TurtleTrade/回测/TurtleClass_old.py

235 lines
7.7 KiB
Python
Raw Permalink Normal View History

2025-04-02 23:06:11 +08:00
import numpy as np
import akshare as ak
import os
from datetime import datetime, timedelta
import pandas as pd
import mplfinance as mpf
def CalTrueFluc(data, day):
H_L = data.iloc[day]['最高'] - data.iloc[day]['最低']
H_PDC = data.iloc[day]['最高'] - data.iloc[day-1]['收盘']
PDC_L = data.iloc[day-1]['收盘'] - data.iloc[day]['最低']
TrueFluc = np.max([H_L, H_PDC, PDC_L])
print('high', data.iloc[day]['最高'], 'low', data.iloc[day]['最低'], 'TrueRange', TrueFluc)
return TrueFluc
def calc_sma_atr_pd(kdf,period):
"""计算TR与ATR
Args:
kdf (_type_): 历史数据
period (_type_): ATR周期
Returns:
_type_: 返回kdf增加TR与ATR列
"""
kdf['HL'] = kdf['最高'] - kdf['最低']
kdf['HC'] = np.abs(kdf['最高'] - kdf['收盘'].shift(1))
kdf['LC'] = np.abs(kdf['最低'] - kdf['收盘'].shift(1))
kdf['TR'] = np.round(kdf[['HL','HC','LC']].max(axis=1), 3)
# ranges = pd.concat([high_low, high_close, low_close], axis=1)
# true_range = np.max(ranges, axis=1)
kdf['ATR'] = np.round(kdf['TR'].rolling(period).mean(), 3)
return kdf.drop(['HL','HC','LC'], axis = 1)
# A股数据 东方财富网
# all_data = ak.stock_zh_a_spot_em()
# 基金实时数据 东方财富网
# fund_etf_spot_em_df = ak.fund_etf_spot_em()
# 后复权历史数据
# fund_etf_hist_em_df = ak.fund_etf_hist_em(symbol="513300", period="daily", start_date="20130101", end_date="20240408", adjust="hfq")
# fund_etf_hist_em_df.to_csv('513300data.csv', index=False)
# data = pd.read_csv('513300data.csv')
# # 一、计算头寸规模
# # 真实波动幅度 = max (H-L, H-pdc, pdc-L)
# today = datetime.today()
# # print(today)
# # print(data.iloc[-1]['成交额'])
# TrueFlucs = []
# Nserious = np.zeros(101)
# last120days = np.arange(-120, -100)
# for i in last120days:
# H_L = data.iloc[i]['最高'] - data.iloc[i]['最低']
# H_PDC = data.iloc[i]['最高'] - data.iloc[i-1]['收盘']
# PDC_L = data.iloc[i-1]['收盘'] - data.iloc[i]['最低']
# TrueFlucs.append(np.max([H_L, H_PDC, PDC_L]))
# # 求简单平均,放入N序列第一个
# Nsimple = np.average(TrueFlucs)
# Nserious[0] = Nsimple
# # 计算-21到-1的N
# last100days = np.arange(-100, 0)
# for i in range(0,100):
# day = last100days[i]
# H_L = data.iloc[day]['最高'] - data.iloc[day]['最低']
# H_PDC = data.iloc[day]['最高'] - data.iloc[day-1]['收盘']
# PDC_L = data.iloc[day-1]['收盘'] - data.iloc[day]['最低']
# TrueFluc = np.max([H_L, H_PDC, PDC_L])
# Ntemp = (19 * Nserious[i] + TrueFluc)/20
# Nserious[i+1] = Ntemp
# # print(Nserious)
# total_rows = len(data)
# Ndata = np.zeros(total_rows)
# Ndata[total_rows-101:] = Nserious
# # NewColumn = [0]*(total_rows-101) + Nserious
# data['N'] = Ndata
# data.to_csv('513300data-N.csv', index=False)
# pass
# -----------------------更新atr----------------------
"""已有数据与新数据对比补充新的N,同时更新数据库
"""
# Today = datetime.today()
# # print(Today)
# formatted_date = Today.strftime("%Y%m%d")
# # print(formatted_date)
# CurrentData = ak.fund_etf_hist_em(symbol="513300", period="daily", start_date="20130101", end_date=formatted_date, adjust="hfq")
# CurrentData = calc_sma_atr_pd(CurrentData, 20)
# CurrentData.to_csv('513300data-N.csv', index=False)
# pass
# ------------------计算头寸规模 资金10w, 1%波动------------
# money = 100000
# OldData = pd.read_csv('513300data-N.csv')
# N = OldData.iloc[-1]['ATR']
# # N = 0.473
# Price = OldData.iloc[-1]['收盘']
# # Price = 5.60
# EveryUnit = 0.0025 * money /(N*100*Price)
# print('单位',EveryUnit)
# print(113*100*Price)
class TurtleTrading(object):
"""对象范围较小对某一个标的创建一个海龟如513300
计算ATR
Position Size
买入卖出加仓等行为
Args:
object (_type_): _description_
"""
def __init__(self, TradeCode) -> None:
self.TradeCode = TradeCode
def CalATR(self, ATRday, SaveOrNot):
"""计算某个标的的ATR从上市日到今天, 计算后的数据保存在self.CurrentData
Args:
ATRday: 多少日ATR
SaveOrNot (_type_): 是否保存.csv数据
"""
Today = datetime.today()
# print(Today)
formatted_date = Today.strftime("%Y%m%d")
# print(formatted_date)
Code = f"{self.TradeCode}"
CurrentData = ak.fund_etf_hist_em(symbol=Code, period="daily", start_date="20130101", end_date=formatted_date, adjust="hfq")
self.CurrentData = calc_sma_atr_pd(CurrentData, ATRday)
if SaveOrNot:
self.CurrentData.to_csv('513300data-N.csv', index=False)
print("csv保存成功")
def CalPositionSize(self, RiskCoef, Capital):
"""计算PosizionSize 持有的单位该单位某标的1N波动对应RiskCoef * Capital资金
Args:
RiskCoef (_type_): 风险系数
Capital (_type_): 资金
"""
N = self.CurrentData.iloc[-1]['ATR']
# N = 0.473
Price = self.CurrentData.iloc[-1]['收盘']
# Price = 5.60
self.PositionSize = RiskCoef * Capital /( N*100*Price) # 默认用股票形式了 100
def ReadExistData(self, data):
"""除了通过发请求获取数据也可以读本地的数据库赋值给self.CurrentData
Args:
data (_type_): 本地csv名称
"""
self.CurrentData = pd.read_csv(data)
def DrawKLine(self, days):
"""画出k线图看看,画出最近days天的K线图
"""
# 日期部分
dates = pd.to_datetime(self.CurrentData['日期'][-days:])
# Klinedf['Data'] = pd.to_datetime(self.CurrentData['日期'])
Klinedf = pd.DataFrame()
# Klinedf.set_index = Klinedf['Data']
# 其他数据
Klinedf['Open'] = self.CurrentData['开盘'][-days:]
Klinedf['High'] = self.CurrentData['最高'][-days:]
Klinedf['Low'] = self.CurrentData['最低'][-days:]
Klinedf['Close'] = self.CurrentData['收盘'][-days:]
Klinedf['Volume'] = self.CurrentData['成交量'][-days:]
Klinedf.set_index(dates, inplace=True)
# 画图
mpf.plot(Klinedf, type='candle', style='yahoo', volume=False, mav=(5,), addplot=[mpf.make_addplot(self.Donchian[['Upper', 'Lower']])])
def calculate_donchian_channel(self, days, n):
"""
计算唐奇安通道days一共多少日 n多少日唐奇安
参数:
self.CurrentData (DataFrame): 包含价格数据的Pandas DataFrame至少包含"High""Low"
n (int): 时间周期
返回:self.Donchian
DataFrame: 唐奇安通道的DataFrame包含"Upper", "Lower", "Middle"
"""
self.Donchian = pd.DataFrame()
# 计算最高价和最低价的N日移动平均线
self.Donchian['Upper'] = self.CurrentData['最高'][-days:].rolling(n).max()
self.Donchian['Lower'] = self.CurrentData['最低'][-days:].rolling(n).min()
# 计算中间线
self.Donchian['Middle'] = (self.Donchian['Upper'] + self.Donchian['Lower']) / 2
# return data[['Upper', 'Lower', 'Middle']]
nsdk513300 = TurtleTrading(513300)
# nsdk513300.CalATR(20, True)
nsdk513300.ReadExistData('513300data-N.csv')
# nsdk513300.CalPositionSize(0.0025, 100000)
nsdk513300.calculate_donchian_channel(500, 20)
nsdk513300.DrawKLine(500)
# print(nsdk513300.PositionSize)