TurtleTrade/TurtleOnTime copy.py

974 lines
38 KiB
Python
Raw Permalink Normal View History

2025-05-19 08:07:00 +08:00
import numpy as np
import math
import akshare as ak
import os
from datetime import datetime, timedelta, date
import pandas as pd
import mplfinance as mpf
import mysql_database
from EmailTest import send_email, parse_return_email
from dataclasses import dataclass
import time
2025-05-23 21:12:13 +08:00
import threading
2025-05-25 15:27:01 +08:00
import yaml # 添加YAML支持
2025-05-20 22:54:54 +08:00
'''
todo
1 运行过程框架调整支持多个turtle同时监测
2 增加运行状态写入yaml文件读取文件恢复状态
'''
2025-05-19 08:07:00 +08:00
@dataclass
class BuyState:
trigger_time: float # 触发次数
buy_price: float # 买入价格
add_price: float # 加仓价格
stop_price: float # 止损价格
is_gap_up: bool # 是否跳空高开
shares: int # 买入股数
atr: int # ATR
available_cash: float # 可用资金
@dataclass
class TradeLog:
data: str # 时间
type: str # 操作类型
buy_price: float # 买入价格
shares: int # 买入股数
cost: float # 成本
atr: int # ATR
available_cash: float # 可用资金
all_shares: float # 总股数
all_cost: float # 总成本
Net_value: float # 净值
Net_return: float # 净收益
@dataclass
class BreakOutLog:
# 记录突破信息
data: str # 时间
breakout_price: float # 突破价格
lose_price: float # 亏损价格
valid_or_not: str # 是否有效
win_or_lose: bool # 是否盈利
def calc_sma_atr_pd(kdf,period):
"""计算TR与ATR
Args:
kdf (_type_): 历史数据
period (_type_): ATR周期
Returns:
_type_: 返回kdf增加TR与ATR列
"""
kdf['最高'] = kdf['最高'].astype(float)
kdf['最低'] = kdf['最低'].astype(float)
kdf['收盘'] = kdf['收盘'].astype(float)
kdf['HL'] = kdf['最高'] - kdf['最低']
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
# true_range = np.max(ranges, axis=1)
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
return kdf.drop(['HL','HC','LC'], axis = 1)
class TurtleTrading(object):
"""对象范围较小对某一个标的创建一个海龟如513300
计算ATR唐奇安通道线
基础数据
Args:
object (_type_): _description_
"""
def __init__(self, TradeCode, type, riskcoe, Capital, cash) -> None:
self.TradeCode = TradeCode
self.type = type
self.riskcoe = riskcoe
self.Capital = Capital
self.cash = cash
self.TrigerTime = 0
self.BuyStates = list[BuyState]
self.tradeslog = list[TradeLog]
self.BreakOutLog = list[BreakOutLog]
self.PriceNow = 0.0
self.Donchian_20_up = 0.0
self.Donchian_10_down = 0.0
self.Donchian_50_up = 0.0
self.is_gap_up = False # 是否跳空高开
self.prev_heigh = 0.0 # 前一天最高价
def GetRecentData(self):
"""获取某个标的的最近数据,从两年前到今天, 计算后的数据保存在self.CurrentData
Returns:
_type_: _description_
"""
Today = datetime.today()
# print(Today)
formatted_date = Today.strftime("%Y%m%d")
two_years_ago = (date.today() - timedelta(days=365*2)).strftime("%Y%m%d")
# print(formatted_date)
Code = f"{self.TradeCode}"
CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date=two_years_ago, end_date=formatted_date, adjust="")
# 将日期列转换为datetime
CurrentData = pd.DataFrame(CurrentData)
CurrentData['日期'] = pd.to_datetime(CurrentData['日期'])
# print(type(CurrentData['日期'].iloc[0]))
CurrentData.set_index('日期', inplace=True)
# CurrentData.reset_index(inplace=True)
# print(type(CurrentData['日期'].iloc[0]))
# create table
# stock_database.create_table(Code)
# stock_database.insert_data(Code, CurrentData)
# mysql_database.insert_db(CurrentData, Code, True, "'日期'")
self.CurrentData = CurrentData
# return self.CurrentData
def CalATR(self, data, ATRday):
"""计算某个标的的ATR从上市日到今天, 计算后的数据保存在self.CurrentData
Args:
ATRday: 多少日ATR
SaveOrNot (_type_): 是否保存.csv数据
"""
self.CurrentData = calc_sma_atr_pd(data, ATRday)
self.N = self.CurrentData['ATR']
# return self.N
def ReadExistData(self, data):
"""除了通过发请求获取数据也可以读本地的数据库赋值给self.CurrentData
Args:
data (_type_): 本地csv名称
"""
self.CurrentData = pd.read_csv(data)
def DrawKLine(self, days):
"""画出k线图看看,画出最近days天的K线图
"""
# 日期部分
# dates = pd.to_datetime(self.CurrentData['日期'][-days:])
# # Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
Klinedf = pd.DataFrame()
# Klinedf.set_index = Klinedf['Data']
# 其他数据
Klinedf['Date'] = self.CurrentData['日期'][-days:]
Klinedf['Open'] = self.CurrentData['开盘'][-days:].astype(float)
Klinedf['High'] = self.CurrentData['最高'][-days:].astype(float)
Klinedf['Low'] = self.CurrentData['最低'][-days:].astype(float)
Klinedf['Close'] = self.CurrentData['收盘'][-days:].astype(float)
Klinedf['Volume'] = self.CurrentData['成交量'][-days:].astype(float)
Klinedf.set_index(pd.to_datetime(Klinedf['Date']), inplace=True)
# 画图
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian_up['Upper'][-days:]), mpf.make_addplot(self.Donchian_down['lower'][-days:])], title=f"{self.TradeCode} K线图")
def calculate_donchian_channel_up(self, n):
"""
计算n日唐奇安上通道
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame包含"High"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper"
"""
Donchian = pd.DataFrame() # 创建一个空的DataFrame用于存储唐奇安通道数据
# 计算最高价和最低价的N日移动平均线
name = 'Donchian_' + str(n) + '_upper'
Donchian[name] = self.CurrentData['最高'].rolling(n).max() # 使用rolling函数计算n日最高价的移动最大值
# # 计算中间线
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2 # 计算上通道和下通道的中间线,但此行代码被注释掉了
return Donchian # 返回包含唐奇安上通道的DataFrame
def calculate_donchian_channel_down(self, n):
"""
计算n日唐奇安上通道
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame包含"High"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper"
"""
Donchian = pd.DataFrame()
# 计算最高价和最低价的N日移动平均线
name = 'Donchian_' + str(n) + '_lower'
Donchian[name] = self.CurrentData['最低'].rolling(n).min()
# # 计算中间线
# Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
return Donchian
def calc_atr_donchian_short(self):
"""计算ATR、短期唐奇安通道
"""
# 计算ATR
self.CalATR(self.CurrentData, 20)
# 计算唐奇安通道
self.Donchian_20_ups = self.calculate_donchian_channel_up(20)
self.Donchian_50_ups = self.calculate_donchian_channel_up(50)
self.Donchian_downs = self.calculate_donchian_channel_down(10)
# 画图
# self.DrawKLine(days)
# 把self.N, self.Donchian_up, self.Donchian_down, 添加到self.CurrentData后面保存到mysql数据库
self.CurrentData = pd.concat([self.CurrentData, self.Donchian_20_ups, self.Donchian_50_ups, self.Donchian_downs], axis=1)
def get_ready(self, days):
"""创建一个turtle对象获取数据计算ATR计算唐奇安通道
Args:
days (_type_): _description_
n (_type_): _description_
"""
# if 不存在database
if not mysql_database.check_db_table(f"{self.TradeCode}"):
self.GetRecentData()
self.calc_atr_donchian_short()
Code = f"{self.TradeCode}"
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
else:
# 检查数据库最后一条的时间距离今天是否两天以上
current_date = date.today()
threshold_date = current_date - timedelta(days=2)
last_update = mysql_database.check_db_table_last_date(f"{self.TradeCode}")
if last_update < threshold_date:
# 如果不存在则从akshare获取数据并保存到mysql数据库
mysql_database.delete_table(f"{self.TradeCode}")
self.GetRecentData()
self.calc_atr_donchian_short()
Code = f"{self.TradeCode}"
mysql_database.insert_db(self.CurrentData, Code, True, "日期")
else:
# 如果存在则从mysql数据库中读取数据
self.CurrentData = mysql_database.fetch_all_data(f"{self.TradeCode}")
def CalPositionSize(self):
"""根据风险系数、ATR计算仓位大小, 存于self.IntPositionSize
"""
PositionSize = self.riskcoe * self.Capital /(self.N) # 默认用股票形式了 100
self.IntPositionSize = int(PositionSize // 100) * 100
def system1EnterNormal(self, PriceNow, TempDonchian20Upper, BreakOutLog):
# 没有持仓且价格向上突破---此时包含两种情形1 对某标的首次使用系统2 已发生过突破,此时上次突破天然是失败的
if self.TrigerTime == 0 and PriceNow > TempDonchian20Upper:
# 买入
return True
elif PriceNow > TempDonchian20Upper:#todo !=0不会满足条件 先跳过
self.system1BreakoutValid(PriceNow)
if BreakOutLog[-1].win_or_lose == None: # TT!= 0且突破且上一次突破unseccessful
return True
else:
return False
else:
return False
def system1EnterSafe(self, PriceNow, TempDonchian55Upper):
if PriceNow > TempDonchian55Upper[-1]: # 保底的55日突破
return True
else:
return False
def system1BreakoutValid(self, priceNow):
"""判断前一次突破是否成功是log[-1][5]写入“win”否则写入“Lose”
"""
if priceNow < self.BreakOutLog[-1].lose_price:
self.BreakOutLog[-1].win_or_lose = None
else:
self.BreakOutLog[-1].win_or_lose = True
# 一天结束计算ATR计算唐奇安通道追加到已有的mysql数据库中
def system_1_Out(self, PriceNow, TempDonchian10Lower):
# 退出:低于20日最低价多头方向,空头以突破20日最高价为止损价格--有持仓且价格向下突破
if self.TrigerTime != 0 and PriceNow < TempDonchian10Lower:
# 退出
return True
else:
return False
def add(self, PriceNow):
"""加仓
"""
if self.TrigerTime < 4 and PriceNow > self.BuyStates[self.TrigerTime - 1].add_price:#todo BuyStates是空的
# 买入
return True
else:
return False
def system_1_stop(self, PriceNow):
"""止损判断:如果当前价格<上一次买入后的止损价格则止损
"""
if PriceNow < self.BuyStates[self.TrigerTime - 1].stop_price:
# 买入
return True
else:
return False
def day_end(self):
2025-05-25 15:27:01 +08:00
"""Save current state to YAML file at the end of the day"""
# Create state directory if not exists
state_dir = "state"
if not os.path.exists(state_dir):
os.makedirs(state_dir)
# Generate filename with current date
today = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(state_dir, f"{today}.yaml")
# Save state to YAML
state_data = {
"turtles": [
{
"TradeCode": t.TradeCode,
"type": t.type,
"riskcoe": t.riskcoe,
"Capital": t.Capital,
"cash": t.cash,
"TrigerTime": t.TrigerTime,
"BuyStates": [vars(bs) for bs in t.BuyStates],
"tradeslog": [vars(tl) for tl in t.tradeslog],
"BreakOutLog": [vars(bol) for bol in t.BreakOutLog],
"PriceNow": t.PriceNow,
"Donchian_20_up": t.Donchian_20_up,
"Donchian_10_down": t.Donchian_10_down,
"Donchian_50_up": t.Donchian_50_up,
"is_gap_up": t.is_gap_up,
"prev_heigh": t.prev_heigh
} for t in self.turtles
]
}
with open(filename, 'w') as f:
yaml.dump(state_data, f)
2025-05-19 08:07:00 +08:00
class TurtleTrading_OnTime(object):
''' 实时监测主程序可以处理多个turtle
2025-05-25 15:27:01 +08:00
2025-05-19 08:07:00 +08:00
1获取实时大盘数据
2根据turtles的代码比较是否触发条件
3实时监测主流程
'''
2025-05-25 15:27:01 +08:00
def load_previous_state(self):
"""Load previous state from YAML file if exists"""
state_dir = "state"
today = datetime.now().strftime("%Y-%m-%d")
yesterday = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d")
filename = os.path.join(state_dir, f"{yesterday}.yaml")
if os.path.exists(filename):
with open(filename, 'r') as f:
state_data = yaml.safe_load(f)
# Restore state
for turtle_data in state_data.get('turtles', []):
# Find or create TurtleTrading instance
turtle = next((t for t in self.turtles if t.TradeCode == turtle_data['TradeCode']), None)
if not turtle:
# Create new instance if not found (should not happen)
turtle = TurtleTrading(**turtle_data)
self.turtles.append(turtle)
# Restore attributes
turtle.TradeCode = turtle_data['TradeCode']
turtle.type = turtle_data['type']
turtle.riskcoe = turtle_data['riskcoe']
turtle.Capital = turtle_data['Capital']
turtle.cash = turtle_data['cash']
turtle.TrigerTime = turtle_data['TrigerTime']
turtle.BuyStates = [BuyState(**bs) for bs in turtle_data['BuyStates']]
turtle.tradeslog = [TradeLog(**tl) for tl in turtle_data['tradeslog']]
turtle.BreakOutLog = [BreakOutLog(**bol) for bol in turtle_data['BreakOutLog']]
turtle.PriceNow = turtle_data['PriceNow']
turtle.Donchian_20_up = turtle_data['Donchian_20_up']
turtle.Donchian_10_down = turtle_data['Donchian_10_down']
turtle.Donchian_50_up = turtle_data['Donchian_50_up']
turtle.is_gap_up = turtle_data['is_gap_up']
turtle.prev_heigh = turtle_data['prev_heigh']
2025-05-19 08:07:00 +08:00
2025-05-23 21:12:13 +08:00
def __init__(self, turtles: list[TurtleTrading], user_email):
self.turtles = turtles # List of TurtleTrading instances
2025-05-19 08:07:00 +08:00
self.user_email = user_email
2025-05-23 21:12:13 +08:00
self.email_events = {} # Track email response events for each turtle
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# Load previous state from YAML if exists
self.load_previous_state()
2025-05-19 08:07:00 +08:00
def get_stocks_data(self):
"""获取实时股票、基金数据,不保存
"""
stock_data = ak.stock_zh_a_spot_em()
stock_data = stock_data.dropna(subset=['最新价'])
# # print(stock_zh_a_spot_df)
# # stock_zh_a_spot_df第一列加上时间精确到分钟
# stock_zh_a_spot_df['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# mysql_database.insert_db(stock_zh_a_spot_df, "stock_price", True, "代码")
etf_data = ak.fund_etf_spot_em()
# etf_data = ak.fund_etf_spot_ths()
# etf_data = etf_data.dropna(subset=['当前-单位净值'])
etf_data = etf_data.dropna(subset=['最新价'])
# etf_data['时间'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# mysql_database.insert_db(etf_data, "etf_price", True, "代码")
return stock_data, etf_data
2025-05-25 15:27:01 +08:00
def Buy_stock(self, turtle: TurtleTrading, price_now):
2025-05-19 08:07:00 +08:00
# 发送邮件 代码self.turtle.TradeCode, 建议买入价格price_now买入份额self.turtle.IntPositionSize
subject = "买入"
2025-05-25 15:27:01 +08:00
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
2025-05-19 08:07:00 +08:00
body += "回复:实际买入价格-买入份额-手续费"
send_email(subject, body, self.user_email)
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#每隔1分钟检测回信解析邮件。
parsed_email_flag = False
while not parsed_email_flag:
time.sleep(60) # 每次尝试前等待 60 秒
parse_states, buy_price, buy_share, fee = parse_return_email(
self.user_email, send_email_time
)
if parse_states:
parsed_email_flag = True
break
# 成功买入
2025-05-25 15:27:01 +08:00
turtle.TrigerTime += 1
2025-05-19 08:07:00 +08:00
# 记录self.turtle.BuyStates
2025-05-25 15:27:01 +08:00
add_price = buy_price + 1/2 * turtle.N
stop_price = buy_price - 2 * turtle.N
2025-05-19 08:07:00 +08:00
cost = buy_price * buy_share - fee
2025-05-25 15:27:01 +08:00
available_cash = turtle.Capital - cost
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
buy_this_time = BuyState(turtle.TrigerTime,
2025-05-19 08:07:00 +08:00
buy_price,
add_price,
stop_price,
False,
buy_share,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash)
2025-05-25 15:27:01 +08:00
turtle.BuyStates.append(buy_this_time)
2025-05-19 08:07:00 +08:00
# 记录self.turtle.tradeslog
today = datetime.now().strftime("%Y-%m-%d")
log_this_time = TradeLog(today,
"买入",
buy_price,
buy_share,
cost,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash,
all_shares=buy_share,
all_cost=cost,
Net_value=buy_price * buy_share,
Net_return=0)
2025-05-25 15:27:01 +08:00
turtle.tradeslog.append(log_this_time)
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
def add_stock(self, turtle: TurtleTrading, price_now):
2025-05-19 08:07:00 +08:00
"""加仓
Args:
price_now (_type_): 现价
"""
# 加仓
subject = "加仓"
2025-05-25 15:27:01 +08:00
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
2025-05-19 08:07:00 +08:00
body += "回复:实际买入价格-买入份额-手续费"
send_email(subject, body, self.user_email)
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#每隔1分钟检测回信解析邮件。
parsed_email_flag = False
while not parsed_email_flag:
time.sleep(60) # 每次尝试前等待 60 秒
parse_states, buy_price, buy_share, fee = parse_return_email(
self.user_email, send_email_time
)
if parse_states:
parsed_email_flag = True
break
# 成功买入
2025-05-25 15:27:01 +08:00
turtle.TrigerTime += 1
2025-05-19 08:07:00 +08:00
# 记录self.turtle.BuyStates
2025-05-25 15:27:01 +08:00
add_price = buy_price + 1/2 * turtle.N
stop_price = buy_price - 2 * turtle.N
2025-05-19 08:07:00 +08:00
cost = buy_price * buy_share - fee
2025-05-25 15:27:01 +08:00
available_cash = turtle.BuyStates[-1].available_cash - cost
all_shares = buy_share + turtle.BuyStates[-1].all_shares
all_cost = cost + turtle.BuyStates[-1].all_cost
2025-05-19 08:07:00 +08:00
net_value = buy_price * all_shares
net_return = net_value - all_cost
2025-05-25 15:27:01 +08:00
buy_this_time = BuyState(turtle.TrigerTime,
2025-05-19 08:07:00 +08:00
buy_price,
add_price,
stop_price,
2025-05-25 15:27:01 +08:00
turtle.is_gap_up,
2025-05-19 08:07:00 +08:00
buy_share,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash)
2025-05-25 15:27:01 +08:00
turtle.BuyStates.append(buy_this_time)
2025-05-19 08:07:00 +08:00
today = datetime.now().strftime("%Y-%m-%d")
log_this_time = TradeLog(today,
"加仓",
buy_price,
buy_share,
cost,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash,
all_shares,
all_cost,
net_value,
net_return)
2025-05-25 15:27:01 +08:00
turtle.tradeslog.append(log_this_time)
2025-05-19 08:07:00 +08:00
# 处理其他次买入的止损价格
# 检查BuyStates中有几个gap_up,返回个数和索引
gap_up_num = 0
gap_up_index = []
2025-05-25 15:27:01 +08:00
for i in range(len(turtle.BuyStates)):
if turtle.BuyStates[i].is_gap_up:
2025-05-19 08:07:00 +08:00
gap_up_num += 1
gap_up_index.append(i)
if gap_up_num == 0:
# 之前BuyStates中的stop_price = stop_price
2025-05-25 15:27:01 +08:00
for j in range(len(turtle.BuyStates)):
turtle.BuyStates[j].stop_price = stop_price
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
if not turtle.is_gap_up and gap_up_num == 1:
2025-05-19 08:07:00 +08:00
if gap_up_index[0] == 1:
2025-05-25 15:27:01 +08:00
number_tobe_change = turtle.TrigerTime -1 - gap_up_index[0]
2025-05-19 08:07:00 +08:00
for k in range(number_tobe_change):
2025-05-25 15:27:01 +08:00
turtle.BuyStates[k+1].stop_price = stop_price
2025-05-19 08:07:00 +08:00
elif gap_up_index[0] == 2:
2025-05-25 15:27:01 +08:00
turtle.BuyStates[2].stop_price = stop_price
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
elif not turtle.is_gap_up and gap_up_num == 2:
2025-05-19 08:07:00 +08:00
number_tobe_change = 2
for k in range(number_tobe_change):
2025-05-25 15:27:01 +08:00
turtle.BuyStates[k+1].stop_price = stop_price
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
def stop_sale_stock(self, turtle: TurtleTrading, price_now):
2025-05-19 08:07:00 +08:00
"""止损卖出
Args:
price_now (_type_): 现价
"""
# 判断需要卖出几份
sale_shares = 0
2025-05-25 15:27:01 +08:00
for i in range(len(turtle.BuyStates)):
if price_now <= turtle.BuyStates[i].stop_price:
2025-05-19 08:07:00 +08:00
sale_shares += 1
break
# 比较price_now与self.turtle.BuyStates[-1].stop_price
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now卖出份额self.turtle.IntPositionSize
subject = "止损卖出"
2025-05-25 15:27:01 +08:00
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize * sale_shares} \n "
2025-05-19 08:07:00 +08:00
body += "回复:实际卖出价格-卖出份额-手续费"
send_email(subject, body, self.user_email)
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# 每隔1分钟检测回信解析邮件。
parsed_email_flag = False
while not parsed_email_flag:
time.sleep(60) # 每次尝试前等待 60 秒
parse_states, sale_price, sale_share, fee = parse_return_email(
self.user_email, send_email_time
)
if parse_states:
parsed_email_flag = True
break
# 成功卖出
2025-05-25 15:27:01 +08:00
turtle.TrigerTime -= sale_shares
2025-05-19 08:07:00 +08:00
# 记录self.turtle.BuyStates
2025-05-25 15:27:01 +08:00
available_cash = turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
2025-05-19 08:07:00 +08:00
# 删除BuyStates中卖出股票的记录
2025-05-25 15:27:01 +08:00
turtle.BuyStates = turtle.BuyStates[:-sale_shares]
2025-05-19 08:07:00 +08:00
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
"止损",
sale_price,
sale_share,
sale_price * sale_share - fee,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash,
all_shares=0,
all_cost=0,
Net_value=sale_price * sale_share,
2025-05-25 15:27:01 +08:00
Net_return=abs(turtle.Capital - available_cash))
turtle.tradeslog.append(sale_this_time)
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
def out_sale_stock(self, turtle: TurtleTrading, price_now):
2025-05-19 08:07:00 +08:00
"""止盈卖出
Args:
price_now (_type_): 现价
"""
# 发送邮件 代码self.turtle.TradeCode, 建议卖出价格price_now卖出份额self.turtle.IntPositionSize
subject = "止盈卖出"
2025-05-25 15:27:01 +08:00
body = f"{turtle.TradeCode},价格{price_now},份额{turtle.IntPositionSize} \n "
2025-05-19 08:07:00 +08:00
body += "回复:实际卖出价格-卖出份额-手续费"
send_email(subject, body, self.user_email)
send_email_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# 每隔1分钟检测回信解析邮件。
parsed_email_flag = False
while not parsed_email_flag:
time.sleep(60) # 每次尝试前等待 60 秒
parse_states, sale_price, sale_share, fee = parse_return_email(
self.user_email, send_email_time
)
if parse_states:
parsed_email_flag = True
break
# 成功卖出
2025-05-25 15:27:01 +08:00
turtle.TrigerTime = 0
2025-05-19 08:07:00 +08:00
# 记录self.turtle.BuyStates
2025-05-25 15:27:01 +08:00
available_cash = turtle.BuyStates[-1].available_cash + sale_price * sale_share - fee
turtle.BuyStates = []
2025-05-19 08:07:00 +08:00
sale_this_time = TradeLog(datetime.now().strftime("%Y-%m-%d"),
"止盈",
sale_price,
sale_share,
sale_price * sale_share - fee,
2025-05-25 15:27:01 +08:00
turtle.N,
2025-05-19 08:07:00 +08:00
available_cash,
all_shares=0,
all_cost=0,
Net_value=sale_price * sale_share,
2025-05-25 15:27:01 +08:00
Net_return=abs(turtle.Capital - available_cash))
turtle.tradeslog.append(sale_this_time)
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# def run_short_trading_loop(self, stock_data, etf_data):
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# now = datetime.now().time()
# # 根据类型获取当前价格
# if self.turtle.type == "stock":
# self.turtle.PriceNow = float(stock_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# elif self.turtle.type == "etf":
# # self.turtle.PriceNow = float(etf_data.loc[etf_data['基金代码'] == self.turtle.TradeCode, '当前-单位净值'].values[0])
# self.turtle.PriceNow = float(etf_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# # # 9点30 判断是否跳空高开
# if now.hour == 9 and now.minute == 30 and self.turtle.PriceNow > self.turtle.prev_heigh:
# self.turtle.is_gap_up = True
2025-05-20 22:54:54 +08:00
2025-05-25 15:27:01 +08:00
# # 判断当前仓位状态并执行相应操作
# if self.turtle.TrigerTime == 0:
# # 空仓状态
# if self.turtle.system1EnterNormal(
# self.turtle.PriceNow,
# self.turtle.Donchian_20_up,
# self.turtle.BreakOutLog
# ):
# self.Buy_stock(self.turtle.PriceNow)
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# # 突破 记录self.turtle.breakoutlog
# today = datetime.now().strftime("%Y-%m-%d")
# breakout_this_time = BreakOutLog(today,
# self.turtle.Donchian_20_up,
# self.turtle.Donchian_20_up - 2 * self.turtle.N,
# 'valid',
# None)
# self.turtle.BreakOutLog.append(breakout_this_time)
# elif self.turtle.system1EnterSafe(
# self.turtle.PriceNow,
# self.turtle.Donchian_50_up
# ):
# self.Buy_stock(self.turtle.PriceNow)
# elif 1 <= self.turtle.TrigerTime <= 3:
# # # 突破状态
# # if self.turtle.system1EnterNormal(
# # self.turtle.PriceNow,
# # self.turtle.Donchian_20_up,
# # self.turtle.BreakOutLog
# # ):
# # self.Buy_stock(self.turtle.PriceNow)
# # elif self.turtle.system1EnterSafe(
# # self.turtle.PriceNow,
# # self.turtle.Donchian_50_up
# # ):
# # self.Buy_stock(self.turtle.PriceNow)
2025-05-20 22:54:54 +08:00
2025-05-25 15:27:01 +08:00
# # 加仓状态
# if self.turtle.add(self.turtle.PriceNow):
# self.add_stock(self.turtle.PriceNow)
2025-05-19 08:07:00 +08:00
2025-05-25 15:27:01 +08:00
# # 止损状态
# elif self.turtle.system_1_stop(self.turtle.PriceNow):
# self.stop_sale_stock(self.turtle.PriceNow)
2025-05-20 22:54:54 +08:00
2025-05-25 15:27:01 +08:00
# # 止盈
# elif self.turtle.system_1_Out(
# self.turtle.PriceNow,
# self.turtle.Donchian_10_down
# ):
# self.out_sale_stock(self.turtle.PriceNow)
# elif self.turtle.TrigerTime == 4:
# # 满仓 止损 止盈
# if self.turtle.system_1_stop(self.turtle.PriceNow):
# self.stop_sale_stock(self.turtle.PriceNow)
# elif self.turtle.system_1_Out(
# self.turtle.PriceNow,
# self.turtle.Donchian_10_down
# ):
# self.out_sale_stock(self.turtle.PriceNow)
# # 等待 1 分钟后下一次循环
# time.sleep(60)
2025-05-19 08:07:00 +08:00
def Start_short_system(self):
"""启动short系统
"""
# ------------------准备阶段--------------------
# 获取数据或读取数据 -- 计算ATR Donchian 20 50 up, 20 down
2025-05-23 21:12:13 +08:00
# 初始化所有turtle
for turtle in self.turtles:
# 准备数据
turtle.get_ready(100)
turtle.N = float(turtle.CurrentData['ATR'].iloc[-1])
turtle.prev_heigh = float(turtle.CurrentData['最高价'].iloc[-1])
turtle.Donchian_20_up = float(turtle.CurrentData['Donchian_20_upper'].iloc[-1])
turtle.Donchian_50_up = float(turtle.CurrentData['Donchian_50_upper'].iloc[-1])
turtle.Donchian_10_down = float(turtle.CurrentData['Donchian_10_lower'].iloc[-1])
turtle.CalPositionSize()
2025-05-19 08:07:00 +08:00
# ------------------实时监测阶段--------------------
# 9:00 1、判断是否是新的一周是则重新计算Position Size
# 判断是否是新的一周
if datetime.now().weekday() == 0:
2025-05-23 21:12:13 +08:00
for turtle in self.turtles:
turtle.CalPositionSize()
2025-05-19 08:07:00 +08:00
# 每分钟获取一次数据,判断是否触发条件 9:30-11:30 13:00-15:00
2025-05-20 22:54:54 +08:00
while True:
# 获取当前时间
now = datetime.now().time()
# 判断当前时间是否在交易时段内9:30-11:30 或 13:00-15:00
is_trading_time = (
(now.hour == 9 and now.minute >= 30) or
(now.hour == 10 and 0 <= now.minute <= 59) or
(now.hour == 11 and now.minute <= 30) or
(now.hour == 13 and 0 <= now.minute <= 59) or
(now.hour == 14 and 0 <= now.minute <= 59) or
(now.hour == 15 and now.minute <= 0)
)
if not is_trading_time:
# 非交易时间,等待 1 分钟后继续循环
time.sleep(60)
continue
is_stop_time = (now.hour > 15 and now.minute > 0) #收盘时间
if is_stop_time:
break
# 获取股票和ETF数据
2025-05-23 21:12:13 +08:00
self.monitor_all_turtles()
# 等待一段时间后再次检查
time.sleep(60) # 每分钟检查一次
2025-05-19 08:07:00 +08:00
# ------------------结束阶段--------------------
# 数据库更新当天数据增加ATR、donchian数据
# 直接做个新表
2025-05-25 15:27:01 +08:00
for turtle in self.turtles:
mysql_database.delete_table(f"{turtle.TradeCode}")
turtle.get_ready(100)
time.sleep(16.5*600)
2025-05-19 08:07:00 +08:00
2025-05-23 21:12:13 +08:00
def monitor_all_turtles(self):
"""主监控循环"""
# 获取实时数据
stock_data, etf_data = self.get_stocks_data()
# 遍历所有turtle进行监控
for turtle in self.turtles:
self.monitor_single_turtle(turtle, stock_data, etf_data)
def monitor_single_turtle(self, turtle: TurtleTrading, stock_data, etf_data):
"""监控单个turtle的交易条件"""
now = datetime.now().time()
if turtle.type == "stock":
turtle.PriceNow = float(stock_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
elif turtle.type == "etf":
# self.turtle.PriceNow = float(etf_data.loc[etf_data['基金代码'] == self.turtle.TradeCode, '当前-单位净值'].values[0])
turtle.PriceNow = float(etf_data.loc[etf_data['代码'] == self.turtle.TradeCode, '最新价'].values[0])
if now.hour == 9 and now.minute == 30 and self.turtle.PriceNow > self.turtle.prev_heigh:
turtle.is_gap_up = True
# 判断当前仓位状态并执行相应操作
if turtle.TrigerTime == 0:
if turtle.system1EnterNormal(
turtle.PriceNow,
turtle.Donchian_20_up,
turtle.BreakOutLog
):
self.start_email_thread(turtle, "买入", turtle.PriceNow)
# 突破 记录self.turtle.breakoutlog
today = datetime.now().strftime("%Y-%m-%d")
breakout_this_time = BreakOutLog(today,
turtle.Donchian_20_up,
turtle.Donchian_20_up - 2 * turtle.N,
'valid',
None)
turtle.BreakOutLog.append(breakout_this_time)
elif turtle.system1EnterSafe(
turtle.PriceNow,
turtle.Donchian_50_up
):
self.start_email_thread(turtle, "买入", turtle.PriceNow)
elif 1 <= turtle.TrigerTime <= 3:
# 加仓状态
if turtle.add(turtle.PriceNow):
self.start_email_thread(turtle, "加仓", turtle.PriceNow)
# 止损状态
elif turtle.system_1_stop(turtle.PriceNow):
self.start_email_thread(turtle, "止损", turtle.PriceNow)
# 止盈
elif turtle.system_1_Out(
turtle.PriceNow,
turtle.Donchian_10_down
):
self.start_email_thread(turtle, "止盈", turtle.PriceNow)
elif turtle.TrigerTime == 4:
# 满仓 止损 止盈
if turtle.system_1_stop(turtle.PriceNow):
self.start_email_thread(turtle, "止损", turtle.PriceNow)
elif turtle.system_1_Out(
turtle.PriceNow,
turtle.Donchian_10_down
):
self.start_email_thread(turtle, "止盈", turtle.PriceNow)
2025-05-25 15:27:01 +08:00
def start_email_thread(self, turtle:TurtleTrading, action, price_now):
2025-05-23 21:12:13 +08:00
"""启动邮件处理线程"""
event = threading.Event()
self.email_events[turtle.TradeCode] = event
thread = threading.Thread(
target=self.handle_email_response,
args=(turtle, action, price_now, event)
)
thread.start()
2025-05-25 15:27:01 +08:00
def handle_email_response(self, turtle:TurtleTrading, action, price_now, event):
2025-05-23 21:12:13 +08:00
"""处理邮件响应的线程"""
# 发送邮件
if action == "买入":
2025-05-25 15:27:01 +08:00
self.Buy_stock(turtle, price_now)
2025-05-23 21:12:13 +08:00
elif action == "加仓":
2025-05-25 15:27:01 +08:00
self.add_stock(turtle, price_now)
2025-05-23 21:12:13 +08:00
elif action == "止损":
2025-05-25 15:27:01 +08:00
self.stop_sale_stock(turtle, price_now)
2025-05-23 21:12:13 +08:00
elif action == "止盈":
2025-05-25 15:27:01 +08:00
self.out_sale_stock(turtle, price_now)
2025-05-23 21:12:13 +08:00
# 等待邮件响应
event.wait()
2025-05-19 08:07:00 +08:00
if __name__ == '__main__':
2025-05-20 22:54:54 +08:00
2025-05-19 08:07:00 +08:00
user_email = "guoyize2209@163.com"
t = TurtleTrading('513870', "etf", 0.0025, 100000, 200000)
# t.get_ready(100)
a = TurtleTrading_OnTime(t, user_email)
a.Start_short_system()
# # 全是股票
# stock_zh_a_spot_df = ak.stock_zh_a_spot_em()
# # stock_zh_a_spot_df.to_csv("stock_zh_a_spot.txt", sep="\t", index=False, encoding="utf-8")
# stock_zh_a_spot_df = stock_zh_a_spot_df.dropna(subset=['最新价'])
# print(stock_zh_a_spot_df)
# # 全是基金
# etf_data = ak.fund_etf_spot_em()
# etf_data = etf_data.dropna(subset=['最新价'])
# etf_data.to_csv("fund_etf_spot.txt", sep="\t", index=False, encoding="utf-8")
# print(etf_data)