import numpy as np import math import akshare as ak import os from datetime import datetime, timedelta, date import pandas as pd import mplfinance as mpf def calc_sma_atr_pd(kdf,period): """计算TR与ATR Args: kdf (_type_): 历史数据 period (_type_): ATR周期 Returns: _type_: 返回kdf,增加TR与ATR列 """ kdf['HL'] = kdf['最高'] - kdf['最低'] kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1)) kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1)) kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3) # ranges = pd.concat([high_low, high_close, low_close], axis=1) # true_range = np.max(ranges, axis=1) kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3) return kdf.drop(['HL','HC','LC'], axis = 1) class TurtleTrading(object): """对象范围较小,对某一个标的创建一个海龟,如513300, 计算ATR、 Position Size, 买入、卖出、加仓等行为 Args: object (_type_): _description_ """ def __init__(self, TradeCode) -> None: self.TradeCode = TradeCode def GetRecentData(self): """获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData Returns: _type_: _description_ """ Today = datetime.today() # print(Today) formatted_date = Today.strftime("%Y%m%d") two_years_ago = date.today() - timedelta(days=365*2).strftime("%Y%m%d") # print(formatted_date) Code = f"{self.TradeCode}" self.CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="") # return CurrentData def CalATR(self, data, ATRday, SaveOrNot): """计算某个标的的ATR,从上市日到今天, 计算后的数据保存在self.CurrentData Args: ATRday: 多少日ATR SaveOrNot (_type_): 是否保存.csv数据 """ self.CurrentData = calc_sma_atr_pd(data, ATRday) self.N = self.CurrentData['ATR'] if SaveOrNot: self.CurrentData.to_csv('513300data-N.csv', index=False) print("csv保存成功") return self.N def CalPositionSize(self, RiskCoef, Capital): """计算PosizionSize 持有的单位,该单位某标的,1N波动对应RiskCoef * Capital资金 Args: RiskCoef (_type_): 风险系数 Capital (_type_): 资金 """ N = self.CurrentData.iloc[-1]['ATR'] # N = 0.473 Price = self.CurrentData.iloc[-1]['收盘'] # Price = 5.60 self.PositionSize = RiskCoef * Capital /( N*100*Price) # 默认用股票形式了 100 return self.PositionSize def ReadExistData(self, data): """除了通过发请求获取数据,也可以读本地的数据库,赋值给self.CurrentData Args: data (_type_): 本地csv名称 """ self.CurrentData = pd.read_csv(data) def DrawKLine(self, days): """画出k线图看看,画出最近days天的K线图 """ # 日期部分 dates = pd.to_datetime(self.CurrentData['日期'][-days:]) # Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期']) Klinedf = pd.DataFrame() # Klinedf.set_index = Klinedf['Data'] # 其他数据 Klinedf['Open'] = self.CurrentData['开盘'][-days:] Klinedf['High'] = self.CurrentData['最高'][-days:] Klinedf['Low'] = self.CurrentData['最低'][-days:] Klinedf['Close'] = self.CurrentData['收盘'][-days:] Klinedf['Volume'] = self.CurrentData['成交量'][-days:] Klinedf.set_index(dates, inplace=True) # 画图 mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian[['Upper', 'Lower']])]) def calculate_donchian_channel(self, days, n): """ 计算唐奇安通道days一共多少日, n多少日唐奇安 参数: self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame,至少包含"High"和"Low"列 n (int): 时间周期 返回:self.Donchian DataFrame: 唐奇安通道的DataFrame,包含"Upper", "Lower", 和 "Middle"列 """ Donchian = pd.DataFrame() # 计算最高价和最低价的N日移动平均线 Donchian['Upper'] = self.CurrentData['最高'][-days:].rolling(n).max() Donchian['Lower'] = self.CurrentData['最低'][-days:].rolling(n).min() # # 计算中间线 # Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2 return Donchian