1 更新自己的东方财富爬虫函数 2 测试突破买入 3 测试保存yaml及读取功能

This commit is contained in:
guoyz 2025-05-31 22:26:31 +08:00
parent 587625edf7
commit 0e36cf82a7
6 changed files with 539 additions and 133 deletions

View File

@ -12,12 +12,20 @@ import time
import threading import threading
import yaml # 添加YAML支持 import yaml # 添加YAML支持
import logging import logging
from stock_em import stock_zh_a_spot_em
from etf_em import fund_etf_spot_em
import random
import urllib.parse
import requests
''' '''
todo todo
1 运行过程框架调整支持多个turtle同时监测 1 运行过程框架调整支持多个turtle同时监测 done
2 增加运行状态写入yaml文件读取文件恢复状态 2 增加运行状态写入yaml文件读取文件恢复状态 done
3 测试每分钟获取实时信息是否稳定 done
4 etf实时数据使用异步方式获取速度加快了 done
4 获取数据调用clash代理 done
''' '''
@dataclass @dataclass
@ -346,6 +354,34 @@ class TurtleTrading_OnTime(object):
3实时监测主流程 3实时监测主流程
''' '''
def __init__(self, turtles: list[TurtleTrading], user_email):
self.turtles = turtles # List of TurtleTrading instances
self.user_email = user_email
self.email_events = {} # Track email response events for each turtle
logging.basicConfig(level=logging.INFO)
# Load previous state from YAML if exists
self.load_previous_state()
self.clash_api = "http://127.0.0.1:9090"
self.node_group_name_encoded = urllib.parse.quote("🚀代理线路", safe='') # 根据 Clash 中策略组的名字填写
self.clash_secret = "6Gp-fdt-veS-ugv"
self.node_names = [
"R1-0|香港-NF|深|负载均衡",
"R1-1|香港-NF|粤|负载均衡",
"R1-2|香港-NF|沪|负载均衡",
"R1-3|香港-NF|湘|负载均衡",
"R2-1|香港-NF|HKT家宽",
"R2-2|香港-NF|HKT家宽",
"R2-3|香港-NF|HKT家宽",
"R2-5|香港-NF|HKT家宽",
"R3-1|香港-NF|BGP静态",
"R4-1|台湾-NF|家宽|原生",
"R5-1|日本-NF|GMO|原生IP",
"R5-4|日本-NF|IIJ|精品",
"R6-1|美国-NF|BGP",
"R9-1|狮城-NF|FDC",
]
def load_previous_state(self): def load_previous_state(self):
"""Load previous state from YAML file if exists""" """Load previous state from YAML file if exists"""
state_dir = "state" state_dir = "state"
@ -356,9 +392,11 @@ class TurtleTrading_OnTime(object):
if os.path.exists(filename): if os.path.exists(filename):
with open(filename, 'r') as f: with open(filename, 'r') as f:
state_data = yaml.safe_load(f) state_data = yaml.safe_load(f)
main_state = state_data.get('main_state', {})
# Restore state # Restore state
for turtle_data in state_data.get('turtles', []): try:
for turtle_data in main_state.get('turtles', []):
# Find or create TurtleTrading instance # Find or create TurtleTrading instance
turtle = next((t for t in self.turtles if t.TradeCode == turtle_data['TradeCode']), None) turtle = next((t for t in self.turtles if t.TradeCode == turtle_data['TradeCode']), None)
if not turtle: if not turtle:
@ -376,20 +414,26 @@ class TurtleTrading_OnTime(object):
turtle.BuyStates = [BuyState(**bs) for bs in turtle_data['BuyStates']] turtle.BuyStates = [BuyState(**bs) for bs in turtle_data['BuyStates']]
turtle.tradeslog = [TradeLog(**tl) for tl in turtle_data['tradeslog']] turtle.tradeslog = [TradeLog(**tl) for tl in turtle_data['tradeslog']]
turtle.BreakOutLog = [BreakOutLog(**bol) for bol in turtle_data['BreakOutLog']] turtle.BreakOutLog = [BreakOutLog(**bol) for bol in turtle_data['BreakOutLog']]
turtle.PriceNow = turtle_data['PriceNow']
turtle.Donchian_20_up = turtle_data['Donchian_20_up']
turtle.Donchian_10_down = turtle_data['Donchian_10_down']
turtle.Donchian_50_up = turtle_data['Donchian_50_up']
turtle.is_gap_up = turtle_data['is_gap_up']
turtle.prev_heigh = turtle_data['prev_heigh']
def __init__(self, turtles: list[TurtleTrading], user_email): except Exception as e:
self.turtles = turtles # List of TurtleTrading instances logging.error(f"Error loading previous state: {e}")
self.user_email = user_email def switch_random_node(self):
self.email_events = {} # Track email response events for each turtle '''随机切换clash节点
logging.basicConfig(level=logging.INFO) '''
# Load previous state from YAML if exists selected_node = random.choice(self.node_names)
self.load_previous_state() url = f"{self.clash_api}/proxies/{self.node_group_name_encoded}"
headers = {
"Authorization": f"Bearer {self.clash_secret}"
}
try:
res = requests.put(url, headers=headers, json={"name": selected_node})
if res.status_code == 204:
print(f"[✓] 成功切换节点为:{selected_node}")
else:
print(f"[✗] 切换失败:{res.status_code} - {res.text}")
except Exception as e:
print(f"[!] 请求失败: {e}")
def day_end(self): def day_end(self):
"""Save current state to YAML file at the end of the day""" """Save current state to YAML file at the end of the day"""
@ -429,20 +473,21 @@ class TurtleTrading_OnTime(object):
def get_stocks_data(self): def get_stocks_data(self):
"""获取实时股票、基金数据,不保存 """获取实时股票、基金数据,不保存
""" """
stock_data = ak.stock_zh_a_spot_em() try:
self.switch_random_node()
stock_data = stock_zh_a_spot_em()
stock_data = stock_data.dropna(subset=['最新价']) stock_data = stock_data.dropna(subset=['最新价'])
# # print(stock_zh_a_spot_df)
# # stock_zh_a_spot_df第一列加上时间精确到分钟
# stock_zh_a_spot_df['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# mysql_database.insert_db(stock_zh_a_spot_df, "stock_price", True, "代码")
etf_data = ak.fund_etf_spot_em() etf_data = fund_etf_spot_em()
# etf_data = ak.fund_etf_spot_ths()
# etf_data = etf_data.dropna(subset=['当前-单位净值'])
etf_data = etf_data.dropna(subset=['最新价']) etf_data = etf_data.dropna(subset=['最新价'])
# etf_data['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # 成功调用使用logging记录日志加上时间
# mysql_database.insert_db(etf_data, "etf_price", True, "代码") logging.info(f"Successfully fetched stock and ETF data at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
except Exception as e:
logging.error(f"Error occurred while getting stock data: {e}")
return None, None
return stock_data, etf_data return stock_data, etf_data
def Buy_stock(self, turtle: TurtleTrading, price_now): def Buy_stock(self, turtle: TurtleTrading, price_now):
@ -704,88 +749,6 @@ class TurtleTrading_OnTime(object):
Net_return=abs(turtle.Capital - available_cash)) Net_return=abs(turtle.Capital - available_cash))
turtle.tradeslog.append(sale_this_time) turtle.tradeslog.append(sale_this_time)
# def run_short_trading_loop(self, stock_data, etf_data):
# now = datetime.now().time()
# # 根据类型获取当前价格
# if self.turtle.type == "stock":
# self.turtle.PriceNow = float(stock_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
# elif self.turtle.type == "etf":
# # self.turtle.PriceNow = float(etf_data.loc[etf_data['基金代码'] == self.turtle.TradeCode, '当前-单位净值'].values[0])
# self.turtle.PriceNow = float(etf_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
# # # 9点30 判断是否跳空高开
# if now.hour == 9 and now.minute == 30 and self.turtle.PriceNow > self.turtle.prev_heigh:
# self.turtle.is_gap_up = True
# # 判断当前仓位状态并执行相应操作
# if self.turtle.TrigerTime == 0:
# # 空仓状态
# if self.turtle.system1EnterNormal(
# self.turtle.PriceNow,
# self.turtle.Donchian_20_up,
# self.turtle.BreakOutLog
# ):
# self.Buy_stock(self.turtle.PriceNow)
# # 突破 记录self.turtle.breakoutlog
# today = datetime.now().strftime("%Y-%m-%d")
# breakout_this_time = BreakOutLog(today,
# self.turtle.Donchian_20_up,
# self.turtle.Donchian_20_up - 2 * self.turtle.N,
# 'valid',
# None)
# self.turtle.BreakOutLog.append(breakout_this_time)
# elif self.turtle.system1EnterSafe(
# self.turtle.PriceNow,
# self.turtle.Donchian_50_up
# ):
# self.Buy_stock(self.turtle.PriceNow)
# elif 1 <= self.turtle.TrigerTime <= 3:
# # # 突破状态
# # if self.turtle.system1EnterNormal(
# # self.turtle.PriceNow,
# # self.turtle.Donchian_20_up,
# # self.turtle.BreakOutLog
# # ):
# # self.Buy_stock(self.turtle.PriceNow)
# # elif self.turtle.system1EnterSafe(
# # self.turtle.PriceNow,
# # self.turtle.Donchian_50_up
# # ):
# # self.Buy_stock(self.turtle.PriceNow)
# # 加仓状态
# if self.turtle.add(self.turtle.PriceNow):
# self.add_stock(self.turtle.PriceNow)
# # 止损状态
# elif self.turtle.system_1_stop(self.turtle.PriceNow):
# self.stop_sale_stock(self.turtle.PriceNow)
# # 止盈
# elif self.turtle.system_1_Out(
# self.turtle.PriceNow,
# self.turtle.Donchian_10_down
# ):
# self.out_sale_stock(self.turtle.PriceNow)
# elif self.turtle.TrigerTime == 4:
# # 满仓 止损 止盈
# if self.turtle.system_1_stop(self.turtle.PriceNow):
# self.stop_sale_stock(self.turtle.PriceNow)
# elif self.turtle.system_1_Out(
# self.turtle.PriceNow,
# self.turtle.Donchian_10_down
# ):
# self.out_sale_stock(self.turtle.PriceNow)
# # 等待 1 分钟后下一次循环
# time.sleep(60)
def Start_short_system(self): def Start_short_system(self):
"""启动short系统 """启动short系统
@ -824,7 +787,7 @@ class TurtleTrading_OnTime(object):
(now.hour == 14 and 0 <= now.minute <= 59) or (now.hour == 14 and 0 <= now.minute <= 59) or
(now.hour == 15 and now.minute <= 0) (now.hour == 15 and now.minute <= 0)
) )
is_trading_time = True # is_trading_time = True
if not is_trading_time: if not is_trading_time:
@ -832,14 +795,15 @@ class TurtleTrading_OnTime(object):
time.sleep(60) time.sleep(60)
continue continue
is_stop_time = (now.hour > 15 and now.minute > 0) #收盘时间 is_stop_time = (now.hour >= 15 and now.minute > 0) #收盘时间
# is_stop_time = (now.hour >= 18 and now.minute > 32) #收盘时间
if is_stop_time: if is_stop_time:
break break
# 获取股票和ETF数据 # 获取股票和ETF数据
self.monitor_all_turtles() self.monitor_all_turtles()
# 等待一段时间后再次检查 # 等待一段时间后再次检查
time.sleep(60) # 每分钟检查一次 time.sleep(random.randint(60, 65))# 每分钟检查一次
# ------------------结束阶段-------------------- # ------------------结束阶段--------------------
# 数据库更新当天数据增加ATR、donchian数据 # 数据库更新当天数据增加ATR、donchian数据
# 直接做个新表 # 直接做个新表
@ -886,8 +850,8 @@ class TurtleTrading_OnTime(object):
if now.hour == 9 and now.minute == 30 and turtle.PriceNow > turtle.prev_heigh: if now.hour == 9 and now.minute == 30 and turtle.PriceNow > turtle.prev_heigh:
turtle.is_gap_up = True turtle.is_gap_up = True
# fake_price = 1.470 fake_price = 1.492
# turtle.PriceNow = fake_price turtle.PriceNow = fake_price
# 判断当前仓位状态并执行相应操作 # 判断当前仓位状态并执行相应操作
if turtle.TrigerTime == 0: if turtle.TrigerTime == 0:
if turtle.system1EnterNormal( if turtle.system1EnterNormal(

Binary file not shown.

Binary file not shown.

231
etf_em.py Normal file
View File

@ -0,0 +1,231 @@
import asyncio
import httpx
import math
import pandas as pd
from datetime import datetime, timezone, timedelta
import logging
logging.getLogger("httpx").setLevel(logging.WARNING)
HEADERS = {
"User-Agent": (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/122.0.0.0 Safari/537.36"
),
"Referer": "https://quote.eastmoney.com/center/gridlist.html#fund_etf", # 合理来源页
"Accept": "application/json, text/plain, */*",
"Accept-Language": "zh-CN,zh;q=0.9",
"Connection": "keep-alive",
}
async def fetch_page(client: httpx.AsyncClient, url: str, params: dict) -> pd.DataFrame:
try:
resp = await client.get(url, params=params, timeout=10)
data_json = resp.json()
if "data" in data_json and data_json["data"].get("diff"):
return pd.DataFrame(data_json["data"]["diff"])
except Exception as e:
print(f"Error on page {params.get('pn')}: {e}")
return pd.DataFrame()
async def fund_etf_spot_em_async() -> pd.DataFrame:
url = "https://88.push2.eastmoney.com/api/qt/clist/get"
params = {
"pn": "1",
"pz": "100",
"po": "1",
"np": "1",
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
"fltt": "2",
"invt": "2",
"wbp2u": "|0|0|0|web",
"fid": "f12",
"fs": "b:MK0021,b:MK0022,b:MK0023,b:MK0024,b:MK0827",
"fields": (
"f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,"
"f12,f13,f14,f15,f16,f17,f18,f20,f21,"
"f23,f24,f25,f22,f11,f30,f31,f32,f33,"
"f34,f35,f38,f62,f63,f64,f65,f66,f69,"
"f72,f75,f78,f81,f84,f87,f115,f124,f128,"
"f136,f152,f184,f297,f402,f441"
),
}
async with httpx.AsyncClient(headers=HEADERS, http2=True) as client:
# 获取首页数据,确认总页数
resp = await client.get(url, params=params)
data_json = resp.json()
if "data" not in data_json or not data_json["data"].get("diff"):
return pd.DataFrame()
total = data_json["data"]["total"]
per_page = len(data_json["data"]["diff"])
total_pages = math.ceil(total / per_page)
tasks = []
for page in range(1, total_pages + 1):
new_params = params.copy()
new_params["pn"] = str(page)
tasks.append(fetch_page(client, url, new_params))
dfs = await asyncio.gather(*tasks)
temp_df = pd.concat([df for df in dfs if not df.empty], ignore_index=True)
temp_df.rename(
columns={
"f12": "代码",
"f14": "名称",
"f2": "最新价",
"f4": "涨跌额",
"f3": "涨跌幅",
"f5": "成交量",
"f6": "成交额",
"f7": "振幅",
"f17": "开盘价",
"f15": "最高价",
"f16": "最低价",
"f18": "昨收",
"f8": "换手率",
"f10": "量比",
"f30": "现手",
"f31": "买一",
"f32": "卖一",
"f33": "委比",
"f34": "外盘",
"f35": "内盘",
"f62": "主力净流入-净额",
"f184": "主力净流入-净占比",
"f66": "超大单净流入-净额",
"f69": "超大单净流入-净占比",
"f72": "大单净流入-净额",
"f75": "大单净流入-净占比",
"f78": "中单净流入-净额",
"f81": "中单净流入-净占比",
"f84": "小单净流入-净额",
"f87": "小单净流入-净占比",
"f38": "最新份额",
"f21": "流通市值",
"f20": "总市值",
"f402": "基金折价率",
"f441": "IOPV实时估值",
"f297": "数据日期",
"f124": "更新时间",
},
inplace=True,
)
temp_df = temp_df[
[
"代码",
"名称",
"最新价",
"IOPV实时估值",
"基金折价率",
"涨跌额",
"涨跌幅",
"成交量",
"成交额",
"开盘价",
"最高价",
"最低价",
"昨收",
"振幅",
"换手率",
"量比",
"委比",
"外盘",
"内盘",
"主力净流入-净额",
"主力净流入-净占比",
"超大单净流入-净额",
"超大单净流入-净占比",
"大单净流入-净额",
"大单净流入-净占比",
"中单净流入-净额",
"中单净流入-净占比",
"小单净流入-净额",
"小单净流入-净占比",
"现手",
"买一",
"卖一",
"最新份额",
"流通市值",
"总市值",
"数据日期",
"更新时间",
]
].copy()
temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce")
temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce")
temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce")
temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce")
temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce")
temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce")
temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce")
temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce")
temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce")
temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce")
temp_df["委比"] = pd.to_numeric(temp_df["委比"], errors="coerce")
temp_df["外盘"] = pd.to_numeric(temp_df["外盘"], errors="coerce")
temp_df["内盘"] = pd.to_numeric(temp_df["内盘"], errors="coerce")
temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce")
temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce")
temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce")
temp_df["现手"] = pd.to_numeric(temp_df["现手"], errors="coerce")
temp_df["买一"] = pd.to_numeric(temp_df["买一"], errors="coerce")
temp_df["卖一"] = pd.to_numeric(temp_df["卖一"], errors="coerce")
temp_df["最新份额"] = pd.to_numeric(temp_df["最新份额"], errors="coerce")
temp_df["IOPV实时估值"] = pd.to_numeric(temp_df["IOPV实时估值"], errors="coerce")
temp_df["基金折价率"] = pd.to_numeric(temp_df["基金折价率"], errors="coerce")
temp_df["主力净流入-净额"] = pd.to_numeric(
temp_df["主力净流入-净额"], errors="coerce"
)
temp_df["主力净流入-净占比"] = pd.to_numeric(
temp_df["主力净流入-净占比"], errors="coerce"
)
temp_df["超大单净流入-净额"] = pd.to_numeric(
temp_df["超大单净流入-净额"], errors="coerce"
)
temp_df["超大单净流入-净占比"] = pd.to_numeric(
temp_df["超大单净流入-净占比"], errors="coerce"
)
temp_df["大单净流入-净额"] = pd.to_numeric(
temp_df["大单净流入-净额"], errors="coerce"
)
temp_df["大单净流入-净占比"] = pd.to_numeric(
temp_df["大单净流入-净占比"], errors="coerce"
)
temp_df["中单净流入-净额"] = pd.to_numeric(
temp_df["中单净流入-净额"], errors="coerce"
)
temp_df["中单净流入-净占比"] = pd.to_numeric(
temp_df["中单净流入-净占比"], errors="coerce"
)
temp_df["小单净流入-净额"] = pd.to_numeric(
temp_df["小单净流入-净额"], errors="coerce"
)
temp_df["小单净流入-净占比"] = pd.to_numeric(
temp_df["小单净流入-净占比"], errors="coerce"
)
temp_df["数据日期"] = pd.to_datetime(
temp_df["数据日期"], format="%Y%m%d", errors="coerce"
)
temp_df["更新时间"] = (
pd.to_datetime(temp_df["更新时间"], unit="s", errors="coerce")
.dt.tz_localize("UTC")
.dt.tz_convert("Asia/Shanghai")
)
return temp_df
# 示例同步调用封装(如需在同步代码中使用)
def fund_etf_spot_em() -> pd.DataFrame:
return asyncio.run(fund_etf_spot_em_async())
if __name__ == "__main__":
df = fund_etf_spot_em()
print(df.head())

46
state/2025-05-30.yaml Normal file
View File

@ -0,0 +1,46 @@
main_state:
email_events: {}
turtles:
- BreakOutLog:
- breakout_price: 1.491
data: '2025-05-31'
lose_price: 1.459
valid_or_not: valid
win_or_lose: null
BuyStates:
- add_price: 1.5
atr: 0.016
available_cash: 76724.9
buy_price: 1.492
is_gap_up: false
shares: 15600.0
stop_price: 1.46
trigger_time: 1
Capital: 100000
TradeCode: '513870'
TrigerTime: 1
cash: 200000
riskcoe: 0.0025
tradeslog:
- Net_return: 0
Net_value: 23275.2
all_cost: 23275.100000000002
all_shares: 15600.0
atr: 0.016
available_cash: 76724.9
buy_price: 1.492
cost: 23275.100000000002
data: '2025-05-31'
shares: 15600.0
type: "\u4E70\u5165"
type: etf
- BreakOutLog: []
BuyStates: []
Capital: 100000
TradeCode: '600900'
TrigerTime: 0
cash: 200000
riskcoe: 0.0025
tradeslog: []
type: stock
user_email: guoyize2209@163.com

165
stock_em.py Normal file
View File

@ -0,0 +1,165 @@
import asyncio
from typing import Dict, List
import aiohttp
import pandas as pd
# 增加了 User-Agent 头
HEADERS = {
"User-Agent": (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/122.0.0.0 Safari/537.36"
),
"Referer": "https://quote.eastmoney.com/center/gridlist.html#hs_a_board", # 合理来源页
"Accept": "application/json, text/plain, */*",
"Accept-Language": "zh-CN,zh;q=0.9",
"Connection": "keep-alive",
}
async def fetch_single_page(
session: aiohttp.ClientSession, url: str, params: Dict
) -> Dict:
"""异步获取单页数据"""
async with session.get(url, params=params, headers=HEADERS, ssl=False) as response:
return await response.json()
async def fetch_all_pages_async(url: str, base_params: Dict) -> List[Dict]:
"""异步获取所有页面数据"""
first_page_params = base_params.copy()
first_page_params["pn"] = "1"
async with aiohttp.ClientSession() as session:
first_page_data = await fetch_single_page(session, url, first_page_params)
if first_page_data.get("rc") != 0 or not first_page_data.get("data"):
return [first_page_data]
total = first_page_data["data"]["total"]
page_size = int(base_params["pz"])
total_pages = (total + page_size - 1) // page_size
total_pages = min(total_pages, 100)
tasks = []
for page in range(1, total_pages + 1):
page_params = base_params.copy()
page_params["pn"] = str(page)
tasks.append(fetch_single_page(session, url, page_params))
results = await asyncio.gather(*tasks)
return results
def process_data(page_results: List[Dict]) -> pd.DataFrame:
"""处理数据为 DataFrame"""
all_data = []
page_number = 1
items_per_page = 100
for result in page_results:
if result.get("rc") == 0 and result.get("data") and result["data"].get("diff"):
page_data = result["data"]["diff"]
for item in page_data:
item["page_number"] = page_number
item["page_index"] = page_data.index(item)
all_data.extend(page_data)
page_number += 1
if not all_data:
return pd.DataFrame()
df = pd.DataFrame(all_data)
df["序号"] = df.apply(
lambda row: (row["page_number"] - 1) * items_per_page + row["page_index"] + 1,
axis=1,
)
df.drop(columns=["page_number", "page_index"], inplace=True, errors="ignore")
column_map = {
"f1": "原序号",
"f2": "最新价",
"f3": "涨跌幅",
"f4": "涨跌额",
"f5": "成交量",
"f6": "成交额",
"f7": "振幅",
"f8": "换手率",
"f9": "市盈率-动态",
"f10": "量比",
"f11": "5分钟涨跌",
"f12": "代码",
"f13": "_",
"f14": "名称",
"f15": "最高",
"f16": "最低",
"f17": "今开",
"f18": "昨收",
"f20": "总市值",
"f21": "流通市值",
"f22": "涨速",
"f23": "市净率",
"f24": "60日涨跌幅",
"f25": "年初至今涨跌幅",
}
df.rename(columns=column_map, inplace=True)
desired_columns = [
"序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅",
"最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率",
"总市值", "流通市值", "涨速", "5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅"
]
available_columns = [col for col in desired_columns if col in df.columns]
df = df[available_columns]
for col in [
"最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开",
"昨收", "量比", "换手率", "市盈率-动态", "市净率", "总市值", "流通市值", "涨速",
"5分钟涨跌", "60日涨跌幅", "年初至今涨跌幅"
]:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors="coerce")
df.sort_values(by="涨跌幅", ascending=False, inplace=True)
df.reset_index(drop=True, inplace=True)
df["序号"] = df.index + 1
return df
async def stock_zh_a_spot_em_async() -> pd.DataFrame:
url = "https://82.push2.eastmoney.com/api/qt/clist/get"
params = {
"pn": "1",
"pz": "100",
"po": "1",
"np": "1",
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
"fltt": "2",
"invt": "2",
"fid": "f12",
"fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048",
"fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,"
"f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152",
}
results = await fetch_all_pages_async(url, params)
return process_data(results)
def stock_zh_a_spot_em() -> pd.DataFrame:
"""
东方财富网-沪深京 A -实时行情 (同步接口)
https://quote.eastmoney.com/center/gridlist.html#hs_a_board
:return: 实时行情
:rtype: pandas.DataFrame
"""
import nest_asyncio
nest_asyncio.apply()
return asyncio.run(stock_zh_a_spot_em_async())
if __name__ == "__main__":
df = stock_zh_a_spot_em()
print(df)