append(log_this_time)
|
||
|
||
# 处理其他次买入的止损价格
|
||
# 检查BuyStates中有几个gap_up,返回个数和索引
|
||
gap_up_num = 0
|
||
gap_up_index = []
|
||
for i in range(len(turtle.BuyStates)):
|
||
if turtle.BuyStates[i].is_gap_up:
|
||
gap_up_num += 1
|
||
gap_up_index.append(i)
|
||
if gap_up_num == 0:
|
||
# 之前BuyStates中的stop_price = stop_price
|
||
for j in range(len(turtle.BuyStates)):
|
||
turtle.BuyStates[j].stop_price = stop_price
|
||
|
||
if not turtle.is_gap_up and gap_up_num == 1:
|
||
if gap_up_index[0] == 1:
|
||
number_tobe_change = turtle.TrigerTime -1 - gap_up_index[0]
|
||
for k in range(number_tobe_change):
|
||
turtle.BuyStates[k+1].stop_price = stop_price
|
||
|
||
elif gap_up_index[0] == 2:
|
||
turtle.BuyStates[2].stop_price = stop_price
|
||
|
||
elif not turtle.is_gap_up and gap_up_num == 2:
|
||
number_tobe_change = 2
|
||
for k in range(number_tobe_change):
|
||
turtle.BuyStates[k+1].stop_price = stop_price
|
||
|
||
|
||
def stop_sale_stock(self, turtle: TurtleTrading, price_now):
|
||
"""止损卖出
|
||
|
||
Args:
|
||
price_now (_type_): 现价
|
||
"""
|
||
|
||
# 判断需要卖出几份
|
||
sale_shares = 0
|
||
for i in range(len(turtle.BuyStates)):
|
||
if price_now <= turtle.BuyStates[i].stop_price:
|
||
sale_shares += 1
|
||
break
|
||
# 比较price_now与self.turtle.BuyStates[-1].stop_price
|
||
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now,卖出份额self.turtle.IntPositionSize
|
||
subject = "止损卖出"
|
||
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize * sale_shares} \n "
|
||
body += "回复:实际卖出价格-卖出份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().date()
|
||
|
||
# 每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
while not parsed_email_flag:
|
||
time.sleep(60) # 每次尝试前等待 60 秒
|
||
parse_states, sale_price, sale_share, fee = parse_return_email(
|
||
self.user_email, send_email_time
|
||
)
|
||
|
||
if parse_states:
|
||
parsed_email_flag = True
|
||
break
|
||
|
||
|
||
# 成功卖出
|
||
turtle.TrigerTime -= sale_shares
|
||
# 记录self.turtle.BuyStates
|
||
available_cash = turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
|
||
|
||
# 删除BuyStates中卖出股票的记录
|
||
turtle.BuyStates = turtle.BuyStates[:-sale_shares]
|
||
|
||
|
||
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
|
||
"止损",
|
||
sale_price,
|
||
sale_share,
|
||
sale_price * sale_share - fee,
|
||
turtle.N,
|
||
available_cash,
|
||
all_shares=0,
|
||
all_cost=0,
|
||
Net_value=sale_price * sale_share,
|
||
Net_return=abs(turtle.Capital - available_cash))
|
||
turtle.tradeslog.append(sale_this_time)
|
||
|
||
def out_sale_stock(self, turtle: TurtleTrading, price_now):
|
||
"""止盈卖出
|
||
|
||
Args:
|
||
price_now (_type_): 现价
|
||
"""
|
||
|
||
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now,卖出份额self.turtle.IntPositionSize
|
||
subject = "止盈卖出"
|
||
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
|
||
body += "回复:实际卖出价格-卖出份额-手续费"
|
||
send_email(subject, body, self.user_email)
|
||
send_email_time = datetime.now().date()
|
||
|
||
# 每隔1分钟检测回信,解析邮件。
|
||
|
||
parsed_email_flag = False
|
||
while not parsed_email_flag:
|
||
time.sleep(60) # 每次尝试前等待 60 秒
|
||
parse_states, sale_price, sale_share, fee = parse_return_email(
|
||
self.user_email, send_email_time
|
||
)
|
||
|
||
if parse_states:
|
||
parsed_email_flag = True
|
||
break
|
||
|
||
# 成功卖出
|
||
turtle.TrigerTime = 0
|
||
# 记录self.turtle.BuyStates
|
||
available_cash = turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
|
||
turtle.BuyStates = []
|
||
|
||
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
|
||
"止盈",
|
||
sale_price,
|
||
sale_share,
|
||
sale_price * sale_share - fee,
|
||
turtle.N,
|
||
available_cash,
|
||
all_shares=0,
|
||
all_cost=0,
|
||
Net_value=sale_price * sale_share,
|
||
Net_return=abs(turtle.Capital - available_cash))
|
||
turtle.tradeslog.append(sale_this_time)
|
||
|
||
|
||
def Start_short_system(self):
|
||
"""启动short系统
|
||
"""
|
||
|
||
# ------------------准备阶段--------------------
|
||
# 获取数据或读取数据 -- 计算ATR Donchian 20 50 up, 20 down
|
||
# 初始化所有turtle
|
||
for turtle in self.turtles:
|
||
# 准备数据
|
||
turtle.get_ready(100)
|
||
turtle.N = float(turtle.CurrentData['ATR'].iloc[-1])
|
||
turtle.prev_heigh = float(turtle.CurrentData['最高'].iloc[-1])
|
||
turtle.Donchian_20_up = float(turtle.CurrentData['Donchian_20_upper'].iloc[-1])
|
||
turtle.Donchian_50_up = float(turtle.CurrentData['Donchian_50_upper'].iloc[-1])
|
||
turtle.Donchian_10_down = float(turtle.CurrentData['Donchian_10_lower'].iloc[-1])
|
||
turtle.CalPositionSize()
|
||
# ------------------实时监测阶段--------------------
|
||
# 9:00 1、判断是否是新的一周,是则重新计算Position Size
|
||
# 判断是否是新的一周
|
||
if datetime.now().weekday() == 0:
|
||
for turtle in self.turtles:
|
||
turtle.CalPositionSize()
|
||
|
||
# 每分钟获取一次数据,判断是否触发条件 9:30-11:30 13:00-15:00
|
||
while True:
|
||
# 获取当前时间
|
||
now = datetime.now().time()
|
||
|
||
# 判断当前时间是否在交易时段内(9:30-11:30 或 13:00-15:00)
|
||
is_trading_time = (
|
||
(now.hour == 9 and now.minute >= 30) or
|
||
(now.hour == 10 and 0 <= now.minute <= 59) or
|
||
(now.hour == 11 and now.minute <= 30) or
|
||
(now.hour == 13 and 0 <= now.minute <= 59) or
|
||
(now.hour == 14 and 0 <= now.minute <= 59) or
|
||
(now.hour == 15 and now.minute <= 0)
|
||
)
|
||
# is_trading_time = True
|
||
|
||
|
||
if not is_trading_time:
|
||
# 非交易时间,等待 1 分钟后继续循环
|
||
time.sleep(60)
|
||
continue
|
||
|
||
is_stop_time = (now.hour >= 15 and now.minute > 0) #收盘时间
|
||
# is_stop_time = (now.hour >= 18 and now.minute > 32) #收盘时间
|
||
if is_stop_time:
|
||
break
|
||
|
||
# 获取股票和ETF数据
|
||
self.monitor_all_turtles()
|
||
# 等待一段时间后再次检查
|
||
time.sleep(random.randint(60, 65))# 每分钟检查一次
|
||
# ------------------结束阶段--------------------
|
||
# 数据库更新当天数据,增加ATR、donchian数据
|
||
# 直接做个新表
|
||
for turtle in self.turtles:
|
||
mysql_database.delete_table(f"{turtle.TradeCode}")
|
||
turtle.get_ready(100)
|
||
|
||
self.day_end()
|
||
time.sleep(16.5*600)
|
||
|
||
|
||
def monitor_all_turtles(self):
|
||
"""主监控循环"""
|
||
# 获取实时数据
|
||
stock_data, etf_data = self.get_stocks_data()
|
||
|
||
# 遍历所有turtle进行监控
|
||
# 为每个 Turtle 启动一个线程
|
||
threads = []
|
||
for turtle in self.turtles:
|
||
thread = threading.Thread(
|
||
target=self.monitor_single_turtle,
|
||
args=(turtle, stock_data, etf_data)
|
||
)
|
||
thread.start()
|
||
threads.append(thread)
|
||
|
||
# 可选:等待所有线程完成(如果需要)
|
||
for thread in threads:
|
||
thread.join()
|
||
|
||
|
||
def monitor_single_turtle(self, turtle: TurtleTrading, stock_data, etf_data):
|
||
"""监控单个turtle的交易条件"""
|
||
|
||
now = datetime.now().time()
|
||
if turtle.type == "stock":
|
||
turtle.PriceNow = float(stock_data.loc[stock_data['代码'] == turtle.TradeCode, '最新价'].values[0])
|
||
|
||
elif turtle.type == "etf":
|
||
# self.turtle.PriceNow = float(etf_data.loc[etf_data['基金代码'] == self.turtle.TradeCode, '当前-单位净值'].values[0])
|
||
turtle.PriceNow = float(etf_data.loc[etf_data['代码'] == turtle.TradeCode, '最新价'].values[0])
|
||
|
||
if now.hour == 9 and now.minute == 30 and turtle.PriceNow > turtle.prev_heigh:
|
||
turtle.is_gap_up = True
|
||
|
||
fake_price = 1.492
|
||
turtle.PriceNow = fake_price
|
||
# 判断当前仓位状态并执行相应操作
|
||
if turtle.TrigerTime == 0:
|
||
if turtle.system1EnterNormal(
|
||
turtle.PriceNow,
|
||
turtle.Donchian_20_up,
|
||
turtle.BreakOutLog
|
||
):
|
||
|
||
self.start_email_thread(turtle, "买入", turtle.PriceNow)
|
||
|
||
# 突破 记录self.turtle.breakoutlog
|
||
today = datetime.now().strftime("%Y-%m-%d")
|
||
breakout_this_time = BreakOutLog(today,
|
||
turtle.Donchian_20_up,
|
||
turtle.Donchian_20_up - 2 * turtle.N,
|
||
'valid',
|
||
None)
|
||
turtle.BreakOutLog.append(breakout_this_time)
|
||
|
||
elif turtle.system1EnterSafe(
|
||
turtle.PriceNow,
|
||
turtle.Donchian_50_up
|
||
):
|
||
self.start_email_thread(turtle, "买入", turtle.PriceNow)
|
||
|
||
elif 1 <= turtle.TrigerTime <= 3:
|
||
|
||
# 加仓状态
|
||
if turtle.add(turtle.PriceNow):
|
||
self.start_email_thread(turtle, "加仓", turtle.PriceNow)
|
||
|
||
# 止损状态
|
||
elif turtle.system_1_stop(turtle.PriceNow):
|
||
self.start_email_thread(turtle, "止损", turtle.PriceNow)
|
||
|
||
# 止盈
|
||
elif turtle.system_1_Out(
|
||
turtle.PriceNow,
|
||
turtle.Donchian_10_down
|
||
):
|
||
self.start_email_thread(turtle, "止盈", turtle.PriceNow)
|
||
|
||
elif turtle.TrigerTime == 4:
|
||
# 满仓 止损 止盈
|
||
if turtle.system_1_stop(turtle.PriceNow):
|
||
self.start_email_thread(turtle, "止损", turtle.PriceNow)
|
||
elif turtle.system_1_Out(
|
||
turtle.PriceNow,
|
||
turtle.Donchian_10_down
|
||
):
|
||
self.start_email_thread(turtle, "止盈", turtle.PriceNow)
|
||
|
||
def start_email_thread(self, turtle:TurtleTrading, action, price_now):
|
||
"""启动邮件处理线程"""
|
||
|
||
self.handle_email_response(turtle, action, price_now)
|
||
|
||
|
||
def handle_email_response(self, turtle:TurtleTrading, action, price_now):
|
||
"""处理邮件响应的线程"""
|
||
|
||
try:
|
||
logging.info("handle_email_response is called with action: {}".format(action))
|
||
# 发送邮件
|
||
if action == "买入":
|
||
self.Buy_stock(turtle, price_now)
|
||
elif action == "加仓":
|
||
self.add_stock(turtle, price_now)
|
||
elif action == "止损":
|
||
self.stop_sale_stock(turtle, price_now)
|
||
elif action == "止盈":
|
||
self.out_sale_stock(turtle, price_now)
|
||
else:
|
||
logging.warning(f"Unknown action: {action} for TradeCode: {turtle.TradeCode}")
|
||
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error in handle_email_response for TradeCode: {turtle.TradeCode}, Error: {e}")
|
||
|
||
if __name__ == '__main__':
|
||
|
||
user_email = "guoyize2209@163.com"
|
||
nsdk = TurtleTrading('513870', "etf", 0.0025, 100000, 200000)
|
||
cjdl = TurtleTrading('600900', "stock", 0.0025, 100000, 200000)
|
||
# t.get_ready(100)
|
||
|
||
a = TurtleTrading_OnTime([nsdk, cjdl], user_email)
|
||
a.Start_short_system()
|
||
|
||
# # 全是股票
|
||
# stock_zh_a_spot_df = ak.stock_zh_a_spot_em()
|
||
# # stock_zh_a_spot_df.to_csv("stock_zh_a_spot.txt", sep="\t", index=False, encoding="utf-8")
|
||
# stock_zh_a_spot_df = stock_zh_a_spot_df.dropna(subset=['最新价'])
|
||
# print(stock_zh_a_spot_df)
|
||
|
||
# # 全是基金
|
||
# etf_data = ak.fund_etf_spot_em()
|
||
# etf_data = etf_data.dropna(subset=['最新价'])
|
||
# etf_data.to_csv("fund_etf_spot.txt", sep="\t", index=False, encoding="utf-8")
|
||
# print(etf_data)
|
||
|