TurtleTrade/TurtleOnTime.py

247 lines
9.4 KiB
Python
Raw Normal View History

2025-04-02 22:55:29 +08:00
import numpy as np
import math
import akshare as ak
import os
from datetime import datetime, timedelta, date
import pandas as pd
import mplfinance as mpf
import sqlite3
import stock_database
import mysql_database
def calc_sma_atr_pd(kdf,period):
"""计算TR与ATR
Args:
kdf (_type_): 历史数据
period (_type_): ATR周期
Returns:
_type_: 返回kdf增加TR与ATR列
"""
kdf['最高'] = kdf['最高'].astype(float)
kdf['最低'] = kdf['最低'].astype(float)
kdf['收盘'] = kdf['收盘'].astype(float)
kdf['HL'] = kdf['最高'] - kdf['最低']
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
# true_range = np.max(ranges, axis=1)
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
return kdf.drop(['HL','HC','LC'], axis = 1)
class TurtleTrading(object):
"""对象范围较小对某一个标的创建一个海龟如513300
计算ATR唐奇安通道线
基础数据
Args:
object (_type_): _description_
"""
def __init__(self, TradeCode) -> None:
self.TradeCode = TradeCode
def GetRecentData(self):
"""获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData
Returns:
_type_: _description_
"""
Today = datetime.today()
# print(Today)
formatted_date = Today.strftime("%Y%m%d")
two_years_ago = (date.today() - timedelta(days=365*2)).strftime("%Y%m%d")
# print(formatted_date)
Code = f"{self.TradeCode}"
CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="")
# 将日期列转换为datetime
CurrentData = pd.DataFrame(CurrentData)
CurrentData['日期'] = pd.to_datetime(CurrentData['日期'])
# print(type(CurrentData['日期'].iloc[0]))
CurrentData.set_index('日期', inplace=True)
# CurrentData.reset_index(inplace=True)
# print(type(CurrentData['日期'].iloc[0]))
# create table
# stock_database.create_table(Code)
# stock_database.insert_data(Code, CurrentData)
# mysql_database.insert_db(CurrentData, Code, True, "'日期'")
self.CurrentData = CurrentData
# return self.CurrentData
def CalATR(self, data, ATRday):
"""计算某个标的的ATR从上市日到今天, 计算后的数据保存在self.CurrentData
Args:
ATRday: 多少日ATR
SaveOrNot (_type_): 是否保存.csv数据
"""
self.CurrentData = calc_sma_atr_pd(data, ATRday)
self.N = self.CurrentData['ATR']
# return self.N
def ReadExistData(self, data):
"""除了通过发请求获取数据也可以读本地的数据库赋值给self.CurrentData
Args:
data (_type_): 本地csv名称
"""
self.CurrentData = pd.read_csv(data)
def DrawKLine(self, days):
"""画出k线图看看,画出最近days天的K线图
"""
# 日期部分
# dates = pd.to_datetime(self.CurrentData['日期'][-days:])
# # Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
Klinedf = pd.DataFrame()
# Klinedf.set_index = Klinedf['Data']
# 其他数据
Klinedf['Date'] = self.CurrentData['日期'][-days:]
Klinedf['Open'] = self.CurrentData['开盘'][-days:].astype(float)
Klinedf['High'] = self.CurrentData['最高'][-days:].astype(float)
Klinedf['Low'] = self.CurrentData['最低'][-days:].astype(float)
Klinedf['Close'] = self.CurrentData['收盘'][-days:].astype(float)
Klinedf['Volume'] = self.CurrentData['成交量'][-days:].astype(float)
Klinedf.set_index(pd.to_datetime(Klinedf['Date']), inplace=True)
# 画图
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian_up['Upper'][-days:]), mpf.make_addplot(self.Donchian_down['lower'][-days:])], title=f"{self.TradeCode} K线图")
def calculate_donchian_channel_up(self, n):
"""
计算n日唐奇安上通道
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame包含"High"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper"
"""
Donchian = pd.DataFrame() # 创建一个空的DataFrame用于存储唐奇安通道数据
# 计算最高价和最低价的N日移动平均线
Donchian['Upper'] = self.CurrentData['最高'].rolling(n).max() # 使用rolling函数计算n日最高价的移动最大值
# # 计算中间线
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2 # 计算上通道和下通道的中间线,但此行代码被注释掉了
return Donchian # 返回包含唐奇安上通道的DataFrame
def calculate_donchian_channel_down(self, n):
"""
计算n日唐奇安上通道
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame包含"High"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper"
"""
Donchian = pd.DataFrame()
# 计算最高价和最低价的N日移动平均线
Donchian['lower'] = self.CurrentData['最低'].rolling(n).min()
# # 计算中间线
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
return Donchian
def get_ready(self, days):
"""创建一个turtle对象获取数据计算ATR计算唐奇安通道
Args:
days (_type_): _description_
n (_type_): _description_
"""
# 检查mysql数据库中是否存在该股票的数据 或者数据库最后一条的时间距离今天是否两天以上
current_date = date.today()
threshold_date = current_date - timedelta(days=2)
last_update = mysql_database.check_db_table_last_date(f"{self.TradeCode}")
if not mysql_database.check_db_table(f"{self.TradeCode}") or last_update < threshold_date:
# 如果不存在则从akshare获取数据并保存到mysql数据库
if mysql_database.check_db_table(f"{self.TradeCode}") and last_update < threshold_date:
mysql_database.delete_table(f"{self.TradeCode}")
self.GetRecentData()
else:
# 如果存在则从mysql数据库中读取数据
self.CurrentData = mysql_database.fetch_all_data(f"{self.TradeCode}")
# 计算ATR
self.CalATR(self.CurrentData, 20)
# 计算唐奇安通道
self.Donchian_up = self.calculate_donchian_channel_up(20)
self.Donchian_down = self.calculate_donchian_channel_down(10)
# 画图
# self.DrawKLine(days)
# 把self.N, self.Donchian_up, self.Donchian_down, 添加到self.CurrentData后面保存到mysql数据库
self.CurrentData = pd.concat([self.CurrentData, self.Donchian_up, self.Donchian_down], axis=1)
Code = f"{self.TradeCode}"
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
# 一天结束计算ATR计算唐奇安通道追加到已有的mysql数据库中
def day_end(self):
pass
class TurtleTrading_OnTime(object):
''' 实时监测主程序可以处理多个turtle
1获取实时大盘数据
2根据turtles的代码比较是否触发条件
3实时监测主流程
'''
def __init__(self):
pass
def get_stocks_data(self):
"""获取实时股票、基金数据,不保存
"""
stock_zh_a_spot_df = ak.stock_zh_a_spot_em()
stock_zh_a_spot_df = stock_zh_a_spot_df.dropna(subset=['最新价'])
# # print(stock_zh_a_spot_df)
# # stock_zh_a_spot_df第一列加上时间精确到分钟
# stock_zh_a_spot_df['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# mysql_database.insert_db(stock_zh_a_spot_df, "stock_price", True, "代码")
# etf_data = ak.fund_etf_spot_em()
etf_data = ak.fund_etf_spot_ths()
etf_data = etf_data.dropna(subset=['当前-单位净值'])
# etf_data['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# mysql_database.insert_db(etf_data, "etf_price", True, "代码")
if __name__ == '__main__':
# t = TurtleTrading('513300')
# t.get_ready(100)
a = TurtleTrading_OnTime()
a.get_stocks_data()
# # 全是股票
# stock_zh_a_spot_df = ak.stock_zh_a_spot_em()
# # stock_zh_a_spot_df.to_csv("stock_zh_a_spot.txt", sep="\t", index=False, encoding="utf-8")
# stock_zh_a_spot_df = stock_zh_a_spot_df.dropna(subset=['最新价'])
# print(stock_zh_a_spot_df)
# # 全是基金
# etf_data = ak.fund_etf_spot_em()
# etf_data = etf_data.dropna(subset=['最新价'])
# etf_data.to_csv("fund_etf_spot.txt", sep="\t", index=False, encoding="utf-8")
# print(etf_data)