TurtleTrade/回测/TurtleOnTime.py

139 lines
4.8 KiB
Python
Raw Normal View History

2025-04-02 23:06:11 +08:00
import numpy as np
import math
import akshare as ak
import os
from datetime import datetime, timedelta, date
import pandas as pd
import mplfinance as mpf
def calc_sma_atr_pd(kdf,period):
"""计算TR与ATR
Args:
kdf (_type_): 历史数据
period (_type_): ATR周期
Returns:
_type_: 返回kdf增加TR与ATR列
"""
kdf['HL'] = kdf['最高'] - kdf['最低']
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
# true_range = np.max(ranges, axis=1)
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
return kdf.drop(['HL','HC','LC'], axis = 1)
class TurtleTrading(object):
"""对象范围较小对某一个标的创建一个海龟如513300
计算ATR
Position Size
买入卖出加仓等行为
Args:
object (_type_): _description_
"""
def __init__(self, TradeCode) -> None:
self.TradeCode = TradeCode
def GetRecentData(self):
"""获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData
Returns:
_type_: _description_
"""
Today = datetime.today()
# print(Today)
formatted_date = Today.strftime("%Y%m%d")
two_years_ago = date.today() - timedelta(days=365*2).strftime("%Y%m%d")
# print(formatted_date)
Code = f"{self.TradeCode}"
self.CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="")
# return CurrentData
def CalATR(self, data, ATRday, SaveOrNot):
"""计算某个标的的ATR从上市日到今天, 计算后的数据保存在self.CurrentData
Args:
ATRday: 多少日ATR
SaveOrNot (_type_): 是否保存.csv数据
"""
self.CurrentData = calc_sma_atr_pd(data, ATRday)
self.N = self.CurrentData['ATR']
if SaveOrNot:
self.CurrentData.to_csv('513300data-N.csv', index=False)
print("csv保存成功")
return self.N
def CalPositionSize(self, RiskCoef, Capital):
"""计算PosizionSize 持有的单位该单位某标的1N波动对应RiskCoef * Capital资金
Args:
RiskCoef (_type_): 风险系数
Capital (_type_): 资金
"""
N = self.CurrentData.iloc[-1]['ATR']
# N = 0.473
Price = self.CurrentData.iloc[-1]['收盘']
# Price = 5.60
self.PositionSize = RiskCoef * Capital /( N*100*Price) # 默认用股票形式了 100
return self.PositionSize
def ReadExistData(self, data):
"""除了通过发请求获取数据也可以读本地的数据库赋值给self.CurrentData
Args:
data (_type_): 本地csv名称
"""
self.CurrentData = pd.read_csv(data)
def DrawKLine(self, days):
"""画出k线图看看,画出最近days天的K线图
"""
# 日期部分
dates = pd.to_datetime(self.CurrentData['日期'][-days:])
# Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
Klinedf = pd.DataFrame()
# Klinedf.set_index = Klinedf['Data']
# 其他数据
Klinedf['Open'] = self.CurrentData['开盘'][-days:]
Klinedf['High'] = self.CurrentData['最高'][-days:]
Klinedf['Low'] = self.CurrentData['最低'][-days:]
Klinedf['Close'] = self.CurrentData['收盘'][-days:]
Klinedf['Volume'] = self.CurrentData['成交量'][-days:]
Klinedf.set_index(dates, inplace=True)
# 画图
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian[['Upper', 'Lower']])])
def calculate_donchian_channel(self, days, n):
"""
计算唐奇安通道days一共多少日 n多少日唐奇安
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame至少包含"High""Low"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper", "Lower", "Middle"
"""
Donchian = pd.DataFrame()
# 计算最高价和最低价的N日移动平均线
Donchian['Upper'] = self.CurrentData['最高'][-days:].rolling(n).max()
Donchian['Lower'] = self.CurrentData['最低'][-days:].rolling(n).min()
# # 计算中间线
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
return Donchian